WorldWideScience

Sample records for thermodynamic driving force

  1. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  2. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  3. Driving forces for texture transformation in thin Ag films

    International Nuclear Information System (INIS)

    Ellis, Elizabeth A.; Chmielus, Markus; Lin, Ming-Tzer; Joress, Howie; Visser, Kyle; Woll, Arthur; Vinci, Richard P.; Brown, Walter L.; Baker, Shefford P.

    2016-01-01

    The well-known thickness-dependent (111)-to-(100) texture transformation in thin FCC films is usually attributed to a competition between interface and strain energies. In this model, thin films retain their (111) texture due to the lower energy of the (111) interface, while thick films transform to (100) due to the lower stiffness and thus strain energy of a (100) film. However, recent work has called this model into question, suggesting that neither the stress nor the interface energy play a dominant role in texture transformation. We investigated the driving forces involved in this transformation by using a bulge test apparatus to induce different stresses in thin Ag films under identical annealing conditions. In situ synchrotron XRD measurements show the change in texture during annealing, and reveal that applied stresses have no effect on the transformation. Stress analysis shows that differences in driving forces for texture transformation due to applied bulge pressure were significant (≈200 kJ/m 3 ), suggesting that a different, much larger driving force must be responsible. Reduction in defect energy has been proposed as an alternative. However, vacancy and dislocation densities must be exceptionally high to significantly exceed the strain energy and do not provide obvious orientation selection mechanisms. Nanotwins in reported densities are shown to provide greater driving force (≈1000 kJ/m 3 ) and may account for orientation selection. The large difference between the calculated strain and defect energies and the driving force for grain growth (21,100 kJ/m 3 ) casts doubt on the applicability of a simple thermodynamic model of texture transformation.

  4. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  5. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  6. Physical driving force of actomyosin motility based on the hydration effect.

    Science.gov (United States)

    Suzuki, Makoto; Mogami, George; Ohsugi, Hideyuki; Watanabe, Takahiro; Matubayasi, Nobuyuki

    2017-12-01

    We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force. © 2017 Wiley Periodicals, Inc.

  7. Thermodynamic forces in coarse-grained simulations

    Science.gov (United States)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  8. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  9. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  10. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.

    Science.gov (United States)

    Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L

    2013-06-01

    Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Science.gov (United States)

    van Lingen, Henk J; Plugge, Caroline M; Fadel, James G; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  12. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Directory of Open Access Journals (Sweden)

    Henk J van Lingen

    Full Text Available Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA. Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2, has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT, which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without

  13. Impact of Thermodynamic Principles in Systems Biology

    NARCIS (Netherlands)

    Heijnen, J.J.

    2010-01-01

    It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects

  14. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  15. Derivation of the phase field equations from the thermodynamic extremal principle

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; McDowell, D.L.

    2012-01-01

    Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.

  16. Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction.

    Science.gov (United States)

    Rey, J; Bley, M; Dufrêche, J-F; Gourdin, S; Pellet-Rostaing, S; Zemb, T; Dourdain, S

    2017-11-21

    In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.

  17. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  18. On the forces and fluxes in non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Kitahara, Kazuo

    1986-01-01

    A formulation of non-equilibrium thermodynamics of continuum systems based on local equilibrium assumption is reported. Thermodynamic forces are defined from a generalized local entropy and irreversible fluxes are defined as non-advective parts of fluxes of conservative quantities. The validity of the general evolution criterion and its generalization is discussed. (author)

  19. Glenohumeral contact force during flat and topspin tennis forehand drives.

    Science.gov (United States)

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  20. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    Science.gov (United States)

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  1. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  2. Driving Force Filtering and Driving Mechanism Analysis of Urban Agricultural Development in Weifang County, China

    Directory of Open Access Journals (Sweden)

    SUI Fei-fei

    2016-03-01

    Full Text Available As an agricultural nation, the agricultural landscape is the basic appearance and existence in China, but the common existence often be neglected and contempted. As a new type of design and ideology, the development of urban agricultural landscape will greatly affect the texture and structure of the urban space. According to the urban agricultural production data and the socio-economic data of Weifang County, a set of evaluation index system that could analyze quantitatively the driving force of urban agricultural production changes and the internal drive mechanism was built. The original driving force indicators of economy, society, resources and environment from the time-series were chosen, and then 15 driving forces from the original driving forces by correlation analysis and principal component analysis were selected. The degree of influence was analyzed and the driving forces model by means of partial least squares(PLS was built. The results demonstrated that the factors greatly influenced the increase of urban agricultural output value in Weifang County were per capita net income of rural residents, agricultural machinery total power, effective irrigation area, centralized treatment rate of urban sewage, with the driving exponents 0.2509, 0.1019, 0.1655, 0.1332, respectively. The negative influence factor was the use amount of agricultural plastic film and the driving exponent was-0.2146. The research provides a reference for the development of urban agriculture, as well as a reference for the related study.

  3. Reconstruction of driving forces through recurrence plots

    International Nuclear Information System (INIS)

    Tanio, Masaaki; Hirata, Yoshito; Suzuki, Hideyuki

    2009-01-01

    We consider the problem of reconstructing one-dimensional driving forces only from the observations of driven systems. We extend the approach presented in a seminal paper [M.C. Casdagli, Physica D 108 (1997) 12] and propose a method that is robust and has wider applicability. By reinterpreting the work of Thiel et al. [M. Thiel, M.C. Romano, J. Kurths, Phys. Lett. A 330 (2004) 343], we formulate the reconstruction problem as a combinatorial optimization problem and relax conditions by assuming that a driving force is continuous. The method is demonstrated by using a tent map driven by an external force.

  4. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  5. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  6. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    Science.gov (United States)

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  7. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  8. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes

    OpenAIRE

    Bon?ina, Matja?; Podlipnik, ?rtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-01-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolini...

  9. Remark on the role of the driving force in BWR instability

    International Nuclear Information System (INIS)

    Dykin, V.; Pazsit, I.

    2009-01-01

    Simple models of BWR instability, used e.g. in understanding the role of the various oscillation modes in the overall stability of the plant, assume that each oscillation mode can be described by a second order system (a damped harmonic oscillator) driven by a white noise driving force. Change of the decay ratio (DR) of the observed signal is, as a rule, associated with the changing of the parameters of the damped oscillator, mainly its damping coefficient, and is interpreted in terms of the change of the stability of the system. However, conceptually, one cannot exclude cases when the change of the response of a driven damped oscillator is due to the change of the properties of the driving force. In this work we investigate the effect of a non-white driving force on the behaviour of the system. A question of interest is how changes of the spectrum of the driving force influence the observed autocorrelation function (ACF) of the resulting signal. Hence we calculate the response of a damped harmonic oscillator driven by a non-white driving force, corresponding to the reactivity effect of propagating density fluctuations in two-phase flow. It is shown how in some special cases such a driving force, when interpreting the neutron noise as if induced by a white noise driving source, can lead to an erroneous conclusion regarding the stability of the system. It is also concluded that in the practically interesting cases the effect of the coloured driving force, arising from propagating density fluctuations, is negligible.

  10. First law of thermodynamics on holographic screens in entropic force frame

    International Nuclear Information System (INIS)

    Chen Yixin; Li Jianlong

    2011-01-01

    Imposing a mathematical definition of holographic screen, in the spirit of Verlinde's entropic force proposal (E.P. Verlinde, (arXiv:1001.0785)), we give the differential and integral form of the first law of thermodynamics on the holographic screen enclosing a spherical symmetric black hole. It is consistent with equipartition principle and the form of Komar mass. There are also other version of first law, which are equivalent up to a Legendre transformation. The holographic screen thermodynamics is defined in a quasi-local form, which is the main difference to black hole thermodynamics. Thus, the physical interpretation of holographic screen thermodynamics might be different from black hole thermodynamics. We argue that the entropy of the holographic screen determines its area, i.e. S=A/4 . And the metric can be expressed by thermodynamics variables, which is an illustration of how the space is foliated by the thermodynamical potentials.

  11. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    Science.gov (United States)

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  12. The OpenCalphad thermodynamic software interface

    Science.gov (United States)

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  13. Processes and driving forces in changing cultural landscapes across Europe

    DEFF Research Database (Denmark)

    Bürgi, Matthias; Bieling, Claudia; Von Hackwitz, Kim

    2017-01-01

    Context: Cultural landscapes evolve over time. However, the rate and direction of change might not be in line with societal needs and more information on the forces driving these changes are therefore needed. Objectives: Filling the gap between single case studies and meta-analyses, we present...... perceived landscape changes, and remembered driving forces. Land cover and landscape changes were analysed regarding change, conversions and processes. For all case study areas, narratives on mapped land cover change, perceived landscape changes and driving forces were compiled. Results: Despite a very high...... diversity in extent, direction and rates of change, a few dominant processes and widespread factors driving the changes could be identified in the six case study areas, i.e. access and infrastructure, political shifts, labor market, technological innovations, and for the more recent period climate change...

