WorldWideScience

Sample records for thermodynamic performance characteristics

  1. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower

    International Nuclear Information System (INIS)

    Papaefthimiou, V.D.; Rogdakis, E.D.; Koronaki, I.P.; Zannis, T.C.

    2012-01-01

    A thermodynamic model was developed and used to assess the sensitivity of thermal performance characteristics of a closed wet cooling tower to inlet air conditions. In the present study, three cases of different ambient conditions are considered: In the first case, the average mid-winter and mid-summer conditions as well as the extreme case of high temperature and relative humidity, in Athens (Greece) during summer are considered according to the Greek Regulation for Buildings Energy Performance. In the second case, the varied inlet air relative humidity while the inlet air dry bulb temperature remains constant were taken into account. In the last case, the effects on cooling tower thermal behaviour when the inlet air wet bulb temperature remains constant were examined. The proposed model is capable of predicting the variation of air thermodynamic properties, sprayed water and serpentine water temperature inside the closed wet cooling tower along its height. The reliability of simulations was tested against experimental data, which were obtained from literature. Thus, the proposed model could be used for the design of industrial and domestic applications of conventional air-conditioning systems as well as for sorption cooling systems with solid and liquid desiccants where closed wet cooling towers are used for precooling the liquid solutions. The most important result of this theoretical investigation is that the highest fall of serpentine water temperature and losses of sprayed water are observed for the lowest value of inlet wet bulb temperature. Hence, the thermal effectiveness, which is associated with the temperature reduction of serpentine water as well as the operational cost, which is related to the sprayed water loss due to evaporation, of a closed wet cooling tower depend predominantly on the degree of saturation of inlet air.

  2. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  3. Thermodynamics, data estimation and performance assessment

    International Nuclear Information System (INIS)

    Grenthe, I.

    2002-01-01

    Performance assessment provides a narrative of a system and its development. One may use a literary metaphor; the procedure is like writing a novel where the 'chapters' are the various sub-systems and where both the 'plot' and the 'grammar' are based on scientific and other information, some hard facts and other more or less reliable guesses. I will begin with some general remarks on models, which may provide a useful starting point for what follows. - Models never provide complete descriptions of real systems; they are used to highlight certain aspects of them and to answer 'what-if' questions; - Modelling is an iterative process that provides guidance as to what are important phenomena and what is less relevant for the description of the system and its function; - It is necessary to distinguish between model uncertainties and parameter uncertainties; - It is often better to estimate a quantity for which no data are available than to exclude the particular process where it is needed. Thermodynamics provide not only numerical values for different chemical processes, but more important a theory framework that can be used for the estimation of data. I will not discuss activity coefficient corrections of thermodynamic data, an important area that has already been addressed by Professor Fanghaenel. In the following overview I will be using examples of estimations of different kinds to illustrate what can be accomplished using thermodynamics in combination with chemical theories. (author)

  4. Modeling the basic superconductor thermodynamical-statistical characteristics

    International Nuclear Information System (INIS)

    Palenskis, V.; Maknys, K.

    1999-01-01

    In accordance with the Landau second-order phase transition and other thermodynamical-statistical relations for superconductors, and using the energy gap as an order parameter in the electron free energy presentation, the fundamental characteristics of electrons, such as the free energy, the total energy, the energy gap, the entropy, and the heat capacity dependences on temperature were obtained. The obtained modeling results, in principle, well reflect the basic low- and high-temperature superconductor characteristics

  5. Thermodynamic performance analysis of ramjet engine at wide working conditions

    Science.gov (United States)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  6. Thermodynamic properties of the DUPIC fuel and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Heon; Kim, Hee Moon [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-07-01

    This study describes thermodynamic properties of DUPIC fuel and performance. In initial state, DUPIC fuel which contains fissile materials is different from general nuclear fuel. So this study analyzed oxygen potential, thermal conductivity and specific heat of the DUPIC fuel.

  7. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  8. Availability of thermodynamic system with multiple performance parameters based on vector-universal generating function

    International Nuclear Information System (INIS)

    Cai Qi; Shang Yanlong; Chen Lisheng; Zhao Yuguang

    2013-01-01

    Vector-universal generating function was presented to analyze the availability of thermodynamic system with multiple performance parameters. Vector-universal generating function of component's performance was defined, the arithmetic model based on vector-universal generating function was derived for the thermodynamic system, and the calculation method was given for state probability of multi-state component. With the stochastic simulation of the degeneration trend of the multiple factors, the system availability with multiple performance parameters was obtained under composite factors. It is shown by an example that the results of the availability obtained by the binary availability analysis method are somewhat conservative, and the results considering parameter failure based on vector-universal generating function reflect the operation characteristics of the thermodynamic system better. (authors)

  9. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  10. Thermodynamic and structural characteristics of cement minerals at elevated temperature

    International Nuclear Information System (INIS)

    Bruton, C.J.; Meike, A.; Viani, B.E.; Martin, S.; Phillips, B.L.

    1994-05-01

    We have instituted an experimental and including program designed to elucidate the structural and thermodynamic response of cement minerals to elevated temperature. Components of the program involve: (a) synthesis of hydrated Ca-silicates; (b) structural analysis of cement phases induced by heating and dehydration/rehydration; (c) mechanistic and thermodynamic descriptions of the hydration/dehydration behavior of hydrated Ca-silicates as a function of temperature, pressure and relative humidity; (d) study of naturally occurring hydrated Ca-silicates; and (e) measurements of thermodynamic data for hydrated Ca-silicates

  11. Thermodynamic Performance Indicators for Offshore Oil and Gas Processing: Application to Four North Sea Facilities

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2014-01-01

    Well-defined performance indicators can motivate optimal operation of offshore oil and gas platforms. We evaluate several thermodynamic performance indicators presented in the literature according to three criteria: Thermodynamic performance indicators should evaluate the use of technically...

  12. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  13. Conductivity and thermodynamic characteristic of superionic transition in strontium chloride

    International Nuclear Information System (INIS)

    Voronin, B.M.; Prisyazhnyj, V.D.

    1989-01-01

    Electric conductivity of strontium polycrystalline chloride in the wide temperature range including melting point is measured. Reciprocally caused anomalous behaviour of kinetic and thermodynamic properties, which relates to peculiarities of salt transition to a superionic state is established in the region of high temperatures. Thermodynamic functions corresponding to crystal anion sublattice disordering are determined and characterized. Comparative analysis of data on strontium chloride and other structural-like salts testifies about step-by-step washing-out character of superionic transition, and the depth of transition (the degree of disordering) reached at melting points relates regularly to relative sizes of cations and anions in the fluorite lattice

  14. Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolyte

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2012-01-01

    Highlights: ► Excess limiting molar volume may be regarded as a solvation-related characteristic. ► Volumetric and enthalpic effects of dissolution are interrelated thermodynamically. ► Possibility to estimate the partial change in solute compressibility is described. - Abstract: On the basis of thermodynamic analysis, it is concluded that the excess limiting partial molar volume, like the excess limiting partial molar enthalpy, can be considered as a solvation-related characteristic of a liquid nonelectrolyte. A thermodynamically grounded interrelation between standard volumetric and enthalpic effects of solution of a liquid nonelectrolyte (or series of nonelectrolytes) is suggested.

  15. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  16. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  17. General thermodynamic performance of irreversible absorption heat pump

    International Nuclear Information System (INIS)

    Zhao Xiling; Fu Lin; Zhang Shigang

    2011-01-01

    The absorption heat pump (AHP) was studied with thermodynamics. A four reservoirs model of absorption heat pump was established considering the heat resistance, heat leak and the internal irreversibility. The reasonable working regions, the performance effects of irreversibility, heat leak and the correlation of four components were studied. When studying the effects of internal irreversibility, two internal irreversibility parameters (I he for generator-absorber assembly and I re for evaporator-condenser assembly) were introduced to distinguish the different effects. When studying the heat transfer relations of four components, a universal relationship between the main parameters were deduced. The results which have more realized meaning show that, the reduction of the friction, heat loss, and internal dissipations of the evaporator-condenser assembly are more important than its reduction of generator-absorber assembly, and lessening the heat leak of generator are more important than its reduction of other components to improve the AHP performance.

  18. Thermodynamic performance optimization of a combined power/cooling cycle

    International Nuclear Information System (INIS)

    Pouraghaie, M.; Atashkari, K.; Besarati, S.M.; Nariman-zadeh, N.

    2010-01-01

    A combined thermal power and cooling cycle has already been proposed in which thermal energy is used to produce work and to generate a sub-ambient temperature stream that is suitable for cooling applications. The cycle uses ammonia-water mixture as working fluid and is a combination of a Rankine cycle and absorption cycle. The very high ammonia vapor concentration, exiting turbine under certain operating conditions, can provide power output as well as refrigeration. In this paper, the goal is to employ multi-objective algorithms for Pareto approach optimization of thermodynamic performance of the cycle. It has been carried out by varying the selected design variables, namely, turbine inlet pressure (P h ), superheater temperature (T superheat ) and condenser temperature (T condensor ). The important conflicting thermodynamic objective functions that have been considered in this study are turbine work (w T ), cooling capacity (q cool ) and thermal efficiency (η th ) of the cycle. It is shown that some interesting and important relationships among optimal objective functions and decision variables involved in the combined cycle can be discovered consequently. Such important relationships as useful optimal design principles would have not been obtained without the use of a multi-objective optimization approach.

  19. Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine

    Science.gov (United States)

    Huang, Xin; Zhou, Gang; Li, Qing

    2013-06-01

    This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.

  20. Effect of various drying bed on thermodynamic characteristics

    Directory of Open Access Journals (Sweden)

    Ali Motevali

    2017-09-01

    Full Text Available In this study thermodynamic parameter and energy consumption in drying of two plant dill and mint in three bed drying including fix, semi fix and fluid with using a hot air drying was investigated. Experimental was conducted in three bed drying including fix, semi fix and fluid and four levels temperature (30, 40, 50 and 60 °C. Maximum energy consumption in dill drying at 40 °C and fluid bed to be 16.41 MJ and minimum energy consumption at 30 °C and fix bed to be 2.77 MJ. Also minimum energy consumption in mint drying at 60 °C and fix bed to be 3.64 MJ and maximum energy consumption at 40 °C and fluid bed to be 28.65 MJ. The highest energy, drying and thermal efficiency for both mint and dill was achieved at 60 °C on the fixed bed, whereas the lowest efficiency was at 40 °C and on the fluidized bed. Also the highest power and specific heat consumption for both mint and dill was achieved at 40 °C on the fluid bed, whereas the lowest efficiency was at 30 °C and on the fluidized bed.

  1. The thermodynamic characteristics of vaporization of praseodymium triiodide

    Science.gov (United States)

    Motalov, V. B.; Kudin, L. S.; Markus, T.

    2009-03-01

    The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI{4/-} and Pr2I{7/-} negative ions were recorded in saturated vapor over the temperature range 842-1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (-373 ± 11, -929 ± 31, -865 ± 25, and -1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI{4/-}, and Pr2I{7/-}, respectively).

  2. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of cobalt and nickel

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yui, Mikazu; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2009-11-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of cobalt and nickel have been carried out. For cobalt, extensive literature survey has been performed and all the obtained literatures have been carefully reviewed to select the thermodynamic data. Selection of thermodynamic data of nickel has been based on a thermodynamic database published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA), which has been carefully reviewed by the authors, and then thermodynamic data have been selected after surveying latest literatures. Based on the similarity of chemical properties between cobalt and nickel, complementary thermodynamic data of nickel and cobalt species expected under the geological disposal condition have been selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  3. Thermodynamic properties and energy characteristics of water+1-propanol

    Science.gov (United States)

    Alhasov, A. B.; Bazaev, A. R.; Bazaev, E. A.; Osmanova, B. K.

    2017-11-01

    By using own precise experimental data on p,ρ,T,x- relations differential and integral thermodynamic properties of water+1-propanol homogeneous binary mixtures (0.2, 0.5, and 0.8 mole fractions of 1-propanol) were obtained in one phase (liquid, vapor) region, along coexistence curve phase, at critical and supercritical regions of parameters of state. These values were obtained in the regions of temperatures 373.15 - 673.15 K, densities 3 - 820 kg/m3 and pressures up to 50 MPa. It is found that shape of p,ρ,T,- dependences of water+1-propanol mixtures in investigated range of temperatures is the same with those of pure liquid, but the pressure of the mixture is higher than those of pure water or 1-propanol. The critical line of water+1-propanol binary mixtures as opposed to those of water+methanol and water+ethanol mixtures has convex shape. It is ascertained that using water+1-propanol mixture (0.2 mol.fraction of 1-propanol) instead of pure water allows to decrease lower limit of operating temperatures to 50 K, to increase effective coefficient of efficiency and partially unify thermal mechanical equipment of power plant. Our comparative energy analysis of cycles of steam-turbine plant on water and water+1- propanol mixtures, carried out at the same thermobaric conditionsand showed that thermal coefficient of efficiencyofcycle of steam-turbine plant onwater+1-propanol mixture (0.2 mol.fraction of 1-propanol) is higher than those of pure water.Thus and so we made a conclusion about usability of water+1-propanol mixture (0.2 mole fraction of 1-propanol) as a working substance of steam-turbine plant cycle.

  4. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers

    International Nuclear Information System (INIS)

    Zhang, Duo; Yang, Shengbo; Zhang, Silong; Qin, Jiang; Bao, Wen

    2015-01-01

    In order to predict the maximum performance of scramjet engine at flight conditions with high freestream Mach numbers, a thermodynamic model of Brayton cycle was utilized to analyze the effects of inlet pressure ratio, fuel equivalence ratio and the upper limit of gas temperature to the specific thrust and the fuel impulse of the scramjet considering the characteristics of non-isentropic compression in the inlet. The results show that both the inlet efficiency and the temperature limit in the combustor have remarkable effects on the overall engine performances. Different with the ideal Brayton cycles assuming isentropic compression without upper limit of gas temperature, both the maximum specific thrust and the maximum fuel impulse of a scramjet present non-monotonic trends against the fuel equivalence ratio in this study. Considering the empirical design efficiencies of inlet, there is a wide range of fuel equivalence ratios in which the fuel impulses remain at high values. Moreover, the maximum specific thrust can also be achieved with a fuel equivalence ratio near this range. Therefore, it is possible to achieve an overall high performance in a scramjet at high Mach numbers. - Highlights: • Thermodynamic analysis with Brayton cycle on overall performances of scramjet. • The compression loss in the inlet was considered in predicting scram-mode operation. • Non-monotonic trends of engine performances against fuel equivalence ratio.

  5. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of selenium

    International Nuclear Information System (INIS)

    Doi, Reisuke; Kitamura, Akira; Yui, Mikazu

    2010-02-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of selenium was carried out. Selection of thermodynamic data of selenium was based on a thermodynamic database of selenium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). The remarks of a thermodynamic database by OECD/NEA found by the authors were noted in this report and then thermodynamic data was reviewed after surveying latest literatures. Some thermodynamic values of iron selenides were not selected by the OECD/NEA due to low reliability. But they were important for the performance assessment of geological disposal of radioactive wastes, so we selected them as a tentative value with specifying reliability and needs of the value to be determined. (author)

  6. Thermodynamic performance of a gas-core fission reactor

    International Nuclear Information System (INIS)

    Klein, W.

    1987-01-01

    The purpose of this thesis was to investigate the thermodynamic behaviour of a critical quantity of gaseous uranium-fluorides in chemical equilibrium with a graphite wall. From the very beginning a container was considered with cooled walls. As it was evident that a nuclear reactor working with gaseous fuel should run at much higher temperatures than classical LWR or HTGR reactors, most of the investigations were performed for walls with a surface temperature of 1800 to 2000 K. It was supposed that such a surface temperature would be technologically possible for a heat load between 1 and 5 MWatt m -2 . Cooling with high pressure helium-gas has to keep balance with this heat flux. The technical construction of such a wall will be a problem in itself. It is thought that the experiences with re-entry-vessels in space-technology can be used. A basic assumption in all the calculations is that the U-C-F reactor gas 'sees' a graphite wall, possibly graphite tiles supported by heat resistant materials like SiN 2 , SiC 2 and at a lower temperature level by niobium-steel. Such a gastight compound-system is not necessarily of high-tensile strength materials. It has to be surrounded by a cooled neutron moderator-reflector which in its turn must be supported by a steel-wall at room temperature holding pressure of the order of 100 bar (10 MPa). The design of such a compound-wall is a task for the future. 116 refs.; 28 figs.; 29 tabs

  7. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Talawar, M.B.; Asthana, S.N.

    2004-01-01

    A new code viz., Linear Output Thermodynamic User-friendly Software for Energetic Systems (LOTUSES) developed during this work predicts the theoretical performance parameters such as density, detonation factor, velocity of detonation, detonation pressure and thermodynamic properties such as heat of detonation, heat of explosion, volume of explosion gaseous products. The same code also assists in the prediction of possible explosive decomposition products after explosion and power index. The developed code has been validated by calculating the parameters of standard explosives such as TNT, PETN, RDX, and HMX. Theoretically predicated parameters are accurate to the order of ±5% deviation. To the best of our knowledge, no such code is reported in literature which can predict a wide range of characteristics of known/unknown explosives with minimum input parameters. The code can be used to obtain thermochemical and performance parameters of high energy materials (HEMs) with reasonable accuracy. The code has been developed in Visual Basic having enhanced windows environment, and thereby advantages over the conventional codes, written in Fortran. The theoretically predicted HEMs performance can be directly printed as well as stored in text (.txt) or HTML (.htm) or Microsoft Word (.doc) or Adobe Acrobat (.pdf) format in the hard disk. The output can also be copied into the Random Access Memory as clipboard text which can be imported/pasted in other software as in the case of other codes

  8. The thermodynamic characteristics of ion resolvation in aqueous solutions of dimethylformamide and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Parfenyuk, V.I.

    2002-01-01

    Data on thermodynamic characteristics of chlorine, bromine and iodine ion resolution in mixtures of water with dimethylformamide and dimethylsulfoxide are provided and analyzed. The values presented were calculated on the basis of the volt potential differences method. It is shown the actual thermodynamic characteristics of anion transfer have positive values in contrast to cations having the opposite sign. It stems from changes in the structure of mixed solvent when passing from water to water-organic mixtures in the solution/gas phase interface. Analysis of chemical Gibbs' energies of resolvation of the ions studied suggests that anions, which can form hydrogen bonds with proton-donor solvents, are hardly solved in aprotic solutions [ru

  9. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for trivalent actinoids and samarium

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Yui, Mikazu

    2010-01-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  10. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Wu, Jing; Xu, Zilong; Li, Meng

    2017-01-01

    Highlights: • Propose a fuel cell trigeneration system integrated with solar-assisted methanol reforming. • Optimize the reaction parameters of methanol steam reforming. • Present the energy and exergy analysis under design and off-design work conditions. • Analyze the contributions of solar energy to the trigeneration system. - Abstract: A solar-assisted trigeneration system for producing electricity, cooling, and heating simultaneously is an alternative scheme to improve energy efficiency and boost renewable energy. This paper proposes a phosphoric acid fuel cell trigeneration system integrated with methanol and steam reforming assisted by solar thermal energy. The trigeneration system consists of a solar heat collection subsystem, methanol steam reforming subsystem, fuel cell power generation subsystem, and recovered heat utilization subsystem. Their respective thermodynamic models are constructed to simulate the system input/output characteristics, and energy and exergy efficiencies are employed to evaluate the system thermodynamic performances. The contribution of solar energy to the system is analyzed using solar energy/exergy share. Through the simulation and analysis of methanol and steam reforming reactions, the optimal reaction pressure, temperature, and methanol to water ratio are obtained to improve the flow rate and content of produced hydrogen. The thermodynamic simulations of the trigeneration system show that the system energy efficiencies at the summer and winter design work conditions are 73.7% and 51.7%, while its exergy efficiencies are 18.8% and 26.1%, respectively. When the solar radiation intensity is different from the design work condition, the total energy and exergy efficiencies in winter decrease approximately by 4.7% and 2.2%, respectively, due to the decrease in solar heat collection efficiency. This proposed novel trigeneration system complemented by solar heat energy and methanol chemical energy is favorable for improving the

  11. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    Science.gov (United States)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  12. Thermodynamic considerations on self-regulating characteristics of a cold neutron source with a closed thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Ogino, Fumimaru.

    1991-01-01

    The present report describes that a cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a self-regulating characteristic under thermal disturbances if the effect of the moderator transfer tube is negligible. Due to this property, the liquid level in the moderator cell is kept almost constant under thermal disturbances. The thermodynamic meaning of the self-regulating property in the idealized closed-thermosiphon and the effect of the moderator transfer tube to the self-regulation are described. (author)

  13. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for tetravalent thorium, uranium, neptunium and plutonium

    International Nuclear Information System (INIS)

    Fujiwara, Kenso; Kitamura, Akira; Yui, Mikazu

    2010-03-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of Thorium(IV), Uranium(IV), Neptunium(IV) and Plutonium(IV) was carried out. Refinement of thermodynamic data for the element was performed on a basis of the thermodynamic database for actinide published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Additionally, the latest data after publication of thermodynamic data by OECD/NEA were reevaluated to determine whether the data should be included in the JAEA-TDB. (author)

  15. Developing countries SMEs innovation characteristics and performance

    DEFF Research Database (Denmark)

    Vang, Jan; Rezaei, Shahamak; Baklanov, Nikita

    An econometric study analysing developing countries’ SMEs innovation characteristics and their correlation with performance.......An econometric study analysing developing countries’ SMEs innovation characteristics and their correlation with performance....

  16. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of molybdenum

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2010-06-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of molybdenum were carried out. We focused to select thermodynamic data of aqueous species and compounds which could form under repository conditions for the disposal of radioactive wastes, i.e. relatively low concentration of molybdenum and from near neutral through alkaline conditions. Selection of thermodynamic data was based on the guidelines by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Extensive literature survey was performed and all the obtained articles were carefully reviewed to select the thermodynamic data for molybdenum. Thermodynamic data at 25degC and zero ionic strength were determined from accepted thermodynamic data which were considered to be reliable. We especially paid attention to select formation constant of molybdate ion (MoO 4 2- ) with hydrogen ion (H + ) in detail. This is the first report in showing selection of thermodynamic data for molybdenum with detailed reviewing process. (author)

  17. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  18. Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel

    International Nuclear Information System (INIS)

    Gong, Guangcai; Chen, Feihu; Su, Huan; Zhou, Jianyong

    2012-01-01

    Highlights: ► Thermodynamic model of a two-condenser condensation system has been carried out. ► Dynamic simulation method has been presented. ► COP and g of the refrigerating system is better than the single condensation system. ► The optimal parameters for the two-condenser condensation system have been studied. -- Abstract: A thermodynamic simulation study has been carried out for a single stage centrifugal chiller in this paper. The cooling capacity of the chiller unit is about 1750 kW. The chiller unit has been set and tested, and the work refrigerant is R22. A heat exchanger has been set between outlet of the compressor and the condenser for sanitary hot water supplying. Then the chiller unit is a kind of combined system that can provide sanitary hot water supplying and air conditioning simultaneously. A thermodynamic simulation model of the combined system has been established with the system simulation toolbox Simulink. Performance of the components and the combined system of the chiller unit has been studied over a wide range of operating conditions. The potential energy and fuel cost saving associated with the use of the proposed combined system for a typical hotel in south China has been estimated. It is showed that the combined system of the chiller unit is very useful in hotel buildings. And the thermodynamic simulation model of the combined system is significance for the optimization of parameters of the chiller unit such as condensation and evaporation temperature, mass flow of the sanitary hot water and size of hot water storage tank.

  19. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  20. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  1. Thermodynamic characteristics of a novel supercritical compressed air energy storage system

    International Nuclear Information System (INIS)

    Guo, Huan; Xu, Yujie; Chen, Haisheng; Zhou, Xuezhi

    2016-01-01

    Highlights: • A novel supercritical compressed air energy storage system is proposed. • The energy density of SC-CAES is approximately 18 times larger than that of conventional CAES. • The characteristic of thermodynamics and exergy destruction is comprehensively analysed. • The corresponding optimum relationship between charging and discharging pressure is illustrated. • A turning point of efficiency is indicated because of the heat transfer of crossing the critical point. - Abstract: A novel supercritical compressed air energy storage (SC-CAES) system is proposed by our team to solve the problems of conventional CAES. The system eliminates the dependence on fossil fuel and large gas-storage cavern, as well as possesses the advantages of high efficiency by employing the special properties of supercritical air, which is significant for the development of electrical energy storage. The thermodynamic model of the SC-CAES system is built, and the thermodynamic characters are revealed. Through the exergy analysis of the system, the processes of the larger exergy destruction include compression, expansion, cold storage/heat exchange and throttle. Furthermore, sensitivity analysis shows that there is an optimal energy releasing pressure to make the system achieve the highest efficiency when energy storage pressure is constant. The efficiency of SC-CAES is expected to reach about 67.41% when energy storage pressure and energy releasing pressure are 120 bar and 95.01 bar, respectively. At the same time, the energy density is 18 times larger than that of conventional CAES. Sensitivity analysis also shows the change laws of system efficiency varying with other basic system parameters. The study provides support for the design and engineering of SC-CAES.

  2. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    Science.gov (United States)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  3. Thermodynamic characteristics of the acid dissociation of dopamine hydrochloride in water-ethanol solutions

    Science.gov (United States)

    Ledenkov, S. F.; Vandyshev, V. N.; Molchanov, A. S.

    2012-06-01

    Enthalpies of the interaction of protonated dopamine with a hydroxide ion in water-ethanol mixtures in the concentration range of 0-0.8 EtOH mole fractions are measured calorimetrically. The neutralization process of dopamine hydrochloride is shown to occur endothermally in solvents with an ethanol concentration of ≥0.5 mole fractions. Standard thermodynamic characteristics (Δr H ○, Δr G ○, and Δr S ○) of the first-step acid dissociation of dopamine hydrochloride in solutions are calculated with regard to the autoprotolysis enthalpy of binary solvents. It is found that dissociation enthalpies vary within 9.1-64.8 kJ/mol, depending on the water-ethanol solvent composition.

  4. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    Science.gov (United States)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  5. Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel

    International Nuclear Information System (INIS)

    Nunes de Faria, Mário M.; Vargas Machuca Bueno, Juan P.; Ayad, Sami M.M. Elmassalami; Belchior, Carlos R. Pereira

    2017-01-01

    Highlights: • A 0-D model for performance prediction of SI ICE fueled with biogas is proposed. • Relative difference between simulated and experimental values was under 5%. • Can be adapted for different biogas compositions and operating ranges. • Could be a valuable tool for predicting trends and guiding experimentation. • Is suitable for use with biogas supplies in developing regions. - Abstract: Biogas found its way from developing countries and is now an alternative to fossil fuels in internal combustion engines and with the advantage of lower greenhouse gas emissions. However, its use in gas engines requires engine modifications or adaptations that may be costly. This paper reports the results of experimental performance and emissions tests of an engine-generator unit fueled with biogas produced in a sewage plant in Brazil, operating under different loads, and with suitable engine modifications. These emissions and performance results were in agreement with the literature and it was confirmed that the penalties to engine performance were more significant than emission reduction in the operating range tested. Furthermore, a zero dimensional simulation model was employed to predict performance characteristics. Moreover, a differential thermodynamic equation system was solved, obtaining the pressure inside the cylinder as a function of the crank angle for different engine conditions. Mean effective pressure and indicated power were also obtained. The results of simulation and experimental tests of the engine in similar conditions were compared and the model validated. Although several simplifying assumptions were adopted and empirical correlations were used for Wiebe function, the model was adequate in predicting engine performance as the relative difference between simulated and experimental values was lower than 5%. The model can be adapted for use with different raw or enriched biogas compositions and could prove to be a valuable tool to guide

  6. Physicochemical aspects of extraction of uranium concentrate from the wastes and thermodynamic characteristics of thorium-uranium compounds

    International Nuclear Information System (INIS)

    Khamidov, F.A.

    2017-01-01

    The purpose of present work is elaboration of physicochemical aspects of extraction of uranium concentrate from the wastes and study of thermodynamic characteristics of thorium-uranium compounds. Therefore, the radiological monitoring of tailing dumps of Tajikistan has been conducted; the obtaining of uranium concentrate from the tailing dumps of uranium production has been studied; the obtaining of uranium concentrate from the tailing dumps of uranium production with application of local sorbents has been studied as well; thermal stability and thermodynamic characteristics of uranium-thorium compounds has been investigated; the flowsheets of extraction of uranium concentrate from the wastes have been elaborated.

  7. Moisture sorption–desorption characteristics and the corresponding thermodynamic properties of carvedilol phosphate

    Directory of Open Access Journals (Sweden)

    Ravikiran Allada

    2017-01-01

    Full Text Available Aims: Carvedilol phosphate (CDP is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C. The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB; Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P, correlation (Correl, root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  8. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  9. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    Science.gov (United States)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  10. Thermodynamic characteristics of the acid-base equilibria of taurine in aqueous solutions, according to calorimetry data

    Science.gov (United States)

    Gridchin, S. N.; Shekhanov, R. F.; Pyreu, D. F.

    2015-02-01

    Enthalpies of the neutralization and protonation of taurine (HL) are measured by direct calorimetry at 298.15 K and ionic strengths of 0.3, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics of HL protolytic equilibria are calculated.

  11. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system

    Science.gov (United States)

    Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.

    2017-12-01

    Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.

  12. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  13. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  14. Simulating the synthesis and thermodynamic characteristics of the desolvation of lanthanide borohydride tris-Tetrahydrofuranates

    Science.gov (United States)

    Gafurov, B. A.; Mirsaidov, I. U.; Nasrulloeva, D. Kh.; Badalov, A.

    2013-10-01

    Lanthanide borohydride tris-tetrahydrofuranates (Ln(BH4) · 3THF, where THF is tetrahydrofuran and Ln is La, Nd, Sm, Gd, Er, Yb, and Lu) is synthesized via the exchange reaction of lanthanide(III) chloride and sodium borohydride in THF. It is found that synthesis proceeds according to a stepwise mechanism and the product of the reaction (lanthanide borohydride) initiates the process. The two-step character of the desolvation of Ln(BH4)3 · 3THF under steady-state conditions in the temperature range of 300 to 400 K is determined through X-ray phase and chemical analyses, tensiometry, and gas volumetry. It is established that one mole and then two moles of THF are removed from the initial sample at the first and second steps, respectively. Equations for barograms are obtained and the thermodynamic characteristics of desolvation of Ln(BH4)3 · 3THF under study are calculated. Gibbs energy values of the stages of process are determined semi-empirically. The law of its change for the entire series of Ln(BH4)3 · 3THF is determined with the emergence of the tetrad effect.

