WorldWideScience

Sample records for thermodynamic influence controlling

  1. A thermodynamically influenced control for potato storage | Ndiema ...

    African Journals Online (AJOL)

    The results obtained show that the modified control achieved reduced mass loss by about 5% while the fan energy input was reduced by up to 10%. It is therefore possible to achieve improved control of the potato storage condition by modifying the controls to operate on the basis of thermodynamic state diagrams.

  2. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis.

    Science.gov (United States)

    Qi, Xin; Fichthorn, Kristen A

    2017-10-19

    Though many experimental studies have documented that certain solution-phase additives can play a key role in the shape-selective synthesis of metal nanocrystals, the origins and mechanisms of this shape selectivity are still unclear. One possible role of such molecules is to thermodynamically induce the equilibrium shape of a nanocrystal by altering the interfacial free energies of the facets. Using a multi-scheme thermodynamic integration method that we recently developed [J. Chem. Phys., 2016, 145, 194108], we calculate the solid-liquid interfacial free energies γ sl and investigate the propensity to achieve equilibrium shapes in such syntheses. We first apply this method to Ag(100) and Ag(111) facets in ethylene glycol solution containing polyvinylpyrrolidone (PVP), to mimic the environment in polyol synthesis of Ag nanocrystals. We find that although PVP has a preferred binding to Ag(100), its selectivity is not sufficient to induce a thermodynamic preference for {100}-faceted nanocubes, as has been observed experimentally. This indicates that PVP promotes Ag nanocube formation kinetically rather than thermodynamically. We further quantify the thermodynamic influence of adsorbed solution-phase additives for generic molecules, by building a γ sl ratio/nanocrystal shape map as a function of zero-temperature binding energies. This map can be used to gauge the efficacy of candidate additive molecules for producing targeted thermodynamic nanocrystal shapes. The results indicate that only additives with a strong facet selectivity can impart significant thermodynamic-shape change. Therefore, many of the nanocrystals observed in experiments are likely kinetic products.

  3. How thermodynamic environments control stratocumulus microphysics and interactions with aerosols

    International Nuclear Information System (INIS)

    Andersen, Hendrik; Cermak, Jan

    2015-01-01

    Aerosol–cloud interactions are central to climate system changes and depend on meteorological conditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol and cloud products are combined with reanalysis data to identify factors controlling Southeast Atlantic stratocumulus microphysics. Considering the seasonal influence of aerosol input from biomass burning, thermodynamic environments that feature contrasting microphysical cloud properties and aerosol–cloud relations are classified. While aerosol impact is stronger in unstable environments, it is mostly confined to situations with low aerosol loading (aerosol index AI ≲ 0.15), implying a saturation of aerosol effects. Situations with high aerosol loading are associated with weaker, seasonally contrasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and aerosol swelling. (letter)

  4. Dark matter influence on black objects thermodynamics

    Science.gov (United States)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  5. Alkylation of Chlorobenzene. An Experiment Illustrating Kinetic versus Thermodynamic Control.

    Science.gov (United States)

    Kolb, Kenneth; And Others

    1988-01-01

    Describes an experiment which illustrates the kinetic versus thermodynamic control of chemical reactions for organic chemistry students. Considers the laboratory procedures including the isolation of both the kinetic and thermodynamic products. (CW)

  6. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    Published experimental data, underpinned by molecular simulations, are used to highlight the strong influence of adsorption thermodynamics on diffusivities of guest molecules inside ordered nanoporous crystalline materials such as zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate

  7. A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case

    Science.gov (United States)

    Gandica, Y.; Medina, E.; Bonalde, I.

    2013-12-01

    We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.

  8. The Influence of Content Organization on Student's Cognitive Structure in Thermodynamics.

    Science.gov (United States)

    Moreira, Marco A.; Santos, Carlos A.

    1981-01-01

    Two approaches to the content of thermodynamics were used in an introductory college physics course: traditional organization and organization based on Ausubel's learning theory. The influence of these organizations on engineering student's (N=58) cognitive structure was investigated using a word association test analyzed through hierarchical…

  9. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  10. Influence of thermodynamic mechanism of inter- facial adsorption on purifying air-conditioning engineering under intensification of electric field

    Directory of Open Access Journals (Sweden)

    Chen Yun-Yu

    2016-12-01

    Full Text Available As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.

  11. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  12. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.

    Science.gov (United States)

    Birkenmeier, Markus; Mack, Matthias; Röder, Thorsten

    2015-10-01

    In this study, we applied a coupled in silico thermodynamic and probabilistic metabolic control analysis methodology to investigate the control mechanisms of the commercially relevant riboflavin biosynthetic pathway in bacteria. Under the investigated steady-state conditions, we found that several enzyme reactions of the pathway operate far from thermodynamic equilibrium (transformed Gibbs energies of reaction below about -17 kJ mol(-1)). Using the obtained thermodynamic information and applying enzyme elasticity sampling, we calculated the distributions of the scaled concentration control coefficients (CCCs) and scaled flux control coefficients (FCCs). From the statistical analysis of the calculated distributions, we inferred that the control over the riboflavin producing flux is shared among several enzyme activities and mostly resides in the initial reactions of the pathway. More precisely, the guanosine triphosphate (GTP) cyclohydrolase II activity, and therefore the bifunctional RibA protein of Bacillus subtilis because it catalyzes this activity, appears to mainly control the riboflavin producing flux (mean FCCs = 0.45 and 0.55, respectively). The GTP cyclohydrolase II activity and RibA also exert a high positive control over the riboflavin concentration (mean CCCs = 2.43 and 2.91, respectively). This prediction is consistent with previous findings for microbial riboflavin overproducing strains.

  13. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    Science.gov (United States)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  14. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  15. Stochastic control and the second law of thermodynamics

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.

    1979-01-01

    The second law of thermodynamics is studied from the point of view of stochastic control theory. We find that the feedback control laws which are of interest are those which depend only on average values, and not on sample path behavior. We are lead to a criterion which, when satisfied, permits one to assign a temperature to a stochastic system in such a way as to have Carnot cycles be the optimal trajectories of optimal control problems. Entropy is also defined and we are able to prove an equipartition of energy theorem using this definition of temperature. Our formulation allows one to treat irreversibility in a quite natural and completely precise way.

  16. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  17. Thermodynamic control of anvil cloud amount

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  18. Thermodynamics of inclusion formation and its influence on the corrosion behavior of Cu bearing duplex stainless steels

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo; Park, Joo-Hyun; Kim, Kwang-Tae; Kim, Ji-Soo

    2011-01-01

    To elucidate the thermodynamics of inclusion formation and its influence on the corrosion behavior of Cu bearing duplex stainless steels, potentiodynamic and potentiostatic polarization tests, a SEM-EDS analysis of inclusions, and thermodynamic calculations of the formation of inclusions were carried out. While the resistance to general corrosion of the noble copper contained alloy-1.5Cu in a deaerated 2 M H 2 SO 4 was higher than that of the alloy-BASE, the resistance to pitting corrosion of copper contained alloy-1.5Cu in a deaerated 0.5 N HCl + 1 N NaCl and 30 mass% NaCl was lower than that of the alloy-BASE due to an increase of interface areas between inclusions and matrix acting as preferential pit initiation sites. The thermodynamic calculation for the formation of Cr-containing oxide inclusions was in good agreement with the experimental results. (author)

  19. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    Science.gov (United States)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  20. Application of Statistical Thermodynamics in Refrigeration

    International Nuclear Information System (INIS)

    Avsec, J.; Marcic, M.

    1999-01-01

    The paper presents the mathematical model for computing the thermodynamical properties in the liquid, gas and two-phase domain by means of statistical thermodynamics. The paper features all important components (translation, rotation, internal rotation, vibration, intermolecular potential energy and influence of electron and nuclei excitation). To calculate the thermodynamic properties of real gases, we have developed the cluster theory, which yields better results than the virial equation. In case of real liquids, the Johnson-Zollweg-Gubbins model based on the modified Benedict-Webb-Rubin (BWR) equation was applied. The Lennard-Jones intermolecular potential was used. The analytical results are compared with the thermodynamical data and models obtained from classical thermodynamics, and they show relatively good agreement. (author)

  1. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  2. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  3. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  4. Extension of Gibbs-Duhem equation including influences of external fields

    Science.gov (United States)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  5. Optima and bounds for irreversible thermodynamic processes

    International Nuclear Information System (INIS)

    Hoffmann, K.H.

    1990-01-01

    In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method

  6. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  7. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  8. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  9. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  10. Boron-substitution and defects in B2-type AlNi compound: Site-preference and influence on structural, thermodynamic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Capaz, Rodrigo B. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); ElMassalami, M., E-mail: massalam@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Terrazos, L.A. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB 58175-000 (Brazil); Elhadi, M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Takeya, H. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Ghivelder, L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2016-06-05

    Using a combination of theoretical (first-principles total-energy and electronic structure calculations) as well as experimental (structural, thermodynamics) techniques, we systematically investigated the influence of B incorporation on the structural, electronic and thermodynamic properties of a series of technologically-important B-containing AlNi matrix. Special attention was paid to calculating the energy cost of placing B at various sites within the cubic unit cell. The most energetically favorable defects were identified to be, depending on initial stoichiometry, substitutional B at Al site (B{sub Al}), Ni vacancy (V{sub Ni}), or Ni antisite (Ni{sub Al}). We show that the induced variation in the lattice parameters can be correlated with the type and concentration of the involved defects: e.g. the surge of V{sub Ni} defects leads to a stronger lattice-parameter reduction, that of Ni{sub Al} ones to a relatively weaker reduction while that of B{sub Al} defects to a much weaker influence. Both electronic band structure calculations as well as thermodynamics measurements indicate that the 3d bands of Ni are fully occupied and magnetically unpolarized and that the resulting N(E{sub F}) is very small: all studied compounds are normal conductors with no trace of superconductivity or magnetic polarization.

  11. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

  12. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  13. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  14. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  15. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  16. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  17. Halogen bonding in solution: thermodynamics and applications.

    Science.gov (United States)

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  18. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    Science.gov (United States)

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  19. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  20. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  1. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  2. Influence of a solvent on thermodynamics of electrolytic dissociation of simple and complex rare earth salts

    Energy Technology Data Exchange (ETDEWEB)

    Gorodyskij, A.V.; Fialkov, Yu.Ya.; Chernyj, D.B. (AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; Kievskij Politekhnicheskij Inst. (Ukrainian SSR))

    1982-03-01

    Influence of the double mixed solvent on thermodynamic characteristics of ionic migration of lanthanum, neodymium, europium and dysprosium chlorides as well as their phenanthroline complexes is considered. Decrease of lambdasub(c) of simple and complex rare earth salts in the lanthanum, neodymium-europium-dysprosium series as explained by increase of solvation degree, associated with lanthanum compression. It is shown that increase of methanol or propanol content results in exothermicity decrease of the ionic migration process. The temperature constituents of enthalpy and entropy of dissociation of the simple and complex rare earth salts are presented.

  3. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  4. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  5. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    Science.gov (United States)

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  6. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  7. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  8. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  9. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  10. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  11. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  12. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Science.gov (United States)

    van Lingen, Henk J; Plugge, Caroline M; Fadel, James G; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  13. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Directory of Open Access Journals (Sweden)

    Henk J van Lingen

    Full Text Available Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA. Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2, has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT, which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without

  14. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  15. Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions

    DEFF Research Database (Denmark)

    Gundersen, Maria T.; Abu, Rohana; Schürmann, Martin

    2015-01-01

    In recent years biocatalytic transamination using ω-transaminase has become established as one of the most interesting routes to synthesize chiral amines with a high enantiomeric purity, especially in the pharmaceutical sector where the demand for such compounds is high. Nevertheless, one limitat...... of such reactions because it may be used to help select suitable donor/acceptor combinations. The results presented here give guidance, with respect to thermodynamics, in order to further extend the application of biocatalytic transamination....... limitation for successful implementation and scale-up is that the thermodynamics of such conversions are frequently found unfavourable. Herein we report experimental measurements of apparent equilibrium constants for several industrially relevant transamination reactions in a systematic manner to better...... understand the effect of amine acceptor and donor choice. For example, we have found that ortho-substitution of acetophenone like molecules, had a significant impact on the thermodynamic equilibrium. Likewise, the effect of cyclic amine acceptors was evaluated and compared to similar non-cyclic structures...

  16. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  17. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  18. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  19. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  20. Influence of aluminium content on thermodynamic function of LaNi5-xAlx

    International Nuclear Information System (INIS)

    Xiong Yifu; Cheng Huchi; Luo Deli

    2000-01-01

    Hydriding thermodynamic parameters were measured on alloys of the general composition of LaNi 5-x Al x (x = 0.0, 0.1, 0.2, 0.3) under isothermal and isochoric conditions. The results show that the equilibrium pressure, hydrogen capacity and thermodynamic parameters such as ΔH, ΔS decrease with aluminium content, plateau slopes of the P-C-T curve increase with aluminium content

  1. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  2. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    Science.gov (United States)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  3. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  4. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  5. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  6. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  7. Is there a link between selectivity and binding thermodynamics profiles?

    Science.gov (United States)

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  9. An efficient and rigorous thermodynamic library and optimal-control of a cryogenic air separation unit

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    2017-01-01

    -linear model based control to achieve optimal techno-economic performance. Accordingly, this work presents a computationally efficient and novel approach for solving a tray-by-tray equilibrium model and its implementation for open-loop optimal-control of a cryogenic distillation column. Here, the optimisation...... objective is to reduce the cost of compression in a volatile electricity market while meeting the production requirements, i.e. product flow rate and purity. This model is implemented in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work represents a first step towards plant...