  14. The Secret Driving Force Behind Mongolia’s Successful Democracy

    Science.gov (United States)

    2016-03-01

    the nation’s democracy movement its earliest stages. Courtesy of the Democratic Union of Mongolia PRISM 6, no. 1 FROM THE FIELD | 141 The Secret Driving...assistance and trade. Our state budget PRISM 6, no. 1 FROM THE FIELD | 143 THE SECRET DRIVING FORCE BEHIND MONGOLIA’S SUCCESSFUL DEMOCRACY collapsed; we...O yungerel Tsedevdam ba (2006) PRISM 6, no. 1 FROM THE FIELD | 145 THE SECRET DRIVING FORCE BEHIND MONGOLIA’S SUCCESSFUL DEMOCRACY significantly as

  15. A guide for statewide impaired-driving task forces.

    Science.gov (United States)

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  16. Thermodynamic equipartition for increased second law efficiency

    International Nuclear Information System (INIS)

    Thiel, Gregory P.; McGovern, Ronan K.; Zubair, Syed M.; Lienhard V, John H.

    2014-01-01

    Highlights: • Efficiency gains from equipartition to minimize entropy generation are quantified. • The equipartition factor (Ξ) quantifies the variance of thermodynamic affinities. • Systems with low (Ξ) and low efficiency gain most when redesigned for equipartition. • For lumped capacitance systems long normalized charging times correlate with low (Ξ). - Abstract: In this work, a clear distinction is drawn between irreversibility associated with a finite mean driving force in a transport process and irreversibility associated with variance in the spatial and/or temporal distribution of this driving force. The portion of irreversibility associated with driving force variance is quantified via a newly defined dimensionless quantity, the equipartition factor. This equipartition factor, related to the variance in dimensionless driving force throughout the system, is employed to formulate an expression for second law efficiency. Consequently, the equipartition factor may be employed to identify the improvement in efficiency achievable via system redesign for a reduction in driving force variance, while holding fixed the system output for fixed system dimensions in time and space. It is shown that systems with low second law efficiency and low equipartition factor will have the greatest benefit from a redesign to obtain equipartition. The utility of the equipartition factor in identifying situations where efficiency can be increased without requiring a spatial or temporal increase in system size is illustrated through its application to several simple systems

  17. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  18. Gibbs energy modelling of the driving forces and calculation of the fcc/hcp martensitic transformation temperatures in Fe-Mn and Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Cotes, S.; Fernandez Guillermet, A.; Sade, M.

    1999-01-01

    Very recent, accurate dilatometric measurements of the fcc hcp martensitic transformation (MT) temperatures are used to develop a new thermodynamic description of the fcc and hcp phases in the Fe-Mn-Si system, based on phenomenological models for the Gibbs energy function. The composition dependence of the driving forces for the fcc→hcp and the hcp→fcc MTs is established. Detailed calculations of the MT temperatures are reported, which are used to investigate the systematic effects of Si additions upon the MT temperatures of Fe-Mn alloys. A critical comparison with one of the most recent thermodynamic analyses of the Fe-Mn-Si system, which is due to Forsberg and Agren, is also presented. (orig.)

  19. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  20. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  1. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine

    International Nuclear Information System (INIS)

    Aksoy, F.; Solmaz, H.; Karabulut, H.; Cinar, C.; Ozgoren, Y.O.; Polat, Seyfi

    2016-01-01

    Highlights: • Rhombic drive and crank drive mechanisms of a beta type engine were compared. • Nodal analysis method was used to compare engines having different drive mechanism. • Maximum specific power was 1410 W/L for rhombic-drive engine. • Heat transfer coefficient was determined as 475 W/m"2K for rhombic-drive engine. • Rhombic drive provided higher efficiency because of its better kinematic behaviours. - Abstract: In this study, the effect of rhombic drive and crank drive mechanisms on the performance of a beta-type Stirling engine was investigated by nodal analysis. Kinematic and thermodynamic relations for both drive mechanisms were introduced and a Fortran code was written for the solution. Piston strokes, cylinder and displacer diameters, hot and cold end temperatures, regenerator volumes and heat transfer surface areas were taken equal for both engines with two different drive mechanisms. In the analysis, air was used as the working gas. Engine power and efficiency were compared for different charge pressure values, working gas mass values, heat transfer coefficients and hot end temperatures. Maximum specific engine power was 1410 W/L for the engine with rhombic drive mechanism and 1200 W/L for the engine with crank drive mechanism at 4 bars of charge pressure and 500 W/m"2K heat transfer coefficient. Rhombic drive mechanism was relatively advantageous at low working gas mass values and high hot end temperatures. In comparison with the engine having rhombic drive mechanism, the relatively poor kinematic behaviour of the engine having crank drive mechanism caused lower engine efficiency and performance. Heat transfer coefficient was also predicted by using an experimental pressure trace.

  2. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    Science.gov (United States)

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  4. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  5. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  6. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  7. Information driving force and its application in agent-based modeling

    Science.gov (United States)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  8. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  10. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  11. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  12. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    Directory of Open Access Journals (Sweden)

    Yonatan Berman

    Full Text Available Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI, an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  13. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Cinar, Can

    2013-01-01

    Highlights: • Thermodynamic analysis of Stirling engine with rhombic-drive mechanism was performed. • The analysis was performed for smooth and grooved displacer cylinders. • The convective heat transfer coefficient was predicted using the experimental results. • The experimental results was compared with the theoretical results. - Abstract: This paper presents a theoretical investigation on kinematic and thermodynamic analysis of a beta type Stirling engine with rhombic-drive mechanism. Variations in the hot and cold volumes of the engine were calculated using kinematic relations. Two different displacer cylinders were investigated: one of them had smooth inner surface and the other had axial slots grooved into the cylinder to increase the heat transfer area. The effects of the slots grooved into the displacer cylinder inner surface on the performance were calculated using nodal analysis in Fortran. The effects of working fluid mass on cyclic work were investigated using 200, 300 and 400 W/m 2 K convective heat transfer coefficients for smooth and grooved displacer cylinders. The variation of engine power with engine speed was obtained by using the same convective heat transfer coefficients and isothermal conditions. The convective heat transfer coefficient was predicted as 104 W/m 2 K using the experimental results measured from the prototype engine under atmospheric conditions. The variation in cyclic work determined by the experimental study was also compared with the theoretical results obtained for different convective heat transfer coefficients and isothermal conditions

  14. Interfacial solvation thermodynamics

    International Nuclear Information System (INIS)

    Ben-Amotz, Dor

    2016-01-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)

  15. Driving forces and barriers for environmental technology development

    International Nuclear Information System (INIS)

    2005-01-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand

  16. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  17. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  18. Driving forces in the Greenlandic urbanization

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2014-01-01

    Generally urbanization is recognised as a natural development where the population is mowing into the larger towns driven by e.g. better job opportunities, larger product and service supply and better education and health services, and it is often argued that this is also the driving forces...... support and with limited export oriented value creation. It will be disused how the previous and present urbanization interact with a sustainable development and what is the core prerequisites for sustainable towns and settlements....

  19. An introductory handbook for state task forces to combat drunk driving.

    Science.gov (United States)

    1983-01-01

    In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.

  20. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    Science.gov (United States)

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  2. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  3. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    Science.gov (United States)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  4. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  5. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  6. Driving-forces model on individual behavior in scenarios considering moving threat agents

    Science.gov (United States)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  7. Position and force control of a vehicle with two or more steerable drive wheels

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

  8. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  9. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    Science.gov (United States)

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  10. Forces on wheels and fuel consumption in cars

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2013-07-01

    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.

  11. Forces on wheels and fuel consumption in cars

    International Nuclear Information System (INIS)

    Güémez, J; Fiolhais, M

    2013-01-01

    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed. (paper)

  12. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  13. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  14. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  15. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  16. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  17. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.

    Science.gov (United States)

    Huang, Rixiang; Lau, Boris L T

    2016-05-01

    Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    difference between the here-presented exact thermodynamic forces and the often-used electrostatic forces. Finally the paper documents an inherent adiabatic nature of the thermodynamic forces and observes that these are suited for a nonequilibrium implementation of the Born-Oppenheimer approximation.

  19. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    Science.gov (United States)

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Technology as a driving force

    International Nuclear Information System (INIS)

    Torvund, T.