  15. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    Science.gov (United States)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  16. Applicability of thermodynamic database of radioactive elements developed for the Japanese performance assessment of HLW repository

    International Nuclear Information System (INIS)

    Yui, Mikazu; Shibata, Masahiro; Rai, Dhanpat; Ochs, Michael

    2003-01-01

    In 1999 Japan Nuclear Cycle Development Institute (JNC) published a second progress report (also known as H12 report) on high-level radioactive waste (HLW) disposal in Japan (JNC 1999). This report helped to develop confidence in the selected HLW disposal system and to establish the implementation body in 2000 for the disposal of HLW. JNC developed an in-house thermodynamic database for radioactive elements for performance analysis of the engineered barrier system (EBS) and the geosphere for H12 report. This paper briefly presents the status of the JNC's thermodynamic database and its applicability to perform realistic analyses of the solubilities of radioactive elements, evolution of solubility-limiting solid phases, predictions of the redox state of Pu in the neutral pH range under reducing conditions, and to estimate solubilities of radioactive elements in cementitious conditions. (author)

  17. Board characteristics, governance objectives, and hospital performance

    DEFF Research Database (Denmark)

    Thiel, Andrea; Winter, Vera; Büchner, Vera Antonia

    2018-01-01

    membership relates to board characteristics and financial performance. METHODOLOGY: Using factor analysis, we identify latent classes of governance objectives and use hierarchical cluster analysis to detect distinct clusters with varying emphasis on the classes. We then use multinomial regression to explore...... the associations between cluster membership and board characteristics (size, gender diversity, and occupational diversity) and examine the associations between clusters and financial performance using OLS regression. RESULTS: Classes of objectives reflecting three governance theories-agency theory, stewardship...... and hospital financial performance, with two of three groups performing significantly better than the reference group. CONCLUSION: High performance in hospitals can be the result of governance logics, which, compared to simple board characteristics, are associated with better financial outcomes. PRACTICE...

  18. Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Lu, Yanchao; Yang, Ying; Mao, Tianzhi

    2016-01-01

    This study aims to present a thermodynamic performance analysis and to optimize the configurations of a hybrid combined cooling, heating and power (CCHP) system incorporating solar energy and natural gas. A basic natural gas CCHP system containing a power generation unit, a heat recovery system, an absorption cooling system and a storage tank is integrated with solar photovoltaic (PV) panels and/or a heat collector. Based on thermodynamic modeling, the thermodynamic performance, including energy and exergy efficiencies, under variable work conditions, such as electric load factor, solar irradiance and installation ratio, of the solar PV panels and heat collector is investigated and analyzed. The results of the energy supply side analysis indicate that the integration of solar PV into the CCHP system more efficiently improves the exergy efficiency, whereas the integration of a solar heat collector improves the energy efficiency. To match the building loads, the optimization method combined with the operation strategy is employed to optimize the system configurations to maximize the integrated benefits of energy and economic costs. The optimization results of demand–supply matching demonstrate that the integration of a solar heat collector achieves a better integrated performance than the solar PV integration in the specific case study. - Highlights: • Design a CCHP system integrated with solar PV and heat collector. • Present the energy and exergy analyses under variable work conditions. • Propose an optimization method of CCHP system for demand-supply matching.

  19. Growth performance, carcass and hematological characteristics of ...

    African Journals Online (AJOL)

    Growth performance, carcass and hematological characteristics of rabbits fed graded levels of tiger nuts ( Cyperus esculentus ) ... (p>0.05) difference between treatments. Results demonstrated that (Cyperus esculentus) could be used up to 5% in rabbit's diets without adverse effect on the animals' performance and health.

  20. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  1. JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Mikazu; Azuma, Jiro; Shibata, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Isolation Research Division, Tokai, Ibaraki (Japan)

    1999-11-01

    This report is a summary of status, frozen datasets, and future tasks of the JNC (Japan Nuclear Cycle Development Institute) thermodynamic database (JNC-TDB) for assessing performance of high-level radioactive waste in geological environments. The JNC-TDB development was carried out after the first progress report on geological disposal research in Japan (H-3). In the development, thermodynamic data (equilibrium constants at 25degC, I=0) for important radioactive elements were selected/determined based on original experimental data using different models (e.g., SIT, Pitzer). As a result, the reliability and traceability of the data for most of the important elements were improved over those of the PNC-TDB used in H-3 report. For detailed information of data analysis and selections for each element, see the JNC technical reports listed in this document. (author)

  2. An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody

    Science.gov (United States)

    Shibazaki, Chie; Adachi, Motoyasu; Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Tahara, Tomoyuki; Kato, Takashi; Miyazaki, Hiroshi; Blaber, Michael; Kuroki, Ryota

    2016-01-01

    Abstract Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody–hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen‐binding fragment (Fab) derived from the TN1 antibody (TN1‐Fab). To clarify the mechanism by which hTPO is recognized by TN1‐Fab the conformation of free TN1‐Fab was determined to a resolution of 2.0 Å using X‐ray crystallography and compared with the hTPO‐bound form of TN1‐Fab determined by a previous study. This structural comparison revealed that the conformation of TN1‐Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen‐binding site (paratope) of TN1‐Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (−1.52 ± 0.05 kJ mol−1 K−1) differed significantly from calculations based upon the X‐ray structure data of the hTPO‐bound and unbound forms of TN1‐Fab (−1.02 ∼ 0.25 kJ mol−1 K−1) suggesting that hTPO undergoes an induced‐fit conformational change combined with significant desolvation upon TN1‐Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition. PMID:27419667

  3. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    Science.gov (United States)

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation.

  4. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    Science.gov (United States)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  5. An empirical method for calculating thermodynamic parameters for U(6) phases, applications to performance assessment calculations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Chen, F.; Clark, S.B.

    2002-01-01

    Uranyl minerals form by oxidation and alteration of uraninite, UO 2+x , and the UO 2 in used nuclear fuels. The thermodynamic database for these phases is extremely limited. However, the Gibbs free energies and enthalpies for uranyl phases may be estimated based on a method that sums polyhedral contributions. The molar contributions of the structural components to Δ f G m 0 and Δ f H m 0 are derived by multiple regression using the thermodynamic data of phases for which the crystal structures are known. In comparison with experimentally determined values, the average residuals associated with the predicted Δ f G m 0 and Δ f H m 0 for the uranyl phases used in the model are 0.08 and 0.10%, respectively. There is also good agreement between the predicted mineral stability relations and field occurrences, thus providing confidence in this method for the estimation of Δ f G m 0 and Δ f H m 0 of the U(VI) phases. This approach provides a means of generating estimated thermodynamic data for performance assessment calcination and a basic for making bounding calcination of phase stabilities and solubilities. (author)

  6. Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.

    2014-01-01

    This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output

  7. Thermic diode performance characteristics and design manual

    Science.gov (United States)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  8. Haematological characteristics and performance of West African ...

    African Journals Online (AJOL)

    The effects of feeding crude petroleum contaminated forage on haematological characteristics and performance of 36 young West African Dwarf (WAD) goats was investigated in order to simulate the impact of real crude oil spillage on livestock and game. Graded levels (0.0, 1.5 and 3.0 g per kg forage) of stabilized “Bonny ...

  9. Growth performance, blood parameters and carcass characteristics ...

    African Journals Online (AJOL)

    This study was carried out with one hundred and twenty (120) day-old marshal chicks to investigate the effect of Maxigrain® enzyme supplementation of corn bran based diets on growth performance, carcass characteristics, haematology and serum biochemistry of broilers in an eight weeks experiment. Four experimental ...

  10. Hybrid ANN–PLS approach to scroll compressor thermodynamic performance prediction

    International Nuclear Information System (INIS)

    Tian, Z.; Gu, B.; Yang, L.; Lu, Y.

    2015-01-01

    In this paper, a scroll compressor thermodynamic performance prediction was carried out by applying a hybrid ANN–PLS model. Firstly, an experimental platform with second-refrigeration calorimeter was set up and steady-state scroll compressor data sets were collected from experiments. Then totally 148 data sets were introduced to train and verify the validity of the ANN–PLS model for predicting the scroll compressor parameters such as volumetric efficiency, refrigerant mass flow rate, discharge temperature and power consumption. The ANN–PLS model was determined with 5 hidden neurons and 7 latent variables through the training process. Ultimately, the ANN–PLS model showed better performance than the ANN model and the PLS model working separately. ANN–PLS predictions agree well with the experimental values with mean relative errors (MREs) in the range of 0.34–1.96%, correlation coefficients (R 2 ) in the range of 0.9703–0.9999 and very low root mean square errors (RMSEs). - Highlights: • Hybrid ANN–PLS is utilized to predict the thermodynamic performance of scroll compressor. • ANN–PLS model is determined with 5 hidden neurons and 7 latent variables. • ANN–PLS model demonstrates better performance than ANN and PLS working separately. • The values of MRE and RMSE are in the range of 0.34–1.96% and 0.9703–0.9999, respectively

  11. Thermodynamic Characteristics of Reactions of the Formation of Complexes between Triglycine and Ni2+ Ions in Aqueous Solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2018-05-01

    Thermal effects of reactions of the formation of complexes between Ni(II) and triglycine are determined via direct calorimetry in aqueous solutions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexing processes in the investigated systems are calculated. The structures of triglycinate complexes NiL+, NiH-1L, NiL2, NiH-2L2- 2, NiL- 3, and NiH-3L4- 3 are introduced to compare the obtained values and data on the thermodynamics of triglycinate complexes of Ni(II).

  12. Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    Ayodeji Sowale

    2018-02-01

    Full Text Available There is an increasing request in energy recovery systems that are more efficient, environmentally friendly and economical. The free piston Stirling engine has been investigated due to its structural simplicity and high efficiency, coupled with its cogeneration ability. This study presents the numerical investigation of quasi-steady model of a gamma type free piston Stirling engine (FPSE, including the thermodynamic analysis of the heat exchangers. Advanced thermodynamic models are employed to derive the initial set of operational parameters of the FPSE due to the coupling of the piston’s (displacer and piston dynamics and the working process. The proximity effect of the heater and cooler on the regenerator effectiveness in relation to the heat losses, output power, net work and thermal efficiency of the FPSE are also observed and presented in this study. It can be observed that at temperatures of 541.3 °C and 49.8 °C of the heater and cooler, respectively, with heater volume of 0.004 m3, regenerator volume of 0.003 m3 and cooler volume of 0.005 m3, the FPSE produced an output performance of 996.7 W with a thermal efficiency of 23% at a frequency of 30 Hz. This approach can be employed to design effective high performance FPSE due to their complexity and also predict a satisfactory performance.

  13. Thermodynamic performance of gas turbine; Comportamiento termodinamico de las turbinas de gas

    Energy Technology Data Exchange (ETDEWEB)

    Lugo Leyte, Raul [Universidad Autonoma Metropolitana-Iztapalapa, Mexico D.F. (Mexico); Velazquez Toledo, Miguel; Hernandez Fernandez, Angel [Escuela Superior de Ingenieria Mecananica y Electrica, Academia Mecanica, Instituto Politecnico Nacional, Mexico D.F. (Mexico); Torres Aldaco, Alejandro [Universidad Autonoma Metropolitana-Iztapalapa, Mexico D.F. (Mexico)

    2003-01-15

    This work presents a computer code developed to simulate thermodynamic performance of a gas turbine cycle. The predicted performance is determined by measurements, in terms of various thermodynamics performance parameters which are defined and discussed in this paper. These parameters include the output, efficiency, fuel flow rate and air flow rate in relation to variations in the ambient temperature, pressure ratio, turbine entry temperature, compressor isentropic efficiency and turbine isentropic efficiency. [Spanish] Se presenta el comportamiento termodinamico de las centrales termicas que operan con turbinas de gas al variar los siguientes parametros: condiciones ambientales, relacion de presiones, temperatura de los gases a la entrada de la turbina de gas y las eficiencias isentropicas de compresion y expansion. Los resultados obtenidos son la eficiencia termica, el trabajo motor generado, el exceso de aire y los flujos de combustible en funcion de los parametros citados anteriormente. El analisis parametrico se realizo con el simulador TURBOGAS disenado en el laboratorio de ingenieria termica e hidraulica aplicada de la seccion de estudios de posgrado e investigacion de la escuela superior de Ingenieria Mecanica y Electrica del Instituto Politecnico Nacional.

  14. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  15. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat

    International Nuclear Information System (INIS)

    Khaliq, A.; Kaushik, S.C.

    2004-01-01

    This communication presents thermodynamic methodology for the performance evaluation of combustion gas turbine cogeneration system with reheat. The energetic and exergetic efficiencies have been defined. The effects of process steam pressure and pinch point temperature used in the design of heat recovery steam generator, and reheat on energetic and exergetic efficiencies have been investigated. From the results obtained in graphs it is observed that the power to heat ratio increases with an increase in pinch point, but the first-law efficiency and second-law efficiency decreases with an increase in pinch point. The power to heat ratio and second-law efficiency increases significantly with increase in process steam pressure, but the first-law efficiency decreases with the same. Results also show that inclusion of reheat, provide significant improvement in electrical power output, process heat production, fuel-utilization (energetic) efficiency and second-law (exergetic) efficiency. This methodology may be quite useful in the selection and comparison of combined energy production systems from thermodynamic performance point of view

  16. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  17. Thermodynamic characteristics of sorption of metal-ions by ion exchangers

    OpenAIRE

    ABBASOV ALIADDIN DAYYAN; JAFARLI MAHNUR MOYSUN; MEMMEDOVA FIZZA SADIKH; HEYDEROVA FARAH FARMAN

    2016-01-01

    Conditions of sorption equilibrium of copper, zinc, cadmium and lead-ions by chelatforming resins Diaion CR 11, Dowex M 4195 and Duolite C 467 depending on the degree of neutralization of their ionogenic groups, the acidity of the medium and concentration of solutions are studied; corresponding equations expressing the isotherms of sorption are offered. Kinetics of these processes is studied; on the basis of equilibrium and kinetic parameters are calculated thermodynamic quantities. It is sho...

  18. Thermodynamic and kinetic characteristics of the austenite-to-ferrite transformation under high magnetic field in medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude

    2005-01-01

    The thermodynamic and kinetic characteristics of austenite-to-ferrite phase transformation in medium carbon steel in the high magnetic fields were investigated. Results showed that the magnetic field could obviously change the γ/α+γ phase equilibrium-by increasing the amount of ferrite obtained during cooling-and greatly accelerate the transformation. Thus the microstructure obtained under fast cooling with high magnetic field was still ferritic and pearlitic, while that obtained without the magnetic field under the same cooling conditions was bainitic. Exploration in this area contributes both to enriching the new theory on electromagnetic processing of materials (EPM) and in establishing new techniques for materials processing

  19. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  20. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model

    International Nuclear Information System (INIS)

    Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Breuhaus, Peter; Assadi, Mohsen

    2014-01-01

    This study focuses on an investigation of the fuel flexibility and performance analysis of micro gas turbines (MGTs) in biogas application. For this purpose, a steady state thermodynamic model of an MGT was developed and validated by experimental data obtained from a 100 kW MGT test rig. Quite good agreement was obtained between the measurements and the simulation results. A wide range of biogas compositions with varying methane content was simulated for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow engine operation with the simulated biogas composition. The effects of biogas on the engine performance were fully analyzed at various operational conditions by changing the power demand and also the ambient temperature. Compared to the natural gas fueled case, the mass flow and pressure ratio in the MGT decreased, which resulted in a slight reduction of the surge margin. This effect became more severe, however, at low power loads and/or low ambient temperatures. For all operational conditions, the electrical efficiency decreased with decreasing methane content of the biogas. The results also indicated the negative effect of the biogas on the heat recovery in the recuperator, which lowered as the methane content of the fuel decreased. - Highlights: •The MGT performance and fuel flexibility were investigated in biogas application. •A thermodynamic model of the MGT was developed and validated with experimental data. •Changes in performance and operating conditions of components were studied. •The results showed the viability of the MGT for use in biogas application

  1. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • A new parameter is proposed for optimizing economic performance of the ORC system. • Maximal thermodynamic and economic performances of an ORC system are presented. • The corresponding operating pressures in turbine of optimum thermodynamic and economic performances are investigated. • An optimal effectiveness of pre-heater is obtained for the ORC system. - Abstract: The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO 2 emission per kilowatt-hour

  2. Characteristics and performances of electronic personal dosemeters

    International Nuclear Information System (INIS)

    Aubert, B.

    2002-01-01

    The regulations have made obligation for 2 years to measure and analyse the amounts of radiations actually received during an operation. The whole of these measurements taken uninterrupted for an immediate reading is indicated like the operational dosimetry, which is carried out with the means of personal electronic dosemeters. This study analyses the legislation relating to this type of dosimetry as well as the requirements in medical environment, and presents an assessment of the characteristics and performances of the devices available on the French market at the beginning of 2002 starting from the information provided by the various manufacturers. (author)

  3. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  4. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    Science.gov (United States)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  5. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics

    International Nuclear Information System (INIS)

    He, Yubao; Cao, Ruifeng; Huang, Hongyan; Qin, Jiang; Yu, Daren

    2017-01-01

    To avoid the inlet unstart at high equivalence ratio and increase the performance of scramjet with ram-mode, a flow control method of boundary-layer ejection is implemented based on the potential thermodynamic process in a turbo-pump supply system of fuel vapor within a cooling channel. The effect of ejection on overall scramjet performance is studied by taking the integration of measures including numerical simulation and stream thrust analysis. Results indicate that the critical backpressure is significantly increased as the ejection total pressure increased, thereby increasing the compression capacity and efficiency, and decreasing the irreversible losses of shock wave and viscous dissipation. For the ejection total pressure of P_t_,_e_j_e = 2.40–4.00 × 10"6 Pa, the critical backpressure ratio is quantitatively increased by 1.18–11.8% along with the utilization of ejection mass flow rate of about 88.0–100% overall mass flow rate of methane fuel gas, and simultaneously the total pressure ratio, kinetic efficiency is also increased by 7.32–13.1%, and 1.63–2.96%, respectively, while the dimensionless entropy increase is decreased by 14.5–26.8%. On this basis, the specific thrust, specific impulse, and total efficiency is increased by 2.84–4.69%, 2.80–4.68%, and 2.87–4.70%, respectively, which re-emphasizes that the boundary-layer ejection is an available fluid control method. - Highlights: • Pressure ratio affects cycle efficiency based on Brayton cycle analysis. • Ejection control concept is defined based on potential thermodynamic process. • Ejection increases compression capacity, efficiency and engine overall performance.

  6. Characteristics explaining performance in downhill mountain biking.

    Science.gov (United States)

    Chidley, Joel B; MacGregor, Alexandra L; Martin, Caoimhe; Arthur, Calum A; Macdonald, Jamie H

    2015-03-01

    To identify physiological, psychological, and skill characteristics that explain performance in downhill (DH) mountain-bike racing. Four studies were used to (1) identify factors potentially contributing to DH performance (using an expert focus group), (2) develop and validate a measure of rider skill (using video analysis and expert judge evaluation), (3) evaluate whether physiological, psychological, and skill variables contribute to performance at a DH competition, and (4) test the specific contribution of aerobic capacity to DH performance. STUDY 1 identified aerobic capacity, handgrip endurance, anaerobic power, rider skill, and self-confidence as potentially important for DH. In study 2 the rider-skill measure displayed good interrater reliability. Study 3 found that rider skill and handgrip endurance were significantly related to DH ride time (β=-0.76 and -0.14, respectively; R2=.73), with exploratory analyses suggesting that DH ride time may also be influenced by self-confidence and aerobic capacity. Study 4 confirmed aerobic capacity as an important variable influencing DH performance (for a DH ride, mean oxygen uptake was 49±5 mL·kg(-1)·min(-1), and 90% of the ride was completed above the 1st ventilatory threshold). In order of importance, rider skill, handgrip endurance, self-confidence, and aerobic capacity were identified as variables influencing DH performance. Practically, this study provides a novel assessment of rider skill that could be used by coaches to monitor training and identify talent. Novel intervention targets to enhance DH performance were also identified, including self-confidence and aerobic capacity.

  7. Thermodynamic Simulation on the Performance of Twin Screw Expander Applied in Geothermal Power Generation

    Directory of Open Access Journals (Sweden)

    Yuanqu Qi

    2016-08-01

    Full Text Available A three-dimensional (3D geometry model of twin screw expander has been developed in this paper to measure and analyze geometric parameters such as groove volume, suction port area, and leakage area, which can be described as functions of rotation angle of male rotor. Taking the suction loss, leakage loss, and real gas effect into consideration, a thermodynamic model is developed using continuity and energy conservation equation. The developed model is verified by comparing predicted results of power output and internal efficiency with experimental data. Based on the model, the relationship between mass flow rate through inlet port and leakage path with rotation angle of male rotor as well as effects of the inlet parameter and operating parameter on the performance of the expander are analyzed.

  8. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  9. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  10. Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system

    International Nuclear Information System (INIS)

    Yuksel, Yunus Emre; Ozturk, Murat; Dincer, Ibrahim

    2016-01-01

    Highlights: • Development of a novel solar energy based system for multigenaration applications. • Evaluation of the exergy efficiency and destruction rate in each system component. • Investigation of the varying operating conditions on the system performance. • Evaluation of complete parametric studies and performance analysis of the system. - Abstract: In this paper, a novel solar energy based multigeneration system for producing electricity, hydrogen, hot water, heating and cooling is presented and analyzed thermodynamically for potential applications. The energy and exergy analyses are conducted for entire system and its sub-systems, which are a parabolic trough collector system, a double-stage organic Rankine cycle, a proton exchange membrane electrolyzer, a PEM fuel cycle and a quadruple effect absorption cooling system. The parametric studies are performed in order to indicate the impacts of some key indicators on the integrated system performance. These analyses are simulated by using the Engineering Equation Solver software. The results show that the increase in ambient temperature increases the exergetic coefficient performance of the Quadruple Effect Absorption Cooling System. In addition, the increase in solar intensity, temperature of absorber pipes inner surface and concentration of ammonia in working fluid mixture has the positive effect on produced electricity from the expanders and turbine, and hydrogen from the PEM electrolyzer. According to exergy analyses, the largest exergy destruction rates are obtained in the parabolic trough collector, PEM fuel cell and turbine. Therefore, any improvements in these components would lead to a better efficiency of the integrated system.

  11. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification

    KAUST Repository

    Bui, Thuan Duc; Kum Ja, M.; Gordon, Jeffrey M.; Ng, Kim Choon; Chua, Kian Jon

    2017-01-01

    In humid environments, decoupling the latent and sensible cooling loads - dehumidifying - can significantly improve chiller efficiency. Here, a basic limit for dehumidification efficiency is established from fundamental thermodynamics

  12. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  13. Thermodynamic Simulation of the Endpoint Characteristics in a CIGS Deposition Process

    OpenAIRE

    Zimmermann, Uwe; Schöldström, Jens; Edoff, Marika; Stolt, Lars

    2004-01-01

    The purpose of this investigation was to model the thermodynamic behavior of a Cu(In,Ga)Se2 sample during the growth process and especially during the conversion from copper-rich to copper-poor material in a two-step  process.  Starting  from  a  very  simple  model  of  a  directly  heated  substrate  the  model  was  refined  until  it qualitatively and quantitatively explained the features observed in the real experiment. The results can be used todetermine more accurate criteria for the e...

  14. Real-Gas Effects in ORC Turbine Flow Simulations : Influence of Thermodynamic Models on Flow Fields and Performance Parameters

    NARCIS (Netherlands)

    Colonna, P.; Rebay, S.; Harinck, J.; Guardone, A.

    2006-01-01

    The analysis and design of turbomachinery is usually performed by means of fluid dynamic computations employing ideal gas laws. This can lead to inaccurate redictions for Organic Rankine Cycle (ORC) turbines, which operate partly in the nonideal thermodynamic region. The objective of this work is to

  15. Adsorption Characteristics of Norfloxacin by Biochar Prepared by Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Dan Feng

    2015-08-01

    Full Text Available Biochars (BC generated from biomass residues have been recognized as effective sorbents for organic compounds. In this study, biochars as adsorbents for the removal of norfloxacin (NOR from aqueous solutions were evaluated. Biochars were prepared from cassava dregs at 350 °C, 450 °C, 550 °C, 650 °C, and 750 °C, respectively (labeled as BC350, BC450, BC550, BC650, and BC750. The results showed that the kinetic data were best fitted to the pseudo second-order model, indicating that the sorption was governed by the availability of sorption sites on the biochar surfaces rather than the NOR concentration in the solution. Sorption isotherms of NOR were well described by the Freundlich model, and the Freundlich coefficients (lgkF increased with the pyrolysis temperature of biochars. Thermodynamic analysis indicated the feasibility and spontaneity of the NOR adsorption process. The NOR adsorption on BC450, BC550, BC650, and BC750 was an endothermic process, while an exothermic process occurred for BC350. FTIR studies further suggested that the adsorption mechanism was possibly attributable to H-bond and π-π interactions between NOR and biochars. Overall, this work constitutes a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of biochar.

  16. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

    International Nuclear Information System (INIS)

    Dai, Baomin; Liu, Shengchun; Zhu, Kai; Sun, Zhili; Ma, Yitai

    2017-01-01

    New configurations of transcritical CO_2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXP_H_M and TES+EXP_M_L) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXP_H_M, EXP_M_L, and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXP_M_L cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO_2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature. - Highlights: • New configurations of transcritical CO_2 refrigeration cycle are proposed. • New cycles are optimized and compared with other cycles. • The position of expander has an evident influence on the performance of CO_2 cycle. • TES+EXP_M_L cycle shows the highest COP and lowest discharge pressure. • The range of application for the TES+EXP_M_L cycle is recommended.

  17. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    Science.gov (United States)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2018-06-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  18. Nanotechnological inventions considerably improve performance characteristics

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2014-06-01

    Full Text Available The invention «The method of production of carbon nanomaterial (RU 2509053» can be used as an additive for concretes and polymers which significantly improves their performance characteristics. The method of production of carbon nanomaterial consists of the following stages: preliminary preparation of sphagnous moss when it is refined from foreign admixtures, dried up to 10% humidity and ground, then ground material is exposed to pyrolysis under the temperature 850–950оC for 1–2 hours and cooled up to the environment temperature. After that amorphous carbon obtained in pyrolysis is treated with mechanical activation in the variable planetary mill for 7–10 hours. The invention makes it possible to provide increased outcome of nanotubes with high cleanliness. The invention «The method of production of nanodispersed metal powders and alloys of them (RU 2509626» relates to the powder metallurgy. Powder metal chloride or powder mixture at least of two metal chlorides is treated in the environment of the water steam which is supplied in reaction space at the rate of 50–100 ml/min at the temperature 400–800оC at the presence of absorbent carbon or introducing carbon oxide (II obtained during dissolution of formic acid HCOOH. The invention provides reliable production of nanodispersed metal powders and alloys of them from 3-d metal range: Ni, Co, Cu, Fe, Zn which can be used in powder metallurgy to improve baking process, in chemical industry as the fillers of polymers and reaction catalysts; as additives to anticorrosive covers, etc.

  19. Hydride, hydrogen, proton, and electron affinities of imines and their reaction intermediates in acetonitrile and construction of thermodynamic characteristic graphs (TCGs) of imines as a "molecule ID card".

    Science.gov (United States)

    Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui

    2010-02-05

    A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.

  20. Thermodynamic characteristics of the acid-base equilibria of ethylenediamine- N, N'-diglutaric acid in aqueous solutions using calorimetric data

    Science.gov (United States)

    Gridchin, S. N.; Nikol'skii, V. M.

    2017-10-01

    The enthalpies of reaction of betaine group neutralization of ethylenediamine- N, N'-diglutaric acid (H4L) at 298.15 K and at different values of ionic strength of 0.1, 0.5, 1.0 (KNO3) is measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated.

  1. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  2. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery

    International Nuclear Information System (INIS)

    Wang, Yufei; Tang, Qikui; Wang, Mengying; Feng, Xiao

    2017-01-01

    Highlights: • Comparison between ORC and Kalina cycles (KC) for multi-stream waste heat recovery. • Divide waste heat into straight, convex and concave based on its composite curve. • Use heat ratio and temperature of the most point to show the feature of waste heat. • KC is suitable for straight and most concave heat, while ORC for convex one. - Abstract: Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.

  3. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid

    International Nuclear Information System (INIS)

    Mwesigye, Aggrey; Huan, Zhongjie; Meyer, Josua P.

    2015-01-01

    Highlights: • Thermodynamic analysis of a parabolic trough receiver with nanofluids is presented. • Syltherm800–Al 2 O 3 nanofluid is used as the heat transfer fluid in the receiver. • Influence of nanoparticle volume fraction on receiver performance is investigated. • There is an optimal Reynolds number at each temperature and volume fraction. • Receiver thermal and thermodynamic performance improves below some Reynolds number. - Abstract: In this paper, results of a thermodynamic analysis using the entropy generation minimisation method for a parabolic trough receiver tube making use of a synthetic oil–Al 2 O 3 nanofluid as a heat transfer fluid are presented. A parabolic trough collector system with a rim angle of 80° and a concentration ratio of 86 was used. The temperature of the nanofluid considered was in the range of 350–600 K. The nanofluid thermal physical properties are temperature dependent. The Reynolds number varies from 3,560 to 1,151,000, depending on the temperature considered and volume fraction of nanoparticles in the base fluid. Nanoparticle volume fractions in the range 0 ⩽ ϕ ⩽ 8% were used. The local entropy generation rates due to fluid flow and heat transfer were determined numerically and used for the thermodynamic analysis. The study shows that using nanofluids improves the thermal efficiency of the receiver by up to 7.6%. There is an optimal Reynolds number at each inlet temperature and volume fraction for which the entropy generated is a minimum. The optimal Reynolds number decreases as the volume fraction increases. There is also a Reynolds number at every inlet temperature and volume fraction beyond which use of nanofluids is thermodynamically undesirable

  4. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    many leading experts in the field. During the program, the most recent developments, open questions and new ideas in stochastic thermodynamics were presented and discussed. From the talks and debates, the notion of information in stochastic thermodynamics, the fundamental properties of entropy production (rate) in non-equilibrium, the efficiency of small thermodynamic machines and the characteristics of optimal protocols for the applied (cyclic) forces were crystallizing as main themes. Surprisingly, the long-studied adiabatic piston, its peculiarities and its relation to stochastic thermodynamics were also the subject of intense discussions. The comment on the Nordita program Stochastic Thermodynamics published in this issue of Physica Scripta exploits the Jarzynski relation for determining free energy differences in the adiabatic piston. This scientific program and the contribution presented here were made possible by the financial and administrative support of The Nordic Institute for Theoretical Physics.

  5. Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas–steam combined cycle under off-design condition

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • An off-design performance simulation of triple-pressure reheat HRSG is executed. • The bottoming cycle characteristics of energy transfer/conversion are analyzed. • Concise formulas for the off-design performance of bottoming cycle are proposed. • The accuracy of the formulas is verified under different load control strategies. • The errors of the formulas are generally within 1% at a load of 100–50%. - Abstract: Concise semi-theoretical, semi-empirical formulas are developed in this study to predict the off-design performance of the bottoming cycle of the gas–steam turbine combined cycle. The formulas merely refer to the key thermodynamic design parameters (full load parameters) of the bottoming cycle and off-design gas turbine exhaust temperature and flow, which are convenient in determining the overall performance of the bottoming cycle. First, a triple-pressure reheat heat recovery steam generator (HRSG) is modeled, and thermodynamic analysis is performed. Second, concise semi-theoretical, semi-empirical performance prediction formulas for the bottoming cycle are proposed through a comprehensive analysis of the heat transfer characteristics of the HRSG and the energy conversion characteristics of the steam turbine under the off-design condition. The concise formulas are found to be effective, i.e., fast, simple, and precise in obtaining the thermodynamic parameters for bottoming cycle efficiency, HRSG heat transfer capacity, HRSG efficiency, steam turbine power output, and steam turbine efficiency under the off-design condition. Accuracy is verified by comparing the concise formulas’ calculation results with the simulation results and practical operation data under different load control strategies. The calculation errors are within 1.5% (mainly less than 1% for both simulation and actual operation data) under combined cycle load (gas turbine load) ranging from 50% to 100%. However, accuracy declines sharply when the turbine

  6. First-principles thermodynamic calculations of diffusion characteristics of impurities in γ-iron

    International Nuclear Information System (INIS)

    Tsuru, T.; Kaji, Y.