  10. Thermodynamic cycle calculations for a pumped gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.

    1991-01-01

    Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)

  11. Optimal protocols and optimal transport in stochastic thermodynamics.

    Science.gov (United States)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-24

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  12. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics

    International Nuclear Information System (INIS)

    He, Yubao; Cao, Ruifeng; Huang, Hongyan; Qin, Jiang; Yu, Daren

    2017-01-01

    To avoid the inlet unstart at high equivalence ratio and increase the performance of scramjet with ram-mode, a flow control method of boundary-layer ejection is implemented based on the potential thermodynamic process in a turbo-pump supply system of fuel vapor within a cooling channel. The effect of ejection on overall scramjet performance is studied by taking the integration of measures including numerical simulation and stream thrust analysis. Results indicate that the critical backpressure is significantly increased as the ejection total pressure increased, thereby increasing the compression capacity and efficiency, and decreasing the irreversible losses of shock wave and viscous dissipation. For the ejection total pressure of P_t_,_e_j_e = 2.40–4.00 × 10"6 Pa, the critical backpressure ratio is quantitatively increased by 1.18–11.8% along with the utilization of ejection mass flow rate of about 88.0–100% overall mass flow rate of methane fuel gas, and simultaneously the total pressure ratio, kinetic efficiency is also increased by 7.32–13.1%, and 1.63–2.96%, respectively, while the dimensionless entropy increase is decreased by 14.5–26.8%. On this basis, the specific thrust, specific impulse, and total efficiency is increased by 2.84–4.69%, 2.80–4.68%, and 2.87–4.70%, respectively, which re-emphasizes that the boundary-layer ejection is an available fluid control method. - Highlights: • Pressure ratio affects cycle efficiency based on Brayton cycle analysis. • Ejection control concept is defined based on potential thermodynamic process. • Ejection increases compression capacity, efficiency and engine overall performance.

  13. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  14. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  15. Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems

    International Nuclear Information System (INIS)

    Tu Zhanchun

    2014-01-01

    Thermodynamics is an old subject. The research objects in conventional thermodynamics are macroscopic systems with huge number of particles. In recent 30 years, thermodynamics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1 - √T c /T h , where Tc and Th are the temperatures of cold bath and hot bath, respectively. (author)

  16. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  17. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  18. An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation

    NARCIS (Netherlands)

    Van der Dussen, J.J.; De Roode, S.R.; Dal Gesso, S.; Siebesma, A.P.

    2015-01-01

    Twenty-five large-eddy simulations are performed to study how free tropospheric thermodynamic conditions control equilibrium state solutions of stratocumulus-topped marine boundary layers. In particular, we systematically vary the lower tropospheric stability (LTS) and a similar measure for the bulk

  19. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  20. Unlocking Ft: Modeling thermodynamic controls and isotope fractionation factors in nutrient limited environments

    Science.gov (United States)

    Druhan, J. L.; Giannetta, M.; Sanford, R. A.

    2017-12-01

    In recent years, reactive transport principles have expanded from early applications, largely based in contaminant hydrology, to a wide range of biologically mediated redox environments including marine sedimentary diagenesis, terrestrial metal ore deposits, soils, and critical zone weathering profiles. A common observation across this diversity of systems is that they often function under energetically limited conditions in comparison to those typical of contaminated aquifers subject to engineered remediation techniques. As a result, the kinetic rate expressions traditionally employed within reactive transport frameworks to simulate microbially mediated redox transformations have required modification. This was recognized in a series of seminal papers by Jin and Bethke (2005, 2007) in which the authors expanded upon a Monod rate law to include a thermodynamic potential factor `Ft' which exerts a limitation on the overall rate based on the thermodynamic driving force of the electron transfer reaction. This new rate expression is now commonly implemented within many of the major reactive transport software packages, though appropriate application has yet to be thoroughly demonstrated. Notably, the characteristically large partitioning of stable isotopes during microbially mediated reactions, which is extensively utilized to identify and quantify these redox transformations, has yet to be simulated under conditions in which the Ft term may be expected to exert a significant mass dependent influence. Here, we develop a series of simplified simulations for the microbially mediated reduction of sulfate based on the datasets reported by Jin and Bethke, and apply appropriate mass-bias within the Ft term to consider the extent to which the resulting isotopic fractionation is consistent with that observed in energetically limited systems. We show that the Ft term can exert a significant influence on the observed fractionation factor under common environmental conditions

  1. Arrhenius And Absolute Reaction Rate Models for Thermodynamic ...

    African Journals Online (AJOL)

    Thermodynamic characterization of linamarase influenced by linamarin substrate purification, pH and temperature were investigated. In the study, recombinant Saccharomyces cerevisiae cells at the stationary phase of growth were recovered, homogenized and centrifuged to obtain crude extracts designated as GELIN0.

  2. Thermodynamic modeling of mineralogical phases formed by continuous casting powders

    International Nuclear Information System (INIS)

    Romo-Castaneda, Julio; Cruz-Ramirez, Alejandro; Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel

    2011-01-01

    A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4 Si 2 O 7 F 2 ) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2 ). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.

  3. Thermodynamic modeling of mineralogical phases formed by continuous casting powders

    Energy Technology Data Exchange (ETDEWEB)

    Romo-Castaneda, Julio [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Cruz-Ramirez, Alejandro, E-mail: alcruzr@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico)

    2011-01-10

    A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca{sub 4}Si{sub 2}O{sub 7}F{sub 2}) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF{sub 2}). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.

  4. Calorimetry and thermodynamics of living systems

    International Nuclear Information System (INIS)

    Lamprecht, Ingolf

    2003-01-01

    Calorimetry of living systems and classical thermodynamics developed in parallel, from Lavoisier's early ice calorimeter experiments on guinea pigs, followed by Dubrunfaut's macrocalorimetric research of fermentation processes and Atwater-Rosa's whole-body calorimetry on humans and domestic animals, to the introduction of the famous Tian-Calvet instrument that found entrance into so many different fields of biology. In this work, six examples of living-system calorimetry and thermodynamics are presented. These are: (i) glycolytic oscillations far off the thermodynamic equilibrium; (ii) growth and energy balances in fermenting and respiring yeast cultures; (iii) direct and indirect calorimetric monitoring of electrically stimulated reptile metabolism; (iv) biologic and climatic factors influencing the temperature constancy and distribution in the mound of a wood ant colony as an example of a complex ecological system; (v) energetic considerations on the clustering of European honeybees in winter as a means to save energy and stored food as well as for their Japanese counterparts in defending against hornet predators; and (vi) energetic and evolutionary aspects of the mass specific entropy production rate, the so-called bound dissipation or psiu-function. The examples presented here are just a very personal selection of living systems from a broad spectrum at all levels of complexity. Common for all of them is that they were investigated calorimetrically on the background of classical and irreversible thermodynamics

  5. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  6. Specific features of the thermodynamics of superionic conductors

    International Nuclear Information System (INIS)

    Gurevich, Yu.Ya.; Kharkats, Yu.I.

    1982-01-01

    A review of theoretical and experimental investigations devoted to a study of thermodynamic aspects of the superionic conductivity phenomena for the recent decade is presented. A relation between a superionic conductivity and the disordering of one of the crystal sublattices, the phase transitions of the disordering caused by the point defects interaction, the mechanism of polymorphic transitions conjugated with a partial disordering are considered. The effect of an abrupt change of the ionic conductivity induced by electric field, the thermodynamics of the domain states in superionic conductors and the influence of pressure on phase transitions and ionic conductivity are analyzed

  7. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  8. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  9. Investigating the Thermodynamic Performances of TO-Based Metamaterial Tunable Cells with an Entropy Generation Approach

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2017-10-01

    Full Text Available Active control of heat flux can be realized with transformation optics (TO thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.

  10. Application of dhurrin for kinetics and thermodynamic ...

    African Journals Online (AJOL)

    The entropy change (ΔS) increased with enzyme purity from 0.588 J/mol.deg. to 1.4625Jmol degree. The enthalpy change KJ/mol followed the same pattern whereby increases influenced by enzyme purity ranged from 1892 KJ/mol to 13104KJ/mol. Keywords: kinetics, thermodynamic, characterization, dhurrin, genetically ...

  11. Governing Influence of Thermodynamic and Chemical Equilibria on the Interfacial Properties in Complex Fluids.

    Science.gov (United States)

    Harikrishnan, A R; Dhar, Purbarun; Gedupudi, Sateesh; Das, Sarit K

    2018-04-12

    We propose a comprehensive analysis and a quasi-analytical mathematical formalism to predict the surface tension and contact angles of complex surfactant-infused nanocolloids. The model rests on the foundations of the interaction potentials for the interfacial adsorption-desorption dynamics in complex multicomponent colloids. Surfactant-infused nanoparticle-laden interface problems are difficult to deal with because of the many-body interactions and interfaces involved at the meso-nanoscales. The model is based on the governing role of thermodynamic and chemical equilibrium parameters in modulating the interfacial energies. The influence of parameters such as the presence of surfactants, nanoparticles, and surfactant-capped nanoparticles on interfacial dynamics is revealed by the analysis. Solely based on the knowledge of interfacial properties of independent surfactant solutions and nanocolloids, the same can be deduced for complex surfactant-based nanocolloids through the proposed approach. The model accurately predicts the equilibrium surface tension and contact angle of complex nanocolloids available in the existing literature and present experimental findings.

  12. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  13. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  14. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  15. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  16. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  17. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  18. Influence of Valsartan on the thermodynamics of micellization of anionic surfactant Sodium Dodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Stopková L.

    2016-12-01

    Full Text Available In this manuscript was investigated behaviour of drug valsartan by micellar media of anionic surfactant sodium dodecyl sulphate. As the method was used electrical conductivity for the determination of critical micelle concentration at different temperatures (T = 293.15 - 313.15 K, as well as calculated thermodynamic parameters like standard Gibbs free energy, enthalpy and entropy of micellization. According to contribution of Gibbs free energy is the process of micellization primarily controlled by entropy. Solubilization of valsartan was studied in surfactant system at 298.15 K and physiological conditions pH 7.4 using UV-spectrophotometry at different concentration range (0.001 - 0.07 mol/l of sodium dodecyl sulphate. The solubilization of drug was observed with increasing concentration of surfactant in aqueous solution.

  19. A Thermodynamic Library for Simulation and Optimization of Dynamic Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Jørgensen, John Bagterp

    2017-01-01

    Process system tools, such as simulation and optimization of dynamic systems, are widely used in the process industries for development of operational strategies and control for process systems. These tools rely on thermodynamic models and many thermodynamic models have been developed for different...... compounds and mixtures. However, rigorous thermodynamic models are generally computationally intensive and not available as open-source libraries for process simulation and optimization. In this paper, we describe the application of a novel open-source rigorous thermodynamic library, ThermoLib, which...... is designed for dynamic simulation and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and uses cubic equations of state to compute vapor and liquid phase thermodynamic properties. The novelty of ThermoLib is that it provides analytical first and second order derivatives...

  20. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  1. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  2. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  3. Thermodynamic curvature of soft-sphere fluids and solids

    Science.gov (United States)

    Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.

    2018-02-01

    The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.

  4. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  5. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  6. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  7. A Review of Research on the Teaching and Learning of Thermodynamics at the University Level

    Science.gov (United States)

    Bain, Kinsey; Moon, Alena; Mack, Michael R.; Towns, Marcy H.

    2014-01-01

    We review previous research on the teaching and learning of thermodynamics in upper-level, undergraduate settings. As chemistry education researchers we use physical chemistry as a context for understanding the literature. During our synthesis four themes of research emerged: factors that influence student success in learning thermodynamics,…

  8. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  9. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  10. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  11. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  12. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  13. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  14. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  15. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  16. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  17. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  18. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-01-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments

  19. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    Science.gov (United States)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  20. Thermodynamics and Kinetics of Advanced Separations Systems - FY 2010 Summary Report

    International Nuclear Information System (INIS)

    Martin, Leigh R.; Zalupski, Peter R.

    2010-01-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR and D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  1. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    Science.gov (United States)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  2. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  3. Tritium aging effect on thermodynamic functions of LaNi4.9Al0.1

    International Nuclear Information System (INIS)

    Xiong Yifu; Li Rong; Luo Deli

    2001-01-01

    The influence of tritium aging on thermodynamic function of LaNi 4.9 Al 0.1 is measured. The results show that plateau pressures and reversible hydrogen capacity decrease with aging time, thermodynamics parameters such as ΔH, ΔS and plateau slopes of the P-T curve increase with aging time, tritium heel formed after 1120 d tritium exposure

  4. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  5. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  6. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  7. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  8. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  9. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  10. Influence of additives (inorganic/organic on the clouding behavior of amphiphilic drug solutions: Some thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Malik Abdul Rub

    2015-05-01

    Full Text Available Herein we provide a detailed result about the effect of various additives, viz. inorganic salts, quaternary ammonium bromides (QABs and amino acids on clouding behavior of amphiphilic drug amitriptyline hydrochloride (AMT. The continuous increase in the cloud point (CP of drug by increase in inorganic salt concentration and the magnitude of increases rely upon the position of the salts in Hofmeister series and hydrated radii. The QABs also influence continuous increase in the CP, which is illustrated in terms of the alkyl chain length of peculiar QAB. The effect of amino acids on CP of the drug solution is dependent upon the characteristics (acidic, basic, polar or nonpolar of particular amino acids. The overall behavior of additives has been analyzed and discussed on the basis of electrostatic repulsion or interaction, micellar growth, and mixed micelle formation between the ingredients. In addition to this, thermodynamic parameters are also evaluated.

  11. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  12. Improved actions for QCD thermodynamics on the lattice

    CERN Document Server

    Beinlich, B; Laermann, E

    1996-01-01

    Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N) gauge theories with three different O(a^2) and O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (T\\rightarrow \\infty) and perform Monte Carlo simulations with improved SU(3) actions at non-zero g^2. Already on lattices with temporal extent N_\\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.

  13. A New Thermodynamics from Nuclei to Stars

    Directory of Open Access Journals (Sweden)

    Dieter H.E. Gross

    2004-03-01

    Full Text Available Abstract: Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N-body phase space with the given total energy. Due to Boltzmann's principle, eS=tr(δ(E-H, its geometrical size is related to the entropy S(E,N,.... This definition does not invoke any information theory, no thermodynamic limit, no extensivity, and no homogeneity assumption, as are needed in conventional (canonical thermo-statistics. Therefore, it describes the equilibrium statistics of extensive as well of non-extensive systems. Due to this fact it is the fundamental definition of any classical equilibrium statistics. It can address nuclei and astrophysical objects as well. All kind of phase transitions can be distinguished sharply and uniquely for even small systems. It is further shown that the second law is a natural consequence of the statistical nature of thermodynamics which describes all systems with the same -- redundant -- set of few control parameters simultaneously. It has nothing to do with the thermodynamic limit. It even works in systems which are by far than any thermodynamic "limit".