    1994-01-01

    The competitiveness of the Norwegian Continental shelf has been put firmly on the agenda in Norway since the report from a working group set up by the Ministry of Industry and Energy was released in February this year. If there is to be secured a long future for oil and gas activities, a reduction in the time and costs used in the projects of the order of 40-50%, without jeopardizing the high safety and environmental standards achieved in Norway. The paper addresses how technology can be a driving force in achieving these aims. But technology alone cannot do the job. Progress and changes in several other areas are also necessary, and the new scenario also calls for improved relations between all actors in the North Sea, authorities, oil companies, contractors and labour unions. 15 figs

  1. Technology as a driving force

    Energy Technology Data Exchange (ETDEWEB)

    Torvund, T [Norsk Hydro A/S (Norway)

    1994-12-31

    The competitiveness of the Norwegian Continental shelf has been put firmly on the agenda in Norway since the report from a working group set up by the Ministry of Industry and Energy was released in February this year. If there is to be secured a long future for oil and gas activities, a reduction in the time and costs used in the projects of the order of 40-50%, without jeopardizing the high safety and environmental standards achieved in Norway. The paper addresses how technology can be a driving force in achieving these aims. But technology alone cannot do the job. Progress and changes in several other areas are also necessary, and the new scenario also calls for improved relations between all actors in the North Sea, authorities, oil companies, contractors and labour unions. 15 figs.

  2. A thermodynamical analysis of rf current drive with fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, João P. S., E-mail: bizarro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-08-15

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  3. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  4. A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration

    International Nuclear Information System (INIS)

    Yang, Liang; Li, Saiyi

    2015-01-01

    The synthetic driving force (SDF) molecular dynamics method, which imposes crystalline orientation-dependent driving forces for grain boundary (GB) migration, has been considered deficient in many cases. In this work, we revealed the cause of the deficiency and proposed a modified method by introducing a new technique to distinguish atoms in grains and GB such that the driving forces can be imposed properly. This technique utilizes cross-reference order parameter (CROP) to characterize local lattice orientations in a bicrystal and introduces a CROP-based definition of interface region to minimize interference from thermal fluctuations in distinguishing atoms. A validation of the modified method was conducted by applying it to simulate the migration behavior of Ni 〈1 0 0〉 and Al 〈1 1 2〉 symmetrical tilt GBs, in comparison with the original method. The discrepancies between the migration velocities predicted by the two methods are found to be proportional to their differences in distinguishing atoms. For the Al 〈1 1 2〉 GBs, the modified method predicts a negative misorientation dependency for both the driving pressure threshold for initiating GB movement and the mobility, which agree with experimental findings and other molecular dynamics computations but contradict those predicted using the original method. Last, the modified method was applied to evaluate the mobility of Ni Σ5 〈1 0 0〉 symmetrical tilt GB under different driving pressure and temperature conditions. The results reveal a strong driving pressure dependency of the mobility at relatively low temperatures and suggest that the driving pressure should be as low as possible but large enough to trigger continuous migration.

  5. Thermodynamics as the driving principle behind the immune system

    Directory of Open Access Journals (Sweden)

    Eduardo Finger

    2012-09-01

    Full Text Available Over the last 120 years, few things contributed more to ourunderstanding of immune system than the study of its behavior inthe host/parasite relationship. Despite the advances though, a fewquestions remain, such as what drives the immune system? Whatare its guiding principles? If we ask these questions randomly, mostwill immediately answer “defend the body from external threats,” butwhat exactly do we defend ourselves from? How do these threatsharm us? What criteria define what constitutes a threat? On theother hand, if the immune system evolved to defend us againstexternal threats, how does its action against “internal” processes,such as neoplasms, qualify? Why do we die from cancer? Or frominfection? Or even, why do we die at all? These apparently obviousquestions are nor simple neither trivial, and the difficulty answeringthem reveals the complex reality that the immune system handles.The objective of this article is to articulate for the reader something that he instinctively already knows: that the decisions of the immune system are thermodynamically driven. Additionally, we will discuss how this apparent change in paradigm alters concepts such as health, disease, and therapeutics.

  6. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  8. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe

    2015-01-01

    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  9. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  10. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  11. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    International Nuclear Information System (INIS)

    Ai Baoquan; Xie Huizhang; Liu Lianggang

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  12. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  13. Driving forces of main landscape change processes from past 200 years in Central Europe - differences between old democratic and post-socialist countries

    Directory of Open Access Journals (Sweden)

    Skokanová Hana

    2016-03-01

    Full Text Available The article compares and points out differences in driving forces of four main landscape change processes that shaped post-socialist countries and old democratic countries of Central Europe during the last two centuries. Studying landscape change processes and corresponding driving forces helps in understanding patterns of present landscape and can help among others in better prediction of future landscape change trends. Here, the presented results are based on review of scientific articles published in peer-reviewed journals between 2000 and 2014. Driving forces affecting these processes were grouped into four categories. Economic forces drove mainly agricultural intensification; agricultural land abandonment and urbanisation and were pronounced especially in the second half of the 20th century and at the beginning of the 21st century. Technological driving forces affected agricultural intensification especially in the 19th century and the second half of the 20th century while cultural driving forces had the biggest impact on urbanisation at the beginning of the 21st century. Political driving forces affected agricultural intensification, urbanisation as well as agricultural land abandonment and were pronounced mainly during the second half of the 20th century in the post-socialist countries. Political forces in the form of subsidies drove agricultural extensification at the beginning of the 21st century. The drivers for the agricultural intensification as well as urbanisation seem to be similar for both old democratic and post-socialist countries. In contrast, agricultural land abandonment in the old democratic countries was driven by technological, cultural and economic driving forces while in the post-socialist countries the political driving forces were mainly responsible. Changes in systems for subsidies and changes in the agricultural commodity markets are also responsible for different frequencies and rates of extensification of

  14. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  15. Impact assessment of land use planning driving forces on environment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longgao, E-mail: chenlonggao@163.com [Institute of Land Resources, Jiangsu Normal University (JSNU), Xuzhou 221116 (China); Yang, Xiaoyan [Institute of Land Resources, Jiangsu Normal University (JSNU), Xuzhou 221116 (China); School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116 (China); Chen, Longqian [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116 (China); Li, Long [Department of Geography, Vrije Universiteit Brussel, Brussels 1050 (Belgium)

    2015-11-15

    Land use change may exert a negative impact on environmental quality. A state–impact–state (SIS) model describing a state transform under certain impacts has been integrated into land use planning (LUP) environmental impact assessment (LUPEA). This logical model is intuitive and easy to understand, but the exploration of impact is essential to establish the indicator system and to identify the scope of land use environmental impact when it is applied to a specific region. In this study, we investigated environmental driving forces from land use planning (LUPF), along with the conception, components, scope, and impact of LUPF. This method was illustrated by a case study in Zoucheng, China. Through the results, we concluded that (1) the LUPF on environment are impacts originated from the implementation of LUP on a regional environment, which are characterized by four aspects: magnitude, direction, action point, and its owner; (2) various scopes of LUPF on individual environmental elements based on different standards jointly define the final scope of LUPEA; (3) our case study in Zoucheng demonstrates the practicability of this proposed approach; (4) this method can be embedded into LUPEA with direction, magnitudes, and scopes of the LUPF on individual elements obtained, and the identified indicator system can be directly employed into LUPEA and (5) the assessment helps to identify key indicators and to set up a corresponding strategy to mitigate the negative impact of LUP on the environment, which are two important objectives of strategic environmental assessment (SEA) in LUP. - Highlights: • Environmental driving forces from land use planning (LUPF) are investigated and categorized. • Our method can obtains the direction, magnitudes and scopes of environmental driving forces. • The LUPEA scope is determined by the combination of various scopes of LUPF on individual elements. • LUPF assessment can be embedded into LUPEA. • The method can help to

  16. Evaluating the Energetic Driving Force for Cocrystal Formation.

    Science.gov (United States)

    Taylor, Christopher R; Day, Graeme M

    2018-02-07

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol -1 more stable than their constituent single-component structures and are very rarely (intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

  17. Fluctuations When Driving Between Nonequilibrium Steady States

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  18. Spatiotemporal Variation of Driving Forces for Settlement Expansion in Different Types of Counties

    Directory of Open Access Journals (Sweden)

    Guanglong Dong

    2015-12-01

    Full Text Available Understanding the process of settlement expansion and the spatiotemporal variation of driving forces is the foundation of rational and specific planning for sustainable development. However, little attention has been paid to the spatiotemporal differences of driving forces among different counties, especially when they are representatives of different development types. This study used Guanyun, Kunshan and Changshu as case studies, and binary logistic regression was employed. The results showed that the expansion rates of Kunshan and Changshu were 5.55 and 3.93 times higher than that of Guanyun. The combinations and relative importance of drivers varied with counties and periods. The change in the number of driving forces can be divided into three stages: increasing stage, decreasing stage, and stable stage. In the relatively developed counties, Kunshan and Changshu, the importance of population is decreased, while it remain an important factor in the less developed county, Guanyun. In addition, the effect of GDP stays the same in Kunshan while it becomes the most important factor in Changshu. The distance to the main road and the distance to town are increasingly important in Kunshan and Guanyun, and distance to town has been the only common factor in the last period, indicating the discrepancy is increased. The relative importance of distance to a lake in Kunshan and Changshu increased, reflecting the role of increasing tourism in accelerating settlement expansion.