    2013-01-01

    Because solute impurities have an effect on embrittlement through segregation under irradiation, solute stability and the influence of irradiation on the diffusion characteristics of impurities become prominent due to several acceleration effects of high irradiance circumstances in irradiated materials. In this study, the diffusion characteristics of several impurities in non-magnetic fcc iron are investigated using first-principles density functional theory (DFT) calculations. In accordance with classical diffusion and transition state theories, we nonempirically evaluated the contribution to properties of the binding energy between vacancy and each impurity and the migration enthalpy. The migration energy was calculated using the nudged elastic band method with DFT. The vacancy formation energy, including the entropic contributions to free energies in γ-iron, was evaluated by considering vibrational phonon frequencies based on frozen phonons employing the harmonic approximation for the lattice dynamics. Consequently, we confirmed that the binding energy between large-radius impurities and vacancies is larger than that with an equivalent size of the solvent element, and that the migration enthalpies of these impurities are quite small compared with self diffusion. This finding may indicate that the electronic binding states at the saddle point have a large influence on the migration of impurities

  7. Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers

    International Nuclear Information System (INIS)

    Frazzica, Andrea; Sapienza, Alessio; Freni, Angelo

    2014-01-01

    This paper presents a novel experimental protocol for the evaluation of the thermodynamic performance of working pairs for application in adsorption heat pumps and chillers. The proposed approach is based on the experimental measurements of the main thermo-physical parameters of adsorbent pairs, by means of a DSC/TG apparatus modified to work under saturated vapour conditions, able to measure the ads-/desorption isobars and heat flux as well as the adsorbent specific heat under real boundary conditions. Such kind of activity allows to characterize the thermodynamic performance of an adsorbent pair allowing the estimation of the thermal Coefficient Of Performance (COP) both for heating and cooling applications, only relying on experimental values. The experimental uncertainty of the method has been estimated to be around 2%, for the COP evaluation. In order to validate the proposed procedure, a first test campaign has been carried out on the commercial adsorbent material, AQSOA-Z02, produced by MPI (Mitsubishi Plastics Inc.), while water was used as refrigerant. The proposed experimental methodology will be applied on several other adsorbent materials, either already on the market or still under investigation, in order to get an easy and reliable method to compare thermodynamic performance of adsorptive working pairs

  8. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  9. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  10. Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Kachhwaha, S.S.; Sachdeva, Gulshan

    2013-01-01

    Highlights: • Study includes first and second law analysis with alternatives refrigerants. • Power consumption in cascaded system is 61% less than vapor compression system. • COP of compression system is improved by 155% with cascaded absorption system. • Condenser is more sensitive to external fluid temperature as compare to evaporator. - Abstract: In the present study, a thermodynamic model for cascaded vapor compression–absorption system (CVCAS) has been developed which consists of a vapor compression refrigeration system (VCRS) coupled with single effect vapor absorption refrigeration system (VARS). Based on first and second laws, a comparative performance analysis of CVCAS and an independent VCRS has been carried out for a design capacity of 66.67 kW. The results show that the electric power consumption in CVCAS is reduced by 61% and COP of compression section is improved by 155% with respect to the corresponding values pertaining to a conventional VCRS. However there is a trade-off between these parameters and the rational efficiency which is found to decrease to half of that for a VCRS. The effect of various operating parameters, i.e., superheating, subcooling, cooling capacity, inlet temperature and the product of effectiveness and heat capacitance of external fluids are extensively studied on the COP, total irreversibility and rational efficiency of the CVCAS. Besides, the performance of environment friendly refrigerants such as R410A, R407C and R134A is found to be almost at par with that of R22. Hence, all the alternative refrigerants selected herein can serve as potential substitutes for R22. Furthermore, it has been found that reducing the irreversibility rate of the condenser by one unit due to decrease in condenser temperature depicted approximately 3.8 times greater reduction in the total irreversibility rate of the CVCAS, whereas unit reduction in the evaporator’s irreversibility rate due to increase in evaporator temperature reduced

  11. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  12. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  13. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  14. Destination Characteristics that Drive Hotel Performance

    DEFF Research Database (Denmark)

    Assaf, A. George; Josiassen, Alexander; Woo, Linda

    2017-01-01

    , government support, disposable income, and number of international arrivals within a tourism destination. Results indicate that the most important barriers to hotel performance are the competition among accommodation providers, tax rate and fuel price. We argue for the need for hotel providers to develop......The increased market saturation and competition in both domestic and international tourism destinations have renewed interest among hotel operators in identifying the key drivers of hotel performance. This paper presents a comprehensive analysis of the determinants of hotel performance...... strategies that take cognisance of the key drivers and barriers to enhancing hotel performance in an ever-changing global tourism sector....

  15. Investigating the Thermodynamic Performances of TO-Based Metamaterial Tunable Cells with an Entropy Generation Approach

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2017-10-01

    Full Text Available Active control of heat flux can be realized with transformation optics (TO thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.

  16. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    Science.gov (United States)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  17. The thermodynamic characteristics of the reaction between vanadium(5) and hydrogen peroxide in concentrated solutions of perchloric acid

    International Nuclear Information System (INIS)

    Vorob'ev, P.N.; Dmitrieva, N.G.; Poteshonkova, T.A.

    2001-01-01

    Stability constants of vanadium(5) complex with hydrogen peroxide and enthalpy of vanadium(5) complexing with hydrogen peroxide are determined at acidity of solution c(H + ) = 5.00 mol/l, temperature T = 298.15 K and values of ionic force: I = 5, 6 and 7. Standard thermodynamic characteristics of vanadium(5) peroxide complex formation were calculated. At zeroth ionic force the value of complexing enthalpy Δ r H 298.15 deg is equal to -48.59 ± 0.33 kJ/mol, standard enthalpy of peroxide vanadium(5) complex formation Δ f H 298.15 deg is equal to -895.49 ± 1.51 kJ/mol; Δ r G 298.15 deg = -36.51 kJ/mol, Δ r S 298.15 deg -40.51 J/(mol K). As it is shown by calculations, standard change in entropy of the reaction has a minus sign, that is unique to complexation with neutral ligand [ru

  18. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    Science.gov (United States)

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  19. Haematological characteristics and performance of West African ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... ISSN 1684–5315 © 2009 Academic Journals. Full Length ... performance of 36 young West African Dwarf (WAD) goats was investigated in order to simulate the .... cause antibody depression, alter white blood cell counts,.

  20. Sire influence on reproductive, performance characteristics and ...

    African Journals Online (AJOL)

    , Panda White x Cinnamon Brown (PWxCB) and Silver Brown x Cinnamon Brown (SBxCB). The experiment was a randomized complete block design. Parameters measured include: fertility and hatchability traits, growth performance traits and ...

  1. Comparative evaluation of power plants with CO2 capture. Thermodynamic, economic and environmental performance

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina

    2011-01-01

    CCS (Carbon Capture and Sequestration) in the energy sector is seen as a bridge technology for CO 2 mitigation, due to the ever-growing environmental impact of anthropogenic-emitted greenhouse gases. In this work, eight power plant concepts using CO 2 capture technologies are assessed based on their efficiency, economic feasibility and environmental footprint. Exergy-based analyses are used for evaluating the considered power plants through comparison with a reference plant without CO 2 capture. While conventional exergy-based analyses provide important information that can lead to improvements in plant performance, additional insight about individual components and the interactions among equipment can aid further assessment. This led to the development of advanced exergy-based analyses, in which the exergy destruction, as well as the associated costs and environmental impacts are split into avoidable/unavoidable and endogenous/exogenous parts. Based on the avoidable parts, the potential for improvement is revealed, while based on the endogenous/exogenous parts, the component interactions are obtained. Among the examined plants with CO 2 capture, the most efficient are those working with oxy-fuel technology. An exergoeconomic analysis shows a minimum increase in the relative investment cost (in Euro/kW) of 80% for the conventional approach (chemical absorption) and an increase of 86% for the oxy-fuel plant with chemical looping combustion. The latter shows a somewhat decreased environmental impact when compared to that of the reference plant. On the contrary, the plant with chemical absorption results in a higher environmental penalty due to its high efficiency penalty. Therefore, accepting that all assumptions and data related to the calculations of the environmental impacts are reliable, efficiency improvement seems to be a more significant factor in potentially decreasing a plant's environmental impact. With advanced exergy-based analyses, interdependencies

  2. Data characteristics that determine classifier performance

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2006-11-01

    Full Text Available available at [11]. The kNN uses a LinearNN nearest neighbour search algorithm with an Euclidean distance metric [8]. The optimal k value is determined by performing 10-fold cross-validation. An optimal k value between 1 and 10 is used for Experiments 1... classifiers. 10-fold cross-validation is used to evaluate and compare the performance of the classifiers on the different data sets. 3.1. Artificial data generation Multivariate Gaussian distributions are used to generate artificial data sets. We use d...

  3. performance characteristics of a cam turning attachment

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. A modification of a cylindrical turning unit has been done to give a non- cylindrical turning attachment for production of irregular shapes, like cams on the lathe machine. To assess the performance of the attachment, cutting forces have been measured using a 'Sigma' Cutting Tool. Dynamometer. Furthermore ...

  4. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises

    Energy Technology Data Exchange (ETDEWEB)

    Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1995-01-01

    A selected thermodynamic database for the Rare Earth Elements (REE) to be used in the safety assessment of high-level nuclear waste deposition has been compiled. Thermodynamic data for the aqueous species of the REE with the most important ligands relevant for granitic groundwater conditions have been selected and validated. The dominant soluble species under repository conditions are the carbonate complexes of REE. The solubilities of the oxides, hydroxides, carbonates, hydroxycarbonates, phosphates and other important solids have been selected and validated. Solubilities and solubility limiting solids in repository conditions have been estimated with the selected database. At the initial stages of fuel dissolution, the UO{sub 2} matrix dissolution will determine the concentrations of REE. Later on, solid phosphates, hydroxycarbonates and carbonates may limit their solubility. Recommendations for further studies on important systems in repository conditions have been presented. 136 refs, 13 figs, 16 tabs.

  5. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises

    International Nuclear Information System (INIS)

    Spahiu, K.; Bruno, J.

    1995-01-01

    A selected thermodynamic database for the Rare Earth Elements (REE) to be used in the safety assessment of high-level nuclear waste deposition has been compiled. Thermodynamic data for the aqueous species of the REE with the most important ligands relevant for granitic groundwater conditions have been selected and validated. The dominant soluble species under repository conditions are the carbonate complexes of REE. The solubilities of the oxides, hydroxides, carbonates, hydroxycarbonates, phosphates and other important solids have been selected and validated. Solubilities and solubility limiting solids in repository conditions have been estimated with the selected database. At the initial stages of fuel dissolution, the UO 2 matrix dissolution will determine the concentrations of REE. Later on, solid phosphates, hydroxycarbonates and carbonates may limit their solubility. Recommendations for further studies on important systems in repository conditions have been presented. 136 refs, 13 figs, 16 tabs

  6. Some useful characteristics of performance models

    International Nuclear Information System (INIS)

    Worledge, D.H.

    1985-01-01

    This paper examines the demands placed upon models of human cognitive decision processes in application to Probabilistic Risk Assessment. Successful models, for this purpose, should, 1) be based on proven or plausible psychological knowledge, e.g., Rasmussen's mental schematic, 2) incorporate opportunities for slips, 3) take account of the recursive nature, in time, of corrections to mistaken actions, and 4) depend on the crew's predominant mental states that accompany such recursions. The latter is equivalent to an explicit coupling between input and output of Rasmussen's mental schematic. A family of such models is proposed with observable rate processes mediating the (conscious) mental states involved. It is expected that the cumulative probability distributions corresponding to the individual rate processes can be identified with probability-time correlations of the HCR Human Cognitive Reliability type discussed elsewhere in this session. The functional forms of the conditional rates are intuitively shown to have simple characteristics that lead to a strongly recursive stochastic process with significant predictive capability. Models of the type proposed have few parts and form a representation that is intentionally far short of a fully transparent exposition of the mental process in order to avoid making impossible demands on data

  7. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J. (Enviros Spain S.L., Barcelona (ES))

    2006-12-15

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  8. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    International Nuclear Information System (INIS)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  9. Performance and carcass characteristics of Yankasa ram fed with ...

    African Journals Online (AJOL)

    Remember me ... and 50% maize and wheat offal mixture, were better when compared to the control (B0) and other test diet in terms of performance and carcass characteristics. ... Key words: Performance, carcass, biscuit waste, Yankasa ram.

  10. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    Science.gov (United States)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  11. Performance characteristics for advanced control systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1989-01-01

    A growing collection of control techniques is becoming available to the design engineer. This make selection of the most appropriate technique for a given application a difficult task. A systematic approach to evaluating alternative control schemes is needed. The approach discussed in this paper expands the traditional concepts of quantitative performance analysis to include other relevant factors such as robustness of the technique, resource requirements, and effects on operators and other personnel. This collection of factors, termed measures of utility, may be used as qualitative and quantitative means of evaluating and comparing properties of alternative control system designs. This paper, although not an in-depth study, serves to outline several measures of utility and suggests a general structure for control system development. This method of comparing the usefulness of alternative control system will prove valuable to the ORNL Advanced Controls Program (ACTO) for optimizing compatibility with actual systems and equipment

  12. MODEL OF EMERGENCY DEPARTMENT NURSE PERFORMANCE IMPROVEMENT BASED ON ASSOCIATION OF INDIVIDUAL CHARACTERISTIC, ORGANIZATION CHARACTERISTIC AND JOB CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Maria Margaretha Bogar

    2017-04-01

    Full Text Available Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were obtained by purposive sampling technique. Data were analyzed by partial least square test and signi fi cant t value > 1.64 (alpha 10%. Result: Results showed that individual characteristic had effect on nurse performance (t = 7.59, organization characteristic had effect on nurse performance (t = 2.03 and job characteristic didn’t have effect on nurse performance (t = 0.88. Nurse performance had effect on patient satisfaction (t = 6.54 but nurse satisfaction didn’t have effect on nurse performance (t = 1.31, and nurse satisfaction didn’t have effect either on patient satisfaction (t = 0.94. Discussion: This research concluded that individual characteristics which in fl uence nurse performance in nursing care were ability and skill, experience, age, sex, attitude and motivation. Organization characteristic that influence nurse performance was reward while job characteristic that include job design and feedback didn’t influence nurse performance in nursing care. Nurse performance influenced patient satisfaction but nurse satisfaction didn’t influence patient satisfaction and nurse performance.

  13. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  14. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  15. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  16. A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    O'Donovan, Alan; Grimes, Ronan

    2014-01-01

    Economic and environmental restrictions have resulted in an increase in the installation of air-cooled condensers (ACCs) in thermoelectric power plants located in arid regions. The traditional A-frame design is installed most frequently, despite an array of empirical evidence that shows it to suffer from significant inefficiencies. As a result, there is scope for improvement in condenser design and this paper presents one such approach – a novel modular air-cooled condenser (MACC). It is suggested that the unique ability of the MACC to continually vary fan speed could result in efficiency gains over a plant operating with existing state-of-the-art fixed speed ACCs. To determine the impact of installing the MACC on plant output, the steam-side characteristics were established through a series of experimental measurements taken on a full-scale prototype. The experimental arrangement and measurement technique ensured that conditions representative of an operational ACC were maintained throughout. The steam-side characteristics are quantified in terms of temperature, pressure and thermal resistance. Predicted values of these quantities are also presented, calculated from established theory. Both the measurements and predictions were used in a thermodynamic analysis to determine the performance of a 50 MW power plant. Results show that, for a given steam flow rate, increasing fan speed leads to a reduction in condenser pressure which ultimately, results in increased plant output. This occurs up until a certain point, at which further increases in output are offset by larger fan power consumption rates. Thus, an optimum operating point is shown to exist. The results from the thermodynamic analysis demonstrate discrepancies between the plant output evaluated from the measurements and that predicted from theory. In some cases, a difference as large as 1.5% was observed, equating to a 0.8 MW over-prediction by the theory. - Highlights: • A novel modular air

  17. Chemical buffering in natural and engineered barrier systems: Thermodynamic constraints and performance assessment consequences

    International Nuclear Information System (INIS)

    Arthur, R.C.; Wei Zhou

    2000-12-01

    Thermodynamic and kinetic constraints on the chemical buffering properties of natural and engineered-barrier systems are derived in this study from theoretical descriptions, incorporated in the reaction-path model, of reversible and irreversible mass transfer in multicomponent, multiphase systems. The buffering properties of such systems are conditional properties because they refer to a specific aqueous species in a system that is open with respect to a specific reactant. The solution to a mathematical statement of this concept requires evaluation of the dependence of the activity of the buffered species on incremental changes in the overall reaction-progress variable. This dependence can be represented by a truncated Taylor's series expansion, where the values of associated derivatives are calculated using finite-difference techniques and mass-balance, charge-balance and mass-action constraints. Kinetic constraints on buffering behavior can also be described if the relation between reactant flux and reaction rate is well defined. This relation is explicit for the important case of advective groundwater flow and water-rock interaction. We apply the theoretical basis of the chemical buffering concept to processes that could affect the performance of a deep geologic repository for nuclear waste. Specifically, we focus on the likelihood that an inverse relation must exist between the buffer intensity and the migration velocity of reaction fronts in systems involving advective or diffusive mass transport. A quantitative understanding of this relation would provide the basis for evaluating the potential role of chemical buffering in achieving the isolation and retardation functions, of the EBS and geosphere in a KBS-3 repository. Our preliminary evaluation of this role considers the effects of chemical buffering on the propagation velocity of a pH front in both the near- and far field. We use a geochemical modeling technique compatible with the reaction-path model to

  18. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2003-01-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  19. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  20. Evaluation of selectivity and thermodynamic characteristics of doubly charged cations on zirconium titanate from aqueous and alcoholic solutions

    International Nuclear Information System (INIS)

    Zakaria, E.S.; Ali, I.M.; El-Naggar, I.M.

    2005-01-01

    The ion exchange of Ni 2+ /H + and Co 2+ /H + have been determined using solution of 0.1 ionic strength for both forward and backward reactions at 25 degree C by batch technique. The thermodynamic equilibrium constants for the exchange process have been calculated using Gains Thomas equation. The preference series Ni 2+ >Co 2+ was determined. The ion exchange selectivity for exchange of Ni 2 + and Co 2+ ions with hydrogen ions on zirconium titanate have been investigated for aqueous and 25% of methanol and ethanol solutions. The values of thermodynamic functions for the studied systems have been calculated

  1. Chemical buffering in natural and engineered barrier systems: Thermodynamic constraints and performance assessment consequences

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C.; Wei Zhou [Monitor Scientific, LLC, Denver, CO (United States)

    2000-12-01

    Thermodynamic and kinetic constraints on the chemical buffering properties of natural and engineered-barrier systems are derived in this study from theoretical descriptions, incorporated in the reaction-path model, of reversible and irreversible mass transfer in multicomponent, multiphase systems. The buffering properties of such systems are conditional properties because they refer to a specific aqueous species in a system that is open with respect to a specific reactant. The solution to a mathematical statement of this concept requires evaluation of the dependence of the activity of the buffered species on incremental changes in the overall reaction-progress variable. This dependence can be represented by a truncated Taylor's series expansion, where the values of associated derivatives are calculated using finite-difference techniques and mass-balance, charge-balance and mass-action constraints. Kinetic constraints on buffering behavior can also be described if the relation between reactant flux and reaction rate is well defined. This relation is explicit for the important case of advective groundwater flow and water-rock interaction. We apply the theoretical basis of the chemical buffering concept to processes that could affect the performance of a deep geologic repository for nuclear waste. Specifically, we focus on the likelihood that an inverse relation must exist between the buffer intensity and the migration velocity of reaction fronts in systems involving advective or diffusive mass transport. A quantitative understanding of this relation would provide the basis for evaluating the potential role of chemical buffering in achieving the isolation and retardation functions, of the EBS and geosphere in a KBS-3 repository. Our preliminary evaluation of this role considers the effects of chemical buffering on the propagation velocity of a pH front in both the near- and far field. We use a geochemical modeling technique compatible with the reaction-path model

  2. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    International Nuclear Information System (INIS)

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  3. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Lee, Ho Yong; Park, Sang Hee; Kim, Kyoung Hoon

    2016-01-01

    A comparative thermodynamic performance and optimization analysis of basic organic flash cycle (OFCB), organic flash cycle with two-phase expander (OFCT), and organic Rankine cycle (ORC) activated by low-temperature sensible energy is carried out in the subcritical pressure regions. The three substances of R245fa, R123, and o-xylene are considered as the working fluids. Effects of cycle type, working fluid, and evaporation and source temperatures are systemically investigated on the system performance such as net power production, thermal and exergy efficiencies, and exergy destruction ratios at each component of the systems. Results show that the cycle type or working fluid which shows optimum performance depends on the source temperature, and organic flash cycle shows a potential for efficient recovery of low grade energy source.

  4. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  5. Job Characteristics, Work Involvement, and Job Performance of Public Servants

    Science.gov (United States)

    Johari, Johanim; Yahya, Khulida Kirana

    2016-01-01

    Purpose: The primary purpose of this study is to assess the predicting role of job characteristics on job performance. Dimensions in the job characteristics construct are skill variety, task identity, task significance, autonomy and feedback. Further, work involvement is tested as a mediator in the hypothesized link. Design/methodology/approach: A…

  6. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification

    KAUST Repository

    Bui, Thuan Duc

    2017-05-13

    In humid environments, decoupling the latent and sensible cooling loads - dehumidifying - can significantly improve chiller efficiency. Here, a basic limit for dehumidification efficiency is established from fundamental thermodynamics. This is followed by the derivation of how this limit is modified when the pragmatic constraint of a finite flux must be accommodated. These limits allow one to identify promising system modifications, and to quantify their impact. The focus is on vacuum-based membrane dehumidification. New high-efficiency configurations are formulated, most notably, by coupling pumping with condensation. More than an order-of-magnitude improvement in efficiency is achievable. It is contingent on water vapor exiting at its saturation pressure rather than at ambient pressure. Sensitivity studies to recovery ratio, temperature, relative humidity and membrane selectivity are also presented.

  7. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  8. Analysis of characteristic performance curves in radiodiagnosis by an observer

    International Nuclear Information System (INIS)

    Kossovoj, A.L.

    1988-01-01

    Methods and ways of construction of performance characteristic curves (PX-curves) in roentgenology, their qualitative and quantitative estimation are described. Estimation of PX curves application for analysis of scintigraphic and sonographic images is presented

  9. Evaluation of the productive performance characteristics of red ...

    African Journals Online (AJOL)

    Evaluation of the productive performance characteristics of red tilapia ( Oreochromis sp.) injected with shark DNA into skeletal muscles and maintained diets containing different levels of probiotic and amino yeast.

  10. Performance characteristics of a methanol ejector refrigeration unit

    International Nuclear Information System (INIS)

    Alexis, G.K.; Katsanis, J.S.

    2004-01-01

    This paper discusses the behavior of methanol through an ejector operating in a refrigeration system with a medium temperature thermal source. For detailed calculation of the proposed system, a method has been developed, which employs analytical functions describing the thermodynamic properties of methanol. The proposed cycle has been compared with a Carnot cycle working at the same temperature levels. The influences of three major parameters, generator, condenser and evaporator temperatures, on ejector efficiency and coefficient of performance are discussed. Also, the maximum value of COP was estimated by correlation of the above three temperatures for constant superheated temperature 150 deg. C, and it was 0.139-0.467. The design conditions were generator temperature 117.7-132.5 deg. C, condenser temperature 42-50 deg. C and evaporator temperature -10-5 deg. C

  11. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  12. The Influence of Top Management Team Characteristics on BPD Performance

    Directory of Open Access Journals (Sweden)

    Joy Elly Tulung

    2015-12-01

    Full Text Available Based on ”upper echelons theory”, this paper investigates the relation between top management team composition and BPD performance. For top management team characteristics, we employ age, level of education, background of education, gender, and functional background, while for measured the BPD performance we employ return on asset (ROA, return on equity (ROE, capital adequacy ratio (CAR, net interest margin (NIM, loan to deposit ratio (LDR, non-performing loan (NPL and operation expenses to operation income (BOPO. The results show that all characteristics have positive significant influences on BPD performance.

  13. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Feng, Hongcui; Zhong, Wei; Wu, Yanling; Tong, Shuiguang

    2014-01-01

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  14. Hospital ownership, decisions on supervisory board characteristics, and financial performance.

    Science.gov (United States)

    Kuntz, Ludwig; Pulm, Jannis; Wittland, Michael

    2016-01-01

    Dynamic and complex transformations in the hospital market increase the relevance of good corporate governance. However, hospital performance and the characteristics of supervisory boards differ depending on ownership. The question therefore arises whether hospital owners can influence performance by addressing supervisory board characteristics. The objective of this study is to explain differences in the financial performance of hospitals with regard to ownership by studying the size and composition of supervisory boards. The AMADEUS database was used to collect information on hospital financial performance in 2009 and 2010. Business and quality reports, hospital websites, and data from health insurer were used to obtain information on hospital and board characteristics. The resulting sample consisted of 175 German hospital corporations. We utilized ANOVA and regression analysis to test a mediation hypothesis that investigated whether decisions regarding board size and composition were associated with financial performance and could explain performance differences. Financial performance and board size and composition depend on ownership. An increase in board size and greater politician participation were negatively associated with all five tested measures of financial performance. Furthermore, an increase in physician participation was positively associated with one dimension of financial performance, whereas one negative relationship was identified for nurse and economist participation. For clerics, no associations were found. Decisions concerning board size and composition are important as they relate to hospital financial performance. We contribute to existing research by showing that, in addition to board size and physician participation, the participation of other professionals can also influence financial performance.

  15. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  16. Aggregate packing characteristics of good and poor performing asphalt mixes

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available The aggregate structure of the compacted mix is a determining factor for the performance of Hot-Mix Asphalt (HMA). In this paper, the grading characteristics of good and poor performing HMA mixes are explored using the concepts of the Bailey method...

  17. Relationship Between Job Characteristics And Job Performance Of ...

    African Journals Online (AJOL)

    The agricultural extension agent is a key stakeholder in extension systems. The nature of their work is so important that it has overriding effect on their job performance. This study investigates the relationship between job characteristics and job performance of agricultural extension agents in Imo and Rivers States, Nigeria.

  18. Influence of course characteristics, student characteristics, and behavior in learning management systems on student performance

    OpenAIRE

    Conijn, Rianne; Kleingeld, Ad; Matzat, Uwe; Snijders, Chris; van Zaanen, Menno

    2016-01-01

    The use of learning management systems (LMS) in education make it possible to track students’ online behavior. This data can be used for educational data mining and learning analytics, for example, by predicting student performance. Although LMS data might contain useful predictors, course characteristics and student characteristics have shown to influence student performance as well. However, these different sets of features are rarely combined or compared. Therefore, in the current study we...

  19. Nonlinear Performance Characteristics of Flux-Switching PM Motors

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2013-01-01

    Full Text Available Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little emphasis given on its performance and limits. Performance characteristics include phase flux linkage, phase torque, and phase inductance. In the paper, this analysis is done by a cross-correlation of rotor position and armature current. Due to the high amount of processed data, which cannot be handled analytically within an acceptable time period, a multistatic 2D finite element model (FEM is used. For generalization, the most commonly discussed FSPM topology, 12/10 FSPM, is chosen. Limitations on the motor performance due to the saturation are discussed on each characteristic. Additionally, a focused overview is given on energy conversion loops and dq-axes identification for the FSPM.

  20. Covariance of engineering management characteristics with engineering employee performance

    Science.gov (United States)

    Hesketh, Andrew Arthur

    1998-12-01

    As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.

  1. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2015-01-01

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  2. Thermodynamic inhibitor performance extender that, effectively and economically prevent hydrate formation in the oil field production systems

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    This paper presents the development of a new additive that was developed to improve the effectiveness of the treatment two to four fold when added to the thermodynamic hydrate inhibitor (THI). Consequently, the THI/additive treatment can now enable the system to handle two to four times the amount of water production or can allow treatment of the same amount of water at half to quarter the dosage of THI. This new additive extends the performance of the THI and allows for a significant increase in production or a significant drop in the amount of THI usage with a corresponding drop in cost. This paper will further discuss the overall process of THI enhancement and will present several case studies where the enhanced THI has been successfully applied. (author)

  3. Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  4. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  5. Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid

    International Nuclear Information System (INIS)

    Zhao Zongchang; Zhang Xiaodong; Ma Xuehu

    2005-01-01

    Trifluoroethanol(TFE)-tetraethylenglycol dimethylether (TEGDME or E181) is a new organic working-pair which is non-corrosive, completely miscible and thermally stable up to 250 deg C. It is suitable for upgrading low-temperature level industrial waste-heat to a higher temperature level for reuse. In this paper, the thermodynamic performance of the double-effect absorption heat-transformer (DEAHT) using TFE/E181 as the working fluid is simulated, based on the thermodynamic properties of TFE/E181 solution. The results show that, when the temperature in the high-pressure generator exceeds 100 deg C and the gross temperature lift is 30 deg C, the coefficient of performance (COP) of the DEAHT is about 0.58, which is larger than the 0.48 of the single-stage absorption heat-transformer (SAHT), the increase of COP is about 20%. But it is still less than 0.64 of the DEAHT using LiBr-H 2 O as the working fluid. Meanwhile, the COP of the DEAHT decreases more rapidly with increases of the absorption temperature than that for the SAHT. The range of available gross temperature-lift for the DEAHT is narrower than that of the SAHT. The higher the temperature in the high-pressure generator, the larger the gross temperature-lift could be. So the double-effect absorption heat-transformer is more suitable for being applied in those circumstances of having a higher-temperature heat-resource and when a higher temperature-lift is not needed

  6. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  7. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo; Synn, Joong-Ho; Song, Won-Kyong

    2012-06-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  8. Research of psychological characteristics and performance relativity of operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2008-01-01

    Based on the working tasks of an operator being taken into full consideration in this paper, on the one hand the table of measuring psychological characteristics is designed through the selection of special dimensions; on the other hand the table of performance appraisal is drafted through the choice of suitable standards of an operator. The paper analyzes the results of two aspects, sets relevant nuclear power plant operators as the research objective, and obtains the psychological characteristics and performance relativity of operators. The research can be as important and applied reference for the selection, evaluation and use of operators

  9. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    Science.gov (United States)

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  10. Impact of the lubricating oil on thermodynamic performances of reversible heat pumps; Impact de l'huile de lubrification sur les performances thermodynamiques des pompes a chaleur reversibles

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M

    2003-12-01

    This work deals with the effect of oil on the energy performances of refrigerating systems. To characterise this impact, two thermodynamic properties were studied: the solubility and the enthalpy. Thus, a simple measurement method was presented, allowing to study both transient and steady-state behaviour of various refrigerant/oil pairs. Thus, experimental data were validated and modelled. The suitable use of the solubility curves showed the zeotropic character of the refrigerant/oil mixture, which is directly reflected on the enthalpy calculation. For this property, a thermodynamic model was developed and experimentally validated. Its application led to a new presentation of the Mollier diagram taking into account the oil presence. It was then shown that, among all the circuit elements, the evaporator is the most penalized by the oil presence. Its performances decrease when the circulating mass fraction of oil increases, the superheat decreases and when the refrigerant-oil solubility increases. An experimental study on a reversible heat pump confirmed that if the circulation mass fraction of oil in the machine is lower than 2%, the impact of oil is reduced. Lastly, a local model of a refrigerating unit, initially charged with a zeotropic mixture, allowed to analyse the profiles of temperature, heat transfer coefficient and local composition of the refrigerant along a circuit. (author)

  11. Characteristics and thermodynamics of the interaction of 6-shogaol with human serum albumin as studied by isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Shevin Rizal Feroz

    Full Text Available ABSTRACT The interaction between 6-shogaol, a pharmacologically active ginger constituent, and human serum albumin (HSA, the main in vivo drug transporter, was investigated using isothermal titration calorimetry (ITC. The value of the binding constant, Ka (5.02 ± 1.37 × 104 M−1 obtained for the 6-shogaol-HSA system suggested intermediate affinity. Analysis of the ITC data revealed feasibility of the binding reaction due to favorable enthalpy and entropy changes. The values of the thermodynamic parameters suggested involvement of van der Waals forces, hydrogen bonds and hydrophobic interactions in the 6-shogaol-HSA complex formation.