  14. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    Science.gov (United States)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  15. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  16. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  17. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  18. Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin

    International Nuclear Information System (INIS)

    Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane

    2012-01-01

    This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series

  19. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  20. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  1. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  2. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  3. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes

    International Nuclear Information System (INIS)

    Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao

    2016-01-01

    The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)

  4. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  5. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing

    2017-12-01

    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  6. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  7. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  8. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  9. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  10. Port contact systems for irreversible thermodynamical systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    In this paper we propose a definition of control contact systems, generalizing input-output Hamiltonian systems, to cope with models arising from irreversible Thermodynamics. We exhibit a particular subclass of these systems, called conservative, that leaves invariant some Legendre submanifold (the

  11. Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain

    International Nuclear Information System (INIS)

    Richter, J; Haertel, M; Ihle, D; Drechsler, S-L

    2009-01-01

    We studied the thermodynamics of the one-dimensional J 1 -J 2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds J 1 2 > 0 using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on J 2 1 |/4 where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J 2 . The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from χ ∝ T -2 at J 2 1 |/4 to χ ∝ T -3/2 at the quantum-critical point J 2 = |J 1 |/4. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat C v (T) for J 2 and |J 1 |/8, indicating its strong influence on the low-energy spectrum.

  12. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  13. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  14. Thermodynamic studies on charge-coupled substituted synthetic monazite

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, D. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Phapale, S. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mishra, R., E-mail: mishrar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dash, S. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2017-04-15

    Phosphate-based monazite ceramic is considered worldwide as a potential crystalline host matrix for immobilization of long-lived tri- and tetra-valent actinides present in high-level nuclear waste. Monazite is chemically stable with respect to the leaching processes and has high radiation stability. The present paper describes the influence of charged coupled (Ca{sup 2+}, Th{sup 4+}) substitution in place of La{sup 3+} on thermodynamic stability of synthetic monazite ceramics. XRD-analysis of Ca, Th substituted LaPO{sub 4} viz., La{sub 1-x}Ca{sub x/2}Th{sub x/2}PO{sub 4} (0 ≤ x ≤ 1) points to the formation of ideal solid-solution in the entire range of composition. However, thermodynamic analysis indicates deviation from ideal solid-solution with a minima at x = 0.25. The substituted La{sub 1-x}Ca{sub x/2}Th{sub x/2}PO{sub 4} system is found to be iso-entropic and stabilized mainly by enthalpy. Enthalpies of formation as a function of Ca{sup 2+}, Th{sup 4+} substitution were analysed to provide insights into the development of thermodynamically stable nuclear waste matrix.

  15. Use of thermodynamics and expansion in parts and machines; Utilisation de la thermodynamique de la detente dans les organes et les machines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `thermodynamics` section of the French association of thermal engineers. This book of proceedings contains 11 papers entitled: `introduction talk`; `use of thermodynamics during expansion in valves in order to improve their behaviour`; `influence of the presence of impurities on the vapour condensation process during expansion inside a nozzle`; `excitations generated by flows during expansions`; `relief valves for refrigerating machineries`; `the influence of pressure losses in distribution systems over thermodynamic performances of the cryogenic pressure reducer and pneumatic engines`; `analysis of energy losses in turbine blades`; `humid vapor expansion in turbines`; `expansion of high temperature combustion gases in a turbine: influence of chemical reactivity`; `high expansion rate turbines`; `contribution of new calculation methods`. (J.S.)

  16. Use of thermodynamics and expansion in parts and machines; Utilisation de la thermodynamique de la detente dans les organes et les machines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `thermodynamics` section of the French association of thermal engineers. This book of proceedings contains 11 papers entitled: `introduction talk`; `use of thermodynamics during expansion in valves in order to improve their behaviour`; `influence of the presence of impurities on the vapour condensation process during expansion inside a nozzle`; `excitations generated by flows during expansions`; `relief valves for refrigerating machineries`; `the influence of pressure losses in distribution systems over thermodynamic performances of the cryogenic pressure reducer and pneumatic engines`; `analysis of energy losses in turbine blades`; `humid vapor expansion in turbines`; `expansion of high temperature combustion gases in a turbine: influence of chemical reactivity`; `high expansion rate turbines`; `contribution of new calculation methods`. (J.S.)

  17. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  18. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  19. Bioengineering thermodynamics of biological cells.

    Science.gov (United States)

    Lucia, Umberto

    2015-12-01

    Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.

  20. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  1. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  2. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  3. Thermodynamic properties of water in confined environments: a Monte Carlo study

    Science.gov (United States)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  4. Regulatory accessibility and social influences on state self-control.

    Science.gov (United States)

    vanDellen, Michelle R; Hoyle, Rick H

    2010-02-01

    The current work examined how social factors influence self-control. Current conceptions of state self-control treat it largely as a function of regulatory capacity. The authors propose that state self-control might also be influenced by social factors because of regulatory accessibility. Studies 1 through 4 provide evidence that individuals' state self-control is influenced by the trait and state self-control of salient others such that thinking of others with good trait or state self-control leads to increases in state self-control and thinking of others with bad trait or state self-control leads to decreases in state self-control. Study 5 provides evidence that the salience of significant others influences both regulatory accessibility and state self-control. Combined, these studies suggest that the effects of social influences on state self-control occur through multiple mechanisms.

  5. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  6. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  7. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    Science.gov (United States)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  8. Classical Example of Total Kinetic and Thermodynamic Control: The Diels-Alder Reaction between DMAD and Bis-furyl Dienes.

    Science.gov (United States)

    Borisova, Kseniya K; Kvyatkovskaya, Elizaveta A; Nikitina, Eugeniya V; Aysin, Rinat R; Novikov, Roman A; Zubkov, Fedor I

    2018-04-20

    A rare example of chemospecificity in the tandem Diels-Alder reaction of activated alkynes and bis-dienes has been revealed. The reaction between bis-furyl dienes and DMAD occurs at 25-80 °C and leads to kinetically controlled "pincer" adducts, 4a,8a-disubstituted 1,4:5,8-diepoxynaphthalenes. On the contrary, only thermodynamically controlled "domino" adducts (2,3-disubstituted 1,4:5,8-diepoxynaphthalenes) are formed in the same reaction at 140 °C. The "pincer" adducts can be transformed to the "domino" adducts at heating. The rate constants for reactions of both types were calculated using dynamic 1 H NMR spectroscopy.

  9. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  10. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  11. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    Science.gov (United States)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  12. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

    Science.gov (United States)

    Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping

    2014-08-01

    Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  14. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xue, Yongqiang

    2012-01-01

    Highlights: ► There is an obvious influence of the size on thermodynamic properties for the reaction referring nano-reactants. ► Gibbs function, enthalpy, entropy and equilibrium constant are dependent on the reactant size. ► There is an approximate linear relation between them. - Abstract: The theoretical relations of thermodynamic properties, the equilibrium constant and reactant size in nanosystem are described. The effects of size on thermodynamic properties and the equilibrium constant were studied using nanosize zinc oxide and sodium bisulfate solution as a reaction system. The experimental results indicated that the molar Gibbs free energy, the molar enthalpy and the molar entropy of the reaction decrease, but the equilibrium constant increases with decreasing reactant size. Linear trends were observed between the reciprocal of size for nano-reactant and thermodynamic variable, which are consistent with the theoretical relations.

  15. Thermodynamics of imidacloprid sorption in Croatian soils

    Science.gov (United States)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  16. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  17. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  18. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  19. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  20. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  1. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  2. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  3. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  4. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  5. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  6. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  7. Thermodynamics of a model solid with magnetoelastic coupling

    Science.gov (United States)

    Szałowski, K.; Balcerzak, T.; Jaščur, M.

    2018-01-01

    In the paper a study of a model magnetoelastic solid system is presented. The system of interest is a mean-field magnet with nearest-neighbour ferromagnetic interactions and the underlying s.c. crystalline lattice with the long-range Morse interatomic potential and the anharmonic Debye model for the lattice vibrations. The influence of the external magnetic field on the thermodynamics is investigated, with special emphasis put on the consequences of the magnetoelastic coupling, introduced by the power-law distance dependence of the magnetic exchange integral. Within the fully self-consistent, Gibbs energy-based formalism such thermodynamic quantities as the entropy, the specific heat as well as the lattice and magnetic response functions are calculated and discussed. To complete the picture, the magnetocaloric effect is characterized by analysis of the isothermal entropy change and the adiabatic temperature change in the presence of the external pressure.

  8. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  9. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  10. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  11. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    DEFF Research Database (Denmark)

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...

  12. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  13. The OpenCalphad thermodynamic software interface

    Science.gov (United States)

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  14. Black hole chemistry: thermodynamics with Lambda

    International Nuclear Information System (INIS)

    Kubizňák, David; Mann, Robert B; Teo, Mae

    2017-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)

  15. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  16. THE INFLUENCE OF THE SOLVENT ON THE THERMODYNAMICS OF ION ASSOCIATION

    Directory of Open Access Journals (Sweden)

    Vitalii Chumak

    2011-03-01

    Full Text Available Abstract. Some approaches which allow to divide thermodynamic functions of the ion associationprocess in two components have been developed. The first component belongs to the process, the second oneis caused by the temperature dependence of the dielectric permittivity of the solvent. The theory is confirmedby numerous examples of the ion association process of different electrolytes in the binary mixed solvents.Keywords: covalent part of the constant of ionic association, electrostatic part of the constant of ionicassociation, enthalpy of the chemical equilibria in solution, enthropy of the chemical equilibria in solution,ionic association, ionic equilibrias, the equilibrium constant.

  17. Thermodynamic analysis of an HCCI engine based system running on natural gas

    International Nuclear Information System (INIS)

    Djermouni, Mohamed; Ouadha, Ahmed

    2014-01-01

    Highlights: • A thermodynamic analysis of an HCCI based system has been carried out. • A thermodynamic model has been developed taking into account the gas composition resulting from the combustion process. • The specific heat of the working fluid is temperature dependent. - Abstract: This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine

  18. Thermodynamic Resistance to Matter Flow at The Interface of a Porous Membrane.

    Science.gov (United States)

    Glavatskiy, K S; Bhatia, Suresh K

    2016-04-12

    Nanoporous materials are important in industrial separation, but their application is subject to strong interfacial barriers to the entry and transport of fluids. At certain conditions the fluid inside and outside the nanoporous material can be viewed as a two-phase system, with an interface between them, which poses an excess resistance to matter flow. We show that there exist two kinds of phenomena which influence the interfacial resistance: hydrodynamic effects and thermodynamic effects, which are independent of each other. Here, we investigate the role of the thermodynamic effects in carbon nanotubes (CNTs) and slit pores and compare the associated thermodynmic resistance with that due to hydrodynamic effects traditionally modeled by the established Sampson expression. Using CH4 and CO2 as model fluids, we show that the thermodynamic resistance is especially important for moderate to high pressures, at which the fluid within the CNT or slit pore is in the condensed state. Further, we show that at such pressures the thermodynamic resistance becomes comparable with the internal resistance to fluid transport at length scales typical of membranes used in fuel cells, and of importance in membrane-based separation, and nanofluidics in general.

  19. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.

    Science.gov (United States)

    Xu, Wen-Sheng; Freed, Karl F

    2013-06-21

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain

  20. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    Science.gov (United States)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  1. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  2. Regulatory Accessibility and Social Influences on State Self-Control

    OpenAIRE

    vanDellen, Michelle R.; Hoyle, Rick H.

    2009-01-01

    The current work examined how social factors influence self-control. Current conceptions of state self-control treat it largely as a function of regulatory capacity. The authors propose that state self-control might also be influenced by social factors because of regulatory accessibility. Studies 1 through 4 provide evidence that individuals’ state self-control is influenced by the trait and state self-control of salient others such that thinking of others with good trait or state self-contro...

  3. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  4. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  5. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  6. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  7. Kinetics of Interactions of Matter, Antimatter and Radiation Consistent with Antisymmetric (CPT-Invariant Thermodynamics

    Directory of Open Access Journals (Sweden)

    A.Y. Klimenko

    2017-05-01

    Full Text Available This work investigates the influence of directional properties of decoherence on kinetics rate equations. The physical reality is understood as a chain of unitary and decoherence events. The former are quantum-deterministic, while the latter introduce uncertainty and increase entropy. For interactions of matter and antimatter, two approaches are considered: symmetric decoherence, which corresponds to conventional symmetric (CP-invariant thermodynamics, and antisymmetric decoherence, which corresponds to antisymmetric (CPT-invariant thermodynamics. Radiation, in its interactions with matter and antimatter, is shown to be decoherence-neutral. The symmetric and antisymmetric assumptions result in different interactions of radiation with matter and antimatter. The theoretical predictions for these differences are testable by comparing absorption (emission of light by thermodynamic systems made of matter and antimatter. Canonical typicality for quantum mixtures is briefly discussed in Appendix A.

  8. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  9. Pressure Control in Distillation Columns: A Model-Based Analysis

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Bisgaard, Thomas; Kristensen, Henrik

    2014-01-01

    A comprehensive assessment of pressure control in distillation columns is presented, including the consequences for composition control and energy consumption. Two types of representative control structures are modeled, analyzed, and benchmarked. A detailed simulation test, based on a real...... industrial distillation column, is used to assess the differences between the two control structures and to demonstrate the benefits of pressure control in the operation. In the second part of the article, a thermodynamic analysis is carried out to establish the influence of pressure on relative volatility...

  10. Modular Approach to Designing Computer Cultural Systems: Culture as a Thermodynamic Machine

    Directory of Open Access Journals (Sweden)

    Leland Gilsen

    2015-01-01

    Full Text Available Culture is a complex non-linear system. In order to design computer simulations of cultural systems, it is necessary to break the system down into sub-systems. Human culture is modular. It consists of sets of people that belong to economic units. Access to, and control over matter, energy and information is postulated as the key to development of cultural simulations. Because resources in the real world are patchy, access to and control over resources is expressed in two related arenas: economics (direct control and politics (non-direct control. The best way to create models for cultural ecology/economics lies in an energy-information-economic paradigm based on general systems theory and an understanding of the "thermodynamics" of ecology, or culture as a thermodynamic machine.

  11. Thermodynamic and aerodynamic meanline analysis of wet compression in a centrifugal compressor

    International Nuclear Information System (INIS)

    Kang, Jeong Seek; Cha, Bong Jun; Yang, Soo Seok

    2006-01-01

    Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases

  12. Thermodynamic optimization of the Cu-Nd system

    International Nuclear Information System (INIS)

    Wang Peisheng; Zhou Liangcai; Du Yong; Xu Honghui; Liu Shuhong; Chen Li; Ouyang Yifang

    2011-01-01

    Research highlights: → The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd were calculated using DFT. → The thermodynamic constraints to eliminate the artificial phase relations were imposed during the thermodynamic optimization procedure. → The Cu-Nd system was optimized under the thermodynamic constraints. - Abstract: The thermodynamic constraints to eliminate artificial phase relations were introduced with the Cu-Nd system as an example. The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd are calculated using density functional theory. Taking into account all the experimental data and the first-principles calculated enthalpies of formation of these compounds, the thermodynamic optimization of the Cu-Nd system was performed under the proposed thermodynamic constraints. It is demonstrated that the thermodynamic constraints are critical to obtain a set of thermodynamic parameters for the Cu-Nd system, which can avoid the appearance of all the artificial phase relations.