  19. The marriage between welfare services and tourism - A driving force for innovation?

    DEFF Research Database (Denmark)

    Hjalager, Anne Mette

    2006-01-01

    -based sectors are well connected with other sectors, including the voluntary sector. Both internal and external driving forces are continuously challenging the Danish welfare model. The pressures and the opportunities are transmitted to tourism, albeit not uniformly. There are good reasons for commercial...

  20. Expansion of thermodynamic model of solute permeation through reverse osmosis membrane

    International Nuclear Information System (INIS)

    Nishimaki, Kenzo; Koyama, Akio

    1994-01-01

    Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)

  1. Force analysis of the advanced neutron source control rod drive latch mechanism

    International Nuclear Information System (INIS)

    Damiano, B.

    1989-01-01

    The Advanced Neutron Source reactor (ANS), a proposed Department of Energy research reactor currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL), will generate a thermal neutron flux approximating 10 30 M -2 emdash S -1 . The compact core necessary to produce this flux provides little space for the shim safety control rods, which are located in the central annulus of the core. Without proper control rod drive design, the control rod drive magnets (which hold the control rod latch in a ready-to-scram position) may be unable to support the required load due to their restricted size. This paper describes the force analysis performed on the control rod latch mechanism to determine the fraction of control rod weight transferred to the drive magnet. This information will be useful during latch, control rod drive and magnet design. 5 refs., 12 figs

  2. The driving force of the Na+/Ca2+-exchanger during metabolic inhibition

    NARCIS (Netherlands)

    Baartscheer, Antonius; Schumacher, Cees A.; Coronel, Ruben; Fiolet, Jan W. T.

    2011-01-01

    Objective: Metabolic inhibition causes a decline in mechanical performance and, if prolonged, myocardial contracture and cell death. The decline in mechanical performance is mainly due to altered intracellular calcium handling, which is under control of the Na+/Ca2+-exchanger (NCX) The driving force

  3. Superluminal warp drive

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es

    2007-09-20

    In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form.

  4. Preliminary Experimental Results for Indirect Vector-Control of Induction Motor Drives with Forced Dynamics

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2003-01-01

    Full Text Available The contribution presents an extension of indirect vector control of electric drives employing induction motors to 'Forced Dynamic Control'. This method of control offers an accurate realisation of dynamic response profiles, which can be selected by the user. The developed system can be integrated into a drive with a shaft position encoder or a shaft sensoriess drive, in which only the stator currents are measured. The applied stator voltages are determined by a computed inverter switching algorithm. Simulation results and preliminary experimental results for indirect vector control of an idle running induction motor indicate good agreement with the theoretical predictions.

  5. Agricultural land use change and associated driving forces over the past 180 years in two municipalities of the Brazilian Cerrado

    NARCIS (Netherlands)

    Arruda, de Murilo Rodrigues; Slingerland, Maja; Santos, José Zilton Lopes; Giller, Ken E.

    2018-01-01

    This paper aims to test the hypothesis that a single driving force from the local, national, or global level is capable of triggering land use changes, including large scale deforestation, within a historical context. To reach this goal we describe and explain the driving forces from the global to

  6. Development of an innovative reflector drive mechanism using magnetic repulsion force for 4S reactor

    International Nuclear Information System (INIS)

    Tsuji, K.; Watanabe, M.; Inagaki, H.; Nishikawa, A.; Takahashi, H.; Wakamatsu, M.; Matsumiya, H.; Nishiguchi, Y.

    2001-01-01

    A small sized fast reactor 4S: (Super Safe Small and Simple) which has a core of 10 - 30 years life time is controlled by reflectors. The reflector is required to be risen at very low speed to make up for the reactivity swing during operation. This report shows the development of an innovative reflector drive mechanism using magnetic repulsion force that can move at a several micrometer per one step. This drive mechanism has a passive shut down capability, and can eliminate reflector drive line. (author)

  7. Driving forces behind the Chinese public's demand for improved environmental safety.

    Science.gov (United States)

    Wen, Ting; Wang, Jigan; Ma, Zongwei; Bi, Jun

    2017-12-15

    Over the past decades, the public demand for improved environmental safety keeps increasing in China. This study aims to assess the driving forces behind the increasing public demand for improved environmental safety using a provincial and multi-year (1995, 2000, 2005, 2010, and 2014) panel data and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The potential driving forces investigated included population size, income levels, degrees of urbanization, and educational levels. Results show that population size and educational level are positively (Pdemand for improved environmental safety. No significant impact on demand was found due to the degree of urbanization. For the impact due to income level, an inverted U-shaped curve effect with the turning point of ~140,000 CNY GDP per capita is indicated. Since per capita GDP of 2015 in China was approximately 50,000 CNY and far from the turning point, the public demand for improved environmental safety will continue rising in the near future. To meet the increasing public demand for improved environmental safety, proactive and risk prevention based environmental management systems coupled with effective environmental risk communication should be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    Science.gov (United States)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis

  9. Thermodynamic parameters and transport coefficients of the U-C-F gas mixture in the steady flow gaseous core fission reactor

    International Nuclear Information System (INIS)

    Berg, M.S. van den.

    1995-01-01

    Thermodynamic parameters and transport coefficients have been calculated for a multicomponent reacting U-C-F gas mixture in the steady flow gaseous core fission reactor. Element abundances are consistent with thermodynamic equilibrium between the gas mixture and a cooled solid graphite wall at 2500 K. Results are presented for various pressures, a fluorine potential of 5.6 and temperatures between 2500 and 7000 K. As a result of dissociation processes of uranium and carbon fluoride compounds, ''effective'' values of thermodynamic parameters and transport coefficients show anomalous behaviour with respect to so-called ''frozen'' values. The chemical reaction energy of the U-C-F gas mixture has been calculated as the driving-force behind the process of fuel redistribution to attain criticality conditions inside a functioning reactor. (author)

  10. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  11. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    Science.gov (United States)

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for

  12. ANALYTICAL SYNTHESIS OF FORCED PULSE ELECTRONIC DRIVE CONTROL OF A TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2017-01-01

    Full Text Available The problem of analytical synthesis of a control signal by a linear dynamical system is considered. As an optimization criterion, it is proposed to consider the transition time of the system from the initial state to a given final state. This type of control is called forced, providing the maximum system speed. The principle of solving this problem is considered on the basis of application of uncertain Lagrange multipliers and the Pontryagin maximum principle. Expressions are obtained for the matrix of transitions of the system and the control signal in a vector form.As an example, the electric drive described by the widespread second-order mathematical model is considered to evaluate the efficiency of the proposed method. Qualitative illustrations of the operability of the proposed approach, obtained by modeling in the Mathcad environment, and quantitative characteristics of the change in the input and output signals of the hypothetical control system are presented. It is shown that the use of forced control does not lead to the output of variables characterizing the state of the system, beyond the limits of admissible values.The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles. Key words: forced control, target function, electric drive, pulse train. The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles.

  13. Mechanisms driving variability in the ocean forcing of Pine Island Glacier.

    Science.gov (United States)

    Webber, Benjamin G M; Heywood, Karen J; Stevens, David P; Dutrieux, Pierre; Abrahamsen, E Povl; Jenkins, Adrian; Jacobs, Stanley S; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan

    2017-02-17

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.

  14. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  15. Evaluation on driving force of natural circulation in downcomer for passive residual heat removal system in JAERI passive safety reactor JPSR

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko; Iwamura, Takamichi; Murao, Yoshio

    1997-01-01

    The driving-force of the natural circulation in the residual heat removal (RHR) system for the JPSR (JAERI Passive Safety Reactor) is given as a gravity force of the density difference between hotter coolant in core and upper plenum and cooler coolant in downcomer. The amount of density difference and time to achieve the enough density difference for the RHR system change directly dependent on the thermal fluid flow pattern in downcomer of annulus flow pass. The purposes of the present study are to investigate the possibilities of the followings by evaluating the three-dimensional thermal fluid flow in downcomer by numerical analysis using the STREAM code; 1) promotion of making the flow pattern uniform in downcomer by installing a baffle, 2) achievement of an enough driving-force of the natural circulation, 3) validity of one-point assumption, that is, complete mixing down-flow assumption for the three-dimensional thermal fluid flow in downcomer to evaluate the function of the passive RHR system. The following conclusions were obtained: (1) The effect of baffle on the thermal fluid flow and driving-force is little, (2) The driving-force required for natural circulation cooling can be obtained in wide range of inlet velocity even if the flow is multi-dimensional, (3) Both in initial transient stage and in steady-state, the one-point assumption can be applied to evaluate the driving-force of natural circulation in the passive RHR system. (author)

  16. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  17. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment

    International Nuclear Information System (INIS)

    Legleiter, Justin

    2009-01-01

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  18. Braun-Le Chatelier principle in dissipative thermodynamics

    OpenAIRE

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  19. Electronic structure and driving forces in β-cyclodextrin: Diclofenac inclusion complexes

    International Nuclear Information System (INIS)

    Bogdan, Diana; Morari, C.