  12. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  13. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical.

    Science.gov (United States)

    Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang

    2018-05-09

    In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH  0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018. Published by Elsevier B.V.

  14. Facebook use, personality characteristics and academic performance: A correlational study

    OpenAIRE

    Sapsani, Georgia; Tselios, Nikolaos

    2017-01-01

    The present paper examines the relationship between the students personality, use of social media and their academic performance and engagement. In specific, the aim of this study is to examine the relationship of students facebook (fb) use and personality characteristics using the Big Five Personality Test with (a) student engagement, (b) time spent preparing for class, (c) time spent in co-curricular activities and (d) academic performance. Results illustrate that fb time was significantly ...

  15. Performance characteristics of the Mayo/IBM PACS

    Science.gov (United States)

    Persons, Kenneth R.; Gehring, Dale G.; Pavicic, Mark J.; Ding, Yingjai

    1991-07-01

    The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archiving system for use with Mayo's MRI and Neuro CT imaging modalities. The communications backbone of the PACS is a portion of the Mayo institutional network: a series of 4-Mbps token rings interconnected by bridges and fiber optic extensions. The performance characteristics of this system are important to understand because they affect the response time a PACS user can expect, and the response time for non-PACS users competing for resources on the institutional network. The performance characteristics of each component and the average load levels of the network were measured for various load distributions. These data were used to quantify the response characteristics of the existing system and to tune a model developed by North Dakota State University Department of Computer Science for predicting response times of more complex topologies.

  16. Characteristics, kinetics and thermodynamics of Congo Red bio sorption by activated sulfidogenic sludge from an aqueous solution

    International Nuclear Information System (INIS)

    Rasool, K.; Lee, D. S.

    2015-01-01

    The kinetics and thermodynamics of the bio sorption of textile dye Congo Red on anaerobic activated sulfidogenic sludge were examined. The influence of different adsorption parameters such as p H, temperature, contact time and initial dye concentrations on the bio sorption capacity was also investigated. The sulfidogenic sludge showed a maximum bio sorption density of 238.90 mg dye/g cell for Congo Red at an initial dye concentration of 1,000 mg/L, p H 3.5 and 22 C, which is higher than that of many other adsorbents reported in the literature. The bio sorption processes obeyed the Langmuir isotherm and exhibited pseudo-second-order rate kinetics. The thermodynamic parameters indicated the spontaneous and exothermic nature of Congo Red bio sorption. The Fourier transform infrared spectra revealed the dye interaction with the biomass. Scanning electron microscopy showed significant changes in the surface morphology of the sludge after dye bio sorption. These results showed that sulfidogenic sludge biomass is an attractive alternative low-cost bio sorbent for the removal of the dye from aqueous media.

  17. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    In this paper, the performance study of a separately excited d. c. motor whose speed is controlled by armature voltage variation is presented. Both the open loop and the closed loop steady state and transient characteristics are reported. The speed controllers considered in the closed loop mode are the proportional and the ...

  18. Performance and Carcass Characteristics of Broiler Finisher Birds ...

    African Journals Online (AJOL)

    Sixty (60) 4 weeks old Anak broiler strain were subjected to 28 days feeding trial at the Poultry Unit of the Teaching and Research Farm, Evan Enwerem, Owerri, Nigeria, to determine the dietary effect of pineapple wine sediment (PWSM) on their performance and carcass characteristics. The birds were divided into four ...

  19. Do the Managerial Characteristics of Schools Influence Their Performance?

    Science.gov (United States)

    Agasisti, Tommaso; Bonomi, Francesca; Sibiano, Piergiacomo

    2012-01-01

    Purpose: The purpose of this paper is to investigate the role of governance and managerial characteristics of schools. More specifically, the aim is to individuate the factors that are associated to higher schools' performances, as measured through student achievement. Design/methodology/approach: The research is conducted by means of a survey in…

  20. Performance characteristics of proximity focused ultraviolet image converters

    Science.gov (United States)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for UV to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs-Te photocathodes and P-11 phosphors on fiber optic output windows.

  1. Growth performance, carcass and organ characteristics of growing ...

    African Journals Online (AJOL)

    An experiment was conducted at the Department of Animal Science teaching and research farm, Bayero University Kano, to evaluate the effect of feeding graded levels of Moringa oleifera leaf meal (MOLM) in diets on growth performance, carcass and organ characteristics of weaned rabbits. Twenty eight grower rabbits of ...

  2. Performance and ileal characteristics of finishing broilers fed diets ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the effect of prebiotics supplemented diets on performance characteristics and gut morphology of broiler chickens. The study involved 320 day-old Anak broiler chicks, used to assess the utilization of prebiotics [Mannose oligosaccharides (MOS) and Lactose oligosaccharides ...

  3. Nonlinear performance characteristics of flux-switching PM motors

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2013-01-01

    Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM) are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little

  4. Performance characteristics of broiler chicks fed kidney bean as ...

    African Journals Online (AJOL)

    An experiment was conducted to investigate the effect of replacing soybean meal and groundnut cake meal with cooked and decorticated kidney bean seed meals on the performance characteristics of broilers. One hundred and eighty day old broiler chicks of Anak strain were raised on six experimental diets.

  5. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Hu, Weiqiang [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Ou Congjie [College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Chen Jincan [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)], E-mail: jcchen@xmu.edu.cn

    2009-06-15

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions.

  6. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    International Nuclear Information System (INIS)

    Zhang Yue; Hu, Weiqiang; Ou Congjie; Chen Jincan

    2009-01-01

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions

  7. A review of hospital characteristics associated with improved performance.

    Science.gov (United States)

    Brand, Caroline A; Barker, Anna L; Morello, Renata T; Vitale, Michael R; Evans, Sue M; Scott, Ian A; Stoelwinder, Johannes U; Cameron, Peter A

    2012-10-01

    The objective of this review was to critically appraise the literature relating to associations between high-level structural and operational hospital characteristics and improved performance. The Cochrane Library, MEDLINE (Ovid), CINAHL, proQuest and PsychINFO were searched for articles published between January 1996 and May 2010. Reference lists of included articles were reviewed and key journals were hand searched for relevant articles. and data extraction Studies were included if they were systematic reviews or meta-analyses, randomized controlled trials, controlled before and after studies or observational studies (cohort and cross-sectional) that were multicentre, comparative performance studies. Two reviewers independently extracted data, assigned grades of evidence according to the Australian National Health and Medical Research Council guidelines and critically appraised the included articles. Data synthesis Fifty-seven studies were reported within 12 systematic reviews and 47 observational articles. There was heterogeneity in use and definition of performance outcomes. Hospital characteristics investigated were environment (incentives, market characteristics), structure (network membership, ownership, teaching status, geographical setting, service size) and operational design (innovativeness, leadership, organizational culture, public reporting and patient safety practices, information technology systems and decision support, service activity and planning, workforce design, staff training and education). The strongest evidence for an association with overall performance was identified for computerized physician order entry systems. Some evidence supported the associations with workforce design, use of financial incentives, nursing leadership and hospital volume. There is limited, mainly low-quality evidence, supporting the associations between hospital characteristics and healthcare performance. Further characteristic-specific systematic reviews are

  8. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  9. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  10. Relations between mental health team characteristics and work role performance.

    Science.gov (United States)

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert

    2017-01-01

    Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care.

  11. Job characteristics, flow, and performance: the moderating role of conscientiousness.

    Science.gov (United States)

    Demerouti, Evangelia

    2006-07-01

    The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees.

  12. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site

  13. Thermodynamic Study on the Effects of Minor Constituents on Cold Weather Performance of Biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to its feedstock, namely fatty acid composition and trace concentrations of monoacylglycerols,...

  14. System thermodynamic performance comparison of CO2-EGS and water-EGS systems

    International Nuclear Information System (INIS)

    Zhang, Fu-Zhen; Jiang, Pei-Xue; Xu, Rui-Na

    2013-01-01

    CO 2 may be a better heat transmission fluid than water for Enhanced Geothermal Systems (EGS). The advantages and disadvantages of these two kinds of EGS are the focus of this study. The water and CO 2 -EGS system models including simple subsurface heat transfer and flow models and a surface energy conversion system model were designed based on the reservoir grade and the ambient temperatures. The results indicate that the operating parameters including the injection pressure, turbine outlet pressure and reservoir stimulated area should be optimized to match the actual CO 2 -EGS conditions. CO 2 -EGS produce more power than water-EGS for reservoirs with low recoverable thermal energies due to less irreversible losses compared to ORC or flash cycles for water-EGS. However, high resistance losses caused by high mass flow rates degrade the CO 2 -EGS performance; thus, the water-EGS has better performance than CO 2 -EGS for larger energy content reservoirs. -- Highlights: • Comparing the performance of CO 2 -EGS and water-EGS for various conditions. • Presenting the scope of applications for these two kinds of EGS systems. • Cooling after compression before the CO 2 is injected improves CO 2 -EGS performance. • There is an optimum recoverable thermal energy content for CO 2 -EGS

  15. Cold modalities with different thermodynamic properties have similar effects on muscular performance and activation.

    Science.gov (United States)

    Vieira, A; Oliveira, A B; Costa, J R; Herrera, E; Salvini, T F

    2013-10-01

    Although tissue cooling is widely used in the treatment of musculoskeletal injuries there is still controversy about its effects on muscular performance. The combination of cooling and exercise justifies the study of this topic. The aim was to compare the effects of ice pack and cold-water immersion on the muscular performance parameters of plantar flexors and muscular activation of the triceps surae. 41 healthy men (mean age: 22.1 years, SD: 2.9) were randomly assigned to cooling with either ice pack (n=20) or cold-water immersion (n=21). Independent variables were cold modality (ice pack or cold-water immersion) and pre- and post-cooling measurement time. Dependent variables were muscular performance (measured during isometric and concentric contractions of plantar flexors) and electromyography parameters of the triceps surae (median frequency and root mean square amplitude). Dependent-samples t-tests were used to compare pre- and post-cooling data and independent-samples t-tests were used to compare the difference (pre- and post-cooling) between groups. Ice pack increased isometric peak torque (mean: 9.00 Nm, P=0.01) and both cold modalities reduced muscular activation in triceps surae (Pimmersion and ice pack reduced peak torque and total work during dynamic isokinetic contraction at both velocities (mean: -11,00 Nm, Pimmersion decrease concentric muscular performance. These results indicate that these cooling methods should be chosen with caution, considering the type of task required during training or rehabilitation. New studies investigating other muscle groups and joints are necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector

    International Nuclear Information System (INIS)

    Lamnatou, Chr.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N.

    2012-01-01

    Highlights: ► We evaluate an evacuated-tube solar air collector and use it to develop a novel dryer. ► Apple, carrot and apricot thin-layer drying experiments are conducted. ► Best overall fitting among several available thin-layer drying models is pursued. ► Thermodynamic analysis yields optimal collector area, energy utilization/exergy loss. ► The proposed dryer has a capacity for drying larger quantities of products. -- Abstract: The present work presents a thermodynamic performance analysis of a solar dryer with an evacuated-tube collector. Drying experiments for apples, carrots and apricots were conducted, after a preliminary stage of the investigation which included measurements for the determination of the collector efficiency. These results showed that the warm outlet air of the collector attains temperature levels suitable for drying of agricultural products without the need of preheating. Thus, the present collector was used as the heat source for a drying chamber in the frame of the development of a novel, convective, indirect solar dryer; given the fact that in the literature there are only a few studies about this type of collectors in conjunction with solar drying applications. Thin-layer drying models were fitted to the experimental drying curves, including the recent model of Diamante et al. which showed good correlation coefficients for all the tested products. Drying parameters such as moisture ratio and drying rates were calculated. Furthermore, an energetic/exergetic analysis of the dryer was also conducted and performance coefficients such as pick-up and exergy efficiencies, energy utilization ratio, exergy losses were determined for several configurations such as single and double-trays and several drying air velocities. On the other hand, an optimal collector surface area study was conducted, based on laws for minimum entropy generation. Design parameters such as optimum collector area were determined based on the minimum entropy

  17. Multidimensional performance characteristics and standard of performance in talented youth field hockey players : A longitudinal study

    NARCIS (Netherlands)

    Elferink-Gemser, Marije T.; Visscher, Chris; Lemmink, Koen A. P. M.; Mulder, Theo

    2007-01-01

    To identify performance characteristics that could help predict future elite field hockey players, we measured the anthropometric, physiological, technical, tactical, and psychological characteristics of 30 elite and 35 sub-elite youth players at the end of three consecutive seasons. The mean age of

  18. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  19. RELATIONSHIPS BETWEEN MUSCLE FATIGUE CHARACTERISTICS AND MARKERS OF ENDURANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Martyn G. Morris

    2008-12-01

    Full Text Available The aim of this study was to examine the relationship of a range of in-vivo whole muscle characteristics to determinants of endurance performance. Eleven healthy males completed a cycle ergometer step test to exhaustion for the determination of the lactate threshold, gross mechanical efficiency, peak power and VO2max. On two separate occasions, contractile and fatigue characteristics of the quadriceps femoris were collected using a specially designed isometric strength-testing chair. Muscle fatigue was then assessed by stimulating the muscle for 3 minutes. Force, rate of force development and rates of relaxation were calculated at the beginning and end of the 3 minute protocol and examined for reliability and in relation to lactate threshold, VO2max, gross mechanical efficiency and peak power. Muscle characteristics, rate of force development and relaxation rate were demonstrated to be reliable measures. Force drop off over the 3 minutes (fatigue index was related to lactate threshold (r = -0.72 p < 0.01 but not to VO2max. The rate of force development related to the peak power at the end of the cycle ergometer test (r = -0.75 p < 0.01. Rates of relaxation did not relate to any of the performance markers. We found in-vivo whole muscle characteristics, such as the fatigue index and rate of force development, relate to specific markers of peripheral, but not to central, fitness components. Our investigation suggests that muscle characteristics assessed in this way is reliable and could be feasibly utilised to further our understanding of the peripheral factors underpinning performance

  20. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  1. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  2. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.

  3. Life performance of oil and gas platforms: Site integration and thermodynamic evaluation

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Fülöp, Tamás Gábor; Breuhaus, Peter

    2014-01-01

    requirements are assessed by a process integration study, and the system inefficiencies are pinpointed by performing an exergy accounting. The heating and cooling requirements vary significantly over time, and most inefficiencies take place in processes where chemical exergy is consumed (50-55%), thermal...... exergy is transferred (15-20%), or mechanical exergy is varied (10-15%). These findings are valid for all production periods: this suggests that more attention should be paid on a proper integration of the processing and utility plants, by, for instance, recovering heat from the turbine exhausts and from...

  4. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  5. Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    As we develop new materials to increase performance of lithium ion batteries for electric vehicles, the impact of potential safety and reliability issues become increasingly important. In addition to electrochemical performance increases (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance behavior. Introduction of a next generation materials, such as silicon based anode, requires a full understanding of the abuse response and degradation mechanisms for these anodes. This work aims to understand the breakdown of these materials during abuse conditions in order to develop an inherently safe power source for our next generation electric vehicles. The effect of materials level changes (electrolytes, additives, silicon particle size, silicon loading, etc.) to cell level abuse response and runaway reactions will be determined using several techniques. Experimentation will start with base material evaluations in coin cells and overall runaway energy will be evaluated using techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and accelerating rate calorimetry (ARC). The goal is to understand the effect of materials parameters on the runaway reactions, which can then be correlated to the response seen on larger cells (18650). Experiments conducted showed that there was significant response from these electrodes. Efforts to minimize risk during testing were taken by development of a smaller capacity cylindrical design in order to quantify materials decision and how they manifest during abuse response.

  6. Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system

    International Nuclear Information System (INIS)

    Kim, Sangjo; Son, Changmin; Kim, Kuisoon

    2017-01-01

    Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.

  7. Relationships between Isometric Force-Time Characteristics and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Thomas Dos’Santos

    2017-09-01

    Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.

  8. EXPERIMENTAL ANALYSIS OF THE CHARACTERISTIC PERFORMANCE OF STANDALONE PHOTOVOLTAIC SYSTEM

    OpenAIRE

    Birendra Kishore; Anirban Nandy*; O.P. Pandey

    2016-01-01

    This paper demonstrates an insight solar PV Stand Alone system which is a practical model with a halogen light source. At different situations the performance of solar PV cells are analyzed. The system produces power with depending on the change in halogen light intensity & temperature. A theoretical & experimental analysis of the PV cell can be achieved. In this paper the I-V & P-V characteristic of the solar photovoltaic cells with changes in temperature and isolation have been showed. With...

  9. Thermodynamic performance of R502 alternative refrigerant mixtures for low temperature and transport applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Jung, Dongsoo

    2007-01-01

    In this study, two pure hydrocarbon refrigerants, R1270 (propylene) and R290 (propane), and three binary mixtures composed of R1270, R290 and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502, which is used in most low temperature and transport refrigeration applications. The test bench provided 3-3.5 kW capacity, and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions, resulting in the average saturation temperatures of -28 and 45 o C in the evaporator and condenser, respectively. The test results showed that all refrigerants tested had 9.6-18.7% higher capacity and 17.1-27.3% higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502, while those of all the other refrigerants were 23.7-27.9 o C lower than that of R502. For all alternative refrigerants, the charge was reduced up to 60% as compared to R502. There, of course, was no problem with mineral oil, since the mixtures were mainly composed of hydrocarbons. Since some of them are mixtures, one can change their compositions a little to suit various needs in many applications without significant deterioration of the performance. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties

  10. Thermodynamic characteristics of sorption extraction and chromatographic separation of anionic complexes of erbium and cerium with Trilon B on weakly basic anionite

    Science.gov (United States)

    Cheremisina, O. V.; Ponomareva, M. A.; Sagdiev, V. N.

    2016-03-01

    The adsorption of anionic complexes of erbium with Trilon B on D-403 anionite is studied at ionic strengths of 1 and 2 mol/kg (NaNO3) and temperatures of 298 and 343 K. The values of the stability constants of complex ions of REE with Trilon B and the Gibbs energies of complexation are calculated. The values of the Gibbs energy and the enthalpy and entropy of ion exchange are determined. Using the obtained thermo-dynamic and sorption characteristics, the possible separation of anionic complexes of erbium and cerium with Trilon B is demonstrated via frontal ion-exchange chromatography. A series of sorption capacities of anionic complexes of cerium, yttrium, and erbium is presented using the values of the Gibbs energy of ion exchange.

  11. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank.

    Science.gov (United States)

    Liu, Zhan; Li, Cui

    2018-03-15

    A calibrated CFD model is built to investigate the influence of slosh baffles on the pressurization performance in liquid hydrogen (LH 2 ) tank. The calibrated CFD model is proven to have great predictive ability by compared against the flight experimental results. The pressure increase, thermal stratification and wall heat transfer coefficient of LH 2 tank have been detailedly studied. The results indicate that slosh baffles have a great influence on tank pressure increase, fluid temperature distribution and wall heat transfer. Owning to the existence of baffles, the stratification thickness increases gradually with the distance from tank axis to tank wall. While for the tank without baffles, the stratification thickness decreases firstly and then increases with the increase of the distance from the axis. The "M" type stratified thickness distribution presents in tank without baffles. One modified heat transfer coefficient correlation has been proposed with the change of fluid temperature considered by multiplying a temperature correction factor. It has been proven that the average relative prediction errors of heat transfer coefficient reduced from 19.08% to 4.98% for the wet tank wall of the tank, from 8.93% to 4.27% for the dry tank wall, respectively, calculated by the modified correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sorption performance of activated nkaliki clay in removing chromium (vi) ion from aqueous solution: kinetics, isotherm, and thermodynamic studies

    International Nuclear Information System (INIS)

    Ajemba, R.O.; Ugonabo, V.I.; Okafor, V.N.

    2017-01-01

    Bentonite from Nkaliki was modified by acid activation using different concentrations of sulphuric acid. The physicochemical properties of the raw and modified samples were analyzed. The sorption performance of the modified and raw bentonite was studied in the removal of chromium (VI) ion from aqueous solution. Effect of key process parameters on the adsorption process was studied. Results of the physicochemical analyses showed that the acid activation altered the structural arrangements of the bentonite. The surface area and adsorption capacity increased from 37.6m/sup 2//g to 74m/sup 2//g and 45 to 98%, respectively, after activating with 6mol/l of H/sub 2/SO/sub 4/. The chromium (VI) ion adsorption increased with increase in process parameters studied. The kinetics analysis of the adsorption data follows the pseudo second-order kinetics, while equilibrium analysis conformed to the Langmuir isotherm. The thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. This study shows that modified Nkaliki bentonite could be used for wastewater treatment. (author)

  13. Thermodynamic Characterization of Humic Acid-surfactant Interaction: New Insights into the Characteristics and Structure of Humic Acids

    Directory of Open Access Journals (Sweden)

    Leonardus Vergütz

    2015-12-01

    Full Text Available ABSTRACT Humic acids (HA are a component of humic substances (HS, which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.

  14. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  15. Model Of Emergency Department Nurse Performance Improvement Based on Association of Individual Characteristic, Organization Characteristic and Job Characteristic

    OpenAIRE

    Bogar, Maria Margaretha; Nursalam, Nursalam; Dewi, Yulis Setiya

    2017-01-01

    Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were ...

  16. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  17. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  18. Some performance characteristics of a fluidized bed heat recovery unit

    International Nuclear Information System (INIS)

    Militzer, J.; Basu, P.; Adaikkappan, N.

    1985-01-01

    The advantages of using fluidized bed heat recovery units with diesel engines are well documented. Two of those are: significantly less tube fouling and heat transfer coefficient four to five time higher than that of conventional shell and tube heat exchangers. The high concentration of soot in the exhaust gases of diesel engines make fouling a major concern in design of any kind of heat recovery unit. In the experiment a conventional fluidized bed heat exchanger was connected to the exhaust of a diesel engine mounted on a dynamometer. With this arrangement it was possible to test the heat recovery unit under a wide range of operating conditions. The main objective of this experiment was the determination of the performance characteristics of the heat recovery unit, especially with reference to its heat transfer and fouling characteristics. (author)

  19. Characteristics and Performance of Existing Load Disaggregation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, Ryan S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-10

    Non-intrusive load monitoring (NILM) or non-intrusive appliance load monitoring (NIALM) is an analytic approach to disaggregate building loads based on a single metering point. This advanced load monitoring and disaggregation technique has the potential to provide an alternative solution to high-priced traditional sub-metering and enable innovative approaches for energy conservation, energy efficiency, and demand response. However, since the inception of the concept in the 1980’s, evaluations of these technologies have focused on reporting performance accuracy without investigating sources of inaccuracies or fully understanding and articulating the meaning of the metrics used to quantify performance. As a result, the market for, as well as, advances in these technologies have been slowly maturing.To improve the market for these NILM technologies, there has to be confidence that the deployment will lead to benefits. In reality, every end-user and application that this technology may enable does not require the highest levels of performance accuracy to produce benefits. Also, there are other important characteristics that need to be considered, which may affect the appeal of NILM products to certain market targets (i.e. residential and commercial building consumers) and the suitability for particular applications. These characteristics include the following: 1) ease of use, the level of expertise/bandwidth required to properly use the product; 2) ease of installation, the level of expertise required to install along with hardware needs that impact product cost; and 3) ability to inform decisions and actions, whether the energy outputs received by end-users (e.g. third party applications, residential users, building operators, etc.) empower decisions and actions to be taken at time frames required for certain applications. Therefore, stakeholders, researchers, and other interested parties should be kept abreast of the evolving capabilities, uses, and characteristics

  20. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  1. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  2. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  3. Performance and emissions characteristics of biodiesel from soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Faculty of Technical Education

    2005-07-15

    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO{sub 2} emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO{sub x}. (author)

  4. An innovative thermodynamic model for performance evaluation of photovoltaic systems: Effect of wind speed and cell temperature

    International Nuclear Information System (INIS)

    Kaushik, S.C.; Rawat, Rahul; Manikandan, S.

    2017-01-01

    Highlights: • A novel thermodynamic modelling of photovoltaic energy system has been proposed. • The entropy, optical, thermal, spectral and fill factor losses are assessed. • The expression of energetic and exergetic efficiencies have been derived. • Reversible, endoreversible, exoreversible and irreversible systems are presented. - Abstract: The photovoltaic energy conversion is a thermodynamic system which converts the solar energy to the electrical and thermal energy. In this paper, a novel thermodynamic model of photovoltaic energy conversion system has been proposed on the basis of the first and second law of thermodynamics including entropy generation, optical, thermal, spectral and fill factor losses. Based on the irreversibilities, the proposed model has been classified into four cases i.e. reversible, endoreversible, exoreversible and irreversible systems, for which, the expressions of energetic and exergetic efficiencies have been derived. The upper limit efficiency of an ideal photovoltaic module placed in an irreversible environment, i.e. endoreversible system, is determined to be 82.8%. The effect of wind speed and module temperature on the energetic and exergetic efficiencies, thermodynamic losses and irreversibilities has also been presented.

  5. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  6. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  7. Breeder design for enhanced performance and safety characteristics

    International Nuclear Information System (INIS)

    Fischer, G.J.; Atefi, B.; Yang, J.W.; Galperin, A.; Segev, M.

    1980-01-01

    A fast breeder reactor design has been created which offers a considerably extended fuel cycle and excellent performance characteristics. An example of a core designed to operate on a ten-year fuel cycle is described in some detail. Use of metal fuel along with a moderator such as beryllium oxide dispersed throughout the core provides both design flexibility and safety advantages such as a strong Doppler feedback and limited sodium void reactivity gain. Local power variations are small for the entire cycle; control requirements are also modest, and fuel cycle costs are low

  8. Performance characteristics of the DIII-D advanced divertor cryopump

    International Nuclear Information System (INIS)

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm -2 ). Results of measurements made on the pumping characteristics for D 2 , H 2 , and Ar are discussed

  9. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  10. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  11. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  12. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa

    International Nuclear Information System (INIS)

    Tan, Yingying; Wang, Lin; Liang, Kunfeng

    2015-01-01

    In this paper, an auto-cascade ejector refrigeration cycle (ACERC) is proposed to obtain lower refrigeration temperature based on conventional ejector refrigeration and auto-cascade refrigeration principle. The thermodynamic performance of ACERC is investigated theoretically. The zeotropic refrigerant mixture R32 + R236fa is used as its working fluid. A parametric analysis is conducted to evaluate the effects of some thermodynamic parameters on the cycle performance. The study shows that refrigerant mixture composition, condenser outlet temperature and evaporation pressure have effects on performance of ACERC. The theoretical results also indicate that the ACERC can achieve the lowest refrigeration temperature at the temperature level of −30 °C. The application of zeotropic refrigerant mixture auto-cascade refrigeration in the ejector refrigeration cycle can provide a new way to obtain lower refrigeration temperature utilizing low-grade thermal energy. - Highlights: • An auto-cascade ejector refrigerator with R32 + R236fa mixed refrigerant is proposed. • The cycle can obtain a refrigeration temperature at −30 °C temperature range. • The effects of some thermodynamic parameters on the cycle performance are evaluated

  13. Influence of the composition of aqueous-alcohol solvents on the thermodynamic characteristics of L-phenylalanine dissolution at 298.15 K

    International Nuclear Information System (INIS)

    Badelin, Valentin G.; Smirnov, Valeriy I.

    2011-01-01

    Highlights: ► Enthalpies of L-phenylalanine dissolution have been measured in aqueous methanol, ethanol, 1-propanol and 2-propanol. ► The measured data were reported as functions of composition of water + alcohol mixtures. ► Enthalpy coefficients of pair-wise interactions have been analyzed in terms of McMillan-Mayer theory. ► A comparative analysis of the characteristics of dissolution of L-phenylalanine and some other L-amino acids in the similar systems has been made. - Abstract: The enthalpies of L-phenylalanine dissolution in aqueous methanol, ethanol, 1-propanol and 2-propanol have been determined by calorimetry at 298.15 K and alcohol mole fractions up to x 2 ∼0.4. The standard enthalpies of solution Δ sol H° and transfer Δ tr H° from water to the mixed solvent as well as the enthalpy coefficients of L-phenylalanine–alcohol pair-wise interactions were calculated. The interrelation of the enthalpies of dissolution and transfer for L-phenylalanine with structural features of alcohols has been determined. A comparative analysis of the thermodynamic characteristics of dissolution of L-phenylalanine and some other amino acids (glycine, L-alanine, L-threonine and L-valine) in the mixtures studied has been made.

  14. Board Characteristics and Firm Performance: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Athalia Ariati Hidayat

    2015-12-01

    Full Text Available This research examines the effect of board characteristics (comprising in different sized proportions: family commissioners, family directors, independent commissioners, ex-government officer commissioners, and board of commissioners size to firm performance. Using fixed-effects data panel regression, this research investigates 293 firms listed on the Indonesian Stock Exchange during 2008-2012. Firm performance is proxied by market measure (Tobin’s Q and accounting measure (ROA. The findings of this research suggest that the proportion of family commissioners and family directors have positive impact only to Tobin’s Q value, while the proportion of independent directors can increase both Tobin’s Q and ROA. On the other hand, this research finds that the proportion of ex-government officers in the board gives no impact to firm performance. This research also finds that the board size has U-shaped non-linear relationship with firm performance as proxied by Tobin’s Q and ROA.