  13. Possible extended forms of thermodynamic entropy

    International Nuclear Information System (INIS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy. (paper)

  14. Thermodynamics of statistical inference by cells.

    Science.gov (United States)

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  15. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  16. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  17. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  18. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  19. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  20. Misuse of thermodynamic entropy in economics

    International Nuclear Information System (INIS)

    Kovalev, Andrey V.

    2016-01-01

    The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.

  1. Thermodynamics of an accelerated expanding universe

    International Nuclear Information System (INIS)

    Wang Bin; Gong Yungui; Abdalla, Elcio

    2006-01-01

    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics

  2. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  3. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  4. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    International Nuclear Information System (INIS)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions

  5. Thermodynamic study of selected monoterpenes II

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  6. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  7. In search of the best match: probing a multi-dimensional cloud microphysical parameter space to better understand what controls cloud thermodynamic phase

    Science.gov (United States)

    Tan, Ivy; Storelvmo, Trude

    2015-04-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that

  8. Influence of compositions on thermal stability and thermodynamic parameter in Ca-Mg-Cu bulk metallic glasses

    Science.gov (United States)

    Deshmukh, A. A.; Khond, A. A.; Palikundwar, U. A.

    2018-05-01

    In the present manuscript, influence of compositions on thermal stability (ΔTx) and thermodynamic parameter PHSS of Ca-Mg-Cu bulk metallic glasses (BMGs) is evaluated. The statistical approach of regression analysis is adopted to investigate the compositional variation with ΔTx and PHSS. It is found that calcium (Ca) and copper (Cu) content has goodlinear relationship with ΔTx and PHSS. It is observed that with increase in Ca content, ΔTx and PHSS decreases. On the other hand, increase in Cu content, both ΔTx and PHSS increases. Correlation fit of magnesium (Mg) content with both ΔTx and PHSS is very poor. A graph is also plotted to understand the relationship between ΔTx and PHSS. Result of the relationship between ΔTx and PHSS reveals that the alloy composition having more negative value of PHSS will have more stability. Therefore, compositions with more negative value of PHSS will lead to ease of BMGs formation in Ca-Mg-Cu alloy system and hence more stable it will be. It is expected that these results will be supportive in identifying the compositions having these elements for making BMGs.

  9. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  10. Geometric description of BTZ black hole thermodynamics

    International Nuclear Information System (INIS)

    Quevedo, Hernando; Sanchez, Alberto

    2009-01-01

    We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  11. Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype

    Science.gov (United States)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-03-01

    In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.

  12. Braun-Le Chatelier principle in dissipative thermodynamics

    OpenAIRE

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  13. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  14. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  15. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  16. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  17. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  18. Thermodynamic Study of Tl6SBr4 Compound and Some Regularities in Thermodynamic Properties of Thallium Chalcohalides

    Directory of Open Access Journals (Sweden)

    Dunya Mahammad Babanly

    2017-01-01

    Full Text Available The solid-phase diagram of the Tl-TlBr-S system was clarified and the fundamental thermodynamic properties of Tl6SBr4 compound were studied on the basis of electromotive force (EMF measurements of concentration cells relative to a thallium electrode. The EMF results were used to calculate the relative partial thermodynamic functions of thallium in alloys and the standard integral thermodynamic functions (-ΔfG0, -ΔfH0, and S0298 of Tl6SBr4 compound. All data regarding thermodynamic properties of thallium chalcogen-halides are generalized and comparatively analyzed. Consequently, certain regularities between thermodynamic functions of thallium chalcogen-halides and their binary constituents as well as degree of ionization (DI of chemical bonding were revealed.

  19. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  20. Development of a thermodynamic data base for selected heavy metals

    International Nuclear Information System (INIS)

    Hageman, Sven; Scharge, Tina; Willms, Thomas

    2015-07-01

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  1. Influence of substituents of nickel(II) complexes of Schiff bases of substituted (S)-2-N-(benzylpropyl)aminobenzophenones and amino-acids on their asymmetric induction

    International Nuclear Information System (INIS)

    Nadvornik, M.; Lycka, A.; Gee, A.; Popkov, A.

    1999-01-01

    The aim of this work was to study of influence of substituents on benzophenone substituent on thermodynamic controlled induction of complexes as well as influence of substituents on benzyl group and on benzophenone on kinetically controlled asymmetric induction of complexes. [ 13 C]methyl iodide was used in the synthesis. Replace of benzyl group by 2,4,6-trimethylbenzyl group increase kinetically controlled asymmetric induction of synthesis of (S)-α-[ 13 C]methylalanine from 43% d.e. to 66% d.e

  2. Thermodynamic origin of nonimaging optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  3. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  4. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  5. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  6. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  7. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  8. Thermodynamic light on black holes

    International Nuclear Information System (INIS)

    Davies, P.

    1977-01-01

    The existence of black holes and their relevance to our understanding of the nature of space and time are considered, with especial reference to the application of thermodynamic arguments which can reveal their energy-transfer processes in a new light. The application of thermodynamics to strongly gravitating systems promises some fascinating new insights into the nature of gravity. Situations can occur during gravitational collapse in which existing physics breaks down. Under these circumstances, the application of universal thermodynamical principles might be our only guide. (U.K.)

  9. Thermodynamics in f(G,T Gravity

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2018-01-01

    Full Text Available This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous universe model in f(G,T gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, resp.. We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of thermodynamics in first law. The universal condition for the validity of generalized second law of thermodynamics is also obtained. Finally, we check the validity of generalized second law of thermodynamics for the reconstructed f(G,T models (de Sitter and power-law solutions. We conclude that this law holds for suitable choices of free parameters.

  10. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  11. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    International Nuclear Information System (INIS)

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  12. Age and Family Control Influences on Children's Television Viewing.

    Science.gov (United States)

    Rubin, Alan M.

    1986-01-01

    Indicates that (1) age and family control did not influence children's television viewing levels; (2) age influenced program preferences of children; (3) cartoon preferences related negatively to family control for the youngest groups; and (4) comedy and children's program preferences and television realism related positively to family control for…

  13. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  14. Stability of black holes based on horizon thermodynamics

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2015-12-01

    Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  15. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  16. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  17. Thermodynamics of energy extraction from fractured hot dry rock

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J S; Bejan, A [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Kim, J H [Electric Power Research Inst., Palo Alto, CA (United States)

    1992-03-01

    It has been proposed to extract energy from the subterranean hot dry rock bed (HDR) by creating one or more narrow fractures in the rock and circulating cold water through the fractures. In time, the temperature of the rock region surrounding the crack drops under the influence of time-dependent conduction. This study presents the most basic thermodynamic aspects (first law and second law) of the HDR energy extraction process. It shows which parameters most influence the amount of useful energy (exergy) extracted from the HDR reservoir over a fixed time interval. For example, the water flow rate can be selected optimally in order to maximize the delivery of exergy over the lifetime of the HDR system. (author).

  18. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  19. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  20. Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2010-09-01

    Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.

  1. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  2. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  3. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  4. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  5. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  6. Practical chemical thermodynamics for geoscientists

    CERN Document Server

    Fegley, Bruce, Jr

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature.

  7. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  8. Thermodynamic analysis of dust sulphation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A.

    1997-12-31

    Sulphation reactions of metal oxides with SO{sub 2} and O. or SO{sub 3} play significant roles in sulphation roasting of sulphide and oxide minerals as well as in desulphurisation process of combustion gases. In metallurgical waste-heat boilers for sulphide smelting, the sulphation of the oxidic flue dust in the atmosphere containing sulphur oxides is an unavoidable process, and the sulphation reactions have to be guided in a controlled way in the proper parts of the gas handling equipment. In this report, some thermodynamic analyses were conducted for the oxide sulphation reactions in relation to sulphide smelting processes. The phase stability of Me-S-O systems especially for oxides - sulphates equilibrium was studied under different thermodynamic conditions of gas compositions and temperatures. The sulphate stability was analysed for an example of gas compositions in the copper flash smelter of Outokumpu Harjavalta Metals Oy, in relation to temperature. In the report, most of the information was from literature. Moreover, a number of thermodynamic computations were carried out with the HSC program, and the constructed phase stability diagrams were compared with those from the literature whenever possible. The maximum temperatures for stable sulphates under normal operating conditions of the waste-heat boilers in sulphide smelting processes were obtained. This report will serve as the basis for the kinetic studies of the sulphation reactions and the sulphation reaction modelling in pyrometallurgical processes. (orig.) SULA 2 Programme. 36 refs.

  9. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  10. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  11. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  12. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  13. Behavior of the Thermodynamic Properties of Binary Mixtures near the Critical Azeotrope

    Directory of Open Access Journals (Sweden)

    Azzedine Abbaci

    2003-12-01

    Full Text Available Abstract: In this work we investigate the critical line of binary azeotropic mixtures of acetone-n-pentane. We pinpoint the abnormal behavior of the critical density line as a function of the mole fraction of one of the component and show its influence on other thermodynamic properties such as the volume, the enthalpy and the entropy.

  14. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  15. Measurements and simulations of electromagnetic perturbations on neutronic and thermodynamic control systems of nuclear reactors

    International Nuclear Information System (INIS)

    Lecompte, J.-C.; Buisson, Jacques.

    1981-01-01

    Neutronics and thermodynamics measuring devices realize the control and nuclear safety of the reactor and the core. They cause the emergency stop of the reactor if the informations given by the sensors are out of the normal operation tolerances. Defining and assuring a protection level sufficiently high against electromagnetic disturbances is essential for avoiding those measuring devices of giving erroneous indications in the environment where they are located. To obtain this result, one procceds according to the following three steps: a) In situ measurements of the ambient level of disturbances (oscilloscope analysis, statistical measurements). b) Measurement in laboratory of the immunity against the disturbances caused by every constituent of the device (electronic cables, connectors) and then the complete device. c) In situ simulation on the devices of the perturbations caused by the measured ambient level [fr

  16. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  17. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  18. Lanthanides and actinides sorption on to alumina with simple organic ligands. Thermodynamic and spectroscopic approaches

    International Nuclear Information System (INIS)

    Alliot, C.

    2003-01-01

    This work comes within studies of nuclear waste disposal. The sorption of radionuclide onto mineral is very important to understand their migration. So this work deals with the influence of ligands like oxalic, acetic and carbonic acids on lanthanides and actinides sorption onto alumina. Two complementary approaches were carried out: thermodynamic (determination of chemical reactions and associated constants). So we obtain a thermodynamic database for the ternary systems metal/ligand/alumina which we use to define the experimental conditions to observe by spectroscopy sorbed species. Then the identification of surface complexes was carried out using two spectroscopies, XPS and TRLIFS. (author)

  19. Application of thermodynamics to silicate crystalline solutions

    Science.gov (United States)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  20. An introduction to thermodynamics and statistical mechanics

    CERN Document Server

    Saxena, A K

    2016-01-01

    An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)

  1. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing

    Science.gov (United States)

    Liu, Huachu; He, Yanlin; Li, Lin

    2009-12-01

    Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.

  2. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Liu Huachu; He Yanlin [School of Material Science and Engineering, Shanghai University, No.149 Yanchang Road Shanghai 200072 (China); Li Lin, E-mail: liling@shu.edu.cn [School of Material Science and Engineering, Shanghai University, No.149 Yanchang Road Shanghai 200072 (China)

    2009-12-15

    Firstly in this paper, the influence of H{sub 2} and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H{sub 2} and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr{sub 2}O{sub 3}, SiO{sub 2} etc.) can be reduced by the effective Al in Zn bath.

  3. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  4. Introduction to the thermodynamics of solids

    International Nuclear Information System (INIS)

    Ericksen, J.L.

    1992-01-01

    This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided

  5. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    Science.gov (United States)

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  6. Reducing treatment of coppersmelting slag: Thermodynamic analysis of impurities behavior

    Science.gov (United States)

    Komkov, Alexey; Kamkin, Rostislav

    2011-01-01

    A thermodynamic mathematical model, describing behavior of Pb, Zn, and As during reducing slag cleaning in the Vanyukov furnace has been developed. Using a developed model, the influence of different factors, such as temperature, oxygen partial pressure, the ratio of the formed phases on the behavior of impurities, was analyzed. It was found that arsenic can significantly move to the bottom phase, and zinc can be significantly vaporized under conditions in the Vanyukov furnace.

  7. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  8. The statistical-inference approach to generalized thermodynamics

    International Nuclear Information System (INIS)

    Lavenda, B.H.; Scherer, C.

    1987-01-01

    Limit theorems, such as the central-limit theorem and the weak law of large numbers, are applicable to statistical thermodynamics for sufficiently large sample size of indipendent and identically distributed observations performed on extensive thermodynamic (chance) variables. The estimation of the intensive thermodynamic quantities is a problem in parametric statistical estimation. The normal approximation to the Gibbs' distribution is justified by the analysis of large deviations. Statistical thermodynamics is generalized to include the statistical estimation of variance as well as mean values

  9. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  10. Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš

    2013-01-01

    Roč. 66, JAN (2013), s. 3-13 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013

  11. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    Science.gov (United States)

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  12. Toward thermodynamic consistency of quasiparticle picture

    International Nuclear Information System (INIS)

    Biro, T.S.; Toneev, V.D.; Shanenko, A.A.

    2003-01-01

    The purpose of the present article is to call attention to some realistic quasiparticle-based description of quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamic consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamic consistency. Particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential that can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics

  13. Making thermodynamic functions of nanosystems intensive

    International Nuclear Information System (INIS)

    Nassimi, A M; Parsafar, G A

    2007-01-01

    The potential energy of interaction among particles in many systems is proportional to r -α . In systems for which α< d, we encounter nonextensive (nonintensive) thermodynamic functions, where d is the space dimension. A scaling parameter, N-tilde, has been introduced to make the nonextensive (nonintensive) thermodynamic functions of such systems extensive (intensive). Our simulation results show that this parameter is not capable of making the thermodynamic functions of a nanosystem extensive (intensive). Here we have presented a theoretical justification for N-tilde. Then we have generalized this scaling parameter to be capable of making the nonextensive (nonintensive) thermodynamic functions of nanosystems extensive (intensive). This generalized parameter is proportional to the potential energy per particle at zero temperature

  14. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  15. Black hole thermodynamics with conical defects

    Energy Technology Data Exchange (ETDEWEB)

    Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)

    2017-05-22

    Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.