    2007-01-01

    We investigate the geometry and electronic structure for complexes of β-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries

  20. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    Science.gov (United States)

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  1. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  2. Negotiating EU CO2/energy taxation. Political economic driving forces and barriers

    International Nuclear Information System (INIS)

    Klok, Jacob

    2001-11-01

    The primary objective of this project is to identify the main political economic driving forces behind and barriers against the creation of an EU agreement on CO 2 /energy taxation. The analysis is based on a theoretical framework for understanding European integration and on detailed historical investigations into a process of EU negotiations concerning CO 2 /energy taxation that took place from the 1980s to 1994. Following the historical analysis of political economic driving forces and barriers, some overall perspectives on possible future developments within the field of EU CO 2 /energy taxation are finally advanced. The secondary objective of the project is to consider the possible effects on the EU negotiation process of Danish efforts to push the CO 2 /energy tax proposal from the late 1980s to 994. This analysis is based on the preceding historical analysis of the EU negotiation process, as well as further investigations into the national Danish development within the field of CO 2 /energy taxation, including accounts of Denmark's particular relations with the EU during the period in question. Finally, based on the likely future developments in the field EU CO 2 /energy taxation. Denmark's strategic opportunities are outlined. (BA)

  3. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis

    International Nuclear Information System (INIS)

    Liu, Zhe; Geng, Yong; Adams, Michelle; Dong, Liang; Sun, Lina; Zhao, Jingjing; Dong, Huijuan; Wu, Jiao; Tian, Xu

    2016-01-01

    Highlights: • Energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of LCA. • CAI experienced a rapid growth of energy-related GHG emissions from 2004 to 2013. • Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI. • Construction and transportation-related activities account for more than 40% of the total embodied emissions. • Policy implications such as developing secondary aluminum industry, improving energy mix etc, are raised. - Abstract: With the rapid growth of aluminum production, reducing greenhouse gas (GHG) emissions in China’s aluminum industry (CAI) is posing a significant challenge. In this study, the energy-related GHG emission trajectories, features and driving forces of CAI are analyzed from the perspective of life cycle analysis (LCA) from 2004 to 2013. Results indicate that CAI experienced a rapid growth of energy-related GHG emissions with an average annual growth of 28.5 million tons CO_2e from 2004 to 2013. Energy-scale effect is the main driving force for energy-related GHG emissions increase in CAI, while emission-factor effect of secondary aluminum production plays a marginal effect. Construction and transportation-related activities account for the bulk of the embodied emissions, accounting for more than 40% of the total embodied emissions from CAI. Policy implications for GHG mitigation within the CAI, such as developing secondary aluminum industry, improving energy mix and optimizing resource efficiency of production, are raised.

  5. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  6. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce.

    Science.gov (United States)

    Freidlin, Raisa Z; Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-04-19

    Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and

  7. Thermodynamic driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-08-01

    Full Text Available - and three-dimensional systems behave similarly. The initial plastic strain in gamma' is anelastic and in principle reversible. When the plastic strain exceeds m delta, platelets perpendicular to the stress axis are formed if the product sigma delta...

  8. Electronic structure and driving forces in {beta}-cyclodextrin: Diclofenac inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania); Morari, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania)]. E-mail: cristim@s3.itim-cj.ro

    2007-07-02

    We investigate the geometry and electronic structure for complexes of {beta}-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries.

  9. The driving forces of landscape change in Europe

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Draux, Hélène; Fagerholm, Nora

    2016-01-01

    , we find that distinct combinations of mainly political/institutional, cultural, and natural/spatial underlying drivers are determining landscape change, rather than single key drivers. Our systematic review indicates knowledge gaps that can be filled by: (a) expanding the scope of studies to include...... because landscape research is spread across many domains and disciplines. We here provide a systematic synthesis of 144 studies that identify the proximate and underlying drivers of landscape change across Europe. First, we categorize how driving forces have been addressed and find that most studies......; low Gross Domestic Product; boreal, steppic, and arctic landscapes; as well as forestland systems are underrepresented in the literature. Third, our review shows that land abandonment/extensification is the most prominent (62% of cases) among multiple proximate drivers of landscape change. Fourthly...

  10. Trends and driving forces of ecological training and education in the context of ecological education environment of the technical university

    OpenAIRE

    Danilenkova V. A.

    2017-01-01

    common patterns of ecological training and education in the technical university are analyzed in this article, their descriptions are defined. Driving forces of ecological training and education in the context of ecological education environment are discovered and proved. According to conducted research the author makes a proposition to point out at ecological risks as driving forces, searching for which improves the efficiency and effectiveness of ecological education environment. The resear...

  11. Exact results for the behavior of the thermodynamic Casimir force in a model with a strong adsorption

    Science.gov (United States)

    Dantchev, Daniel M.; Vassilev, Vassil M.; Djondjorov, Peter A.

    2016-09-01

    When massless excitations are limited or modified by the presence of material bodies one observes a force acting between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) relief map of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below but close to the finite-size critical point.

  12. Transmission of government spending shocks in the Euro area: time variation and driving forces

    NARCIS (Netherlands)

    Kirchner, M.; Cimadomo, J.; Hauptmeier, S.

    This paper applies structural vector autoregressions with time-varying parameters in order to investigate changes in the effects of government spending shocks in the euro area, and the driving forces of those changes. Our contribution is two-fold. First, we present evidence that the short-run impact

  13. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  14. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  15. The world food situation: New driving forces and required actions [In Chinese

    OpenAIRE

    von Braun, Joachim

    2008-01-01

    "The world food situation is currently being rapidly redefined by new driving forces. Income growth, climate change, high energy prices, globalization, and urbanization are transforming food consumption, production, and markets. The influence of the private sector in the world food system, especially the leverage of food retailers, is also rapidly increasing. Changes in food availability, rising commodity prices, and new producer–consumer linkages have crucial implications for the livelihoods...

  16. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  17. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    Science.gov (United States)

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  18. Discharge switch driving by Lorentz force and its characteristics

    International Nuclear Information System (INIS)

    Inoue, Kunikazu; Hasegawa, Mitsuo; Ueno, Isao

    1999-01-01

    Our newly developed 'Rotary-Arc mode Discharge Switch' have featured longer life expectancy and lower inductance-wise by extremely minimizing the insulation deterioration and consumable main electrode through installation of permanent magnet, simplified construction and careful attention on the demagnetization. Resultantly, highly efficient and larger capacitive discharge switch have been available at such economical cost. In addition, by having derived an experimental formula for the driving speed of the arc, the required design parameters of the discharge switch have been determined, and then it has been well noted that any affections of electro-magnetic Lorentz force toward the starting characteristics have been negligible small. All these have made it possible to materialize such discharge switch which will satisfy the required conditions. (author)

  19. Thermodynamics in rotating systems—analysis of selected examples

    International Nuclear Information System (INIS)

    Güémez, J; Fiolhais, M

    2014-01-01

    We solve a set of selected exercises on rotational motion requiring a mechanical and thermodynamical analysis. When non-conservative forces or thermal effects are present, a complete study must use the first law of thermodynamics together with Newton’s second law. The latter is here better expressed in terms of an ‘angular’ impulse–momentum equation (Poinsot–Euler equation), or, equivalently, in terms of a ‘rotational’ pseudo-work–energy equation. Thermodynamical aspects in rotational systems, when e.g. frictional forces are present or when there is a variation of the rotational kinetic energy due to internal sources of energy, are discussed. (paper)

  20. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  1. Finite Element Analysis of the Vertical Levitation Force in an Electrostatic MEMS Comb Drive Actuator

    International Nuclear Information System (INIS)

    Wooldridge, J; Blackburn, J; Muniz-Piniella, A; Stewart, M; Shean, T A V; Weaver, P M; Cain, M G