  15. Firm performance: The role of CEOs' emotional and cognitive characteristics

    Directory of Open Access Journals (Sweden)

    Kleanthis K. Katsaros

    2015-08-01

    Full Text Available The paper examines the relationships between CEOs’ personal traits, emotions, attitudes and tolerance of ambiguity; and subsequently, the influence of CEOs’ ambiguity tolerance in firms' performance. Design/methodology/approach – Survey data were collected from 256 ICT firms established in Greece. Their CEOs completed questionnaires examining TOA, personal traits, emotions and attitudes in the workplace. Principal components analysis and ordinary least-squares regressions were used to explore the hypotheses of the paper. Findings – Three factors characterize CEOs' emotions, namely pleasure, dominance and arousal; two factors their involvement, namely importance and interest; and, respectively, one their emotional intelligence namely, empathy/handling relationships. Further, locus of control; importance; arousal; empathy/handling relationships and interest affect decisively CEOs' tolerance of ambiguity, which in turn, seems to influence positively firms' performance. Research limitations/implications – Further research is required in Greek ICT industry regarding the influence of CEOs' emotional and cognitive attributes in organizations' financial performance. Likewise, this research should be expanded to other industries. Originality/value – The originality of this study lies in the finding that emotional and cognitive characteristics affect CEOs' TOA, which, in turn, influences significantly firms' performance. Another significant contributing factor is that the study is carried out in Greece, where few studies have been conducted in this area.

  16. Evaluated and estimated solubility of some elements for performance assessment of geological disposal of high-level radioactive waste using updated version of thermodynamic database

    International Nuclear Information System (INIS)

    Kitamura, Akira; Doi, Reisuke; Yoshida, Yasushi

    2011-01-01

    Japan Atomic Energy Agency (JAEA) established the thermodynamic database (JAEA-TDB) for performance assessment of geological disposal of high-level radioactive waste (HLW) and TRU waste. Twenty-five elements which were important for the performance assessment of geological disposal were selected for the database. JAEA-TDB enhanced reliability of evaluation and estimation of their solubility through selecting the latest and the most reliable thermodynamic data at present. We evaluated and estimated solubility of the 25 elements in the simulated porewaters established in the 'Second Progress Report for Safety Assessment of Geological Disposal of HLW in Japan' using the JAEA-TDB and compared with those using the previous thermodynamic database (JNC-TDB). It was found that most of the evaluated and estimated solubility values were not changed drastically, but the solubility and speciation of dominant aqueous species for some elements using the JAEA-TDB were different from those using the JNC-TDB. We discussed about how to provide reliable solubility values for the performance assessment. (author)

  17. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  18. Distributed utility technology cost, performance, and environmental characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  19. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  20. Roasted sesame hulls improve broiler performance without affecting carcass characteristics

    Directory of Open Access Journals (Sweden)

    Kamel Z. Mahmoud

    2015-09-01

    Full Text Available An experiment was conducted to evaluate the effect of using graded levels of roasted sesame hulls (RSH on growth performance and meat quality characteristics in broiler chickens. A total of 360 day-old Lohmann chicks were randomly allocated into 24 floor pens and raised over 42 days. One of four dietary treatments was assigned to each group of six pens in a completely randomized fashion. The chicks in the control group were fed a corn-soybean based diet (RSH-0, while the chicks in treatments two, three, and four were fed graded levels of RSH at 4% (RSH-4, 8% (RSH-8, and 12% (RSH-12, respectively. Diets were formulated to meet broiler chicks’ requirements according to the National Research Council for both starter and finisher rations. The results showed that RSH inclusion increased (P<0.05 feed intake and final body weight without adversely affecting the feed conversion ratio. Broiler chicks fed RSH-12 had heavier (P<0.05 breast and leg cuts compared to the control-fed group with no change to their chemical composition. Water holding capacity (WHC, cooking loss (CL, and shear force (SF reported similar results in all dietary groups. The chemical composition of both thigh and breast cuts was not affected by the RSH. After one day of thawing, colour coordinates of breast cuts behaved similarly in all dietary groups. The results of this study suggest that the addition of RSH to broiler diets up to 12% improves their growth performance; nevertheless, carcass characteristics and meat quality showed no alterations compared to the control-fed group.

  1. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  2. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  3. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  4. Performance characteristics of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Khan, Jameel-Ur-Rehman; Yaqub, M.; Zubair, Syed M.

    2003-01-01

    Cooling towers are one of the biggest heat and mass transfer devices that are in widespread use. In this paper, we use a detailed model of counter flow wet cooling towers in investigating the performance characteristics. The validity of the model is checked by experimental data reported in the literature. The thermal performance of the cooling towers is clearly explained in terms of varying air and water temperatures, as well as the driving potential for convection and evaporation heat transfer, along the height of the tower. The relative contribution of each mode of heat transfer rate to the total heat transfer rate in the cooling tower is established. It is demonstrated with an example problem that the predominant mode of heat transfer is evaporation. For example, evaporation contributes about 62.5% of the total rate of heat transfer at the bottom of the tower and almost 90% at the top of the tower. The variation of air and water temperatures along the height of the tower (process line) is explained on psychometric charts

  5. Transonic Performance Characteristics of Several Jet Noise Suppressors

    Science.gov (United States)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  6. Performance and cavitation characteristics of bi-directional hydrofoils

    Science.gov (United States)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2013-11-01

    Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.

  7. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  8. Performance characteristics of a Kodak computed radiography system.

    Science.gov (United States)

    Bradford, C D; Peppler, W W; Dobbins, J T

    1999-01-01

    The performance characteristics of a photostimulable phosphor based computed radiographic (CR) system were studied. The modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) of the Kodak Digital Science computed radiography (CR) system (Eastman Kodak Co.-model 400) were measured and compared to previously published results of a Fuji based CR system (Philips Medical Systems-PCR model 7000). To maximize comparability, the same measurement techniques and analysis methods were used. The DQE at four exposure levels (30, 3, 0.3, 0.03 mR) and two plate types (standard and high resolution) were calculated from the NPS and MTF measurements. The NPS was determined from two-dimensional Fourier analysis of uniformly exposed plates. The presampling MTF was determined from the Fourier transform (FT) of the system's finely sampled line spread function (LSF) as produced by a narrow slit. A comparison of the slit type ("beveled edge" versus "straight edge") and its effect on the resulting MTF measurements was also performed. The results show that both systems are comparable in resolution performance. The noise power studies indicated a higher level of noise for the Kodak images (approximately 20% at the low exposure levels and 40%-70% at higher exposure levels). Within the clinically relevant exposure range (0.3-3 mR), the resulting DQE for the Kodak plates ranged between 20%-50% lower than for the corresponding Fuji plates. Measurements of the presampling MTF with the two slit types have shown that a correction factor can be applied to compensate for transmission through the relief edges.

  9. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  10. Direct comparasion of an engine working under Otto, Miller end Diesel cycles : thermodynamic analysis and real engine performance

    OpenAIRE

    Ribeiro, Bernardo Sousa; Martins, Jorge

    2007-01-01

    One of the ways to improve thermodynamic efficiency of Spark Ignition engines is by the optimisation of valve timing and lift and compression ratio. The throttleless engine and the Miller cycle engine are proven concepts for efficiency improvements of such engines. This paper reports on an engine with variable valve timing (VVT) and variable compression ratio (VCR) in order to fulfill such an enhancement of efficiency. Engine load is controlled by the valve opening per...

  11. Differences in daily disposable circle lens performance characteristics

    Directory of Open Access Journals (Sweden)

    Schafer JM

    2014-04-01

    Full Text Available Jeffery M Schafer, William T Reindel, Marjorie J Rah, Osbert Chan, Lening Zhang Bausch & Lomb Incorporated, Rochester, NY, USA Purpose: The purpose of this evaluation was to compare the performance characteristics of two cosmetically tinted contact lenses in the circle lens category that differ in lens design, lens material, and pigment print pattern: etafilcon A (1-Day Acuvue Define; Johnson & Johnson Vision Care and hilafilcon B (Naturelle; Bausch & Lomb Incorporated. Methods: Two hundred Asian subjects (400 eyes were enrolled in this 1-month parallel, bilateral, randomized study at ten investigative sites. Study lenses were dispensed at a screening/dispensing visit, and follow-up visits occurred at 2 weeks and 1 month. Lenses were worn on a daily disposable basis. Fit characteristics were evaluated at each visit, and slit-lamp evaluations were completed at each follow-up visit. Results: Of the 200 patients enrolled, 172 (344 eyes completed the study. The proportion of eyes with fully centered lenses was statistically significantly higher for the hilafilcon B group at the 2-week and 1-month visits, P<0.05. Over all visits, 0.6% of hilafilcon B eyes demonstrated incomplete corneal coverage, whereas for the etafilcon A group, 8.5% of eyes demonstrated incomplete corneal coverage and/or edge lift. The proportion of eyes with adequate lens movement was statistically significantly higher for the hilafilcon B group, P<0.05. Over all visits, none of the hilafilcon B eyes was reported to have excessive movement, whereas for etafilcon A lenses, 10.2% of eyes were reported to have excessive movement. Conclusions: Etafilcon A lenses were significantly less likely to be fully centered and significantly more likely to have incomplete corneal coverage and/or edge lift compared with the hilafilcon B lenses. Keywords: cosmetic contact lens, circle contact lens

  12. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  13. Ch. 33 Modeling: Computational Thermodynamics

    International Nuclear Information System (INIS)

    Besmann, Theodore M.

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  14. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  15. Key Performance Characteristics of Organic Shrimp Aquaculture in Southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Christian Reinhard Vogl

    2012-05-01

    Full Text Available In Bangladesh, black tiger shrimp (Penaeus monodon; Fabricius, 1798 aquaculture has come to be one of the most important sectors in both the rural and national economies. Likewise, organic shrimp aquaculture has emerged as an alternative farming enterprise for farmers especially in the southwestern districts of Bangladesh. The present study aims to show key performance characteristics of organic shrimp farmers and farming in a prototypical shrimp farming area in Bangladesh. Data was collected in 2009 from organic shrimp farmers in the Kaligonj and Shyamnagar sub-districts through questionnaire interviews, transect walks and focus group discussions. The mean productivity of organic shrimp farming in the area is 320 kg ha−1 yr−1 (ranging from 120 to 711 kg ha−1year−1. Organic farmers are more likely to have a higher monthly income and less aquaculture experience. Moreover, suitable landholdings and classified labor distribution have been found to play an important role in the development of organic shrimp aquaculture. The most common assets of organic shrimp aquaculture are high yield, low production cost, available post larvae and high market prices. Small business farmers are likely to earn more income benefits from organic shrimp aquaculture than their larger-scale counterparts. Finally, the paper suggests that more research is needed to stimulate the success of organic shrimp aquaculture.

  16. Dynamic Performance Characteristic Tests of Real Scale Lead Rubber Bearing for the Evaluation of Performance Criteria

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung-Han; Choi, In-Kil

    2014-01-01

    Dynamic characteristic tests of full scale lead rubber bearing were performed for the evaluation of performance criteria of isolation system for nuclear power plants. For the dynamic test for a full scale rubber bearing, two 1500mm diameter lead rubber bearings were manufactured. The viewpoints of this dynamic test are determination of an ultimate shear strain level of lead rubber bearing, behavior of rubber bearing according to static and dynamic input motion, sinusoidal and random (earthquake) motion, and 1-dimentional and 2-dimensional input motion. In this study, seismic isolation device tests were performed for the evaluation of performance criteria of isolation system. Through this test, it can be recognized that in the case of considering a mechanical property test, dynamic and multi degree of loading conditions should be determined. But these differences should be examined how much affect to the global structural behavior

  17. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  18. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  19. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  20. Technical evaluation of thermodynamics processes; Avaliacao tecnica dos processos termodinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Petracco, Fulvio Celso

    1986-05-01

    An evaluation of thermodynamic processes, energy losses the origin of energy losses on thermodynamic process, where are the points or sources of those losses and variation of process when compared in relation of thermodynamic performance are discussed. The concept of energy losses and its origin, energy and work capacity, performance rates and examples of thermodynamic efficiency are also debated 3 figs.

  1. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    July 10th 2016; Available online How to Cite This Article: Mohite. S, Kumar, S. &  Maji, S.  (2016 Performance  characteristics of mix oil biodiesel blends with smoke emissions. Int. Journal of Renewable Energy Development, 5(2, 163-170. http://dx.doi.org/10.14710/ijred.5.2.163-170 

  2. Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The present work focuses on analytical computation of thermodynamic performance of actual vapour compression refrigeration system by using six pure refrigerants. The refrigerants are namely R22, R32, R134a, R152a, R290 and R1270 respectively. A MATLAB code is developed to compute the thermodynamic performance parameters of actual vapour compression system such as refrigeration effect, compressor work, COP, power per ton of refrigeration, compressor discharge temperature and volumetric refrigeration capacity at condensing and evaporating temperatures of 54.4oC and 7.2oC respectively. Analytical results exhibited that COP of both R32 and R134a are 15.95% and 11.71% higher among the six investigated refrigerants. However R32 and R134a cannot be replaced directly into R22 system. This is due to their higher compressor discharge temperature and poor volumetric capacity respectively. The discharge temperature of both R1270 and R290 are lower than R22 by 20-26oC. Volumetric refrigeration capacity of R1270 (3197 kJ/m3 is very close to that of volumetric capacity of R22 (3251 kJ/m3. Both R1270 and R290 shows good miscibility with R22 mineral oil. Overall R1270 would be a suitable ecofriendly refrigerant to replace R22 from the stand point of ODP, GWP, volumetric capacity, discharge temperature and miscibility with mineral oil although its COP is lower.

  3. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  4. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  5. Feasibility analysis and performance characteristics investigation of spatial recuperative expander based on organic Rankine cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Han, Yongqiang; Li, Runzhao; Liu, Zhongchang; Tian, Jing; Wang, Xianfeng; Kang, Jianjian

    2016-01-01

    Highlights: • A new concept of spatial recuperative expander for waste heat recovery is proposed. • Simulation model of spatial recuperative expander is established and verified. • The performance characteristics of spatial recuperative expander are investigated. • Comparison between spatial recuperative expander and traditional one is performed. • Spatial recuperative expander achieves better performance than traditional one. - Abstract: This paper proposes a new concept of spatial recuperative expander which injects cold refrigerant during exhaust stroke as a measure of direct contact heat transfer. The commercial simulation tool GT-SUIT 7.4 is employed to model and verify the feasibility of spatial recuperative expander. The research contents are comprised of the following aspects: Firstly, the principles and performance characteristics between traditional reciprocating piston expander and spatial recuperative expander have been investigated. Secondly, the potential of spatial recuperation by adjusting cold refrigerant injection timing has been studied. Thirdly, the relation between expander performance and variable expansion ratio under constant operating condition has been discussed. Fourthly, the thermodynamic performance of spatial recuperative expander under various operating conditions has been examined. The simulation results indicate that: Firstly, the torque per unit mass, thermal efficiency, exergetic efficiency, isentropic efficiency and recuperative efficiency of optimum spatial recuperative expander are 51.00%, 6.74%, 20.79%, 5.68% and 11.36% higher than traditional reciprocating piston expander respectively. Secondly, the cold refrigerant injection timing has little influence on recuperative efficiency because the recuperation process can complete within 16.67 ms. Thirdly, different operating conditions correspond to particular optimal expansion ratio. Fourthly, increasing the pump pressure and maintaining appropriate superheated degree

  6. A study of the thermodynamic performance and CO2 emissions of a vapour compression bio-trigeneration system

    International Nuclear Information System (INIS)

    Parise, Jose A.R.; Castillo Martinez, Luis C.; Pitanga Marques, Rui; Betancourt Mena, Jesus; Vargas, Jose V.C.

    2011-01-01

    A trigeneration system (simultaneous production of heating, cooling and electricity) using a heat engine and a vapour compression chiller, running on biofuel, is studied. A system configuration, capable of meeting the three energy demands in a realistic situation, was devised. It consisted of a compression ignition internal combustion engine driving an electric generator, an electrically driven vapour compression heat pump and a peak boiler. Part of the heating demand was met by recovering waste heat from the engine and the heat pump condenser, thus reducing the overall fuel consumption. New criteria parameters, based on the relative magnitudes of the three energy demands, were defined to evaluate thermal performance and CO 2 emissions. A comparative analysis between the biofuel trigeneration and conventional fossil fuel with no waste heat recovery was carried out, showing that, depending on the relative values of energy demands and on component characteristics, significant reduction on primary energy consumption (up to 50%) and on CO 2 emissions (up to 5% of the original emissions) can be attained with the biofuel-trigeneration combination.

  7. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  8. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  9. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  10. Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics

    International Nuclear Information System (INIS)

    Nie, Wenjie; Liao, Qinghong; Zhang, ChunQiang; He, Jizhou

    2010-01-01

    An irreversible cycle model of the micro-/nanoscaled Otto engine cycle with internal friction loss is established. The general expressions of the work output and efficiency of the cycle are calculated based on the finite system thermodynamic theory, in which the quantum boundary effect of gas particles as working substance and the mechanical Casimir effect of gas system are considered. It is found that, for a micro-/nanoscaled Otto cycle devices, the work output W and efficiency η of the cycle can be expressed as the functions of the temperature ratio τ of the two heat reservoirs, the volume ratio r V and the surface area ratio r A of the two isochoric processes, the dimensionless thermal wavelength λ and other parameters of cycle, while for a macroscaled Otto cycle devices, the work output W 0 and efficiency η 0 of the cycle are independent of the surface area ratio r A and the dimensionless thermal wavelength λ. Further, the influence of boundary of cycle on the performance characteristics of the micro-/nanoscaled Otto cycle are analyzed in detail by introducing the output ratio W/W 0 and efficiency ratio η/η 0 . The results present the general performance characteristics of a micro-/nanoscaled Otto cycle and may serve as the basis for the design of a realistic Otto cycle device in micro-/nanoscale.

  11. Correlation of water vapor adsorption behavior of wood with surface thermodynamic properties

    Science.gov (United States)

    Mandla A. Tshabalala; Agnes R. Denes; R. Sam. Williams

    1999-01-01

    To improve the overall performance of wood-plastic composites, appropriate technologies are needed to control moisture sorption and to improve the interaction of wood fiber with selected hydrophobic matrices. The objective of this study was to determine the surface thermodynamic characteristics of a wood fiber and to correlate those characteristics with the fiberas...

  12. Can Knowledge of the Characteristics of "High Performers" Be Generalised?

    Science.gov (United States)

    McKenna, Stephen

    2002-01-01

    Two managers described as high performing constructed complexity maps of their organization/world. The maps suggested that high performance is socially constructed and negotiated in specific contexts and management competencies associated with it are context specific. Development of high performers thus requires personalized coaching more than…

  13. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  14. Rail gun performance and plasma characteristics due to wall ablation

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  15. Growth performance and carcass characteristics of three Ethiopian ...

    African Journals Online (AJOL)

    Breed affected the weights of internal fat depots. The findings indicate that breed affected the carcass characteristics of the three Ethiopian goat breeds. Keywords: Indigenous goats; carcass yield; carcass composition; primal cuts; non-carcass components. South African Journal of Animal Science Vol. 37 (4) 2007: pp.221- ...

  16. Hearing Instrument using receivers with different performance characteristics

    DEFF Research Database (Denmark)

    2009-01-01

    The invention regards a signal processing device in a hearing aid, wherein the signal processing device is electrically coupled to a connection socket operable to detachably connect a receiver to the socket and whereby the signal processing device further comprise a detector operable to detect...... a characteristics of the receiver which is connected to the signal processing device through the connection socket....

  17. Design and performance characteristics of a krypton chloride (λ ...

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... Development of a discharge-pumped krypton chloride (KrCl) laser operating at 222 nm wavelength is demonstrated. In this paper the design, successful realization and operating characteristics of KrCl excimer laser are reported. The laser is driven by a simple and efficient excitation technique using ...

  18. Performance of sampling methods to estimate log characteristics for wildlife.

    Science.gov (United States)

    Lisa J. Bate; Torolf R. Torgersen; Michael J. Wisdom; Edward O. Garton

    2004-01-01

    Accurate estimation of the characteristics of log resources, or coarse woody debris (CWD), is critical to effective management of wildlife and other forest resources. Despite the importance of logs as wildlife habitat, methods for sampling logs have traditionally focused on silvicultural and fire applications. These applications have emphasized estimates of log volume...

  19. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    obtained by digital computer analysis. The results show that closed loop operation, with appropriate control ... Using digital computer analysis, the driver characteristics of a test motor is investigated. In the closed loop ... system circuit failure especially with respect to the semiconductor devices that may be used in varying ...

  20. MANAGEMENT TEAM CHARACTERISTICS: EVIDENCE FROM UNIVERSITY GOVERNANCE AND SCHOOL PERFORMANCE

    OpenAIRE

    Hsiang-Tsai Chiang; Mei-Chih Lin

    2013-01-01

    The paper examines cognition from the viewpoint of internal management teams of private universities against satisfaction with school performance, applying the SEM model. Empirical results show that the board’s operational effectiveness and attendance rate for internal important meetings held on campus have a significantly positive relationship with implementing effectiveness and satisfaction with school administrative performance. The satisfaction with school administrative performance and...

  1. Structural and thermodynamic characteristics of X2MYH2 compounds (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) - the products of hydrohalogen elimination from X3MYH3 donor-acceptor complexes

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    2001-01-01

    Geometrical and thermodynamic characteristics of complexes X 2 MYH 2 (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) were obtained by the method of density functional B3LYP. It is shown that nitrogen complexes X 2 MNH 2 have a plane structure, whereas phosphorus and arsenic complexes are pyramidal. In the process of HX elimination the dissociation energy of M-Y bond is strengthened essentially (by 150-270 kJ/mol), which makes dissociation of X 2 MYH 2 into components quite inefficient from thermodynamic viewpoint even at temperatures of about 1000 deg C. Dimerization enthalpies of X 2 MYH 2 lie in the range 40 (Y = P, As) - 260 (Y=N) kJ/mol. Thus, dimers [X 2 MNH 2 ] 2 can be intermediate products in the processes of nitrides chemical precipitation from gaseous phase of donor-acceptor complexes [ru

  2. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  3. Common Characteristics of Good and Poorly Performing AC Pavements

    Science.gov (United States)

    1999-12-01

    This report documents the analysis and findings of a study to identify the site conditions and design/construction features of : flexible pavements that lead to good performance and those that lead to poor performance. Data from the Long Term Pavemen...

  4. Common Characteristics of Good and Poorly Performing PCC Pavements

    Science.gov (United States)

    1998-01-01

    This report documents the analysis and findings of a study to identify the site conditions and design/construction features of concrete pavements (JPCP, JRCP, CRCP) that lead to good performance and those that lead to poor performance. Data from Long...

  5. Variability of Performance: A "Signature" Characteristic of Learning Disabled Children?

    Science.gov (United States)

    Fuchs, Douglas; And Others

    Two studies were conducted to compare the performance instability of children (grades 3-9) labeled learning disabled/brain injured (LD/BI) to the performance instability of emotionally handicapped (EH) children. In the first study, 50 LD/BI and 37 EH students were measured on three third grade reading passages twice, once within one sitting and…

  6. Poor physician performance in the Netherlands: characteristics, causes, and prevalence.

    NARCIS (Netherlands)

    Goor, M.M.P.G. van den; Wagner, C.; Lombarts, K.M.J.M.H.

    2015-01-01

    Introduction: Poor physician performance has a profound impact on patient safety and society's trust in the health care system. The attention that this topic has received in the media suggests that it is a large-scale issue. However, research about physician performance is still scant; there is

  7. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  8. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  9. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  10. the steady-state performance characteristics of single phase transfer

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... field (SPTF) machine operating in the asynchronous mode from which the performance charac- teristics could be ... motor from a poly-phase induction motor by discon- necting one of its .... tating magnetic field. The pulsating ...

  11. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non

  12. Investigation of transfer characteristics of high performance graphene flakes.

    Science.gov (United States)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-05-01

    In this article, we attempted a study on field effect transport characteristics of graphene flakes. These graphene flakes were exfoliated by mechanical peeling-off technique and the electrical contacts were patterned by photo-lithographic method. Graphene devices have shown better transfer characteristics which was obtained even in low-voltage (graphene transistors were patterned on oxidized silicon wafers. A clear n-type to p-type transition at Dirac point and higher electron drain-current modulation in positive back-gate field with current minimum (the Dirac point) were observed at V(GS) = -1.7 V. The carrier mobility was determined from the measured transconductance. The transconductance of the graphene transistors was observed as high as 18.6 microS with a channel length of 68 microm. A maximum electron mobility of 1870 +/- 143 cm2/V x s and hole mobility of 1050 +/- 35 cm2/V x s were achieved at a drain bias 2.1 V which are comparatively higher values among reported for mechanically exfoliated graphene using lithographic method. The fabricated devices also sustained with high-current density for 40 hr in continuous operation without any change in device resistance, which could be applied for robust wiring applications.

  13. Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures

    International Nuclear Information System (INIS)

    Feng, Yong-qiang; Hung, Tzu-Chen; He, Ya-Ling; Wang, Qian; Wang, Shuang; Li, Bing-xi; Lin, Jaw-Ren; Zhang, Wenping

    2017-01-01

    Highlights: • Experimental comparison using R123, R245fa and their mixtures has been investigated. • The basic operation parameters and the detailed operation characteristics of pure and mixture working fluids are addressed. • The mixture owns a relatively higher pump power consumption, 10–50% higher than that of R245fa and 2–47% higher than that of R123. • The highest system generating efficiency of 4.53% is obtained by 0.67R245fa/0.33R123. - Abstract: The operation characteristic and performance comparison of low-grade organic Rankine cycle (ORC) using R245fa, R123 and their mixtures have been investigated. The heat source temperature is set to be 120 °C, while the mass flow rate is controlled by adjusting the pump frequency. The basic operation parameters are first examined, while the detailed operation characteristics of pure and mixture working fluids are addressed. The system overall performance, including thermal efficiency and system generating efficiency, for pure and mixture working fluids are explored. The experimental results show that the mixtures own a relatively higher pump power consumption and enhancing the pump performance is also significant for ORC application. Whether the mixtures exhibit better thermodynamic performance than the pure working fluids depend on the operation parameters and mass fraction of mixtures. 0.67R245fa/0.33R123 owns the highest maximum net electricity output of 1.67 kW, 4.38% higher than that of R245fa and 63.73% higher than that of R123. Compared to the pure working fluids, the mixture working fluids own a better thermodynamic performance and a moderate economic performance.

  14. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  15. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    Science.gov (United States)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  16. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  17. Predicting Performance Under Acute Stress : The Role of Individual Characteristics

    NARCIS (Netherlands)

    Delahaij, R.; Dam, K. van; Gaillard, A.W.K.; Soeters, J.

    2011-01-01

    This prospective study examined how differences in coping style, coping self-efficacy, and metacognitive awareness influence coping behavior and performance during a realistic acute stressful exercise in 2 military samples (n = 122 and n = 132). Results showed that coping self-efficacy and coping

  18. Performance characteristics and blood profile of West African dwarf ...

    African Journals Online (AJOL)

    A twelve week trial was investigated to evaluate performance and blood profile of West African dwarf (WAD) goats fed malted sorghum sprout with pineapple waste (MSPW) based diet. The malted sorghum sprout and pineapple waste was at ratio 1:2 (weight/weight) respectively. Sixteen WAD goats with average initial ...

  19. Job characteristics, flow, and performance : the moderating role of conscientiousness

    NARCIS (Netherlands)

    Demerouti, E.

    2006-01-01

    The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was

  20. Performance gaps in energy consumption : household groups and building characteristics

    NARCIS (Netherlands)

    van den Brom, P.I.; Meijer, A.; Visscher, H.J.

    2017-01-01

    The difference between actual and calculated energy is called the ‘energy-performance gap’. Possible explanations for this gap are construction mistakes, improper adjusting of equipment, excessive simplification in simulation models and occupant behaviour. Many researchers and governmental

  1. Performance and carcass characteristics of Japanese quail as ...

    African Journals Online (AJOL)

    The effect of sex and the supplementation of the prebiotic, mannan oligosaccharides (MOS), the acidifier, calcium propionate (CPr) or their combination in the feed of Japanese quail (Coturnix japonica) on their performance and carcass quality was examined in this experimentation. Three hundred, 1-day old Japanese quail ...

  2. Southern hemisphere coal characteristics and their impact on plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y Y; Dickson, A J; Lowe, A; Pearson, J M; Pitman, B L; Semark, P M [Taiwan Power Company (Taiwan)

    1992-09-01

    The paper reports performance information of specific utilities fired by coal mined in the Southern Hemisphere. It includes information from Pacific Power Services, Australia, the China Light and Power Company, Hong Kong, the Taiwan Power Company, Taiwan, and the South Africa Electricity Power Company, South Africa. 12 refs., 3 figs., 12 tabs.

  3. Sibsize, Family Environment, Cognitive Performance, and Affective Characteristics

    Science.gov (United States)

    Marjoribanks, Kevin

    1976-01-01

    Incorporates measures of family environment (parent-child interaction) into research methodology to study the effects of sibsize (family size and birth order) on a child's cognitive performance and affective behavior. Provides tentative support for the confluence model of sibsize influences on children's behaviors. (RL)

  4. PGF2α induced estrus characteristics and reproductive performance ...

    African Journals Online (AJOL)

    Structured questionnaire and a field survey were applied on a total of 200 randomly selected households. ... Records of animal identification, parameters of reproductive performance such as weaning age and age at puberty, litter size, kidding interval (KI), the type of management practice and clinical parameters were taken ...

  5. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  6. Suns-VOC characteristics of high performance kesterite solar cells

    Science.gov (United States)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  7. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  8. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-05-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  9. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-01-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  10. The HARP resistive plate chambers: Characteristics and physics performance

    International Nuclear Information System (INIS)

    Ammosov, V.; Boyko, I.; Chelkov, G.; Dedovitch, D.; Dumps, R.; Dydak, F.; Elagin, A.; Gapienko, V.; Gostkin, M.; Guskov, A.; Kroumchtein, Z.; Koreshev, V.; Linssen, L.; Nefedov, Yu.; Nikolaev, K.; Semak, A.; Sviridov, Yu.; Usenko, E.; Wotschack, J.; Zaets, V.; Zhemchugov, A.

    2007-01-01

    The HARP Resistive Plate Chamber (RPC) system was designed for time-of-flight measurement in the large-angle acceptance region of the HARP spectrometer. It comprised 46 four-gap glass RPCs covering an area of ∼8m 2 . The design of the RPCs, their operation, intrinsic properties, and system performance are described. The intrinsic time resolution of the RPCs is better than 130ps leading to a system time resolution of ∼175ps

  11. The performance characteristics of groundnut ( Arachis hypogea , L ...

    African Journals Online (AJOL)

    The ethyl-esters were blended with automotive gas oil at (0 to 20%) mix with 5% increment of groundnut ethyl-esters to produce biodiesel. The performance of a 2.46 kW diesel engine was evaluated using the groundnut biodiesel at five loading conditions (0, 25, 50, 75 and 100% of full load). Automotive gas oil was used as ...

  12. The characteristics and performance of international joint ventures in Thailand

    OpenAIRE

    Suwannarat, P

    2010-01-01

    The importance of strategic alliances in the form of international joint ventures (IJVs) is growing in the present international business environment where competition is on a global scale. A review of the IJV literature, especially in developing countries, shows an over-emphasis on China and the NIEs (the first tier newly-industrialising economies: Taiwan, Singapore, Hong Kong, and South Korea). To date, relatively little attention has been paid to the ASEAN4 countries (the high-performing e...

  13. Adaptation and learning: characteristic time scales of performance dynamics.

    Science.gov (United States)

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  14. Characteristics of sprint performance in college football players.