  16. 31 CFR 50.8 - Procedure for requesting determinations of controlling influence.

    Science.gov (United States)

    2010-07-01

    ... determinations of controlling influence. 50.8 Section 50.8 Money and Finance: Treasury Office of the Secretary of... determinations of controlling influence. (a) An insurer or insurers not having control over another insurer under... controlling influence under § 50.5(c)(4)(i) through (iv) or otherwise to request a determination of...

  17. The thermodynamic basis of entransy and entransy dissipation

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2011-01-01

    In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.

  18. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  19. [Thermodynamics of the origin of life, evolution and aging].

    Science.gov (United States)

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  20. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  1. Factors influencing warfarin control in Australia and Singapore.

    Science.gov (United States)

    Bernaitis, Nijole; Ching, Chi Keong; Teo, Siew Chong; Chen, Liping; Badrick, Tony; Davey, Andrew K; Crilly, Julia; Anoopkumar-Dukie, Shailendra

    2017-09-01

    Warfarin is widely used for patients with non-valvular atrial fibrillation (NVAF). Variations in warfarin control, as measured by time in therapeutic range (TTR), have been reported across different regions and ethnicities, particularly between Western and Asian countries. However, there is limited data on comparative factors influencing warfarin control in Caucasian and Asian patients. Therefore, the aim of this study was to determine warfarin control and potential factors influencing this in patients with NVAF in Australia and Singapore. Retrospective data was collected for patients receiving warfarin for January to June 2014 in Australia and Singapore. TTR was calculated for individuals with mean patient TTR used for analysis. Possible influential factors on TTR were analysed including age, gender, concurrent co-morbidities, and concurrent medication. The mean TTR was significantly higher in Australia (82%) than Singapore (58%). At both sites, chronic kidney disease significantly lowered this TTR. Further factors influencing control were anaemia and ageWarfarin control was significantly higher in Australia compared to Singapore, however chronic kidney disease reduced control at both sites. The different levels of control in these two countries, together with patient factors further reducing control may impact on anticoagulant choice in these countries with better outcomes from warfarin in Australia compared to Singapore. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  3. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  4. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  5. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of molybdenum

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2010-06-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of molybdenum were carried out. We focused to select thermodynamic data of aqueous species and compounds which could form under repository conditions for the disposal of radioactive wastes, i.e. relatively low concentration of molybdenum and from near neutral through alkaline conditions. Selection of thermodynamic data was based on the guidelines by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Extensive literature survey was performed and all the obtained articles were carefully reviewed to select the thermodynamic data for molybdenum. Thermodynamic data at 25degC and zero ionic strength were determined from accepted thermodynamic data which were considered to be reliable. We especially paid attention to select formation constant of molybdate ion (MoO 4 2- ) with hydrogen ion (H + ) in detail. This is the first report in showing selection of thermodynamic data for molybdenum with detailed reviewing process. (author)

  6. Trade-off between quantum capacitance and thermodynamic stability of defected graphene: an implication for supercapacitor electrodes

    Science.gov (United States)

    Srivastava, Anurag; SanthiBhushan, Boddepalli

    2018-03-01

    Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.

  7. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    Science.gov (United States)

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  8. THERMODYNAMIC STUDIES ON THE CHARGE-TRANSFER ...

    African Journals Online (AJOL)

    ... technique was employed to investigate thermodynamic parameters associated with the interaction ... KEY WORDS: Amitriptyline , chloranilic acid, thermodynamic parameters. Global Jnl Pure & Applied Sciences Vol.10(1) 2004: 147-153 ...

  9. Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers

    DEFF Research Database (Denmark)

    Pasternak, Anna; Wengel, Jesper

    2011-01-01

    The influence of acyclic RNA derivatives, UNA (unlocked nucleic acid) monomers, on i-DNA thermodynamic stability has been investigated. The 22 nt human telomeric fragment was chosen as the model sequence for stability studies. UNA monomers modulate i-motif stability in a position-depending manner...

  10. Thermodynamics for engineers

    CERN Document Server

    Wong, Kaufui Vincent

    2011-01-01

    Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.

  11. Thermodynamic equilibrium-air correlations for flowfield applications

    Science.gov (United States)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  12. Chemical thermodynamics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry

    2012-07-01

    Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.

  13. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of selenium

    International Nuclear Information System (INIS)

    Doi, Reisuke; Kitamura, Akira; Yui, Mikazu

    2010-02-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of selenium was carried out. Selection of thermodynamic data of selenium was based on a thermodynamic database of selenium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). The remarks of a thermodynamic database by OECD/NEA found by the authors were noted in this report and then thermodynamic data was reviewed after surveying latest literatures. Some thermodynamic values of iron selenides were not selected by the OECD/NEA due to low reliability. But they were important for the performance assessment of geological disposal of radioactive wastes, so we selected them as a tentative value with specifying reliability and needs of the value to be determined. (author)

  14. Towards thermodynamical consistency of quasiparticle picture

    International Nuclear Information System (INIS)

    Biro, T.S.; Shanenko, A.A.; Toneev, V.D.; Research Inst. for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest

    2003-01-01

    The purpose of the present article is to call attention to some realistic quasi-particle-based description of the quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamical consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamical consistency. A particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential, which can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics [ru

  15. 48 CFR 904.7003 - Disclosure of foreign ownership, control, or influence.

    Science.gov (United States)

    2010-10-01

    ... ownership, control, or influence. 904.7003 Section 904.7003 Federal Acquisition Regulations System... ownership, control, or influence. (a) If a contract requires a contractor to have a Facility Clearance, DOE must determine whether the contractor is or may be subject to foreign ownership, control or influence...

  16. Thermodynamics in finite time: A chemically driven engine

    International Nuclear Information System (INIS)

    Ondrechen, M.J.; Berry, R.S.; Andresen, B.

    1980-01-01

    The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate

  17. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    Science.gov (United States)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  18. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  19. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  20. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  1. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  2. Limits of predictions in thermodynamic systems: a review

    Science.gov (United States)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  3. Non-equilibrium thermodynamics in cells.

    Science.gov (United States)

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  4. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  5. The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs-Duhem relation and consistent with the Phase Rule.

    Science.gov (United States)

    Pethica, Brian A

    2010-07-21

    Interpretations of data in the extensive literature on the unfolding of proteins in aqueous solution follow a variety of methods involving assumptions leading to estimates of thermodynamic quantities associated with the unfolding transition. Inconsistencies and thermodynamic errors in these methods are identified. Estimates of standard molar free energies and enthalpies of unfolding using incompletely defined equilibrium constants and the van't Hoff relation are unsound, and typically contradict model-free interpretation of the data. A widely used routine for estimating the change in heat capacity associated with unfolding based on changes in the unfolding temperature and enthalpy co-induced by addition of denaturant or protective additives is thermodynamically incorrect by neglect of the Phase Rule. Many models and simulations predicting thermodynamic measures of unfolding are presently making comparisons with insecure quantities derived by incorrect thermodynamic analyses of experimental data. Analysis of unfolding via the Gibbs-Duhem equation with the correct Phase Rule constraints avoids the assumptions associated with incomplete equilibrium constants and misuse of the van't Hoff relation, and applies equally to positive, negative, sitewise or diffuse solute binding to the protein. The method gives the necessary relations between the thermodynamic parameters for thermal and isothermal unfolding and is developed for the case of two-state unfolding. The differences in binding of denaturants or stabilizers to the folded and unfolded forms of the protein are identified as major determinants of the unfolding process. The Phase Rule requires the temperature and enthalpy of unfolding to depend generally on the protein concentration. The available evidence bears out this expectation for thermal unfolding, indicating that protein-protein interactions influence folding. A parallel dependence of the denaturant concentrations for isothermal unfolding on the protein

  6. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  7. Elementary statistical thermodynamics a problems approach

    CERN Document Server

    Smith, Norman O

    1982-01-01

    This book is a sequel to my Chemical Thermodynamics: A Prob­ lems Approach published in 1967, which concerned classical thermodynamics almost exclusively. Most books on statistical thermodynamics now available are written either for the superior general chemistry student or for the specialist. The author has felt the need for a text which would bring the intermediate reader to the point where he could not only appreciate the roots of the subject but also have some facility in calculating thermodynamic quantities. Although statistical thermodynamics comprises an essential part of the college training of a chemist, its treatment in general physical chem­ istry texts is, of necessity, compressed to the point where the less competent student is unable to appreciate or comprehend its logic and beauty, and is reduced to memorizing a series of formulas. It has been my aim to fill this need by writing a logical account of the foundations and applications of the sub­ ject at a level which can be grasped by an under...

  8. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  9. Thermodynamics of Inozemtsev's elliptic spin chain

    International Nuclear Information System (INIS)

    Klabbers, Rob

    2016-01-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  10. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  11. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.

    International Nuclear Information System (INIS)

    Gemmer, Jochen; Michel, M.; Mahler, Guenter

    2009-01-01

    This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)

  12. Casimir effect and thermodynamics of horizon instabilities

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.

    2004-01-01

    We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance

  13. Thermodynamic properties calculation of the flue gas based on its composition estimation for coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Liang; Yuan, Jingqi

    2015-01-01

    Thermodynamic properties of the working fluid and the flue gas play an important role in the thermodynamic calculation for the boiler design and the operational optimization in power plants. In this study, a generic approach to online calculate the thermodynamic properties of the flue gas is proposed based on its composition estimation. It covers the full operation scope of the flue gas, including the two-phase state when the temperature becomes lower than the dew point. The composition of the flue gas is online estimated based on the routinely offline assays of the coal samples and the online measured oxygen mole fraction in the flue gas. The relative error of the proposed approach is found less than 1% when the standard data set of the dry and humid air and the typical flue gas is used for validation. Also, the sensitivity analysis of the individual component and the influence of the measurement error of the oxygen mole fraction on the thermodynamic properties of the flue gas are presented. - Highlights: • Flue gas thermodynamic properties in coal-fired power plants are online calculated. • Flue gas composition is online estimated using the measured oxygen mole fraction. • The proposed approach covers full operation scope, including two-phase flue gas. • Component sensitivity to the thermodynamic properties of flue gas is presented.

  14. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  15. Factors Influencing Prevention and Control of Malaria among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    investigate factors that influence malaria prevention and control practices among pregnant ... treatment of clinical cases and the promotion of ... influence their decision regarding malaria ..... have the ability to purchase anti-malaria drugs that.

  16. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    Science.gov (United States)

    Ito, Sosuke

    2016-01-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120

  17. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  18. Thermodynamics of Weakly Measured Quantum Systems.

    Science.gov (United States)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  19. Quantum thermodynamics of general quantum processes.

    Science.gov (United States)

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  20. The thermodynamic-buffer enzymes.

    Science.gov (United States)

    Stucki, J W

    1980-08-01

    Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a

  1. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  2. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  3. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  4. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  5. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    Science.gov (United States)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  6. Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-06-01

    Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

  7. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  8. Canonical operator formulation of nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Mehrafarin, M.

    1992-09-01

    A novel formulation of nonequilibrium thermodynamics is proposed which emphasises the fundamental role played by the Boltzmann constant k in fluctuations. The equivalence of this and the stochastic formulation is demonstrated. The k → 0 limit of this theory yields the classical deterministic description of nonequilibrium thermodynamics. The new formulation possesses unique features which bear two important results namely the thermodynamic uncertainty principle and the quantisation of entropy production rate. Such a theory becomes indispensable whenever fluctuations play a significant role. (author). 7 refs

  9. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  10. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    Science.gov (United States)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  11. Thermodynamic properties of the amorphous and crystalline modifications of carbon and the metastable synthesis of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Guencheva, V.; Grantscharova, E.; Gutzow, I. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Physical Chemistry

    2001-07-01

    The temperature dependencies of the thermodynamic properties of the little known (or even hypothetical) undercooled carbon melt and of the glasses that could be obtained from it at appropriate cooling rates are constructed. This is done using both a general thermodynamic formalism to estimate equilibrium properties of undercooled glass-forming melts and the expected analogy in properties of Fourth Group Elements. A comparison of the hypothetical carbon glasses with amorphous materials, obtained by the pyrolisis of organic resins, usually called vitreous (or glassy) carbon, is made. It turns out that from a thermodynamic point of view existing vitreous carbon materials, although characterized by an amorphous, frozen-in structure, differ significantly from the carbon glasses, which could be obtained by a splat-cool-quench of the carbon melt. It is shown also that the hypothetical carbon glasses should have at any temperature a thermodynamic potential, significantly higher than that of diamond. Thus they could be used as a source of constant supersaturation in metastable diamond synthesis. Existing amorphous carbon materials, although showing considerably lower thermodynamic potentials than the hypothetical carbon glasses, could also be used as sources of constant supersaturation in a process of isothermal diamond synthesis if their thermodynamic potential is additionally increased (e.g. by mechano-chemical treatment or by dispersion into nano-size scale). Theoretical estimates made in terms of Ostwald's Rule of Stages indicate that in processes of metastable isothermal diamond synthesis additional kinetic factors (e.g. influencing the formation of sp{sup 3} - carbon structures in the ambient phase) and the introduction of active substrates (e.g. diamond powder) are to be of significance in the realization of this thermodynamic possibility. (orig.)

  12. Ch. 33 Modeling: Computational Thermodynamics

    International Nuclear Information System (INIS)

    Besmann, Theodore M.

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  13. Thermodynamics of urban population flows.