    2013-01-01

    A vertical levitation electrostatic comb drive actuator was manufactured for the purpose of measuring piezoelectric coefficients in small-scale materials and devices. Previous modelling work on comb drive levitation has focussed on control of the levitation in standard poly-silicon devices in order to minimize effects on lateral modes of operation required for the accelerometer and gyroscope applications. The actuator developed in this study was manufactured using a 20 μm electroplated Ni process with a 25 μm trench created beneath the released structure through chemical wet etching. A finite element analysis using ZINC was used to model electrostatic potential around a cross section of one static and one movable electrode, from which the net levitation force per unit electrode was calculated. The model was first verified using the electrode geometry from previously studied systems, and then used to study the variation of force as a function of decreasing substrate-electrode distance. With the top electrode surfaces collinear the calculated force density is 0.00651 ε 0 V 2 M μm −1 , equivalent to a total force for the device of 36.4 μN at an applied voltage of V M =100 V, just 16% larger than the observed value. The measured increase in force with distance was smaller than predicted with the FEA, due to the geometry of the device in which the electrodes at the anchored ends of the supporting spring structure displace by a smaller amount than those at the centre

  2. Orbital Forcing driving climate variability on Tropical South Atlantic

    Science.gov (United States)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events

  3. How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2017-04-01

    Full Text Available Thermodynamic stability, as expressed by the Second Law, generally constitutes the driving force for chemical assembly processes. Yet, somehow, within the living world most self-organisation processes appear to challenge this fundamental rule. Even though the Second Law remains an inescapable constraint, under energy-fuelled, far-from-equilibrium conditions, populations of chemical systems capable of exponential growth can manifest another kind of stability, dynamic kinetic stability (DKS. It is this stability kind based on time/persistence, rather than on free energy, that offers a basis for understanding the evolutionary process. Furthermore, a threshold distance from equilibrium, leading to irreversibility in the reproduction cycle, is needed to switch the directive for evolution from thermodynamic to DKS. The present report develops these lines of thought and argues against the validity of a thermodynamic approach in which the maximisation of the rate of energy dissipation/entropy production is considered to direct the evolutionary process. More generally, our analysis reaffirms the predominant role of kinetics in the self-organisation of life, which, in turn, allows an assessment of semi-quantitative constraints on systems and environments from which life could evolve.

  4. Driving forces and barriers for environmental technology development; Drivkrefter og barrierer for utvikling av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Driving forces and barriers behind development and usage of environmental technology is discussed, and also whether there are certain characteristics related to environmental innovations compared to other innovations in general. The development of environmental technology is in principle dominated by the same drivers and barriers as any other technology, but the order and strength of the various factors may be different. This examination as well as other empirical studies shows that regulations play a greater part for environmental technology than 'pure market forces'. To many participants it is important to be one step ahead of the regulations, i.e. the expected regulations are equally important as the factual ones in driving the technology development. Players in the business community express that it is important that the authorities cooperate with them when introducing new regulations. This will increase acceptance for the regulations and facilitate the necessary adjustments. The most important barrier in the development and use of the technologies studied is probably the lack of demand.

  5. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    Science.gov (United States)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  6. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  7. Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble motion

    International Nuclear Information System (INIS)

    Tang, Tsung-Lin; Fang, Weileun

    2011-01-01

    This study demonstrates the magnetostatic torsional actuator consisting in a Si–Ni compound frame to significantly improve the driving force. The present design has three merits: (1) it employs a Si mold to simultaneously electroplate/pattern thick Ni, and the Ni and Si structures respectively provide magnetostatic force and superior mechanical properties, (2) the embedded Ni structures not only increase the ferromagnetic material volume but also enhance magnetization strength to enlarge magnetostatic torque, (3) the Si–Ni compound structure, which is nearly symmetric about the torsional axis in the out-of-plane direction, can decrease the moment of inertia and also reduce the wobble motion. In applications, one-axis torsional actuator is implemented and characterized. The experiments show that the Si–Ni compound scanner has an optical scan angle θ optical = 90° with the input power 81 mW. The input power is decreased as compared with the existing scanner. Moreover, the out-of-plane wobble motion is only 44 nm at θ optical = 15°. Compared with the existing designs consisted of asymmetric structures in the out-of-plane direction, such as electroplated film and silicon rib, about the torsional axis, the equivalent eccentric force is reduced nearly two-fold. In short, the proposed design not only increases the driving force but also decreases the wobble motion

  8. The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket.

    Science.gov (United States)

    Meyners, Christian; Krämer, Andreas; Yildiz, Özkan; Meyer-Almes, Franz-Josef

    2017-07-01

    The analysis of the thermodynamic driving forces of ligand-protein binding has been suggested to be a key component for the selection and optimization of active compounds into drug candidates. The binding enthalpy as deduced from isothermal titration calorimetry (ITC) is usually interpreted assuming single-step binding of a ligand to one conformation of the target protein. Although successful in many cases, these assumptions are oversimplified approximations of the reality with flexible proteins and complicated binding mechanism in many if not most cases. The relationship between protein flexibility and thermodynamic signature of ligand binding is largely understudied. Directed mutagenesis, X-ray crystallography, enzyme kinetics and ITC methods were combined to dissect the influence of loop flexibility on the thermodynamics and mechanism of ligand binding to histone deacetylase (HDAC)-like amidohydrolases. The general ligand-protein binding mechanism comprises an energetically demanding gate opening step followed by physical binding. Increased flexibility of the L2-loop in HDAC-like amidohydrolases facilitates access of ligands to the binding pocket resulting in predominantly enthalpy-driven complex formation. The study provides evidence for the great importance of flexibility adjacent to the active site channel for the mechanism and observed thermodynamic driving forces of molecular recognition in HDAC like enzymes. The flexibility or malleability in regions adjacent to binding pockets should be given more attention when designing better drug candidates. The presented case study also suggests that the observed binding enthalpy of protein-ligand systems should be interpreted with caution, since more complicated binding mechanisms may obscure the significance regarding potential drug likeness. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Micromechanical analysis of volumetric growth in the context of open systems thermodynamics and configurational mechanics. Application to tumor growth

    Science.gov (United States)

    Ganghoffer, J. F.; Boubaker, M. B.

    2017-03-01

    We adopt in this paper the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the expansion (resp. contraction) of initially small tissue elements distributed within a host surrounding matrix, due to the interfacial motion of their boundary. The interface motion is controlled by the availability of nutrients and mechanical driving forces resulting from the internal stresses that built in during the growth. A general extremum principle of the zero potential for open systems witnessing a change of their mass due to the diffusion of nutrients is constructed, considering the framework of open systems thermodynamics. We postulate that the shape of the tissue element evolves in such a way as to minimize the zero potential among all possible admissible shapes of the growing tissue elements. The resulting driving force for the motion of the interface sets a surface growth models at the scale of the growing tissue elements, and is conjugated to a driving force identified as the interfacial jump of the normal component of an energy momentum tensor, in line with Hadamard's structure theorem. The balance laws associated with volumetric growth at the mesoscopic level result as the averaging of surface growth mechanisms occurring at the microscopic scale of the growing tissue elements. The average kinematics has been formulated in terms of the effective growth velocity gradient and elastic rate of deformation tensor, both functions of time. This formalism is exemplified by the simulation of the avascular growth of multicell spheroids in the presence of diffusion of nutrients, showing the respective influence of mechanical and chemical driving forces in relation to generation of internal stresses.

  10. Thermodynamic Study of Tl6SBr4 Compound and Some Regularities in Thermodynamic Properties of Thallium Chalcohalides

    Directory of Open Access Journals (Sweden)

    Dunya Mahammad Babanly

    2017-01-01

    Full Text Available The solid-phase diagram of the Tl-TlBr-S system was clarified and the fundamental thermodynamic properties of Tl6SBr4 compound were studied on the basis of electromotive force (EMF measurements of concentration cells relative to a thallium electrode. The EMF results were used to calculate the relative partial thermodynamic functions of thallium in alloys and the standard integral thermodynamic functions (-ΔfG0, -ΔfH0, and S0298 of Tl6SBr4 compound. All data regarding thermodynamic properties of thallium chalcogen-halides are generalized and comparatively analyzed. Consequently, certain regularities between thermodynamic functions of thallium chalcogen-halides and their binary constituents as well as degree of ionization (DI of chemical bonding were revealed.

  11. Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis–Menten

    Science.gov (United States)

    Wachtel, Artur; Rao, Riccardo; Esposito, Massimiliano

    2018-04-01

    Starting from the detailed catalytic mechanism of a biocatalyst we provide a coarse-graining procedure which, by construction, is thermodynamically consistent. This procedure provides stoichiometries, reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level. It can treat active transporters and molecular machines, and thus extends the applicability of ideas that originated in enzyme kinetics. Our results lay the foundations for systematic studies of the thermodynamics of large-scale biochemical reaction networks. Moreover, we identify the conditions under which a relation between one-way fluxes and forces holds at the coarse-grained level as it holds at the detailed level. In doing so, we clarify the speculations and broad claims made in the literature about such a general flux–force relation. As a further consequence we show that, in contrast to common belief, the second law of thermodynamics does not require the currents and the forces of biochemical reaction networks to be always aligned.