    Science.gov (United States)

    Brechue, William F; Mayhew, Jerry L; Piper, Fontaine C

    2010-05-01

    To investigate sprinting strategy, acceleration and velocity patterns were determined in college football players (n = 61) during performance of a 9.1-, 36.6-, and 54.9-m sprints. Acceleration and velocity were determined at 9.1-m intervals during each sprint. Lower-body strength and power were evaluated by 1 repetition maximum (1-RM) squat, power clean, jerk, vertical jump, standing long jump, and standing triple jump. Sprint times averaged 1.78 +/- 0.11 seconds (9.1 m), 5.18 +/- 0.35 seconds (36.6 m), and 7.40 +/- 0.53 seconds. Acceleration peaked at 9.1 m (2.96 +/- 0.44 m x s(-2)), was held constant at 18.3 m (3.55 +/- 0.0.94 m x s(-2)), and was negative at 27.4 m (-1.02 +/- 0.72 m x s(-2)). Velocity peaked at 18.3 m (8.38 +/- 0.65 m x s(-2)) and decreased slightly, but significantly at 27.4 m (7.55 +/- 0.66 m x s(-2)), associated with the negative acceleration. Measures of lower-body strength were significantly related to acceleration, velocity, and sprint performance only when corrected for body mass. Lower-body strength/BM and power correlated highest with 36.6-m time (rs = -0.55 to -0.80) and with acceleration (strength r = 0.67-0.49; power r = 0.73-0.81) and velocity (strength r = 0.68-0.53; power r = 0.74-0.82) at 9.1 m. Sprint times and strength per body mass were significantly lower in lineman compared with linebackers-tight ends and backs. The acceleration and velocity patterns were the same for each position group, and differences in sprint time were determined by the magnitude of acceleration and velocity at 9.1 and 18.3 m. Sprint performance in football players is determined by a rapid increase in acceleration (through 18.3 m) and a high velocity maintained throughout the sprint and is independent of position played. The best sprint performances (independent of sprint distance) appear to be related to the highest initial acceleration (through 18.3 m) and highest attained and maintained velocity. Strength relative to body mass and power appears to

  15. Thermodynamical quantum information sharing

    International Nuclear Information System (INIS)

    Wiesniak, M.; Vedral, V.; Brukner, C.

    2005-01-01

    Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)

  16. Performance characteristics of the ARCHITECT anti-HCV assay.

    Science.gov (United States)

    Jonas, Gesa; Pelzer, Claudia; Beckert, Christian; Hausmann, Michael; Kapprell, Hans-Peter

    2005-10-01

    The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV). To further enhance the performance of this test, the assay was modified to improve the specificity for blood donor specimens. The specificity of the enhanced ARCHITECT Anti-HCV assay was evaluated by screening blood donor samples randomly collected from various German blood banks, as well as hospitalized patient samples derived from Germany and the US. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels and on a commercially available worldwide anti-HCV genotype performance panel. Apparent specificity of the modified ARCHITECT Anti-HCV assay in a blood donor population consisting of 3811 specimens was 99.92%, compared to 99.76% for the current on-market assay. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels. Seroconversion sensitivity equivalent to or better than the current on-market product was observed by testing 33 seroconversion panels. This study demonstrates that the modified version of the ARCHITECT Anti-HCV assay shows improved specificity for blood donor specimens compared to the current assay on market without compromising sensitivity. With the availability of the improved ARCHITECT Anti-HCV assay and the recent launch of the ARCHITECT HIV Ag/Ab Combo assay, the ARCHITECT system now offers a full hepatitis/retrovirus menu with excellent performance on a high throughput, random access, automated analyzer, ideally suited for blood screening and diagnostic applications.

  17. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  18. Performance characteristics of a horizontal axis turbine with fusion winglet

    International Nuclear Information System (INIS)

    Zhu, Bing; Sun, Xiaojing; Wang, Ying; Huang, Diangui

    2017-01-01

    Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient. - Highlights: • Added winglet generally increase the turbine energy extraction performance. • Winglet facing blade both sides is usually superior to that of facing one side. • Winglet can isolate downwash fluid easily flowing

  19. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  20. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  1. Performance characteristics of ZLC 37 Siemens gamma camera

    International Nuclear Information System (INIS)

    Abdelgadir, Wafaa Abdelrahman

    1994-04-01

    The relationships between the ZLC 37 Siemens γ camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens γ cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author)

  2. Performance characteristics of ZLC 37 Siemens gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Abdelgadir, Wafaa Abdelrahman [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1994-04-01

    The relationships between the ZLC 37 Siemens {gamma} camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens {gamma} cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity) when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author) 28 refs. , 10 tabs. , 22 figs. Also available from the Department of Physics, Faculty of Science, University of Khartoum, Khartoum (SD)

  3. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Gannon, J.; Kraushaar, P.; Mcinturff, A.; Nehring, R.; Saladin, V.; Savord, T.; Sorrensen, G.; Smellie, R.; Tool, G.; Voy, D.

    1993-05-01

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  4. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  5. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Sogand [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Charghand, Mojtaba [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-02-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive

  6. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    International Nuclear Information System (INIS)

    Aghamohammadi, Sogand; Haghighi, Mohammad; Charghand, Mojtaba

    2014-01-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH 3 -TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH 3 -TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive thermodynamic

  7. Influence of course characteristics, student characteristics, and behavior in learning management systems on student performance

    NARCIS (Netherlands)

    Conijn, Rianne; Kleingeld, Ad; Matzat, Uwe; Snijders, Chris; van Zaanen, Menno

    2016-01-01

    The use of learning management systems (LMS) in education make it possible to track students’ online behavior. This data can be used for educational data mining and learning analytics, for example, by predicting student performance. Although LMS data might contain useful predictors, course

  8. Separator Characteristics for Increasing Performance of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2009-11-01

    Two challenges for improving the performance of air cathode, single-chamber microbial fuel cells (MFCs) include increasing Coulombic efficiency (CE) and decreasing internal resistance. Nonbiodegradable glass fiber separators between the two electrodes were shown to increase power and CE, compared to cloth separators (J-cloth) that were degraded over time. MFCtestswereconductedusing glass fibermatswith thicknesses of 1.0mm (GF1) or 0.4 mm (GF0.4), a cation exchange membrane (CEM), and a J-cloth (JC), using reactors with different configurations. Higher power densities were obtained with either GF1 (46 ± 4 W/m3) or JC (46 ± 1 W/m3) in MFCs with a 2 cm electrode spacing, when the separator was placed against the cathode (S-configuration), rather than MFCs with GF0.4 (36 ± 1 W/m3) or CEM (14 ± 1 W/m3). Power was increased to 70 ± 2 W/m3 by placing the electrodes on either side of the GF1 separator (single separator electrode assembly, SSEA) and further to 150 ± 6 W/m3 using two sets of electrodes spaced 2 cm a part (double separator electrode assembly, DSEA). Reducing the DSEA electrode spacing to 0.3 cm increased power to 696 ± 26 W/m3 as a result of a decrease in the ohmic resistance from 5.9 to 2.2 Ω. The main advantages of a GF1 separator compared to JC were an improvement in the CE from 40% to 81% (S-configuration), compared to only 20-40% for JC under similar conditions, and the fact that GF1 was not biodegradable. The high CE for the GF1 separator was attributed to a low oxygen mass transfer coefficient (ko ) 5.0 x 10-5 cm/s). The GF1 andJCmaterials differed in the amount of biomass that accumulated on the separator and its biodegradability, which affected long-term power production and oxygen transport. These results show that materials and mass transfer properties of separators are important factors for improving power densities, CE, and long-term performance of MFCs. © 2009 American Chemical Society.

  9. Runway drainage characteristics related to tire friction performance

    Science.gov (United States)

    Yager, Thomas J.

    1991-01-01

    The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.

  10. Performance characteristics of the novel PETRRA positron camera

    CERN Document Server

    Ott, R J; Erlandsson, K; Reader, A; Duxbury, D; Bateman, J; Stephenson, R; Spill, E

    2002-01-01

    The PETRRA positron camera consists of two 60 cmx40 cm annihilation photon detectors mounted on a rotating gantry. Each detector contains large BaF sub 2 scintillators interfaced to large area multiwire proportional chambers filled with a photo-sensitive vapour (tetrakis-(dimethylamino)-ethylene). The spatial resolution of the camera has been measured as 6.5+-1.0 mm FWHM throughout the sensitive field-of-view (FoV), the timing resolution is between 7 and 10 ns FWHM and the detection efficiency for annihilation photons is approx 30% per detector. The count-rates obtained, from a 20 cm diameter by 11 cm long water filled phantom containing 90 MBq of sup 1 sup 8 F, were approx 1.25x10 sup 6 singles and approx 1.1x10 sup 5 cps raw coincidences, limited only by the read-out system dead-time of approx 4 mu s. The count-rate performance, sensitivity and large FoV make the camera ideal for whole-body imaging in oncology.

  11. Effects of Zeolite (Clinoptelolite on Performance Characteristics of

    Directory of Open Access Journals (Sweden)

    A Hassan Abadim

    2011-12-01

    Full Text Available A 70-days experiment was conducted to investigate the effects of natural zeolite (clinoptelolite on the performance of commercial laying hens. 288 Hy-Line W36 strain laying hens (50 weeks old were allotted to 6 dietary treatments including basal diet as control and basal diet supplemented with 1, 2, 3, 4 and 5% zeolite that were fed ad -libitum throughout the experiment. Experimental diets for the 6 treatments were prepared to be iso-caloric and iso-nitrogenous. A completely randomized design with six treatments, eight replicates of six birds per replicate was used at this experiment. Daily feed intake (DFI, feed conversion ratio (FCR, egg production, egg weight, egg white quality, eggshell quality (thickness and percentage and body weight changes were measured during the experiment. Results of this experiment showed that DFI, FCR, egg production and egg abnormality were not significantly (P>0.05 affected by zeolite supplementation. Zeolite supplementation significantly increased egg weight, eggshell thickness and live body weight gain of the hens. Dietary zeolite significantly decreased haugh unit of the eggs. In conclusion, natural zeolite significantly improved egg weight and eggshell quality, decreased haugh unit and live weight gain, and had no significant effects on other parameters.

  12. Advanced thermodynamic (exergetic) analysis

    International Nuclear Information System (INIS)

    Tsatsaronis, G; Morosuk, T

    2012-01-01

    Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.

  13. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  14. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-05-01

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  16. Impact of the lubricating oil on thermodynamic performances of reversible heat pumps; Impact de l'huile de lubrification sur les performances thermodynamiques des pompes a chaleur reversibles

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M.

    2003-12-01

    This work deals with the effect of oil on the energy performances of refrigerating systems. To characterise this impact, two thermodynamic properties were studied: the solubility and the enthalpy. Thus, a simple measurement method was presented, allowing to study both transient and steady-state behaviour of various refrigerant/oil pairs. Thus, experimental data were validated and modelled. The suitable use of the solubility curves showed the zeotropic character of the refrigerant/oil mixture, which is directly reflected on the enthalpy calculation. For this property, a thermodynamic model was developed and experimentally validated. Its application led to a new presentation of the Mollier diagram taking into account the oil presence. It was then shown that, among all the circuit elements, the evaporator is the most penalized by the oil presence. Its performances decrease when the circulating mass fraction of oil increases, the superheat decreases and when the refrigerant-oil solubility increases. An experimental study on a reversible heat pump confirmed that if the circulation mass fraction of oil in the machine is lower than 2%, the impact of oil is reduced. Lastly, a local model of a refrigerating unit, initially charged with a zeotropic mixture, allowed to analyse the profiles of temperature, heat transfer coefficient and local composition of the refrigerant along a circuit. (author)

  17. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  18. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  19. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

    Science.gov (United States)

    Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping

    2014-08-01

    Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  1. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  2. South African exporter performance: new research into firm-specific and market characteristics

    Directory of Open Access Journals (Sweden)

    Christopher May

    2012-05-01

    Full Text Available The export marketing performance of any firm is influenced by a multitude of different factors. Given the multi-faceted nature of the export market, this research study investigated specific factors such as how firm-specific characteristics, product characteristics, market characteristics and export marketing strategies impact on the export marketing performance of South African manufacturing firms. Some of the findings of this research study indicated that firm size, investment commitment and careful planning, as firm-specific characteristics, had a significant influence on export marketing performance. The relationship between export experience and export marketing performance was insignificant. The degree of pricing adaptation and product adaptation had a significant effect on export marketing performance, while this was not the case with respect to the degree of promotion adaptation and distributor support.

  3. The Influence of Top Management Team Characteristics on BPD Performance (P.155-166

    Directory of Open Access Journals (Sweden)

    Joy Elly Tulung

    2017-01-01

    Full Text Available Based on ”upper echelons theory”, this paper investigates the relation between top management team composition and BPD performance. For top management team characteristics, we employ age, level of education, background of education, gender, and functional background, while for measured the BPD performance we employ return on asset (ROA, return on equity (ROE, capital adequacy ratio (CAR, net interest margin (NIM, loan to deposit ratio (LDR, non-performing loan (NPL and operation expenses to operation income (BOPO. The results show that all characteristics have positive significant influences on BPD performance.Keywords: Top Management Team,BPD Performance, Upper Echelons Theory 

  4. Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Cardozo, Evelyn; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    This work presents the development and validation of a numerical model that represents the performance of a gamma Stirling engine prototype. The model follows a modular approach considering ideal adiabatic working spaces; limited internal and external heat transfer through the heat exchangers; and mechanical and thermal losses during the cycle. In addition, it includes the calculation of the mechanical efficiency taking into account the crank mechanism effectiveness and the forced work during the cycle. Consequently, the model aims to predict the work that can be effectively taken from the shaft. The model was compared with experimental data obtained in an experimental rig built for the engine prototype. The results showed an acceptable degree of accuracy when comparing with the experimental data, with errors ranging from ±1% to ±8% for the temperature in the heater side, less than ±1% error for the cooler temperatures, and ±1 to ±8% for the brake power calculations. Therefore, the model was probed adequate for study of the prototype performance. In addition, the results of the simulation reflected the limited performance obtained during the prototype experiments, and a first analysis of the results attributed this to the forced work during the cycle. The implemented model is the basis for a subsequent parametric analysis that will complement the results presented. - Highlights: • A numerical model for a Stirling engine was developed. • A mechanical efficiency analysis was included in the model. • The model was validated with experimental data of a novel prototype. • The model results permit a deeper insight into the engine operation

  5. Calculation of parameter failure probability of thermodynamic system by response surface and importance sampling method

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Chen Lisheng; Zhang Yangwei

    2012-01-01

    In this paper, the combined method of response surface and importance sampling was applied for calculation of parameter failure probability of the thermodynamic system. The mathematics model was present for the parameter failure of physics process in the thermodynamic system, by which the combination arithmetic model of response surface and importance sampling was established, then the performance degradation model of the components and the simulation process of parameter failure in the physics process of thermodynamic system were also present. The parameter failure probability of the purification water system in nuclear reactor was obtained by the combination method. The results show that the combination method is an effective method for the calculation of the parameter failure probability of the thermodynamic system with high dimensionality and non-linear characteristics, because of the satisfactory precision with less computing time than the direct sampling method and the drawbacks of response surface method. (authors)

  6. Operational characteristics, strategies and performance of foreign and demestic banks in India

    OpenAIRE

    Keshari, Pradeep Kumar

    2013-01-01

    This paper has tried to examine the relative characteristics and performance of foreign and domestic banks operating in India. A comparison of their characteristics undoubtedly suggest that foreign banks as a group differ significantly from domestic banks. It was also found that foreign banks enjoyed higher profitability than the domestic banks. The higher profitability of the former was a reflection of their particular operational characteristics, strategies and the favourable attitude of t...

  7. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  8. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  9. Performance characteristics of shape memory alloy and its applications for fusion technology

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Watanabe, Kenji

    1987-01-01

    As a shape memory alloy, Au-Cd alloy was found in 1951. Thereafter, also in In-Tl alloy, shape memory effect was found. The U.S. Naval Ordinance Laboratory developed Ni-Ti alloy, and published in 1965 as NITINOL. As Cu group shape memory alloys, there are Cu-Zn-Al alloy, Cu-Al-Be alloy and Cu-Al-Ni alloy. Recently, iron group shape memory alloy was published. In 1975, 'Shape memory effect and its application' symposium, in 1978, 'NITINOL heat engine international conference', and in 1982 and 1986, 'Martensite transformation international conference' were held, and the method of the proper use of shape memory alloys and the problems of the alloys themselves such as fatigue have been gradually clarified. In this report, the fundamental action characteristics of shape memory alloys are discribed from the viewpoint of the application, and the possibility of applying these characteristics to nuclear fusion devices and the advantage obtained as the result are explained. Shape memory effect and pseudo-elasticity, reversible shape memory effect, the thermodynamic behavior of shape memory alloys, transformation temperature range and using temperature range and so on are described. (Kako, I.)

  10. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh; Thu, Kyaw; Ng, K. C.

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property

  11. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes

    International Nuclear Information System (INIS)

    Pan Zhengqiang; Balakrishnan, Narayanaswamy

    2011-01-01

    Many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a product has two dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a bivariate degradation involving two performance characteristics, we propose to use a bivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function. Inferential method for the corresponding model parameters is then developed. Finally, for an illustration of the proposed model and method, a numerical example about fatigue cracks is discussed and some computational results are presented.

  12. Relationship characteristics and performance in fresh produce supply chains: the case of the Mexican avocado industry

    NARCIS (Netherlands)

    Coronado, J.J.A.; Bijman, J.; Omta, S.W.F.; Oude Lansink, A.G.J.M.

    2010-01-01

    Abstract Inter-organisational relations research has shown that relationship characteristics can influence performance in seller-buyer transactions. Using a transaction cost economics approach, this research shows that relational elements such as expectation of continuity reduce the transaction

  13. COMPETENCY, ENTREPRENEUR CHARACTERISTIC AND BUSINESS PERFORMANCE: STUDY OF THE PEMPEK BUSINESS IN PALEMBANG

    Directory of Open Access Journals (Sweden)

    Fransiska Soejono

    2015-01-01

    Full Text Available The purpose of this study was to examine empirically the effects of entrepreneurial compe-tencies and characteristics on business performance. Previous studies found that competencies and entrepreneurial characteristics significantly influenced business performance. A quantita-tive method was used and 122 respondents were involved as the sample in this study, who were pempek business owners in Palembang, South Sumatra. The results indicated an effect from entrepreneurial competencies on business performance. It was also found that the entrepre-neurs’ characteristics (owners’ ages significantly affected the businesses’ performance. This implication requires some sort of course or program for the entrepreneurs to improve their competence to direct the owners to gain better business performance. The growing age of the business owners requires equal insights to ensure age does not stop the owners from improving their business’ performance.

  14. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  15. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  16. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  17. How Partner Characteristics Can Affect Performance of Alliances with Different Time Frames?

    Directory of Open Access Journals (Sweden)

    Seyed Hossein JALALI

    2017-11-01

    Full Text Available Firms increasingly adopt cooperative strategies and form strategic alliances with foreign partners to be prosperous in entering to international market. Most of scholars have typically focused on generic, conceptual models for alliances partner selection, addressing only limited dimensions of the partner characteristics. This paper presents a new empirical framework that considering the effect of partner characteristics on export performance of alliances, in the case of short/mediumterm alliances and long-term ones. The study explores the effective partner characteristics for each type of alliances based on a sample of 540 alliances which rooted in East European region and also, have at least one Iranian partner. The findings stress the differences between varied partner characteristics in short/medium-term and long-term alliances. More specifically, results introduce a framework that addresses certain and specific partner characteristics to improve the export performance of alliances, due to the time frame of strategic alliances.

  18. Psychosocial Characteristics of Optimum Performance in Isolated and Confined Environments (ICE)

    Science.gov (United States)

    Palinkas, Lawrence A.; Keeton, Kathryn E.; Shea, Camille; Leveton, Lauren B.

    2010-01-01

    The Behavioral Health and Performance (BHP) Element addresses human health risks in the NASA Human Research Program (HRP), including the Risk of Adverse Behavioral Conditions and the Risk of Psychiatric Disorders. BHP supports and conducts research to help characteristics and mitigate the Behavioral Medicine risk for exploration missions, and in some instances, current Flight Medical Operations. The Behavioral Health and Performance (BHP) Element identified research gaps within the Behavioral Medicine Risk, including Gap BMed6: What psychosocial characteristics predict success in an isolated, confined environment (ICE)? To address this gap, we conducted an extensive and exhaustive literature review to identify the following: 1) psychosocial characteristics that predict success in ICE environments; 2) characteristics that are most malleable; and 3) specific countermeasures that could enhance malleable characteristics.

  19. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  20. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  1. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors.

    Science.gov (United States)

    Su, Pin-Chih; Johnson, Michael E

    2016-04-05

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. © 2015 Wiley Periodicals, Inc.

  2. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine

    International Nuclear Information System (INIS)

    Aksoy, F.; Solmaz, H.; Karabulut, H.; Cinar, C.; Ozgoren, Y.O.; Polat, Seyfi

    2016-01-01

    Highlights: • Rhombic drive and crank drive mechanisms of a beta type engine were compared. • Nodal analysis method was used to compare engines having different drive mechanism. • Maximum specific power was 1410 W/L for rhombic-drive engine. • Heat transfer coefficient was determined as 475 W/m"2K for rhombic-drive engine. • Rhombic drive provided higher efficiency because of its better kinematic behaviours. - Abstract: In this study, the effect of rhombic drive and crank drive mechanisms on the performance of a beta-type Stirling engine was investigated by nodal analysis. Kinematic and thermodynamic relations for both drive mechanisms were introduced and a Fortran code was written for the solution. Piston strokes, cylinder and displacer diameters, hot and cold end temperatures, regenerator volumes and heat transfer surface areas were taken equal for both engines with two different drive mechanisms. In the analysis, air was used as the working gas. Engine power and efficiency were compared for different charge pressure values, working gas mass values, heat transfer coefficients and hot end temperatures. Maximum specific engine power was 1410 W/L for the engine with rhombic drive mechanism and 1200 W/L for the engine with crank drive mechanism at 4 bars of charge pressure and 500 W/m"2K heat transfer coefficient. Rhombic drive mechanism was relatively advantageous at low working gas mass values and high hot end temperatures. In comparison with the engine having rhombic drive mechanism, the relatively poor kinematic behaviour of the engine having crank drive mechanism caused lower engine efficiency and performance. Heat transfer coefficient was also predicted by using an experimental pressure trace.

  3. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  4. CSR organisational taxonomy and job characteristics on performance: SME case studies

    Directory of Open Access Journals (Sweden)

    Thanalechumy Seeramulu

    2017-05-01

    Full Text Available This study examines the relationship between the CSR of organizational structure and job characteristics that influence employee job performance in the Malaysian context. Hence, it is important to study and analyze these two factors within the CSR taxonomy describing how these factors significantly influence employee job performance and to make recommendations how performance can be promoted among employees. This paper is based on a quantitative research approach where responses were gathered from the working population within Malaysia SMEs. The results from this study will help to point out the influence of these factors on the employee job performance and provide guidance to an organization for which these aspects should be emphasized in order to increase employees’ job performance to align performance with organizational goals. The analysis includes two dimensions of CSR taxonomy of organizational structure namely, centralization and formalization, as well as a set of five dimensions of job characteristics, such as task identity, task significance, skill variety, autonomy and feedback. The results of these findings show that job characteristics such as task significance, autonomy, feedback, and skill variety, positively influence job performance with autonomy having highest predictive power on job performance. The results of these findings reveal that the organizational structure does not contribute to the prediction of job performance even though a significant positive correlation exists between the structure and job performance in the Pearson correlation coefficient test. Therefore, this study will enrich the existing knowledge in the area of human resource management by focusing on job performance management.

  5. The effect of individual characteristics of decision making and judgment on stock-flow performance

    NARCIS (Netherlands)

    Raaijmakers, S.; Korzilius, H.P.L.M.; Rouwette, E.A.J.A.; Vennix, J.A.M.

    2012-01-01

    Extending the line of research on stock-flow performance we examined the impact of personality characteristics on task performance. It was assumed that the need for cognition, the need for closure and the preference for intuition and deliberation would relate to individual variations in

  6. Personality Characteristics and Level of Performance of Male County Extension Agents in Wisconsin.

    Science.gov (United States)

    Pandya, Dasharathrai Navnitrai

    The major purpose of this study was to determine the relationship between selected personality characteristics and attitudes of male extension agents in Wisconsin, and their level of job performance. The relationships between selected background factors and the level of agent's job performance were also studied. Subjects were 79 male county agents…

  7. Supervisors' Performance Ratings Correlated with Selected Personal Characteristics of Attendants in a Mental Retardation Developmental Center.

    Science.gov (United States)

    Frederick, Joseph; And Others

    A research study investigated the relationship between personal characteristics and selected demographic data of 75 attendants in a mental retardation developmental center and the assessment by 24 administrators of the attendants' job performance. Instruments used included a 20-item Direct Care Performance Scale and the Demographic Data Scale,…

  8. Do firm characteristics influence mutual fund performance? An empirical study for European mutual funds

    NARCIS (Netherlands)

    de Jong, F.C.J.M.; Wingens, L.

    2013-01-01

    This study investigates the influence of fund management firm characteristics on mutual fund performance. Using a sample of European domiciled open-end equity funds for the period 1998-2008, this study finds that the funds of private companies have performed better than the funds of public

  9. 78 FR 15112 - Rulemaking Advisory Committee; Transport Airplane Performance and Handling Characteristics-New Task

    Science.gov (United States)

    2013-03-08

    ... Committee; Transport Airplane Performance and Handling Characteristics--New Task AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of new task assignment for the Aviation Rulemaking Advisory Committee... findings. The Task The FAA tasked ARAC to consider several areas within the airplane performance and...

  10. Students' Demographic, Academic Characteristics and Performance in Registered General Nursing Licensing Examination in Ghana

    Science.gov (United States)

    Doe, Patience Fakornam; Oppong, Elizabeth Agyeiwaa; Sarfo, Jacob Owusu

    2018-01-01

    The decreasing performance of student nurses in the professional licensure examinations (LE) in Ghana is a major concern to stakeholders, especially at a time when the nurse-patient ratio stands at 1: 1500. The study sought to determine the effect of students' demographic and academic characteristics on performance in the Registered General…

  11. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  12. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  13. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  14. A Study of the Associations between Conditions of Performance and Characteristics of Performers and New York State Solo Performance Ratings

    Science.gov (United States)

    vonWurmb, Elizabeth C.

    2013-01-01

    This dissertation undertakes an analysis of 1,044 performance evaluations from New York State School Music Association (NYSSMA) Spring Festival solo adjudication ratings of student performers from a large suburban school district. It relies on results of evaluations of observed performances, and takes these evaluations as assessments of what the…

  15. Construction Professionals Job Performance and Characteristics: A Comparison of Indigenous and Expatriate Construction Companies in Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2011-06-01

    Job performance is considered one of the most important constructs in human resources management because it helps to explain the value and utility that each employee adds to the organisation. The professionals in the Nigerian construction companies are not exception to the perceived low job performance rate within the industry. Extant literature points to the fact that job characteristics of employees can account for variance in their job performance rate.This study compares the job performance rate and job characteristics of construction professionals in indigenous and expatriate construction companies with a view to establish a relationship between job performance and job characteristics of construction professionals. A total of 762 questionnaires were collected and used for the study.  Eighty one (81 construction companies, 50 (62% indigenous and 31 (38% expatriate were selected using stratified random sampling technique. Data collected were analysed using mean item score, spearman rank correlation, linear regression analysis where appropriate. Findings of the study revealed that the relationship between job characteristics and job performance of construction professionals in construction companies in Nigeria is positive but low and the correlation coefficient is higher in expatriate construction companies. Based on the above finding, the study recommends that construction companies in Nigeria should endeavour and improve on their current core job dimensions (task significance, skill variety, task identity, autonomy and feedback inherent in various jobs designed within their respective organizations as this will constitute as one of the variants that will improve the job performance rate of construction professionals.

  16. Thermodynamic performance analysis of a novel electricity-heating cogeneration system (EHCS) based on absorption heat pump applied in the coal-fired power plant

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Zhenlin; Zhao, Hongbin

    2015-01-01

    Highlights: • Presented a novel waste heat recovery method for Combined Heat and Power system. • Established models of the integrated system based on energy and exergy analysis. • Adopted both design and actual data ensuring the reliability of analysis results. - Abstract: A novel electricity-heating cogeneration system (EHCS) which is equipped with an absorption heat pump (AHP) system to recover waste heat from exhaust steam of the steam turbines in coal-fired thermal power plants is proposed to reduce heating energy consumption and improve the utilization of the fossil fuels in existing CHP (Combined Heat and Power) systems. According to the first and second thermodynamic law, the changes of the performance evaluation indicators are analyzed, and exergy analyses for key components of the system are carried out as well as changes of exergy indexes focusing on 135 MW direct air cooling units before and after modification. Compared with the conventional heating system, the output power increases by about 3.58 MW, gross coal consumption rate and total exergy loss respectively reduces by 11.50 g/kW h and 4.649 MW, while the total thermal and exergy efficiency increases by 1.26% and 1.45% in the EHCS when the heating load is 99,918 kJ at 75% THA condition. Meanwhile, the decrement of total exergy loss and increment of total exergy efficiency increase with the increasing of the heating load. The scheme cannot only bring great economic benefits but also save fossil resources, which has a promising market application potential.

  17. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  18. Parametric study of geohydrologic performance characteristics for nuclear-waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1981-01-01

    Purpose of this study was to present geohydrologic information in graphical form covering a wide range of parameters to aid in determining site specifications based on functional criteria. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater were developed. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere

  19. Virtual street-crossing performance in persons with multiple sclerosis: Feasibility and task performance characteristics.

    Science.gov (United States)

    Stratton, M E; Pilutti, L A; Crowell, J A; Kaczmarski, H; Motl, R W

    2017-01-02

    Multiple sclerosis (MS) is a neurological disease that commonly results in physical and cognitive dysfunction. Accordingly, MS might impact the ability to safely cross the street. The purpose of this study was to examine the feasibility of a simulated street-crossing task in persons with MS and to determine differences in street-crossing performance between persons with MS and non-MS controls. 26 participants with MS (median Expanded Disability Status Scale [EDSS] score = 3.5) and 19 controls completed 40 trials of a virtual street-crossing task. There were 2 crossing conditions (i.e., no distraction and phone conversation), and participants performed 20 trials per condition. Participants were instructed that the goal of the task was to cross the street successfully (i.e., without being hit be a vehicle). The primary outcome was task feasibility, assessed as completion and adverse events. Secondary outcomes were measures of street-crossing performance. Overall, the simulated street-crossing task was feasible (i.e., 90% completion, no adverse events) in participants with MS. Participants with MS waited longer and were less attentive to traffic before entering the street compared with controls (all P .05). A virtual street-crossing task is feasible for studying street-crossing behavior in persons with mild MS and most individuals with moderate MS. Virtual street-crossing performance is impaired in persons with MS compared to controls; however, persons with MS do not appear to be more vulnerable to a distracting condition. The virtual reality environment presents a safe and useful setting for understanding pedestrian behavior in persons with MS.

  20. The statistical-inference approach to generalized thermodynamics

    International Nuclear Information System (INIS)

    Lavenda, B.H.; Scherer, C.