    Science.gov (United States)

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  14. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  15. Thermodynamic data development using the solubility method (Joint research)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Yui, Mikazu

    2013-05-01

    The solubility method is one of the most powerful tools to obtain reliable thermodynamic data for 1) solubility products of discrete solids and double salts, 2) complexation constants for various ligands, 3) development of data in a wide range of pH values, 4) evaluation of data for metals that form very insoluble solids (e.g. tetravalent actinides), 5) determining solubility-controlling solids in different types of wastes and 6) elevated temperatures for redox sensitive systems. This document is focused on describing various aspects of obtaining thermodynamic data using the solubility method. This manuscript deals with various aspects of conducting solubility studies, including selecting the study topic, modeling to define important variables, selecting the range of variables and experimental parameters, anticipating results, general equipment requirements, conducting experiments, and interpreting experimental data. (author)

  16. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  17. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  18. Statistical thermodynamics of alloys

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1986-01-01

    This book presents information on the following topics: consequences of laws of thermodynamics; Helmholtz and Gibbs energies; analytical forms of excess partial molar properties; single-component and multicomponent equilibria; phase rules and diagrams; lever rule; fermions, bosons, and Boltzons; approximate equations; enthalpy and heat capacity; Pd-H system; hydrogen-metal systems; limitations of Wagner model; energy of electrons and hols; dopants in semiconductors; derived thermodynamic properties; simple equivalent circuit; calculation procedure; multicompoent diagrams re; Engel-Brewer theories; p-n junctions; and solar cells

  19. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  20. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of cobalt and nickel

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yui, Mikazu; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2009-11-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of cobalt and nickel have been carried out. For cobalt, extensive literature survey has been performed and all the obtained literatures have been carefully reviewed to select the thermodynamic data. Selection of thermodynamic data of nickel has been based on a thermodynamic database published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA), which has been carefully reviewed by the authors, and then thermodynamic data have been selected after surveying latest literatures. Based on the similarity of chemical properties between cobalt and nickel, complementary thermodynamic data of nickel and cobalt species expected under the geological disposal condition have been selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  1. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  2. Determination of the thermodynamic properties of water from the speed of sound

    International Nuclear Information System (INIS)

    Trusler, J.P. Martin; Lemmon, Eric W.

    2017-01-01

    Highlights: • We analyse error propagation in thermodynamic integration of fluid-phase sound speed data. • A new correlation of the speed of sound in liquid water is derived. • Thermodynamic integration is carried out for pure water. • Derived properties considered include density, isobaric expansivity and isobaric specific heat capacity. - Abstract: Thermodynamic properties of compressed liquids may be obtained from measurements of the speed of sound by means of thermodynamic integration subject to initial values of density and isobaric specific heat capacity along a single low-pressure isobar. In this paper, we present an analysis of the errors in the derived properties arising from perturbations in both the speed-of-sound surface and the initial values. These errors are described in first order by a pair of partial differential equations that we integrate for the example case of water with various scenarios for the errors in the sound speed and the initial values. The analysis shows that errors in either the speed of sound or the initial values of density that are rapidly oscillating functions of temperature have a disproportionately large influence on the derived properties, especially at low temperatures. In view of this, we have obtained a more accurate empirical representation of the recent experimental speed-of-sound data for water [Lin and Trusler, J. Chem. Phys. 136, (2012) 094511] and use this in a new thermodynamic integration to obtain derived properties including density, isobaric heat capacity and isobaric thermal expansivity at temperatures between (253.15 and 473.15) K at pressures up to 400 MPa. The densities obtained in this way are in very close agreement with those reported by Lin and Trusler, but the isobaric specific heat capacity and the isobaric expansivity both differ significantly in the extremes of low temperatures and high pressures.

  3. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  4. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  5. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  6. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  7. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M

    2013-01-01

    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  8. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  9. Modern Thermodynamics Based on the Extended Carnot Theorem

    CERN Document Server

    Wang, Jitao

    2012-01-01

    "Modern Thermodynamics- Based on the Extended Carnot Theorem" provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many "abnormal phenomena", such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China.

  10. A thermodynamic evaluation of the Fe-Nb system

    International Nuclear Information System (INIS)

    Srikanth, S.; Petric, A.

    1994-01-01

    An optimised set of thermodynamic functions consistent with the phase diagram was derived for the Fe-Nb system from information on phase equilibria and thermodynamic data available in the literature. The thermodynamic properties of the intermediate ε (Fe 2 Nb) phase were described using the sublattice model. A Redlich-Kister equation was used to describe the excess thermodynamic functions of the liquid, bcc and fcc phases. For the μ phase, the enthalpy of formation was estimated from Miedema's model. The interaction coefficients were evaluated using an optimisation procedure employing a conjugate gradient method. The phase diagram and the thermodynamic functions calculated from the evaluated parameters are in good agreement with experimental data. (orig.)

  11. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  12. Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions

    International Nuclear Information System (INIS)

    Velazquez, L

    2016-01-01

    Aspects concerning the thermodynamics of astrophysical systems are discussed, generally, and also more specifically those relating to astrophysical systems in mutual interaction (or the so-called open astrophysical systems). A special interest is devoted in this paper to clarifying several misconceptions that are still common in the recent literature, such as the direct application to the astrophysical scenario of notions and theoretical frameworks that were originally conceived to deal with extensive systems of everyday practice (large systems with short-range interactions). This discussion starts by reviewing the current understanding of the notion of negative heat capacity. Beyond this, to clarify its physical relevance, the conciliation of this notion with classical fluctuation theory is discussed, as well as equilibrium conditions concerning systems with negative heat capacities. These results prompt a revision of our understanding about critical phenomena, phase transitions and the so-called zeroth law of thermodynamics. Afterwards, general features about the thermodynamics of astrophysical systems are presented through the consideration of simple models available in the literature. Particular attention is devoted to the influence of evaporation on the macroscopic behavior of these systems. These antecedents are then applied to a critical approach towards the thermodynamics of astrophysical systems in mutual interaction. It is discussed that the long-range character of gravitation leads to the incidence of long-range correlations. This peculiarity imposes a series of important consequences, such as the non-separability of a single astrophysical structure into independent subsystems, the breakdown of additivity and conventional thermodynamic limit, a great sensibility of the macroscopic behavior to the external conditions, the restricted applicability of the so-called thermal contact in astrophysics, and hence, the non-relevance of conventional statistical

  13. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    Science.gov (United States)

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Development of Thermodynamic Conceptual Evaluation

    Science.gov (United States)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  15. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  16. Thermodynamic assessment of the Cu–Fe–Ni system

    International Nuclear Information System (INIS)

    Dreval, Liya A.; Turchanin, Mikhail A.; Agraval, Pavel G.

    2014-01-01

    Highlights: • The thermodynamic description of the Cu–Fe–Ni system has been updated. • The new experimental data have been used to refine thermodynamic model of the system. • The four-sublattice model has been adopted to predict the equilibria involving the ordered L1 2 phase. • A significant improvement in comparison with the previous assessments has been achieved. • The liquidus and solidus projections have been presented. -- Abstract: The thermodynamic description of the Cu–Fe–Ni system has been updated considering the newly available experimental data, as well as compatibility of the present modeling with those used for the Cu and Fe systems. All of the experimental data available in the literature have been critically reviewed, and the inconsistent information has been excluded. The thermodynamic parameters have been evaluated in order to properly describe the thermodynamic properties of the liquid phase and miscibility gap in the solid state. A significant improvement in comparison with the previous thermodynamic descriptions has been achieved. Additionally, for the ordered L1 2 phase the four-sublattice model has been adopted to predict the ternary phase equilibria involving this phase. A set of thermodynamic parameters for the phases is given

  17. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  18. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  19. Ergonomics influence on control room layout

    International Nuclear Information System (INIS)

    Hartfiel, H.D.

    1984-01-01

    Nowadays, human factors has become an important aspect of the design of work places. Since the control room in a nuclear power plant is a work place, too, its layout is also influenced by ergonomics. With the KWU control room concept for the 1300 MW PWR as an example, we show how assured and applicable ergonomic findings enter into the control room design. On the basis of general design principles for work places, specific methods for control room planning have been developed. By working with these methods a concept that makes it possible to build a man-machine interface able to fulfill the process control tasks with all their underlying conditions has been derived. (author)

  20. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  1. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  2. Thermodynamics of micellization from heat-capacity measurements.

    Science.gov (United States)

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An Experimental Determination of Thermodynamic Values

    Science.gov (United States)

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  4. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  5. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  6. From thermodynamics to the solutions in gravity theory

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2014-01-01

    In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity

  7. From thermodynamics to the solutions in gravity theory

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2014-10-01

    Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.

  8. THEREDA. Thermodynamic reference database. Summary of final report

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Bube, Christiane; Marquardt, Christian [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung; Brendler, Vinzenz; Richter, Anke [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Radiochemie; Moog, Helge C.; Scharge, Tina [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Voigt, Wolfgang [TU Bergakademie Freiburg (Germany). Inst. fuer Anorganische Chemie; Wilhelm, Stefan [AF-Colenco AG, Baden (Switzerland)

    2011-03-15

    A long term safety assessment of a repository for radioactive waste requires evidence, that all relevant processes are known and understood, which might have a significant positive or negative impact on its safety. In 2002, a working group of five institutions was established to create a common thermodynamic database for nuclear waste disposal in deep geological formations. The common database was named THEREDA: Thermodynamic Reference Database. The following institutions are members of the working group: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry - Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal - Technische Universitaet Bergakademie Freiberg, Institute of Inorganic Chemistry - AF-Colenco AG, Baden, Switzerland, Department of Groundwater Protection and Waste Disposal - Gesellschaft fur Anlagen- und Reaktorsicherheit, Braunschweig. For the future it is intended that its usage becomes mandatory for geochemical model calculations for nuclear waste disposal in Germany. Furthermore, it was agreed that the new database should be established in accordance with the following guidelines: Long-term usability: The disposal of radioactive waste is a task encompassing decades. The database is projected to operate on a long-term basis. This has influenced the choice of software (which is open source), the documentation and the data structure. THEREDA is adapted to the present-day necessities and computational codes but also leaves many degrees of freedom for varying demands in the future. Easy access: The database is accessible via the World Wide Web for free. Applicability: To promote the usage of the database in a wide community, THEREDA is providing ready-to-use parameter files for the most common codes. These are at present: PHREEQC, EQ3/6, Geochemist's Workbench, and CHEMAPP. Internal consistency: It is distinguished between dependent and independent data. To ensure the required internal consistency of THEREDA, the

  9. THEREDA. Thermodynamic reference database. Summary of final report

    International Nuclear Information System (INIS)

    Altmaier, Marcus; Bube, Christiane; Marquardt, Christian; Voigt, Wolfgang

    2011-03-01

    A long term safety assessment of a repository for radioactive waste requires evidence, that all relevant processes are known and understood, which might have a significant positive or negative impact on its safety. In 2002, a working group of five institutions was established to create a common thermodynamic database for nuclear waste disposal in deep geological formations. The common database was named THEREDA: Thermodynamic Reference Database. The following institutions are members of the working group: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry - Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal - Technische Universitaet Bergakademie Freiberg, Institute of Inorganic Chemistry - AF-Colenco AG, Baden, Switzerland, Department of Groundwater Protection and Waste Disposal - Gesellschaft fur Anlagen- und Reaktorsicherheit, Braunschweig. For the future it is intended that its usage becomes mandatory for geochemical model calculations for nuclear waste disposal in Germany. Furthermore, it was agreed that the new database should be established in accordance with the following guidelines: Long-term usability: The disposal of radioactive waste is a task encompassing decades. The database is projected to operate on a long-term basis. This has influenced the choice of software (which is open source), the documentation and the data structure. THEREDA is adapted to the present-day necessities and computational codes but also leaves many degrees of freedom for varying demands in the future. Easy access: The database is accessible via the World Wide Web for free. Applicability: To promote the usage of the database in a wide community, THEREDA is providing ready-to-use parameter files for the most common codes. These are at present: PHREEQC, EQ3/6, Geochemist's Workbench, and CHEMAPP. Internal consistency: It is distinguished between dependent and independent data. To ensure the required internal consistency of THEREDA, the

  10. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  11. Thermodynamic behaviour of ruthenium at high temperatures

    International Nuclear Information System (INIS)

    Garisto, F.

    1988-01-01

    Thermodynamic equilibrium calculations are used to determine the chemical speciation of ruthenium under postulated reactor accident conditions. The speciation of ruthenium is determined for various values of temperature, pressure, oxygen partial pressure and ruthenium concentration. The importance of these variables, in particular the oxygen partial pressure, in determining the volatility of ruthenium is clearly demonstrated in this report. Reliable thermodynamic data are required to determine the behaviour of ruthenium using equilibrium calculations. Therefore, it was necessary to compile a thermodynamic database for the ruthenium species that can be formed under reactor accident conditions. The origin of the thermodynamic data for the ruthenium species included in our calculations is discussed in detail in Appendix A. 23 refs

  12. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modern thermodynamics. Based on the extended Carnot theorem

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jitao [Fudan Univ., Shanghai (China). Microelectronics Dept.

    2011-07-01

    ''Modern Thermodynamics- Based on the Extended Carnot Theorem'' provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many ''abnormal phenomena'', such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China. (orig.)

  14. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    Energy Technology Data Exchange (ETDEWEB)

    Klabunde, Kenneth J. [Kansas State Univ., Manhattan, KS (United States)

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  15. Thermodynamic properties of uranium--mercury system

    International Nuclear Information System (INIS)

    Lee, T.S.

    1979-01-01

    The EMF values in the fused salt cells of the type U(α)/KCl--LiCl--BaCl 2 eutectic, UCl 3 /U--Hg alloy, for the different two-phase alloys in the uranium--mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed

  16. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  17. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.; Kolano-Burian, A. [Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice (Poland); Wlodarczyk, A. [Department of Animal Histology and Embryology, University of Silesia, ul. Bankowa 9, 40-007 Katowice (Poland)

    2016-08-15

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  18. Thermodynamic Study on the Catalytic Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    XUJian; WEIWeisheng; 等

    2002-01-01

    The catalytic partial oxidation of methane to syngas (CO+H2) has been simulated thermodynamically with the advanced process simulator PRO/Ⅱ. The influences of temperature,pressure,CH4/O2 ratio and steam addition in feed gas on the conversion of CH4 selectively to syngas and heat duty required were investigated, and their effects on carbon formation were also discussed. The simulation results were in good agreement with the literature data taken from a spouted bed reactor.

  19. Static feedback model for neutronic and thermodynamic simulation of fast reactors

    International Nuclear Information System (INIS)

    Waintraub, M.; Jachic, J.

    1985-01-01

    It is analysed the variation of the microscopic cross sections with neutronic spectra and temperature of materials for reactors such as SUPER-PHENIX. It was realized a parametric study of each spectral component, where the influence of each isotope was analysed separately. To include the Doppler effect and other important effects, neutronic and thermodynamic calculations in an iterative form were done allowing to determine neutron temperatures for fuel, structural material and coolant. (M.C.K.) [pt

  20. Complexation thermodynamics of modified cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene

    2014-01-01

    Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...

  1. Correlation between structural and thermodynamic properties of some selenium based phase-change materials

    Science.gov (United States)

    Chandel, Namrata; Mehta, Neeraj

    2018-04-01

    In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.

  2. Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng-Robinson equation of state

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.