  12. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  13. Driving force of PCMI failure under reactivity initiated accident conditions and influence of hydrogen embrittlement on failure limit

    International Nuclear Information System (INIS)

    Tomiyasu, Kunihiko; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi

    2005-09-01

    In order to clarify the driving force of PCMI (Pellet/Cladding Mechanical Interaction) failure on high burnup fuels and to investigate the influence of hydrogen embrittlement on failure limit under RIA (Reactivity Initiated Accident) conditions, RIA-simulation experiments were performed on fresh fuel rods in the NSRR (Nuclear Safety Research Reactor). The driving force of PCMI was restricted only to thermal expansion of pellet by using fresh UO 2 pellets. Fresh claddings were pre-hydrided to simulate hydrogen absorption of high burnup fuel rods. In seven experiments out of fourteen, test rods resulted in PCMI failure, which has been observed in the NSRR tests on high burnup PWR fuels, in terms of the transient behavior and the fracture configuration. This indicates that the driving force of PCMI failure is sufficiently explained with thermal expansion of pellet and a contribution of fission gas on it is small. A large number of incipient cracks were generated in the outer surface of the cladding even on non-failed fuel rods, and they stopped at the boundary between hydride rim, which was a hydride layer localized in the periphery of the cladding, and metallic layer. It suggests that the integrity of the metallic layer except for the hydride rim has particular importance for failure limit. Fuel enthalpy at failure correlates with the thickness of hydride rim, and tends to decrease with thicker hydride layer. (author)

  14. Deformation-induced martensitic transformation in a 201 austenitic steel: The synergy of stacking fault energy and chemical driving force

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, M., E-mail: m.moallemi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Fould Institute of Technology, Fouladshahr, Isfahan, 8491663763 (Iran, Islamic Republic of); Rezaee, A.; Baghbadorani, H. Samaei; Nezhadfar, P. Dastranjy [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-01-20

    The present study deals with the correlation of stacking fault energy's synergy and driving force in the formation of deformation-induced martensitic transformation in a 201 austenitic stainless steel. The fraction of deformation-induced martensite was characterized by means of X-ray diffraction and magnetic induction techniques. The kinetics of the martensite formation versus applied strain was evaluated through the sigmoidal model. It was shown that the volume fraction of ά-martensite is closely related to the driving force/SFE ratio of the alloy. The results also showed that the martensite content is similar in both XRD and magnetic methods and the applied sigmoidal model was consistent with the obtained experimental data.

  15. Blood pressure is the major driving force for plaque formation in aortic-constricted ApoE-/- mice

    DEFF Research Database (Denmark)

    Johansson, Maria E.; Wickman, Anna; Skøtt, Ole

    2006-01-01

    OBJECTIVE: Using an aortic constriction model in mice, we studied whether the increase in pressure or the activation of the renin-angiotensin system (RAS) and its main receptors is the main driving force for plaque progression. METHODS: Male ApoE mice underwent sham surgery or placement of a supr...

  16. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  17. Role of thermodynamic, kinetic and structural factors in the recrystallization behavior of amorphous erythromycin salts

    Energy Technology Data Exchange (ETDEWEB)

    Nanakwani, Kapil; Modi, Sameer R.; Kumar, Lokesh; Bansal, Arvind K., E-mail: akbansal@niper.ac.in

    2014-04-01

    Graphical abstract: - Highlights: • Crystallization kinetics of amorphous erythromycin salts was assessed. • Contribution of thermodynamic, kinetic and structural factors was evaluated. • Role of counterions on physical stability of amorphous salts was investigated. • Implications of the study: In rationalizing stabilization approach for amorphous form. - Abstract: Amorphous form has become an important drug delivery strategy for poorly water soluble drugs. However, amorphous form has inherent physical instability due to its tendency to recrystallize to stable crystalline form. In the present study, amorphous forms of erythromycin free base (ED) and its salts namely, stearate (ES), phosphate (EP) and thiocyanate (ET) were generated by in situ melt quenching and evaluated for their crystallization tendency. Salts were characterized for kinetic, thermodynamic and structural factors to understand crystallization behavior. Kinetics of crystallization followed the order as ES > EP > ET > ED. Fragility and molecular mobility does not completely explain these findings. However, configurational entropy (S{sub conf}), indicative of entropic barrier to crystallization, followed the order as ET > EP > ES > ED. Lower crystallization tendency of ED can be explained by its lower thermodynamic driving force for crystallization (H{sub conf}). This correlated well with different structural parameters for the counter ions.

  18. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  19. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  20. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    International Nuclear Information System (INIS)

    Clima, Sergiu; Chen, Yang Yin; Goux, Ludovic; Govoreanu, Bogdan; Degraeve, Robin; Fantini, Andrea; Jurczak, Malgorzata; Chen, Chao Yang; Pourtois, Geoffrey

    2016-01-01

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.

  1. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    Energy Technology Data Exchange (ETDEWEB)

    Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic; Govoreanu, Bogdan; Degraeve, Robin; Fantini, Andrea; Jurczak, Malgorzata [imec, Kapeldreef 75, 3001 Leuven (Belgium); Chen, Chao Yang [imec, Kapeldreef 75, 3001 Leuven (Belgium); Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Pourtois, Geoffrey [imec, Kapeldreef 75, 3001 Leuven (Belgium); PLASMANT, University of Antwerp, 2610 Antwerpen (Belgium)

    2016-06-14

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.

  2. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  3. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  4. Non-equilibrium thermodynamics in cells.

    Science.gov (United States)

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  5. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome

    DEFF Research Database (Denmark)

    Lüdemann, Gesa; Solov'yov, Ilia; Kubar, Tomás

    2015-01-01

    upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force which ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable...

  6. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  7. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    International Nuclear Information System (INIS)

    Sholly, S.C.

    1990-01-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  8. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sholly, S C [MHB Technical Associates, San Jose, CA (United States)

    1990-07-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  9. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  10. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures

    International Nuclear Information System (INIS)

    Mesmer, R.E.; Marshall, W.L.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.

    1990-01-01

    Electrochemical and electrical conductance cells have been widely used at ORNL over the years to quantitatively determine equilibrium constants and their salt effects to 300 degree C (EMF) and 800 degree C (conductance) at the saturation pressure of water (EMF) and to 4000 bars (conductance). The most precise results to 300 degree C for a large number of weak acids and bases show very similar thermodynamic behavior, which will be discussed. Results for the ionization constants of water, NH 3 (aq), HCl(aq), and NaCl(aq), which extend well into the supercritical region, have been fitted in terms of a model with dependence on density and temperature. The entropy change is found to be the driving force for ion-association reactions and this tendency increases (as it must) with increasing temperature at a given pressure. Also, the variation of all thermodynamic properties is greatly reduced at high fixed densities. Considerable variation occurs at low densities. From this analysis, the dependence of the reaction thermodynamics on the P-V-T properties of the solvent is shown, and the implication of large changes in hydration for solutes in the vicinity of the critical temperature will be discussed. Finally, the change in the molar compressibility coefficient for all reactions in water is shown to be the same and dependent only on the compressibility of the solvent

  11. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    Science.gov (United States)

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  12. Local deforestation patterns and their driving forces of tropical dry forest in two municipalities in Southern Oaxaca, Mexico (1985-2006

    Directory of Open Access Journals (Sweden)

    L. Galicia

    2016-11-01

    Full Text Available The tropical dry forest is an ecosystem that is undergoing rapid changes. Although global driving forces behind these changes have been addressed at a local scale, spatio-temporal dynamics are still largely unknown. The main objective of this study was to identify the causes governing the dynamics of changes in land use and land cover in the tropical dry forest in two municipalities in Southern México. Satellite imagery and air photographs were used in a GIS context to produce maps of land use and land cover for 1985, 1995 and 2006. A number of statistical methods (Markov chains, general lineal models and regression tree analysis were applied to identify the proximate and the underlying causes of deforestation, agriculture being the most important one. When agriculture is mainly for self consumption, topographic factors determine its location. Increasing job opportunities in the tourism sector has resulted in the abandonment of agricultural land; consequently, the forest has recovered. Different studies have examined the dynamics of local deforestation and its driving forces in México; however, this study considered both spatial and temporal elements in order to identify the most important underlying driving forces of deforestation and its dynamics at local scale, and also compared two neighboring municipalities.