    1987-01-01

    Limit theorems, such as the central-limit theorem and the weak law of large numbers, are applicable to statistical thermodynamics for sufficiently large sample size of indipendent and identically distributed observations performed on extensive thermodynamic (chance) variables. The estimation of the intensive thermodynamic quantities is a problem in parametric statistical estimation. The normal approximation to the Gibbs' distribution is justified by the analysis of large deviations. Statistical thermodynamics is generalized to include the statistical estimation of variance as well as mean values

  1. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  2. Anthropometric, physiological and performance characteristics of elite team-handball players.

    Science.gov (United States)

    Chaouachi, Anis; Brughelli, Matt; Levin, Gregory; Boudhina, Nahla Ben Brahim; Cronin, John; Chamari, Karim

    2009-01-15

    The objective of this study was to provide anthropometric, physiological, and performance characteristics of an elite international handball team. Twenty-one elite handball players were tested and categorized according to their playing positions (goalkeepers, backs, pivots, and wings). Testing consisted of anthropometric and physiological measures of height, body mass, percentage body fat and endurance (VO(2max)), performance measures of speed (5, 10, and 30 m), strength (bench press and squat), unilateral and bilateral horizontal jumping ability, and a 5-jump horizontal test. Significant differences were found between player positions for some anthropometric characteristics (height and percentage body fat) but not for the physiological or performance characteristics. Strong correlations were noted between single leg horizontal jumping distances with 5-, 10-, and 30-m sprint times (r = 0.51-0.80; P team-handball players appear to be very similar. Single leg horizontal jumping distance could be a specific standardized test for predicting sprinting ability in elite handball players.

  3. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Directory of Open Access Journals (Sweden)

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  4. Governance and performance: the performance of Dutch hospitals explained by governance characteristics.

    Science.gov (United States)

    Blank, Jos L T; van Hulst, Bart Laurents

    2011-10-01

    This paper describes the efficiency of Dutch hospitals using the Data Envelopment Analysis (DEA) method with bootstrapping. In particular, the analysis focuses on accounting for cost inefficiency measures on the part of hospital corporate governance. We use bootstrap techniques, as introduced by Simar and Wilson (J. Econom. 136(1):31-64, 2007), in order to obtain more efficient estimates of the effects of governance on the efficiency. The results show that part of the cost efficiency can be explained with governance. In particular we find that a higher remuneration of the board as well as a higher remuneration of the supervisory board does not implicate better performance.

  5. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Liao, Tianjun; Lin, Jian

    2015-01-01

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  6. Preventive Care Quality of Medicare Accountable Care Organizations: Associations of Organizational Characteristics With Performance.

    Science.gov (United States)

    Albright, Benjamin B; Lewis, Valerie A; Ross, Joseph S; Colla, Carrie H

    2016-03-01

    Accountable Care Organizations (ACOs) are a delivery and payment model aiming to coordinate care, control costs, and improve quality. Medicare ACOs are responsible for 8 measures of preventive care quality. To create composite measures of preventive care quality and examine associations of ACO characteristics with performance. This is a cross-sectional study of Medicare Shared Savings Program and Pioneer participants. We linked quality performance to descriptive data from the National Survey of ACOs. We created composite measures using exploratory factor analysis, and used regression to assess associations with organizational characteristics. Of 252 eligible ACOs, 246 reported on preventive care quality, 177 of which completed the survey (response rate=72%). In their first year, ACOs lagged behind PPO performance on the majority of comparable measures. We identified 2 underlying factors among 8 measures and created composites for each: disease prevention, driven by vaccines and cancer screenings, and wellness screening, driven by annual health screenings. Participation in the Advanced Payment Model, having fewer specialists, and having more Medicare ACO beneficiaries per primary care provider were associated with significantly better performance on both composites. Better performance on disease prevention was also associated with inclusion of a hospital, greater electronic health record capabilities, a larger primary care workforce, and fewer minority beneficiaries. ACO preventive care quality performance is related to provider composition and benefitted by upfront investment. Vaccine and cancer screening quality performance is more dependent on organizational structure and characteristics than performance on annual wellness screenings, likely due to greater complexity in eligibility determination and service administration.

  7. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  8. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  9. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  10. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    Science.gov (United States)

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  11. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    Science.gov (United States)

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  13. Managerial Characteristics and its Impact on Organizational Performance: Evidence from Syria

    Directory of Open Access Journals (Sweden)

    Elias Milana

    2015-06-01

    Full Text Available This study aims to explore impact of managerial human capital in performance of a Syrian public organization, Directorate of Finance of province of Damascus, through use some of managerial characteristics are age, level of education, tenure and functional track. This study applied on a sample of 12 managers and 138 employees. The study reveals that there are no significant effect of age, level of education and functional track in performance of Directorate of Finance of province of Damascus, while there is a positive, strong and significant effect of tenure manager in organizational performance, which indicates that managerial characteristics almost irrelevant with performance of Directorate of Finance of the province of Damascus, and the public sector in general. Such results appear a need for efforts are invested in the formulation and implementation of human resource procedures and policies which can bring about effective change in behaviours and roles of the public managers and employees.

  14. Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives

    Directory of Open Access Journals (Sweden)

    Shaowen Du

    2015-01-01

    Full Text Available Three types of chemical additives were used to modify asphalt emulsion recycled mixture. These chemical additives include composite Portland cement (CPC, hydrated lime (HL, and a combination of hydrated lime and ground-granulated blast-furnace slag (GGBF. The influence of different additives on the recycled mixture performance was investigated by volumetric and strength tests, moisture susceptibility test, rutting resistance test, and low temperature bending test. To better understand its performance characteristic, the microstructure images of the recycled mixture were observed by environmental scanning electron microscope (ESEM. Test results demonstrate that the performance improvement of the emulsion recycled mixture depends on the types and content of chemical additives. Several recommendations are presented for the selection of chemical materials. Based on ESEM image analysis, the interface bonding mechanism is proposed to explain the performance characteristic of the recycled mixture with asphalt emulsion and cementitious materials.

  15. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  16. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  17. Thermodynamic Model and Experimental Study of Oil-free Scroll Compressor

    Science.gov (United States)

    Peng, Bin; Zhao, Shengxian; Li, Yaohong

    2017-10-01

    In order to study the performance characteristics of oil-free scroll compressor, this paper is based on the basic equation of circle involute profile, and uses the differential geometry theory to calculate the variation law of pressure with volume. Based on the basic law of thermodynamics, the thermodynamic model of the oil-free scroll compressor is established by considering the heat transfer model and the gas leakage model, considering the mass, energy conservation equation and gas state equation. The change of the mass flow rate of the gas in each chamber is obtained by solving the established model by using the improved Euler method. The experiment results show that with the increase of frequency, the temperature, the displacement and the power show a clear upward trend. The thermodynamic model has some guidance and reference for the development and performance analysis of oil-free scroll compressors.

  18. Characteristics of shift work and their impact on employee performance and wellbeing: a literature review

    OpenAIRE

    Dall'ora, Chiara; Griffiths, P.; Ball, J.; Recio Saucedo, A.

    2016-01-01

    BACKGROUND: Shift work is recognised as a component of work organisation that may affect the balance between employee’s efficiency, effectiveness and wellbeing. Shift work is frequent in healthcare and for nurses in particular, as they typically comprise a large proportion of the workforce in healthcare AIM: To identify the characteristics of shift work that have an effect on employee’s performance (including job performance, productivity, safety, quality of care delivered, errors, adverse ev...

  19. Performance characteristics of broilers fed graded levels of Moringa oleifera leaf meal

    OpenAIRE

    Ayo-Ajasa, O.Y.; Abiona, J.A.; Fafiolu, A.O.; Egbeyale, L.T.; Njoku1, C.P.; Omotayo1, I.G.; Odeyemi1, A.Y.; Abel, F.A.S.

    2016-01-01

    Cost of conventional protein sources is on the increase recently; hence, there is the need for cheaper alternative sources that will not compromise the performance characteristics of broiler birds taking into consideration the cost of production. Moringa leaf meal has been reported to increase the performance of broiler birds due to its rich protein content. Two hundred day-old broiler chicks were used to assess the effects of partial replacement of soya bean meal with Moringa (Moringa oleife...

  20. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  1. Thermodynamic and Calorimetric Study of Acetylsalicylic Acid (Aspirin and Ibuprofen

    Directory of Open Access Journals (Sweden)

    Juan Carlos Moreno-Piraján

    2011-01-01

    Full Text Available Enthalpies of solution and dilution of aqueous solutions of sodium acetylsalicylic acid salt and ibuprofen salt were measured with an isoperibolic calorimeter at 293.15 K, 298.15 K, 303.15 K, 308.15 K and 318.15 K. The concentration of the electrolyte was restricted to the solubility of the salt at various temperatures and did not exceed 0.035–0.057 mol kg-1, depending on the temperature studied. The Virial coefficients were derived from Pitzer's model and the excess thermodynamic functions of both the solution and the components of the solution were calculated. An analysis of the thermodynamic characteristics of the solution in terms of concentration and temperature interval was carried out and discussed. Additionally, an analysis was performed by differential scanning calorimetry (DSC.

  2. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  3. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  4. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting

    Science.gov (United States)

    Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui

    2017-03-01

    A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.

  5. Performance Characteristics of Long-Track Speed Skaters : A Literature Review

    NARCIS (Netherlands)

    Konings, Marco J.; Elferink-Gemser, Marije T.; Stoter, Inge K.; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J.

    Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating

  6. Effects of sweeteners on individual feed intake characteristics and performance in group-housed weanling pigs

    NARCIS (Netherlands)

    Sterk, A.R.; Schlegel, P.; Mul, A.J.; Ubbink-Blanksma, M.; Bruininx, E.M.A.M.

    2008-01-01

    To assess the effects of 2 high intensity sodium saccharine based sweeteners on individual feed intake characteristics and performance of group-housed weaned pigs, 198 26-d-old weanling pigs were given ad libitum access to 3 dietary treatments: containing no additional sweetener (Control), 150 mg

  7. Using Differential Item Functioning Procedures to Explore Sources of Item Difficulty and Group Performance Characteristics.

    Science.gov (United States)

    Scheuneman, Janice Dowd; Gerritz, Kalle

    1990-01-01

    Differential item functioning (DIF) methodology for revealing sources of item difficulty and performance characteristics of different groups was explored. A total of 150 Scholastic Aptitude Test items and 132 Graduate Record Examination general test items were analyzed. DIF was evaluated for males and females and Blacks and Whites. (SLD)

  8. Epilepsy in the School Aged Child: Cognitive-Behavioral Characteristics and Effects on Academic Performance.

    Science.gov (United States)

    Black, Kathryn C.; Hynd, George W.

    1995-01-01

    Children with epilepsy frequently display cognitive sequelae that are overlooked or misunderstood by educational personnel, yet may adversely impact academic performance. Reviews common cognitive-behavioral characteristics of children with epilepsy, typical effects of anticonvulsant medications, and various periictal phenomena and their relative…

  9. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)

    2017-01-10

    Jan 10, 2017 ... Performance characteristics of an excimer laser (XeCl) with single-stage magnetic ... the stress can increase the lifetime of the switches and ..... work. References. [1] Ying-Tung Chen, Kris Naessens, Roel Bates, Yunn-Shiuan.

  10. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Vysokomorny Vladimir S.

    2016-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  11. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Olga V. Vysokomornaya

    2015-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analysis of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  12. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  13. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  14. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    Science.gov (United States)

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Reader characteristics linked to detection of pulmonary nodules on radiographs: ROC vs. JAFROC analyses of performance

    Science.gov (United States)

    Kohli, Akshay; Robinson, John W.; Ryan, John; McEntee, Mark F.; Brennan, Patrick C.

    2011-03-01

    The purpose of this study is to explore whether reader characteristics are linked to heightened levels of diagnostic performance in chest radiology using receiver operating characteristic (ROC) and jackknife free response ROC (JAFROC) methodologies. A set of 40 postero-anterior chest radiographs was developed, of which 20 were abnormal containing one or more simulated nodules, of varying subtlety. Images were independently reviewed by 12 boardcertified radiologists including six chest specialists. The observer performance was measured in terms of ROC and JAFROC scores. For the ROC analysis, readers were asked to rate their degree of suspicion for the presence of nodules by using a confidence rating scale (1-6). JAFROC analysis required the readers to locate and rate as many suspicious areas as they wished using the same scale and resultant data were used to generate Az and FOM scores for ROC and JAFROC analyses respectively. Using Pearson methods, scores of performance were correlated with 7 reader characteristics recorded using a questionnaire. JAFROC analysis showed that improved reader performance was significantly (pchest specialty (pchest radiographs (pchest readings per year (pchest radiographs (pchest specialty, hours reading per week and number of radiographs read per year. Also, JAFROC is a more powerful predictor of performance as compared to ROC.

  16. Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family.

    Science.gov (United States)

    Mottonen, James M; Xu, Minli; Jacobs, Donald J; Livesay, Dennis R

    2009-05-15

    We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities

  17. Performance characteristics of a Vertical Axis Wind Turbine (VAWT) under transient conditions

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh

    2011-01-01

    The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine (VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance output from the turbine has been obtained using a torque transducer unit which provides...

  18. Performance characteristics of digital vs film screen mammography in community practice.

    Science.gov (United States)

    Dabbous, Firas; Dolecek, Therese A; Friedewald, Sarah M; Tossas-Milligan, Katherine Y; Macarol, Tere; Summerfelt, Wm Thomas; Rauscher, Garth H

    2018-05-01

    We compared the performance characteristics of 297 629 full field digital (FFDM) and 416 791 screen film mammograms (SFM). Sensitivity increased with age, decreased with breast density, and was lower for more aggressive and lobular tumors. While sensitivity did not differ significantly by modality, specificity was generally 1%-2% points higher for FFDM than for SFM across age and breast density categories. The lower recall rate for FFDM vs SFM in our study may partially explain performance differences by modality. In this large health care organization, modest gains in performance were achieved with the introduction of FFDM as a replacement for SFM. © 2017 Wiley Periodicals, Inc.

  19. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  20. Microcystin Detection Characteristics of Fluorescence Immunochromatography and High Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Park, Geun Young; Choi, Jong Chon; Oh, Chang Suk

    2005-01-01

    Different detection characteristics of fluorescence immunochromatography method and high performance liquid chromatography (HPLC) method for the analysis of cyanobacterial toxins were studied. In particular, low and high limits of detection, detection time and reproducibility and detectable microcystin species were compared when fluorescence immunochromatography method and high performance liquid chromatography method were applied for the detection of microcystin (MC), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa. A Fluorescence immunochromatography assay system has the unique advantages of short detection time and low detection limit, and high performance liquid chromatography detection method has the strong advantage of individual quantifications of several species of microcystins

  1. Performance characteristics of long-track speed skaters: a literature review.

    Science.gov (United States)

    Konings, Marco J; Elferink-Gemser, Marije T; Stoter, Inge K; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J

    2015-04-01

    Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating performance. A total of 49 studies were included. Based on a multidimensional performance model, person-related performance characteristics were categorized in anthropometrical, technical, physiological, tactical, and psychological characteristics. Literature was found on anthropometry, technique, physiology, and tactics. However, psychological studies were clearly under-represented. In particular, the role of self-regulation might deserve more attention to further understand mechanisms relevant for optimal performance and for instance pacing. Another remarkable finding was that the technically/biomechanically favourable crouched skating technique (i.e. small knee and trunk angle) leads to a physiological disadvantage: a smaller knee angle may increase the deoxygenation of the working muscles. This is an important underlying aspect for the pacing tactics in speed skating. Elite speed skaters need to find the optimal balance between obtaining a fast start and preventing negative technical adaptations later on in the race by distributing their available energy over the race in an optimal way. More research is required to gain more insight into how this impacts on the processes of fatigue and coordination during speed skating races. This can lead to a better understanding on how elite speed skaters can maintain the optimal technical characteristics throughout the entire race, and how they can adapt their pacing to optimize all identified aspects that determine performance.

  2. Performance characteristics of plane-wall venturi-like reverse flow diverters

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems

  3. The effect of management team characteristics on performance and style extremity of mutual fund portfolios

    Directory of Open Access Journals (Sweden)

    Liu Qiong

    2014-01-01

    Full Text Available Purpose: Along with mutual funds’ scale and quantity expanding for our country, it is common for fund management companies hiring new managers or the original fund managers mobilizing from one to another. The high liquidity of fund managers makes different managers regroup to manage the funds that belong to the same fund management company in each fund year. The characteristics of these different management team will influence the fund performance, and also affect the earnings of the fund management company and portfolio investors. The purpose of this paper is as follows. First, evaluating the effect of management team characteristics on portfolio characteristics: risk, performance, and extremity. Second, testing the hypothesis that the ranking of mid-year performance have effect on investment style extremity and research what relationship exists between this phenomenon and management team characteristics in depth.Design/methodology/approach: On the analysis of the relationships between the management team characteristics and portfolio characteristics, a series of OLS regressions is run where the time series regression model (the factor model and cross-sectional regression are included based on using the STATA, EVIEWS and MATLAB. The validity and practicability of the model will be verified in the paper. All of the above are aimed at achieving portfolio optimization and realizing the maximization of the interests of fund management companies and investors.Findings: The main findings are as follows. Teams with more doctors or MBA (CPA and CFA hold more risky portfolios, while teams with long team tenure hold less. More members and large gender diversity have negative effect on performance, and the opposite is age diversity. Teams with more members and long tenure tend to hold less extreme style decisions, but age diversity is related to more. Besides, tournament hypothesis does exist in China investment funds industry especially when the

  4. The influence of tyre characteristics on measures of rolling performance during cross-country mountain biking.

    Science.gov (United States)

    Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R

    2015-01-01

    This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.

  5. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  6. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  7. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  8. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  9. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  10. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  11. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  12. How Do Board Characteristics Influence Business Performance? Evidence from Non-life Insurance Firms in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Maxwell Sandada

    2015-08-01

    Full Text Available The purpose of this study was to contribute to the corporate governance literature by establishing the relationship between board characteristics and corporate performance within the nonlife insurance firms in Zimbabwe. The study sought to provide some insights on corporate governance since the phenomenon is relatively an emerging discipline in Zimbabwe. The paper sought to complement other corporate governance studies that were conducted in other environments by producing evidence on the phenomenon from a developing country context. A quantitative research approach was adopted and respondents were selected through a stratified random sampling. The results of the study confirm that board characteristics (board composition, diversity, and size exhibit a statistically significant positive predictive relationship with the performance of non-life insurance firms measured by gross premium written and customer retention. However, CEO/Chairman duality showed a negative relationship with business performance. Non-life insurance companies need to be cognizant of board characteristics in order to improve their performance. Moreover , the findings in this research has practical relevance for the selection process of directors as it highlights the importance of having a sizeable number of board members as well as an appropriate mix of competences and qualifications on the board. Although corporate governance is has been extensively researched, there is limited study in this area from a developing country like Zimbabwe with relatively less developed capital markets. It would be wrong to assume that the findings found in other countries can apply here because the conditions are different.

  13. Relationship of nurses' intrapersonal characteristics with work performance and caring behaviors: A cross-sectional study.

    Science.gov (United States)

    Geyer, Nelouise-Marié; Coetzee, Siedine K; Ellis, Suria M; Uys, Leana R

    2018-02-28

    This study aimed to describe intrapersonal characteristics (professional values, personality, empathy, and job involvement), work performance as perceived by nurses, and caring behaviors as perceived by patients, and to examine the relationships among these variables. A cross-sectional design was employed. A sample was recruited of 218 nurses and 116 patients in four private hospitals and four public hospitals. Data were collected using self-report measures. Data analysis included descriptive statistics, exploratory and confirmatory factor analyses, hierarchical linear modelling, correlations, and structural equation modeling. Nurses perceived their work performance to be of high quality. Among the intrapersonal characteristics, nurses had high scores for professional values, and moderately high scores for personality, empathy and job involvement. Patients perceived nurses' caring behaviors as moderately high. Professional values of nurses were the only selected intrapersonal characteristic with a statistically significant positive relationship, of practical importance, with work performance as perceived by nurses and with caring behaviors as perceived by patients at ward level. Managers can enhance nurses' work performance and caring behaviors through provision of in-service training that focuses on development of professional values. © 2018 John Wiley & Sons Australia, Ltd.

  14. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bhatnagar, Nitu; Sangeeta, Jha; Bhowmik, Shantanu; Gupta, Govind; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric p ressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surface energy, resulting in improving the adhesion characteristics of the PEEK/Epoxy adhesive system. Also, the roughness of the treated surfaces is largely increased as confirmed by AFM observation. These results can be explained by the fact that the atmospheric pressure plasma treatment of PEEK surface yields several oxygen functionalities on hydrophobic surface, which play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the PEEK/Epoxy adhesive system. (authors)

  15. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  16. Simulated pressure denaturation thermodynamics of ubiquitin.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transformational leadership and safety performance among nurses: the mediating role of knowledge-related job characteristics.

    Science.gov (United States)

    Lievens, Ilse; Vlerick, Peter

    2014-03-01

    To report the impact of transformational leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge-related job characteristics in this relationship. Safety performance refers to the behaviours that employees exhibit to adhere to safety guidelines and to promote health and safety at their workplace. Nurses' safety performance is a major challenge for healthcare settings, urging the need to identify the key determinants and psychological mechanisms that influence it. A cross-sectional survey study. The study was carried out in September 2010 in a large Belgian hospital. We used self-administered questionnaires; 152 nurses participated. The hypotheses were tested using hierarchical regression analyses. In line with our first hypothesis, the results show that transformational leadership exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis. Head nurses' transformational leadership can enhance nurses' compliance with and participation in safety. Furthermore, transformational head nurses are able to influence the perception that their nurses have about the kind and amount of knowledge in their job, which can also lead to increases in both dimensions of nurses' safety performance. This study therefore demonstrates the key impact that transformational head nurses have, both directly and indirectly, on the safety performance of their nurses. © 2013 John Wiley & Sons Ltd.

  18. The performance characteristics of the Philips Gemini PET/CT scanner

    International Nuclear Information System (INIS)

    O'Keefe, G.J.; Papenfuss, A.T.; Scott, A.M.; Rowe, C.C.

    2002-01-01

    Full text: The Department of Nuclear Medicine, Centre for PET at the ARMC is commissioning a next generation PET/CT scanner based on gadolinium silicic dioxide (GSO) crystal technology to replace the BGO crystal PET scanner that has been in operation since 1992. The Gemini PET/CT scanner is a fully 3D PET system which offers significantly increased resolution and sensitivity allowing wholebody scans in under 30 minutes. Until the late 90's, PET scanners were largely used with septa for neurological imaging and the performance characteristics of PET scanners were presented according to the NEMA-NU2-94 standard which specifically addresses the performance of PET scanners for neurological applications. PET is now largely used without septa for oncological imaging and as such, the NEMA-NU2-94 standard does not adequately reflect performance. The NEMA-NU2-2001 standard was designed to incorporate the effects of out-of-FOV activity and its contribution to performance by virtue of the increased scatter and randoms that result when performing wholebody scans without the use of septa. As part of the acceptance program of the Allegro/Gemini systems, the NEMA-NU2-2001 standard will be used to characterise the spatial resolution, sensitivity, randoms and scatter contributions and the Noise Equivalent Count rate (NECr). These results will be presented and compared with the ECAT 951/31R performance characteristics. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Effects of Selected Corporate Governance Characteristics on Firm Performance: Empirical Evidence from Kenya

    Directory of Open Access Journals (Sweden)

    Vincent Okoth Ongore

    2011-01-01

    Full Text Available This paper examines the interrelations among ownership, board and manager characteristics and firm performance in a sample of 54 firms listed at the Nairobi Stock Exchange (NSE. These governance characteristics, designed to minimize agency problems between principals and agents are operationalized in terms of ownership concentration, ownership identity, board effectiveness and managerial discretion. The typical ownership identities at the NSE are government, foreign, institutional, manager and diverse ownership forms. Firm performance is measured using Return on Assets (ROA, Return on Equity (ROE and Dividend Yield (DY. Using PPMC, Logistic Regression and Stepwise Regression, the paper presents evidence of significant positive relationship between foreign, insider, institutional and diverse ownership forms, and firm performance. However, the relationship between ownership concentration and government, and firm performance was significantly negative. The role of boards was found to be of very little value, mainly due to lack of adherence to board member selection criteria. The results also show significant positive relationship between managerial discretion and performance. Collectively, these results are consistent with pertinent literature with regard to the implications of government, foreign, manager (insider and institutional ownership forms, but significantly differ concerning the effects of ownership concentration and diverse ownership on firm performance.

  20. SELECTION OF ENDOCRINOLOGY SUBSPECIALTY TRAINEES: WHICH APPLICANT CHARACTERISTICS ARE ASSOCIATED WITH PERFORMANCE DURING FELLOWSHIP TRAINING?

    Science.gov (United States)

    Natt, Neena; Chang, Alice Y; Berbari, Elie F; Kennel, Kurt A; Kearns, Ann E

    2016-01-01

    To determine which residency characteristics are associated with performance during endocrinology fellowship training as measured by competency-based faculty evaluation scores and faculty global ratings of trainee performance. We performed a retrospective review of interview applications from endocrinology fellows who graduated from a single academic institution between 2006 and 2013. Performance measures included competency-based faculty evaluation scores and faculty global ratings. The association between applicant characteristics and measures of performance during fellowship was examined by linear regression. The presence of a laudatory comparative statement in the residency program director's letter of recommendation (LoR) or experience as a chief resident was significantly associated with competency-based faculty evaluation scores (β = 0.22, P = .001; and β = 0.24, P = .009, respectively) and faculty global ratings (β = 0.85, P = .006; and β = 0.96, P = .015, respectively). The presence of a laudatory comparative statement in the residency program director's LoR or experience as a chief resident were significantly associated with overall performance during subspecialty fellowship training. Future studies are needed in other cohorts to determine the broader implications of these findings in the application and selection process.

  1. Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.

    Science.gov (United States)

    Pion, J; Lenoir, M; Vandorpe, B; Segers, V

    2015-11-01

    This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  3. Evaluation of the performance characteristic for mammography by using edge device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Jwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, The Soonchunhyang University, Asan (Korea, Republic of); Lee, Eul Kyu [Dept. of Radiology, Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, The Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluation of the performance characteristic for mammography by using edge device that mammography equipment improves essential in the correct diagnosis for the maintenance. We measured the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using the 61267 RQA-M2 based on commission standard international electro-technical commission (IEC). As a results, spatial resolution of dimensions tomo and lorad selenia mammography were maintained at 10 mm-1 and NPS and DQE including the low nyquist frequency indicated to 6.0 mm-1. Therefore, regularly QA of mammography system should be necessary. This study can be contribute to evaluate QA for performance characteristic of mammography of DDR system.

  4. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  5. The impact of ownership and other corporate characteristics on performance of V4 companies

    Directory of Open Access Journals (Sweden)

    David Procházka

    2017-06-01

    Full Text Available The objective of this paper is to assess financial performance of Czech, Hungarian, Polish, and Slovak unlisted companies. The sample retrieved from the Amadeus database contains 171,095 firm-year observations for the period of 2010-2014. A linear regression model (weighted least squares with robust correction for standard errors is run to regress Return on Assets (ROA as the dependent variable against selected entity-specific factors, including ownership characteristics. Empirical evidence uncovers several findings. Firstly, the performance of V4 companies is comparable except for Hungary, where companies report lower ROA on average. Secondly, firms established after the failure of communist regimes outperform the privatised companies. Thirdly, the ownership characteristics do matter. Having domestic owners is not a disadvantage, as only the companies with controlling shareholders from the Anglo-Saxon countries perform better. Other jurisdictions of parents lead either to comparable (e.g., old EU members, developed Asian countries or even worse (e.g., new EU members, post-Soviet bloc performance as compared to domestic ownership. Similarly, family firms perform significantly better than the companies controlled by institutional owners or by public sector, but worse than the firms controlled by financial institutions. The listing status of a parent is not an influential factor of performance. Fourthly, the size of a company also matters, as small enterprises report better performance in their financial statements than medium and large undertakings. Fifthly, higher leverage undermines performance. Finally, there is a wide dispersion in average performance across the industries. The study results might be relevant for policy makers while choosing between direct and indirect support for diverse types of businesses.

  6. Physical Characteristics and Performance of Japanese Top-Level American Football Players.

    Science.gov (United States)

    Yamashita, Daichi; Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke

    2017-09-01

    Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455-2461, 2017-This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance.

  7. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  8. Co-crystallization: An approach to improve the performance characteristics of active pharmaceutical ingredients

    OpenAIRE

    Jignasa Ketan Savjani

    2015-01-01

    Co-crystal chemistry has recently attracted supramolecular scientists. Co-crystals are comprising of hydrogen boding assembly between different molecules. Many issues related to performance characteristics of an active pharmaceutical ingredient (API) can be resolved using co-crystallization approach. Proper understanding of crystal structure of an API is required for successful formation of co-crystals with the selected co-former. This review article focus on explanation about co-crystals, in...

  9. Board of Directors, Audit Committee Characteristics and the Performance of Saudi Arabia Listed Companies

    OpenAIRE

    Al-Matari, Yahya Ali; Al-Swidi, Abdullah Kaid; Fadzil, Faudziah Hanim Bt Hanim; Al-Matari, Ebrahim Mohammed

    2012-01-01

    This study examines the relationship between the internal corporate governance mechanism related to the board of directors, the audit committee characteristics and the performance of the Saudi companies listed in the Saudi stock exchange (TADAWL) in 2010, excluding financial companies. The statistical results of the study are not in line with the agency theory that board of directors and audit committee might mitigate agency problems leading to reduced agency cost by aligning the interests of...

  10. Board of Directors, Audit Committee Characteristics and Performance of Saudi Arabia Listed Companies

    OpenAIRE

    Yahya Ali Al-Matari; Abdullah Kaid Al-Swidi; Faudziah Hanim Bt Fadzil; Ebrahim Mohammed Al-Matari

    2012-01-01

    This study examines the relationship between the internal corporate governance mechanism related to the board of directors, the audit committee characteristics and the performance of the Saudi companies listed in the Saudi stock exchange (TADAWL) in 2010, excluding financial companies. The statistical results of the study are not in line with the agency theory that board of directors and audit committee might mitigate agency problems leading to reduced agency cost by aligning the interests of...

  11. Performance Characteristics and Prediction of Bodyweight using Linear Body Measurements in Four Strains of Broiler Chicken

    OpenAIRE

    I. Udeh; J.O. Isikwenu and G. Ukughere

    2011-01-01

    The objectives of this study were to compare the performance characteristics of four strains of broiler chicken from 2 to 8 weeks of age and predict body weight of the broilers using linear body measurements. The four strains of broiler chicken used were Anak, Arbor Acre, Ross and Marshall. The parameters recorded were bodyweight, weight gain, total feed intake, feed conversion ratio, mortality and some linear body measurements (body length, body width, breast width, drumstick length, shank l...

  12. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  13. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  14. Usage of performance measurement and evaluation systems : the impact of evaluator characteristics

    OpenAIRE

    Gelderman, Maarten

    1998-01-01

    This paper discusses the relation between characteristics of the evaluating manager and the way performance measurement and evaluation information is used. First a discussion is provided about the dependent variable. It is recognized that categorization into archetypes (e.g., evaluative styles) is unsatisfactory. Instead the information content/emphasis dimensions financial-non- financial, quantitative-qualitative, process-outcome, past-future and external-internal, along with the dimension f...