  3. Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng-Robinson equation of state

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.

  4. Warming to ecocide a thermodynamic diagnosis

    CERN Document Server

    Sangster, Alan J

    2011-01-01

    Suggests a route to avoiding runaway climate change by reinstating the greenhouse thermostat to its full operational capacity Addresses mankind's contribution to climate change from a thermodynamic perspective Describes and illustrates the power of thermodynamics to furnish insights into the thermal behaviour of complex physical systems

  5. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  6. Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas

    Directory of Open Access Journals (Sweden)

    Fajri Vidian

    2016-01-01

    Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.

  7. Thermodynamic modeling of the Co-Fe-O system

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Chen, Ming

    2013-01-01

    As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described...... using the Compound Energy Formalism (CEF) and the ionized liquid was modeled with the ionic two-sublattice model based on CEF. A set of self-consistent thermodynamic parameters was obtained eventually. Calculated phase diagrams and thermodynamic properties are presented and compared with experimental...

  8. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  9. Simulated pressure denaturation thermodynamics of ubiquitin.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas

    International Nuclear Information System (INIS)

    Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui

    2015-01-01

    SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)

  11. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  12. Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization

    International Nuclear Information System (INIS)

    Phan, Anh Thu; Paek, Min-Kyu; Kang, Youn-Bae

    2014-01-01

    In order to provide an efficient tool to design alloy chemistry and processing conditions for high-strength, lightweight steel, an investigation of the Fe–Al–C ternary system was carried out by experimental phase diagram measurement and a CALPHAD thermodynamic analysis. Discrepancies between previously available experimental results and thermodynamic calculations were identified. The Fe–Al sub-binary system was re-optimized in order to obtain an accurate description of the liquid phase, while Gibbs energies of solid phases were mainly taken from a previous thermodynamic modeling. Phase equilibria among face-centered cubic (fcc)/body-centered cubic (bcc)/graphite/κ-carbide/liquid phases in the Fe–Al–C system in the temperature range from 1000 to 1400 °C were obtained by chemical equilibration followed by quenching, and subsequent composition analysis using electron probe microanalysis/inductively coupled plasma spectroscopy. By merging the revised Fe–Al binary description with existing Fe–C and Al–C binary descriptions, a complete thermodynamic description of the Fe–Al–C system was obtained in the present study. The modified quasi-chemical model in the pair approximation was used to model the liquid phase, while solid solutions were modeled using compound energy formalism. A2/B2 order/disorder transition in the bcc phase was taken into account. Compared with previously known experiments/thermodynamic modeling, a better agreement was obtained in the present study, regarding the stable region of fcc and the solidification thermal peak of a ternary alloy near the liquidus temperature. The obtained thermodynamic description also reproduced various types of experimental data in the Fe–Al–C system such as isothermal sections, vertical sections, liquidus projection, etc. The solidification of various steel grades was predicted and discussed

  13. Information Thermodynamics of the Cell Signal Transduction as a Szilard Engine

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-03-01

    Full Text Available A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs, which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK pathways. In this study, the author considered signal transduction description using information thermodynamic theory. The ideal BSCs can be considered one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract the work during signal transduction. In this model, the mutual entropy and chemical potential of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information thermodynamic method.

  14. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  15. An Application of Context- and Problem-Based Learning (C-PBL) into Teaching Thermodynamics

    Science.gov (United States)

    Baran, Mukadder; Sozbilir, Mustafa

    2017-05-01

    This study aims to investigate the applicability of context- and problem-based learning (C-PBL) into teaching thermodynamics and to examine its influence on the students' achievements in chemistry, retention of knowledge, students' attitudes, motivation and interest towards chemistry. The embedded mixed method design was utilized with a group of 13 chemistry students in a 2-year program of "Medical Laboratory and Techniques" at a state university in an underdeveloped city at the southeastern region of Turkey. The research data were collected via questionnaires regarding the students' attitudes, motivation and interest in chemistry, an achievement test on "thermodynamics" and interviews utilized to find out the applicability of C-PBL into thermodynamics. The findings demonstrated that C-PBL led a statistically significant increase in the students' achievement in thermodynamics and their interest in chemistry, while no statistically significant difference was observed in the students' attitudes and motivation towards chemistry before and after the intervention. The interviews revealed that C-PBL developed not only the students' communication skills but also their skills in using time effectively, making presentations, reporting research results and using technology. It was also found to increase their self-confidence together with the positive attitudes towards C-PBL and being able to associate chemistry with daily life. In light of these findings, it could be stated that it will be beneficial to increase the use of C-PBL in teaching chemistry.

  16. Some consideration on the thermodynamics of the universe

    International Nuclear Information System (INIS)

    Hoenl, H.

    1977-01-01

    It is shown that the thermodynamics of the universe display certain features that are foreign to classical thermodynamics, the discrepancy having its origin in the cosmic expansion of the universe. This is apparent, for example, in the outstanding fact that in the early stages of the universe (some 10 5 or 10 6 years after the Big Bang) the distribution of matter was essentially homogeneous and, owing to the extremely high density and temperature, was in thermodynamic equilibrium. However, in its present state, after the formation of the celestial bodies, (the inhomogeneous phase of the universe), it has moved far away from thermodynamic equilibrium. It is stated that to prove entropy conservation during the homogeneous phase of the universe, one only needs the most general thermodynamical-statistical principles. (U,K)

  17. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  18. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  19. Thermodynamics of the Interaction between Alzheimer's Disease Related Tau Protein and DNA

    Science.gov (United States)

    Camero, Sergio; Benítez, María J.; Cuadros, Raquel; Hernández, Félix; Ávila, Jesús; Jiménez, Juan S.

    2014-01-01

    Tau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer's disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau. In this contribution, we are addressing the physicochemical nature of DNA-Tau interaction including the plausible influence of phosphorylation. By means of surface plasmon resonance (SPR) we measured the equilibrium constant and the free energy, enthalpy and entropy changes associated to the Tau-DNA complex formation. Our results show that unphosphorylated Tau binding to DNA is reversible. This fact is in agreement with the protective role attributed to nuclear Tau, which stops binding to DNA once the insult is over. According to our thermodynamic data, oscillations in the concentration of dephosphorylated Tau available to DNA must be the variable determining the extent of Tau binding and DNA protection. In addition, thermodynamics of the interaction suggest that hydrophobicity must represent an important contribution to the stability of the Tau-DNA complex. SPR results together with those from Tau expression in HEK cells show that phosphorylation induces changes in Tau protein which prevent it from binding to DNA. The phosphorylation-dependent regulation of DNA binding is analogous to the Tau-microtubules binding inhibition induced by phosphorylation. Our results suggest that hydrophobicity may control Tau location and DNA interaction and that impairment of this Tau-DNA interaction, due to Tau hyperphosphorylation, could contribute to Alzheimer's pathogenesis. PMID:25126942

  20. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2017-01-01

    Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.

  1. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  2. Thermodynamic extremal principles for irreversible processes in materials science

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří; Petryk, H.

    2014-01-01

    Roč. 67, APR (2014), s. 1-20 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Non- equilibrium * Thermodynamics * Entropy * Onsager's principle * Thermodynamic extremal principles Subject RIV: BJ - Thermodynamics Impact factor: 4.465, year: 2014

  3. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  4. Advanced thermodynamic (exergetic) analysis

    International Nuclear Information System (INIS)

    Tsatsaronis, G; Morosuk, T

    2012-01-01

    Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.

  5. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed...... to be the controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in...

  6. A Vector Representation for Thermodynamic Relationships

    Science.gov (United States)

    Pogliani, Lionello

    2006-01-01

    The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…

  7. In situ studies of uranium-plutonium mixed oxides. Influence of composition on phase equilibria and thermodynamic properties

    International Nuclear Information System (INIS)

    Strach, Michal

    2015-01-01

    Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4. generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U-Pu-O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U-Pu-O system. (author) [fr

  8. Statistical mechanics and the foundations of thermodynamics

    International Nuclear Information System (INIS)

    Martin-Loef, A.

    1979-01-01

    These lectures are designed as an introduction to classical statistical mechanics and its relation to thermodynamics. They are intended to bridge the gap between the treatment of the subject in physics text books and the modern presentations of mathematically rigorous results. We shall first introduce the probability distributions, ensembles, appropriate for describing systems in equilibrium and consider some of their basic physical applications. We also discuss the problem of approach to equilibrium and how irreversibility comes into the dynamics. We then give a detailed description of how the law of large numbers for macrovariables in equilibrium is derived from the fact that entropy is an extensive quantity in the thermodynamic limit. We show in a natural way how to split the energy changes in an thermodynamical process into work and heat leading to a derivation of the first and second laws of thermodynamics from the rules of thermodynamical equilibrium. We have elaborated this part in detail because we feel it is quite satisfactory, that the establishment of the limit of thermodynamic functions as achieved in the modern development of the mathematical aspects of statistical mechanics allows a more general and logically clearer presentation of the bases of thermodynamics. We close these lectures by presenting the basic facts about fluctuation theory. The treatment aims to be reasonably self-contained both concerning the physics and mathematics needed. No knowledge of quantum mechanics is presupposed. Since we spent a large part on mathematical proofs and give many technical facts these lectures are probably most digestive for the mathematically inclined reader who wants to understand the physics of the subject. (HJ)

  9. Hidden Symmetries for Thermodynamics and Emergence of Relativity

    International Nuclear Information System (INIS)

    Zhao Liu

    2010-01-01

    Erik Verlinde recently proposed an idea about the thermodynamic origin of gravity. Though this is a beautiful idea, which may resolve many long standing problems in the theories of gravity, it also raises many other problems. In this article I will comment on some of the problems of Verlinde's proposal with special emphasis on the thermodynamical origin of the principle of relativity. It is found that there is a large group of hidden symmetries of thermodynamics, which contains the Poincare group of the spacetime for which space is emergent. This explains the thermodynamic origin of the principle of relativity. (general)

  10. Protein Denaturation on p-T Axes--Thermodynamics and Analysis.

    Science.gov (United States)

    Smeller, László

    2015-01-01

    Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

  11. Thermodynamics of charged Lovelock: AdS black holes

    International Nuclear Information System (INIS)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C.

    2016-01-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  12. Thermodynamics in f(R,T) theory of gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Zubair, M.

    2012-01-01

    A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics T h dS' h +T h d jmath S' = −dE'+W'dV, where d jmath S' is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases

  13. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  14. Thermodynamics of hairy black holes in Lovelock gravity

    Science.gov (United States)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  15. Thermodynamics of charged Lovelock: AdS black holes

    Science.gov (United States)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  16. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    Science.gov (United States)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  17. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  18. Fluid thermodynamics control thermal weakening during earthquake rupture.

    Science.gov (United States)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault

  19. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  20. Extrinsic and intrinsic curvatures in thermodynamic geometry

    International Nuclear Information System (INIS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-01-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  1. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    DEFF Research Database (Denmark)

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  2. pycalphad: CALPHAD-based Computational Thermodynamics in Python

    Directory of Open Access Journals (Sweden)

    Richard Otis

    2017-01-01

    Full Text Available The pycalphad software package is a free and open-source Python library for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria using the CALPHAD method. It provides routines for reading thermodynamic databases and solving the multi-component, multi-phase Gibbs energy minimization problem. The pycalphad software project advances the state of thermodynamic modeling by providing a flexible yet powerful interface for manipulating CALPHAD data and models. The key feature of the software is that the thermodynamic models of individual phases and their associated databases can be programmatically manipulated and overridden at run-time without modifying any internal solver or calculation code. Because the models are internally decoupled from the equilibrium solver and the models themselves are represented symbolically, pycalphad is an ideal tool for CALPHAD database development and model prototyping.

  3. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  4. Thermodynamics from concepts to applications

    CERN Document Server

    Shavit, Arthur

    2008-01-01

    The book presents a logical methodology for solving problems in the context of conservation laws and property tables or equations. The authors elucidate the terms around which thermodynamics has historically developed, such as work, heat, temperature, energy, and entropy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the laws, the text enables students to think in clear and correct thermodynamic terms as well as solve real engineering problems.

  5. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  6. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    OpenAIRE

    Cui S.; Mishra R.; Jung I.-H.

    2018-01-01

    Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed...

  7. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  8. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  9. Study of the influence of gravity on the thermodynamic equilibrium of a liquid alloy, and on its solidification: application to eutectic Al-Ge and monotectic Al-In alloys

    International Nuclear Information System (INIS)

    Vinet, Bernard

    1981-01-01

    After having recalled the meaning of gravity, this research thesis addresses the study of movements within the Earth gravity field to assess accelerations for a centrifuged system, and to describe conditions which create weightlessness. The various actions of gravity on fluid phases are analysed by highlighting phenomena of convection and segregation. In a second part, the author addresses the issue of local order. The third part addresses the influence of gravity conditions on the distribution of components of a binary liquid alloy in thermodynamic equilibrium. The fourth part addresses experimental means. The next parts address the eutectic Al-Ge alloy and the monotectic Al-In alloy. Results obtained for liquid alloy are presented, and the author analyse segregations which appeared during solidification in gravity conditions between 40 and 100 g. The influence of these conditions of the structure of both alloys is then studied

  10. Optimization of powered Stirling heat engine with finite speed thermodynamics

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel

    2016-01-01

    Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.

  11. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  12. Thermodynamic analysis of algal biocrude production

    International Nuclear Information System (INIS)

    Beal, C.M.; Hebner, R.E.; Webber, M.E.

    2012-01-01

    Although algal biofuels possess great potential, profitable production is quite challenging. Much of this challenge is rooted in the thermodynamic constraints associated with producing fuels with high energy, low entropy, and high exergy from dispersed materials. In this study, a preliminary thermodynamic analysis is presented that calculates the energy, entropy, and exergy of the intermediate products for algal biocrude production. These values are also used in an initial attempt to characterize the thermodynamic efficiency of that system. The production pathway is simplified by assuming ideal solutions throughout. Results for the energy and exergy efficiencies, and the first-order energy and exergy return on investment, of the system are given. The summary finding is that the first-order energy return on investment in the best case considered could be as high as 520, as compared to 1.7 × 10 −3 in the experimental unit under development. While this analysis shows that significant improvement may be possible, the ultimate thermodynamic efficiency of algal biofuels likely lies closer to the moderate case examined here, which yielded a first-order energy return on investment of 10. For perspective, the first-order energy return on investment for oil and gas production has been estimated in the literature to be ∼35. -- Highlights: ► A first-principles thermodynamic analysis was conducted for algal biocrude production. ► The energy, entropy, and exergy was determined for each intermediate product by assuming the products were ideal solutions. ► The thermodynamic properties were used to calculate the energy and exergy return on investments for three cases. ► It was determined that the energy and exergy return on investments could be as high as ∼500. ► More realistic assumptions for efficient systems yielded return on investments on the order of 10.