  15. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  16. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    FUJII, Terushige; OHTA, Jun-ichi; AKAGAWA, Koji; NAKAMURA, Toshi; ASANO, Hitoshi

    1992-01-01

    From the viewpoint of energy conservation and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. Among energy conversion device,there is a radial outflow reaction turbine,i.e.,Hero's turbine. Performance characteristics of Hero's turbine are analytically and experimentally clarified for flashing expansion of initially subcooled hot water. It is found that: (a)there is an optimum number of revolutions at which maximum tubine e...

  17. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  18. INFLUENCE OF POLYMERIC-DISPERSED REINFORCEMENT ADDITIVES ON THE PERFORMANCE CHARACTERISTICS OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    Chernov Sergey Anatolevych

    2017-07-01

    Full Text Available The technique and results of the studies of the influence of a polymeric-dispersed reinforcement additive on the performance characteristics of road hot asphalt concrete, namely, its resistance to fatigue failures, rutting and development of residual deformation are described. It is shown that the proposed method of modification of asphalt-concrete mixtures ensures an increase in the durability of layers of pavement road surface.

  19. Micro-gas turbine performance optimization by off-design characteristics prediction

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.B.; Pahlevanzadeh, H. [Power and Water University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Micro-gas turbines are increasingly seen as a good option for supplying distributed electric or combined heat and power (CHP) systems. Micro turbines operate on the same thermodynamic cycle as the Brayton cycle. Fresh air enters a compressor and air pressure increases isentropically and high-pressure air and fuel are mixed and burnt in the combustion chamber at constant pressure. During this process the flue gas expands to lower pressure and increase volume isentropically. In this study a model was developed using parameters obtained from the compressor and turbine. Ambient temperature and and pressure effects on micro-gas turbines were examined. Customer requirements were used as constraints on micro-gas turbine parameters. The computer software Matlab was used to study the effect of the surge margin on the behaviour of the engine. Optimum performance speeds were presented, and a marginal envelope was obtained at the optimal speed. Issues concerning fuel consumption, power output, and efficiency were considered. The principal results of the simulation presented an optimum region of operation rather than any single optimal point. It was suggested that further research is needed to study the influence of the heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation. It was noted that although operation of microturbines at high speeds of revolution causes more net power output, this affects the thermal efficiency of the system and fuel consumption is high. It was concluded that optimum operating conditions should be evaluated by satisfying the trade off between net power generated and fuel consumption, as well as the achievable efficiency. 8 refs., 12 figs.

  20. Performance characteristics of a magnetic Ericsson refrigeration cycle using GdxDy1−x as the working substance

    International Nuclear Information System (INIS)

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2014-01-01

    Based on the experimental isothermal entropy change of the magnetic materials Gd x Dy 1−x , the thermodynamic performance of a regeneration Ericsson refrigeration cycle is evaluated and analyzed. The effects of non-perfect regeneration on the cyclic performance are highlighted. For a room temperature hot reservoir, the cooling quantity, non-perfect regeneration heat quantity, and net cooling quantity of the established regeneration Ericsson refrigeration cycle are calculated as a function of the cold reservoir temperature. Furthermore, for several typical compositions x of the Gd x Dy 1−x alloys, the values of the cooling quantity, non-perfect regeneration heat quantity, work input, net cooling quantity, and coefficient of performance (COP) are listed for given temperatures of the cold reservoir. The cyclic performance of the Gd x Dy 1−x alloys with different composition x is compared and some significant analyses are provided. - Highlights: • We examine the thermodynamics properties of the magnetocaloric alloys Gd x Dy 1−x . • We model a magnetic Ericsson cycle with regeneration process. • Calculations are based on experimental isothermal entropies change. • A cold reservoir temperature limit was found depending on ‘x’ composition value and operating conditions. • Lowest ‘x’ composition values have larger COP but lower net cooling quantities

  1. Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2008-01-01

    Full Text Available Vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity. This is called thermodynamic/thermal effect of cavitation and leads to the good suction performance of cryogenic turbopumps. We have already established the simple analysis of partially cavitating flow with the thermodynamic effect, where the latent heat extraction and the heat transfer between the cavity and the ambient fluid are taken into account. In the present study, we carry out the analysis for cavitating inducer and compare it with the experimental data available from literatures using Freon R-114 and liquid nitrogen. It is found that the present analysis can simulate fairly well the thermodynamic effect of cavitation and some modification of the analysis considering the real fluid properties, that is, saturation characteristic, is favorable for more qualitative agreement.

  2. Kinanthropometric and performance characteristics of elite and non-elite female softball players.

    Science.gov (United States)

    Singh, S; Singh, M; Rathi, B

    2013-12-01

    The purpose of the present study was to compare the kinanthropometric and performance characteristics of elite and non-elite female softball players. A total forty elite and non-elite level female softball players were selected from the different colleges affiliated to the Guru Nanak Dev University, Amritsar, for the present study. The height of subjects was measured by using the standard anthropometric rod. Weight was measured with portable weighing machine. Widths and diameters of body parts were measured by using digital caliper. Girths and lengths were taken with steel tape. Skinfold thickness measurements were taken using the Slimguide skinfold caliper. All subjects were also assessed for performance tests i.e. vertical jump, 50m sprint, medicine ball throw, 10×4m shuttle run and reaction time. Independent samples t-test reveals that elite female softball players were significantly taller (Psoftball players also had significantly greater biacromial (Psoftball players. The non-elite female softball players were found to have significantly greater thigh circumference (Psoftball players. The non-elite players were also found to have significantly higher percentage body fat (Psoftball players. The elite female softball players had significantly greater kinanthropometric characteristics, body composition and performance characteristics than the non-elite female softball players.

  3. Performance characteristics of axisymmetric venturi-like reverse-flow diverters. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1984-01-01

    This paper presents experimental and model-predicted pressure-flow characteristics of axisymmetric venturi-like reverse-flow diverters (RFDs), the key component of fluid pumping systems utilized for the transport of hazardous fluids. The effects of several key geometric parameters, operating conditions, and fluid properties on the performance of the RFD are presented and compared to model predictions. The results indicate good agreement between data and theory over a large portion of the range of variables studied. Cavitation is observed to be the primary factor in limiting the performance of the RFD at small values of load impedances

  4. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  5. Effects of dimethyl ether on the performance characteristics of a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Seo, Sang Hern; Lee, Chang Sik

    2013-01-01

    Highlights: • Activation loss is significantly reduced in fuel cell with DME-methanol. • DME crossover through the membrane reduces. • The open circuit voltage of DME-methanol the fuel cell increases. • The overall efficiency of the mixed fuel cell is higher than that of DMFC. - Abstract: The objective of this study was to determine the effects of dimethyl ether (DME) on the performance characteristics of a direct methanol fuel cell. Impedance and crossover experiments were performed in order to investigate the performance losses such as ohmic loss, activation loss and crossover loss accurately. The DME was pressurized to 5 bar to supply with liquid phase was and blended with an aqueous methanol solution. In this experiment, the membrane electrode assembly (MEA) was composed of Nafion 115, anode catalyst loaded Pt–Ru and cathode catalyst loaded Pt-Black. Experimental results showed that fuel cells with DME-methanol enhanced performance when compared to fuel cells with methanol only. Such performance enhancement was due to a decrease in activation losses by DME oxidation reactions. As the DME crossover through the membrane was reduced, the open circuit voltage (OCV) of the fuel cell increased. Other output characteristics are also discussed

  6. PERFORMANCE AND CHARACTERISTICS OF MUTUAL FUNDS: EVIDENCE FROM THE PORTUGUESE MARKET

    Directory of Open Access Journals (Sweden)

    Júlio Lobão

    2015-12-01

    Full Text Available In this paper we aim to study the relation between fund performance and fund attributes in the Portuguese market. The sample includes 124 equity funds, bond funds and money market funds that traded in the 2004-2011 period. A comprehensive set of fund-specific characteristics, never used before in conjunction in the literature, was considered. The methodology which was adopted had two distinct phases. Firstly, we compared the returns of each category of funds with the appropriate reference markets. Secondly, the fund performance, measured by the Jensen’s alpha, was used in a multi-factor model with panel data in which the independent variables were the fund attributes. The results show that Portuguese funds were, in general, not able to beat the benchmarks which is consistent with the existence of efficient financial markets. Only the fixed income mutual funds performed well. Moreover, it is possible to conclude that, for each category of mutual funds, their characteristics are useful to the investor in the moment of choosing the best funds. For example, in the case of funds that invest in Portuguese stocks, the best performance occurs among older and larger funds, funds with higher costs, funds with good past performance and funds whose trading activity is low.

  7. Experimental study for flow characteristics and performance evaluation of butterfly valves

    International Nuclear Information System (INIS)

    Kim, C K; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to transport a large of fluid with various fields of industry. Also, these are mainly used a control of fluid flux to the water and waste-water pipeline. Present, butterfly valves are manufacturing for multiplicity shape of bodies and discs with many producers. However, appropriate performance evaluation was not yet accomplished to compare about these valves through experiments. This study is performed the experiment of flow characteristics and performance of manufactured 400A butterfly valves for the water and waste pipeline, and compared experimental results. We performed experiments that were controlled fixed a differential pressure condition (1 psi) and the range of the flow rate conditions (500 m 3 /hr ∼ 2500 m 3 /hr), and also opened the disc of valves to a range of angle from 9 degree to 90 degree. We investigated and compared the valve flow coefficient and the valve loss coefficient of results through experiments with each butterfly valve.

  8. Characteristics of Wet Distillers Grains on Ruminal Fermentation and Its Effects on Performance and Carcass Characteristics of Finishing Hanwoo Steers

    Directory of Open Access Journals (Sweden)

    Gyu Chul Ahn

    2016-04-01

    Full Text Available Two experiments were conducted to determine the nutrient composition, in vitro ruminal ammonia concentrations and pH of wet distillers grains (WDG, produced from tapioca 70% and rice 30% and to evaluate dietary effects of fermented total mixed ration (TMR using WDG on the performance, blood metabolites and carcass characteristics of Hanwoo steers from mid fattening to slaughter. In Exp. I, average dry matter (DM, crude protein, ether extract, crude fiber, ash, neutral detergent fiber, acid detergent fiber, and nitrogen free extract of seven WDG samples from an ethanol plant with different sampling dates were 19.9%, 24.8%, 3.8%, 21.8%, 8.87%, 60.3%, 34.5%, and 40.7% (DM basis, respectively. For in vitro ammonia concentrations and pH, each sample was assigned to 7 incubation times (0, 4, 8, 12, 24, 48, and 72 h. Linear increase was observed between 12 and 48 h for ammonia concentrations, but final ammonia concentrations (72 h were not significantly different among WDG samples and fermentation patterns of WDG samples showed similar tendency. In vitro pH varied among treatments from 0 to 24 h, but were not different statistically after 48 h. In Exp. II, 45 Hanwoo steers of 23 months (641±123 kg from mid fattening period to slaughter (248 days were randomly divided into three groups of 15 pens each (five repetitions/each treatment and assigned to one of three dietary treatments; i Control (TMR, ii WDG 15 (TMR containing 15% of WDG, as fed basis and iii WDG 28 (TMR containing 28% of WDG, as fed basis. The body weight (BW, ADG, and feed conversion ratio (FCR of control and WDG 15 and 28 during 248 days were 760.8, 740.1, and 765.5 kg, and 0.50, 0.50, and 0.52 kg/d, and 18.6, 17.6, and 17.1, respectively. The dry matter intake (DMI (kg/d of control (9.11 was higher (p<0.05 than WDG treatments (WDG 15%, 8.57; 28%, 8.70. Nevertheless, DMI did not affect BW, ADG, and FCR of Hanwoo finishing steers. Blood metabolites were in normal ranges and were not

  9. Physical performance characteristics of high-level female soccer players 12-21 years of age.

    Science.gov (United States)

    Vescovi, J D; Rupf, R; Brown, T D; Marques, M C

    2011-10-01

    Performance assessment has become an invaluable component of monitoring player development and within talent identification programs in soccer, yet limited performance data are available for female soccer players across a wide age range. The aim of this study was to describe the physical performance characteristics of female soccer players ranging in age from 12 to 21 years. High-level female soccer players (n=414) were evaluated on linear sprinting (36.6 m with 9.1 m splits), countermovement jump (CMJ), and two agility tests. Separate one-way ANOVAs were used to compare performance characteristics between (1) each year of chronological age and (2) three age groups: 12-13 years, n=78, 14-17 years, n=223, and 18-21 years, n=113. Mean linear sprint speed over 9.1 m was similar across all chronological ages, however sprint speed over the final 9.1 m, CMJ height and agility scores improved until approximately 15-16 years. Outcomes from the group data indicated better performance on all tests for the 14-17-year-old group compared with the 12-13-year-old group. Additionally, sprint speed on the second and fourth 9.1 m splits and 36.6 m sprint speed as well as performance on the Illinois agility test was better in the 18-21-year-old group compared with the 14-17-year-old group. The findings from this study indicate that marked improvements of high intensity short duration work occur up until 15-16 years. Smaller gains in performance were observed beyond 16 years of age as evidenced by better performance on 36.6 m sprint speed, several sprint splits and the Illinois agility test in the college aged players (i.e., 18-21-year-old group). © 2010 John Wiley & Sons A/S.

  10. Specific smartphone usage and cognitive performance affect gait characteristics during free-living and treadmill walking.

    Science.gov (United States)

    Niederer, Daniel; Bumann, Anke; Mühlhauser, Yvonne; Schmitt, Mareike; Wess, Katja; Engeroff, Tobias; Wilke, Jan; Vogt, Lutz; Banzer, Winfried

    2018-04-06

    Mobile phone tasks like texting, typing, and dialling during walking are known to impact gait characteristics. Beyond that, the effects of performing smartphone-typical actions like researching and taking self-portraits (selfie) on gait have not been investigated yet. We aimed to investigate the effects of smartphone usage on relevant gait characteristics and to reveal potential association of basic cognitive and walking plus smartphone dual-task abilities. Our cross-sectional, cross-over study on physically active, healthy participants was performed on two days, interrupted by a 24-h washout in between. Assessments were: 1) Cognitive testing battery consisting of the trail making test (TMT A and B) and the Stroop test 2) Treadmill walking under five smartphone usage conditions: no use (control condition), reading, dialling, internet searching and taking a selfie in randomized order. Kinematic and kinetic gait characteristics were assessed to estimate conditions influence. In our sample of 36 adults (24.6 ± 1 years, 23 female, 13 male), ANCOVAs followed by post-hoc t-tests revealed that smartphone usage impaired all tested gait characteristics: gait speed (decrease, all conditions): F = 54.7, p smartphone usage was systematically associated with the TMT B time regarding cadence and double stride length for reading (r = -0.37), dialling (r = -0.35) and taking a selfie (r = -0.34). Smartphone usage substantially impacts walking characteristics in most situations. Changes of gait patterns indicate higher cognitive loads and lower awareness. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Thermodynamic and relative approach to compute glass-forming ...

    Indian Academy of Sciences (India)

    models) characteristic: the isobaric heat capacity (Cp) of oxides, and execute a mathematical treatment of oxides thermodynamic data. We note this coefficient as thermodynamical relative glass-forming ability (ThRGFA) and for- mulate a model to compute it. Computed values of 2nd, 3rd, 4th and 5th period metal oxides ...

  12. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  13. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  14. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  15. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  16. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  17. Performance and carcass characteristics of lambs fed on diets supplemented with glycerin from biodiesel production

    Directory of Open Access Journals (Sweden)

    Marco Antonio Bensimon Gomes

    2011-10-01

    Full Text Available This study was carried out to evaluate the influence of diets supplemented with glycerin as an alternative ingredient to corn on the performance and carcass characteristics of Santa Inês confined lambs. The study involved 27 lambs aged 90 days, having an average initial weight of 26.33 ± 0.15 kg. Lambs were randomly distributed into a control group and groups with diets containing 15 and 30% glycerin in the total feed. Diet was formulated with 40% roughage and 60% concentrate. The experimental design was completely randomized, and the production performance and carcass characteristics were analyzed by analysis of variance, and the subjective carcass characteristics, by general linear models. The daily average gain was 0.21, 0.24 and 0.23 kg/day; feeding conversion was 6.39, 5.73 and 5.92 kg of diet/kg BW for control animals, and those fed with 15 or 30% glycerin, respectively, without treatment differences. Lambs were slaughtered, weighing 34 to 36 kg, and average weight of the cold carcass and commercial carcass yield were evaluated. The results were, respectively, 15.97 kg and 49.18%, for control, 15.96 kg and 48.31% for animals fed with 15% glycerin, and 15.79 kg and 47.87% for those treated with 30% glycerin, with no treatment effects. Meat tenderness and cooking loss averages were not affected by diets, with 5.07 kg and 40.45%, 5.10 kg and 40.81%, and 5.27 kg and 39.04%, respectively, for control, and those fed with 15 or 30% glycerin. Therefore, it is possible to conclude that up to 30% of medium purity glycerin in the dry matter of the diet can be used to replace corn, without any negative effect on lamb performance or carcass characteristics.

  18. Class modality, student characteristics, and performance in a community college introductory STEM course

    Science.gov (United States)

    Fogle, Thomas Ty

    Research on introductory STEM course performance has indicated that student characteristics (age, ethnicity and gender) and Grade Point Average (G.P.A.) can be predictive of student performance, and by implication, a correlation among these factors can help determine course design interventions to help certain types of students perform well in introductory STEM courses. The basis of this study was a community college Visual Basic programming course taught in both online and hybrid format. Beginning students in this course represented a diverse population residing in a large, mid-western, city and surrounding communities. Many of these students were defined as "at-Risk" or "non-traditional, which generally means any combination of socio-economic, cultural, family and employment factors that indicate a student is non-traditional. Research has shown these students struggle academically in technologically dense STEM courses, and may require student services and support to achieve their individual performance goals. The overall number in the study range was 392 distance students and 287 blended course students. The main question of this research was to determine to what extent student characteristics in a community college context, and previous success, as measured in overall G.P.A., were related to course performance in an introductory Visual Basic programming (STEM) course; and, whether or not a combination of these factors and course modality was predictive of success. The study employed a quantitative, quasi-experimental design to assess whether students' course performance was linked to course modality, student characteristics and overall G.P.A. The results indicated that the only predictor of student performance was overall G.P.A. Despite the research analyzed in Chapter 2, there was no statistically significant relationship to modality, age, ethnicity, or gender to performance in the course. Cognitive load is significant in a computer programming course and it

  19. Is applicable thermodynamics of negative temperature for living organisms?

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  20. Characteristics of shift work and their impact on employee performance and wellbeing: A literature review.

    Science.gov (United States)

    Dall'Ora, Chiara; Ball, Jane; Recio-Saucedo, Alejandra; Griffiths, Peter

    2016-05-01

    To identify the characteristics of shift work that have an effect on employee's performance (including job performance, productivity, safety, quality of care delivered, errors, adverse events and client satisfaction) and wellbeing (including burnout, job satisfaction, absenteeism, intention to leave the job) in all sectors including healthcare. A scoping review of the literature was undertaken. We searched electronic databases (CINAHL, MEDLINE, PsychINFO, SCOPUS) to identify primary quantitative studies. The search was conducted between January and March 2015. Studies were drawn from all occupational sectors (i.e. health and non health), meeting the inclusion criteria: involved participants aged ≥18 who have been working shifts or serve as control group for others working shifts, exploring the association of characteristics of shift work with at least one of the selected outcomes. Reference lists from retrieved studies were checked to identify any further studies. 35 studies were included in the review; 25 studies were performed in the health sector. A variety of shift work characteristics are associated with compromised employee's performance and wellbeing. Findings from large multicentre studies highlight that shifts of 12h or longer are associated with jeopardised outcomes. Working more than 40h per week is associated with adverse events, while no conclusive evidence was found regarding working a 'Compressed Working Week'; working overtime was associated with decreased job performance. Working rotating shifts was associated with worse job performance outcomes, whilst fixed night shifts appeared to enable resynchronisation. However, job satisfaction of employees working fixed nights was reduced. Timely breaks had a positive impact on employee fatigue and alertness, whilst quick returns between shifts appeared to increase pathologic fatigue. The effect of shift work characteristics on outcomes in the studies reviewed is consistent across occupational sectors

  1. Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Michalski, Sebastian

    2015-01-01

    An oxy-type power plant was analyzed in this paper, equipped with a hard-coal-fired pulverized fuel boiler, a steam turbine, a CO 2 capture unit and an ASU (air separation unit) with a four-end-type high-temperature membrane. The gross electrical power of the plant is 600 MW; the live and reheated steam parameters are 650 °C/30 MPa and 670 °C/6 MPa, respectively. In this paper, computations were performed for three air compressor pressure ratios (β = 15; 20; 30) and a range of oxygen recovery rate (50% ≤ R ≤ ∼99%). The net efficiency of the oxy-type plant reached 38.7% compared to 46.5% for the reference plant. The equation to calculate a membrane area was derived in this paper. The defining dependence relationship between the R and β was also derived. The total investment costs for the ASU and the entire plant was determined as a function of R and β. Similarly, the break-even price of electricity and its individual components were determined. The break-even price for R ≈ 98% and β = 15 is 1.73 EUR/MWh higher than for the reference plant (63.14 EUR/MWh). In the conducted risk analysis, a Monte Carlo method was used. With a probability of 50%, the break-even price for the oxy-type and reference plants are ≤67.05 EUR/MWh and ≤69.98 EUR/MWh, respectively. - Highlights: • Analysis of a power plant with a “four-end” HTM for oxygen production was made. • The equation to calculate the HT membrane area was derived in this paper. • Break-even price of electricity of analyzed and reference plants were determined. • Risk analysis of the analyzed and reference plants was made. • Comparison of all results for the analyzed and reference plants were made

  2. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  3. Firm Characteristics and Performance Disclosure in Annual Reports of Nigerian Banks using the Balanced Scorecard

    Directory of Open Access Journals (Sweden)

    Solabomi Ajibolade

    2017-05-01

    Full Text Available This study investigated the influence of four firm characteristics (size, organisational structure, age and systemic importance on extent of performance disclosures by Nigerian banks using the balanced scorecard (BSC model. The population of the study comprised of publicly-listed banks in Nigeria, in operation from 2012 to 2014. Using a self-designed disclosure checklist, the annual reports of a sample of 15 publicly quoted banks in Nigeria were content-analysed for performance disclosure for the period 2012-2014. Descriptive statistics, t-test and Analysis of Variance (ANOVA were applied in data analysis, deducing inference at 5% significance level. It was observed that firms did not significantly differ in the extent of performance disclosure in each of the four BSC perspectives on one hand, and the overall BSC measure on the other hand, on the account of the four firm attributes examined. Considering that annual reports are mainstream amongst the media used to communicate firm performance to the public, it was recommended that preparers of such documents should consider disclosing financial and non-financial performance; this will not only provide a comprehensive basis to judge organisational performance, but will also assist in diffusing the clout created by asymmetry of information between preparers and users of performance reports.

  4. Teacher characteristics and student performance: An analysis using hierarchical linear modelling

    Directory of Open Access Journals (Sweden)

    Paula Armstrong

    2015-12-01

    Full Text Available This research makes use of hierarchical linear modelling to investigate which teacher characteristics are significantly associated with student performance. Using data from the SACMEQ III study of 2007, an interesting and potentially important finding is that younger teachers are better able to improve the mean mathematics performance of their students. Furthermore, younger teachers themselves perform better on subject tests than do their older counterparts. Identical models are run for Sub Saharan countries bordering on South Africa, as well for Kenya and the strong relationship between teacher age and student performance is not observed. Similarly, the model is run for South Africa using data from SACMEQ II (conducted in 2002 and the relationship between teacher age and student performance is also not observed. It must be noted that South African teachers were not tested in SACMEQ II so it was not possible to observe differences in subject knowledge amongst teachers in different cohorts and it was not possible to control for teachers’ level of subject knowledge when observing the relationship between teacher age and student performance. Changes in teacher education in the late 1990s and early 2000s may explain the differences in the performance of younger teachers relative to their older counterparts observed in the later dataset.

  5. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  6. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  7. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  8. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  9. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  10. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  11. Work-group characteristics and performance in collectivistic and individualistic cultures.

    Science.gov (United States)

    Sosik, John J; Jung, Dong I

    2002-02-01

    The authors conducted a cross-cultural longitudinal investigation of the effects of culture (individualism-collectivism dichotomy) on group characteristics (functional heterogeneity, preference for teamwork, group potency, outcome expectation) and on performance of 83 work groups performing 2 decision-making tasks over a 15-week period. The individualists (U.S. students) reported higher levels of functional heterogeneity and group potency and attained higher levels of group performance than did the collectivists (Korean students). In addition, culture and time interacted to influence ratings of group potency and outcome expectation. The difference in ratings of group potency between individualists and collectivists increased over time. Outcome expectation was greater among the collectivists in Time 1 and among the individualists in Time 2. The authors discuss implications for future cross-cultural group research and international management.

  12. Determination of performance characteristics of robotic manipulator's permanent magnet synchronous motor by learning its FEM model

    International Nuclear Information System (INIS)

    Bharadvaj, Bimmi; Saini, Surendra Singh; Swaroop, Teja Tumapala; Sarkar, Ushnish; Ray, Debashish Datta

    2016-01-01

    Permanent Magnet Synchronous Motors (PMSM) are widely used as actuators because of high torque density, high efficiency and reliability. Robotic Manipulator designed for specific task generally requires actuators with very high intermittent torque and speed for their operation in limited space. Hence accurate performance characteristics of PMSM must be known beforehand under these conditions as it may damage the motor. Therefore an advanced mathematical model of PMSM is required for its control synthesis and performance analysis over wide operating range. The existing mathematical models are developed considering ideal motor without including the geometrical deviations that occur during manufacturing process of the motor or its components. These manufacturing tolerance affect torque ripple, operating current range etc. thereby affecting motor performance. In this work, the magnetically non-linear dynamic model is further exploited to refine the FE model using a proposed algorithm to iteratively compensate for the experimentally observed deviations due to manufacturing. (author)

  13. BOARD OF DIRECTORS, AUDIT COMMITTEE CHARACTERISTICS AND THE PERFORMANCE OF SAUDI ARABIA LISTED COMPANIES

    Directory of Open Access Journals (Sweden)

    Yahya Ali Al-Matari

    2012-01-01

    Full Text Available This study examines the relationship between the internal corporate governance mechanism related to the board of directors, the audit committee characteristics and the performance of the Saudi companies listed in the Saudi stock exchange (TADAWL in 2010, excluding financial companies. The statistical results of the study are not in line with the agency theory that board of directors and audit committee might mitigate agency problems leading to reduced agency cost by aligning the interests of controlling owners with those of the company. While audit Committee size (ACSIZE is found to have a significant relationship with firm performance (but in the opposite direction to expectation, other hypothesized variables, the proportion of non-executive directors (BODCOM, CEO Duality (DUAL, Board Size (BSIZE, Audit Committee Independence (ACIND, audit committee meeting (ACMEET were found to be as expected directions but insignificantly related to firm performance measure except the direction of the proportion of non-executive directors (BODCOM was opposite to the expectations.

  14. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  15. Performance and internal flow characteristics of a cross-flow turbine by guide vane angle

    International Nuclear Information System (INIS)

    Chen, Z M; Choi, Y D

    2013-01-01

    This study attempts to investigate the performance and internal flow characteristics of a cross-flow turbine by guide vane angle. In order to improve the performance of a cross flow turbine, the paper presents a numerical investigation of the turbine with air supply and discusses the influence of variable guide vane angle on the internal flow. A newly developed air supply from air suction Hole is adopted. To investigate the performance and internal flow of the cross-flow turbine, the CFD software based on the two-phase flow model is utilized. The numerical grids are made in two-dimensional geometry in order to shorten the time of two-phase calculations. Then a series of CFD analysis has been conducted in the range of different guide vane angle. Moreover, local output power is divided at different stages and the effect of air layer in each stage is examined

  16. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  17. A study on performance characteristic: The effect of different parameter of renewable energy application

    Directory of Open Access Journals (Sweden)

    Tajudin Nadia

    2018-01-01

    Full Text Available Malaysia government still identify the best system in giving people solution on renewable energy. This study will focus on the performance of PV module. The characteristic of PV module still can be argued especially in absorbing the direct effect of sun light energy. The previous authors were not having a specific solution on the problem of the PV module implication after received the direct effect of sun light. This study will suggesting on the innovation of the process and system of PV module and restructuring the characteristic and provides information. The tools of quality PDCA and (OEE will be used to identify the best solution using the different type of cooling system. From this information, the stake holder can decrease the cost of using this type of technology.

  18. The gender gap reloaded: are school characteristics linked to labor market performance?

    Science.gov (United States)

    Konstantopoulos, Spyros; Constant, Amelie

    2008-06-01

    This study examines the wage gender gap of young adults in the 1970s, 1980s, and 2000 in the US. Using quantile regression we estimate the gender gap across the entire wage distribution. We also study the importance of high school characteristics in predicting future labor market performance. We conduct analyses for three major racial/ethnic groups in the US: Whites, Blacks, and Hispanics, employing data from two rich longitudinal studies: NLS and NELS. Our results indicate that while some school characteristics are positive and significant predictors of future wages for Whites, they are less so for the two minority groups. We find significant wage gender disparities favoring men across all three surveys in the 1970s, 1980s, and 2000. The wage gender gap is more pronounced in higher paid jobs (90th quantile) for all groups, indicating the presence of a persistent and alarming "glass ceiling."

  19. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  20. Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports.

    Science.gov (United States)

    Pion, Johan; Segers, Veerle; Fransen, Job; Debuyck, Gijs; Deprez, Dieter; Haerens, Leen; Vaeyens, Roel; Philippaerts, Renaat; Lenoir, Matthieu

    2015-01-01

    The aim of the present study was to evaluate the Flemish Sports Compass (FSC), a non-sport-specific generic testing battery. It was hypothesised that a set of 22 tests would have sufficient discriminant power to allocate athletes to their own sport based on a unique combination of test scores. First, discriminant analyses were applied to the 22 tests of anthropometry, physical fitness and motor coordination in 141 boys under age 18 (16.1 ± 0.8 years) and post age at peak height velocity (maturity offset = 2.674 ± 0.926) from Flemish Top Sport Academies for badminton, basketball, gymnastics, handball, judo, soccer, table tennis, triathlon and volleyball. Second, nine sequential discriminant analyses were used to assess the ability of a set of relevant performance characteristics classifying participants and non-participants for the respective sports. Discriminant analyses resulted in a 96.4% correct classification of all participants for the nine different sports. When focusing on relevant performance characteristics, 80.1% to 97.2% of the total test sample was classified correctly within their respective disciplines. The discriminating characteristics were briefly the following: flexibility in gymnastics, explosive lower-limb strength in badminton and volleyball, speed and agility in badminton, judo, soccer and volleyball, upper-body strength in badminton, basketball and gymnastics, cardiorespiratory endurance in triathletes, dribbling skills in handball, basketball and soccer and overhead-throwing skills in badminton and volleyball. The generic talent characteristics of the FSC enable the distinction of adolescent boys according to their particular sport. Implications for talent programmes are discussed.