  13. Understanding the Thermodynamics of Biological Order

    Science.gov (United States)

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  14. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for trivalent actinoids and samarium

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Yui, Mikazu

    2010-01-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  15. Thermodynamics of a periodically driven qubit

    Science.gov (United States)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  16. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  17. Chemical Product Design: A new challenge of applied thermodynamics

    DEFF Research Database (Denmark)

    Abildskov, Jens; Kontogeorgis, Georgios

    2004-01-01

    , and then to outline some specific examples from our research activities in the area of thermodynamics for chemical products. The examples cover rather diverse areas such as interrelation between thermodynamic and engineering properties in detergents (surfactants), paint thermodynamics and the development of models...

  18. Quantum and thermodynamic aspects of Black Holes

    International Nuclear Information System (INIS)

    Sande e Lemos, J.P. de; Videira, A.L.L.

    1983-01-01

    The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt

  19. Universality of P−V criticality in horizon thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Devin; Kubizňák, David [Perimeter Institute,31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada)

    2017-01-11

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  20. Universality of P−V criticality in horizon thermodynamics

    International Nuclear Information System (INIS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2017-01-01

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  1. Thermodynamics of hairy black holes in Lovelock gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Tjoa, Erickson [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada)

    2017-02-14

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including ‘virtual triple points’ and the first example of a ‘λ-line’ — a line of second order phase transitions — in black hole thermodynamics.

  2. Black hole thermodynamics under the microscope

    Science.gov (United States)

    Falls, Kevin; Litim, Daniel F.

    2014-04-01

    A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.

  3. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  4. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  5. Derivation of the phase field equations from the thermodynamic extremal principle

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; McDowell, D.L.

    2012-01-01

    Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.

  6. Thermodynamic model of social influence on two-dimensional square lattice: Case for two features

    Science.gov (United States)

    Genzor, Jozef; Bužek, Vladimír; Gendiar, Andrej

    2015-02-01

    We propose a thermodynamic multi-state spin model in order to describe equilibrial behavior of a society. Our model is inspired by the Axelrod model used in social network studies. In the framework of the statistical mechanics language, we analyze phase transitions of our model, in which the spin interaction J is interpreted as a mutual communication among individuals forming a society. The thermal fluctuations introduce a noise T into the communication, which suppresses long-range correlations. Below a certain phase transition point Tt, large-scale clusters of the individuals, who share a specific dominant property, are formed. The measure of the cluster sizes is an order parameter after spontaneous symmetry breaking. By means of the Corner transfer matrix renormalization group algorithm, we treat our model in the thermodynamic limit and classify the phase transitions with respect to inherent degrees of freedom. Each individual is chosen to possess two independent features f = 2 and each feature can assume one of q traits (e.g. interests). Hence, each individual is described by q2 degrees of freedom. A single first-order phase transition is detected in our model if q > 2, whereas two distinct continuous phase transitions are found if q = 2 only. Evaluating the free energy, order parameters, specific heat, and the entanglement von Neumann entropy, we classify the phase transitions Tt(q) in detail. The permanent existence of the ordered phase (the large-scale cluster formation with a non-zero order parameter) is conjectured below a non-zero transition point Tt(q) ≈ 0.5 in the asymptotic regime q → ∞.

  7. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  8. Thermodynamics of Horndeski black holes with non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-11-15

    We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)

  9. Thermodynamics of Horndeski black holes with non-minimal derivative coupling

    International Nuclear Information System (INIS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2016-01-01

    We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)

  10. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  11. Improved thermodynamic treatment of vacancy-mediated diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Hackl, K.; Svoboda, Jiří

    2016-01-01

    Roč. 108, APR (2016), s. 347-354 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Thermodynamics * Non-equilibrium * Diffusion * Vacancies * Thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 5.301, year: 2016

  12. Thermodynamics of nanoadsorption from solution: Theoretical and experimental research

    International Nuclear Information System (INIS)

    Wen, Yan-Zhen; Xue, Yong-Qiang; Cui, Zi-Xiang; Wang, Yan

    2015-01-01

    Highlights: • The thermodynamic theory of nanoadsorption was proposed. • The thermodynamic relations of nanoadsorption were derived. • The results of the experiments are accord with the theory. - Abstract: In this study, the effect of nanoparticle size on adsorption thermodynamics was investigated. The results of theoretical and experimental studies show that particle size significantly affects the equilibrium constant and thermodynamic properties of nanoadsorption. Relationships between the equilibrium constant, thermodynamic properties and particle size were derived using the thermodynamic theory of nanoadsorption. The equilibrium constant and thermodynamic properties were obtained by investigating the adsorption of Cu 2+ onto different sizes of nano-ZnO and the adsorption of Ag + onto different sizes of nano-TiO 2 . Good agreement was achieved between results obtained by experiments and predicted by theoretical analyses. The equilibrium constant and the molar Gibbs free energy of nanoadsorption were found to increase with smaller nanoparticle size. However, the effects of particle size on the molar enthalpy and the molar entropy are uncertain. In addition, the molar Gibbs free energy, the molar enthalpy, the molar entropy and the logarithm of the equilibrium constant are linearly related to the reciprocal of the diameter of the nanoparticle. The thermodynamic properties revealed in this study may provide important guidelines for research and application in the field of nanoadsorption

  13. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    Science.gov (United States)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  14. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  15. Considerations on non equilibrium thermodynamics of interactions

    Science.gov (United States)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  16. DISTRIBUTION OF PARASTATISTICS FUNCTIONS: AN OVERVIEW OF THERMODYNAMICS PROPERTIES

    Directory of Open Access Journals (Sweden)

    R. Yosi Aprian Sari

    2016-05-01

    Full Text Available This study aims to determine the thermodynamic properties of the parastatistics system of order two. The thermodynamic properties to be searched include the Grand Canonical Partition Function (GCPF Z, and the average number of particles N. These parastatistics systems is in a more general form compared to quantum statistical distribution that has been known previously, i.e.: the Fermi-Dirac (FD and Bose-Einstein (BE. Starting from the recursion relation of grand canonical partition function for parastatistics system of order two that has been known, recuresion linkages for some simple thermodynamic functions for parastatistics system of order two are derived. The recursion linkages are then used to calculate the thermodynamic functions of the model system of identical particles with limited energy levels which is similar to the harmonic oscillator. From these results we concluded that from the Grand Canonical Partition Function (GCPF, Z, the thermodynamics properties of parastatistics system of order two (paraboson and parafermion can be derived and have similar shape with parastatistics system of order one (Boson and Fermion. The similarity of the graph shows similar thermodynamic properties.   Keywords: parastatistics, thermodynamic properties

  17. Thermodynamic signatures of fragment binding: Validation of direct versus displacement ITC titrations.

    Science.gov (United States)

    Rühmann, Eggert; Betz, Michael; Fricke, Marie; Heine, Andreas; Schäfer, Martina; Klebe, Gerhard

    2015-04-01

    Detailed characterization of the thermodynamic signature of weak binding fragments to proteins is essential to support the decision making process which fragments to take further for the hit-to-lead optimization. Isothermal titration calorimetry (ITC) is the method of choice to record thermodynamic data, however, weak binding ligands such as fragments require the development of meaningful and reliable measuring protocols as usually sigmoidal titration curves are hardly possible to record due to limited solubility. Fragments can be titrated either directly under low c-value conditions (no sigmoidal curve) or indirectly by use of a strong binding ligand displacing the pre-incubated weak fragment from the protein. The determination of Gibbs free energy is reliable and rather independent of the applied titration protocol. Even though the displacement method achieves higher accuracy, the obtained enthalpy-entropy profile depends on the properties of the used displacement ligand. The relative enthalpy differences across different displacement experiments reveal a constant signature and can serve as a thermodynamic fingerprint for fragments. Low c-value titrations are only reliable if the final concentration of the fragment in the sample cell exceeds 2-10 fold its K(D) value. Limited solubility often prevents this strategy. The present study suggests an applicable protocol to characterize the thermodynamic signature of protein-fragment binding. It shows however, that such measurements are limited by protein and fragment solubility. Deviating profiles obtained by use of different displacement ligands indicate that changes in the solvation pattern and protein dynamics most likely take influence on the resulting overall binding signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Impact of Thermodynamic Principles in Systems Biology

    NARCIS (Netherlands)

    Heijnen, J.J.

    2010-01-01

    It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects

  19. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  20. The physical basis of thermodynamics with applications to chemistry

    CERN Document Server

    Richet, Pascal

    2001-01-01

    Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is a...

  1. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  2. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  3. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Science.gov (United States)

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    The fact that persistent spatial organization in catchments exists has inspired many scientists to speculate whether this is the manifestation of an underlying organizing principle. In line with these studies we developed and tested a thermodynamic framework to link rainfall runoff generation and self-organization in catchments. From a thermodynamic perspective any water mass flux is equal to a "potential gradient" divided by a "resistance", and fluxes deplete due to the second law of thermodynamics their driving gradients. Relevant potentials controlling rainfall runoff are soil water potentials, piezometric heads and surface water levels and their gradients are associated with spatial differences in associated forms of free energy. Rainfall runoff processes thus are associated with conversions of capillary binding energy, potential energy and kinetic energy. These conversions reflect energy conservation and irreversibility as they imply small amounts of dissipation of free energy into heat and thus production of entropy. Energy conversions during rainfall runoff transformation are, though being small, nevertheless of key importance, because they are related to the partitioning of incoming rainfall mass into runoff components and storage dynamics. This splitting and the subsequent subsurface dynamics is strongly controlled by preferential flow paths, which in turn largely influence hydrologically relevant resistance fields in larger control volumes. The field of subsurface flow resistances depends for instance on soil hydraulic conductivity, its spatial covariance and soil moisture. Apparent preferential pathways reduce, depending on their density, topology and spatial extent, subsurface flow resistances along their main extent, resulting in accelerated fluxes against the driving gradient. This implies an enlarged power in the subsurface flux thereby either an enlarged free energy export from the control volume or an increased depletion of internal driving

  4. Positive emotion, reward, and cognitive control: emotional versus motivational influences

    Directory of Open Access Journals (Sweden)

    Kimberly Sarah Chiew

    2011-10-01

    Full Text Available It is becoming increasingly appreciated that affective influences can contribute strongly to goal-oriented cognition and behaviour. However, much work is still needed to properly characterize these influences and the mechanisms by which they contribute to cognitive processing. An important question concerns the nature of emotional manipulations (i.e., direct induction of affectively-valenced subjective experience versus motivational manipulations (e.g., delivery of performance-contingent rewards and punishments and their impact on cognitive control. Empirical evidence suggests that both kinds of manipulations can influence cognitive control in a systematic fashion, but investigations of both have largely been conducted independently of one another. Likewise, some theoretical accounts suggest that emotion and motivation may modulate cognitive control via common neural mechanisms, while others suggest the possibility of dissociable influences. Here, we provide an analysis and synthesis of these various accounts, suggesting potentially fruitful new research directions to test competing hypotheses.

  5. Bridging scales with thermodynamics: from nano to macro

    International Nuclear Information System (INIS)

    Kjelstrup, Signe; Bedeaux, Dick; Trinh, Thuat; Schnell, Sondre K; Vlugt, Thijs J H; Simon, Jean-Marc; Bardow, Andre

    2014-01-01

    We have recently developed a method to calculate thermodynamic properties of macroscopic systems by extrapolating properties of systems of molecular dimensions. Appropriate scaling laws for small systems were derived using the method for small systems thermodynamics of Hill, considering surface and nook energies in small systems of varying sizes. Given certain conditions, Hill's method provides the same systematic basis for small systems as conventional thermodynamics does for large systems. We show how the method can be used to compute thermodynamic data for the macroscopic limit from knowledge of fluctuations in the small system. The rapid and precise method offers an alternative to current more difficult computations of thermodynamic factors from Kirkwood–Buff integrals. When multiplied with computed Maxwell–Stefan diffusivities, agreement is found between computed predictions and experiments of the Fick diffusion coefficients for several binary systems. Diffusion coefficients were obtained by linking the Green–Kubo formulae to the Onsager coefficients. The formulae were used to improve/disprove empirical formulae for diffusion coefficients. (review)

  6. A thermodynamic assessment of the La-Al system

    International Nuclear Information System (INIS)

    Yin, F.; Su, X.; Li, Z.; Huang, M.; Shi, Y.

    2000-01-01

    The optimized descriptions of the phase diagram and thermodynamic properties of the La-Al system have been obtained from experimental thermodynamic and phase diagram data by means of the computer program thermo-calc based on the least squares method, using models for the Gibbs energy of individual phases. The system contains six intermetallic compounds. A consistent set of thermodynamic parameters was derived. Optimized and experimental data are in good agreement (orig.)

  7. Thermodynamic analysis and numerical modeling of supercritical injection

    OpenAIRE

    Banuti, Daniel

    2015-01-01

    Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...

  8. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  9. Thermodynamics Far from Equilibrium: from Glasses to Black Holes

    OpenAIRE

    Nieuwenhuizen, Th. M.

    2001-01-01

    A framework for the non-equilibrium thermodynamics of glasses is discussed. It also explains the non-equilibrium thermodynamics of a black hole isolated from matter. The first and second laws of black dynamics and black hole thermodynamics are shown to coincide, while the third laws deal with different issues.

  10. Technical evaluation of thermodynamics processes; Avaliacao tecnica dos processos termodinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Petracco, Fulvio Celso

    1986-05-01

    An evaluation of thermodynamic processes, energy losses the origin of energy losses on thermodynamic process, where are the points or sources of those losses and variation of process when compared in relation of thermodynamic performance are discussed. The concept of energy losses and its origin, energy and work capacity, performance rates and examples of thermodynamic efficiency are also debated 3 figs.

  11. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  12. Thermodynamic geometry for a non-extensive ideal gas

    Science.gov (United States)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  13. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  14. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  15. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.

    Science.gov (United States)

    Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben

    2017-08-22

    A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.

  16. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  17. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  18. Molecular thermodynamics using fluctuation solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela

    . The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...

  19. Thermodynamical stability for a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)

    2017-12-15

    According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)

  20. Thermodynamics a complete undergraduate course

    CERN Document Server

    Steane, Andrew M

    2016-01-01

    This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...