  13. A computer program for lattice-dynamical evaluation of Debye-Waller factors and thermodynamic functions for minerals, starting from empirical force fields

    International Nuclear Information System (INIS)

    Pilati, T.; Dermartin, F.; Gramaccioli, C.M.

    1993-01-01

    A wide-purpose computer program has been written (Fortran) for lattice dynamical evaluation of crystallographic and thermodynamic properties of solids, especially minerals or inorganic substances.The program essentially consists of a routine affording first and second derivatives of energy with respect to mass weighted coordinates, properly modulated by a wave vector algorithm, so that diagonalization can immediately follow and arrive at frequencies, density of states, and eventually to thermodynamic functions and Debye-Waller parameters thorough an automatic Brillouin-zone sampling procedure. The input consists of crystallographic data (unit-cell parameters, space group symmetry operations, atomic coordinates), plus atomic charge and empirical parameters, such as force constants or non-bonded atom-atom interaction energy functions in almost any form. It is also possible to obtain the structure corresponding to the energy minimum, or even to work with partial rigid bodies, in order to reduce the order of the dynamical matrices. The program provides for automatic symmetry labelling of the vibrational modes, in order to compare them with the experimental data; there is possibility of improving the empirical functions through a minimization routine. Examples of application and transferability of force fields to a series of minerals are provided. (author)

  14. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  15. Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China.

    Science.gov (United States)

    Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran

    2017-09-14

    Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.

  16. Differences in Pattern and Driving Forces between Urban and Rural Settlements in the Coastal Region of Ningbo, China

    Directory of Open Access Journals (Sweden)

    Mingxing Chen

    2014-04-01

    Full Text Available Rapid urbanization on the coast of China has attracted much attention. The objective of this study was to explore the differences in dynamics and related driving forces between urban and rural settlements. Applying the quantitative method, we demonstrate that substantial heterogeneity in settlement growth, landscape pattern metrics, change, land sources and driving forces is exhibited across the different types of urban and rural settlements. The spatial growth of urban settlements is dominated by in situ expansion, while rural settlements tend to be scattered and shrinking rapidly. The sprawl of human settlements has mainly occupied farm land, but reclamation projects are increasingly becoming important land sources for urban settlements. Local government has played a critical role in urban settlements, while the expansion of rural settlements is mainly driven by individual choice and village collective organizations. Such differences may account for differential options for the management of human settlements scientifically.

  17. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China

    Science.gov (United States)

    Wang, Changhai

    2016-09-01

    This research revealed important driving forces behind the construction of an eco-compensation mechanism for wetlands (DFEMW) in China. Using China's provincial panel data from 1978 to 2008, a fixed-effects model was used to analyze the impacts of agricultural production systems on wetlands. We identified three DFEMW as follows: the change of wetland resources and protection measures in China; declaration and implementation of the provincial Wetland Protection Ordinance; and wetland degradation by agricultural production systems, which necessitated the establishment of a wetland eco-compensation mechanism. In addition to the DFEMW, a significant positive correlation between wetland area and both rural population and gross agricultural production was identified, in addition to a negative correlation with chemical fertilizer usage, reservoir storage capacity, and irrigation area. The underlying reasons for the serious degradation and inadequate protection of wetlands were market failure and government failure; these were the driving forces behind the need to establish a wetland eco-compensation mechanism. From a governmental perspective, it has been difficult to rectify market failures in resource distribution and thus to prevent wetland degradation. Factors include conflicts of interest, lack of investment, effective special laws, a simple means to protect wetlands, and a multidisciplinary management system. Therefore, the key factor is the coordination of interest relationships between those who utilize wetlands and those who seek to minimize wetland degradation and effectively protect wetlands.

  18. Molecular dynamics simulations shed light on the enthalpic and entropic driving forces that govern the sequence specific recognition between netropsin and DNA.

    Science.gov (United States)

    Dolenc, Jozica; Gerster, Sarah; van Gunsteren, Wilfred F

    2010-09-02

    With the aim to gain a better understanding of the various driving forces that govern sequence specific DNA minor groove binding, we performed a thermodynamic analysis of netropsin binding to an AT-containing and to a set of six mixed AT/GC-containing binding sequences in the DNA minor groove. The relative binding free energies obtained using molecular dynamics simulations and free energy calculations show significant variations with the binding sequence. While the introduction of a GC base pair in the middle or close to the middle of the binding site is unfavorable for netropsin binding, a GC base pair at the end of the binding site appears to have no negative influence on the binding. The results of the structural and energetic analyses of the netropsin-DNA complexes reveal that the differences in the calculated binding affinities cannot be explained solely in terms of netropsin-DNA hydrogen-bonding or interaction energies. In addition, solvation effects and entropic contributions to the relative binding free energy provide a more complete picture of the various factors determining binding. Analysis of the relative binding entropy indicates that its magnitude is highly sequence-dependent, with the ratio |TDeltaDeltaS|/|DeltaDeltaH| ranging from 0.07 for the AAAGA to 1.7 for the AAGAG binding sequence, respectively.

  19. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric

    2014-01-01

    , and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI......,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven......, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies...

  20. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    Science.gov (United States)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  1. The Key Driving Forces for Geo-Economic Relationships between China and ASEAN Countries

    Directory of Open Access Journals (Sweden)

    Shufang Wang

    2017-12-01

    Full Text Available With the rise of China and the implementation of the “21st Century Maritime Silk Road” strategy, research on geo-economics between China and ASEAN (Association of Southeast Asian Nations countries has become increasingly important. Current studies mainly focus on influencing factors, while there is little consideration about how these influencing factors act on geo-economic relationships. Therefore, this paper explores the key driving forces for geo-economic relationships between China and ASEAN countries by use of the structural equation modeling based on Partial Lease Squares. There are three main findings: (1 Economic factors have the greatest impact on geo-economic relationships and the total path effect is 0.778. Geo-location, geopolitics and geo-culture act on geo-economic relationships directly and indirectly. Their total path effects are 0.731, 0.645 and 0.513, respectively. (2 Indirect effects of geo-location, geopolitics and geo-culture impacting geo-economic relationships are far greater than direct effects. Geo-culture, in particular, has a vital mediating effect on geo-economic relationships. (3 Economic drivers promote geo-economic relationships through market, industrial policy, technical, network and benefit-sharing mechanisms. Political drivers improve geo-economic relationships through cooperation, negotiation, coordination and institutional mechanisms. Cultural drivers enhance geo-economic relationships through transmission mechanism. Location drivers facilitate geo-economic relationships through selection mechanism. We provide new insights on the geo-economic relationships through quantitative analysis and enrich the existing literature by revealing the key driving forces and mechanisms for geo-economic relationships.

  2. [Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China].

    Science.gov (United States)

    Shen, Lu; Tian, Mei-rong; Gao, Ji-xi; Qian, Jin-ping

    2016-01-01

    Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend. The coniferous forest and grassland had strong windbreak and sand fixation capacity in unit area among the various land categories. In terms of spatial distribution, the windbreak and sand fixation function in western and southeastern region was weak and needed to be strengthened with ecological restoration efforts. Through the study of the social driving forces of each administrative region in the function zone, there were 3 main social driving forces of soil erosion in the administrative functions: the intensity of input-output, the level of economic development and the level of agriculture-husbandry development.

  3. Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.

    Science.gov (United States)

    Lin, Ching Yeh; Peh, Jessie; Coote, Michelle L

    2011-03-18

    The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.

  4. Greatest Happiness Principle in a Complex System: Maximisation versus Driving Force

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2012-06-01

    Full Text Available From philosophical point of view, micro-founded economic theories depart from the principle of the pursuit of the greatest happiness. From mathematical point of view, micro-founded economic theories depart from the utility maximisation program. Though economists are aware of the serious limitations of the equilibrium analysis, they remain in that framework. We show that the maximisation principle, which implies the equilibrium hypothesis, is responsible for this impasse. We formalise the pursuit of the greatest happiness principle by the help of the driving force postulate: the volumes of activities depend on the expected wealth increase. In that case we can get rid of the equilibrium hypothesis and have new insights into economic theory. For example, in what extent standard economic results depend on the equilibrium hypothesis?

  5. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  6. Thermodynamics and entanglements of walks under stress

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J; Orlandini, E; Tesi, M C; Whittington, S G

    2009-01-01

    We use rigorous arguments and Monte Carlo simulations to study the thermodynamics and the topological properties of self-avoiding walks on the cubic lattice subjected to an external force f. The walks are anchored at one or both endpoints to an impenetrable plane at Z = 0 and the force is applied in the Z-direction. If a force is applied to the free endpoint of an anchored walk, then a model of pulled walks is obtained. If the walk is confined to a slab and a force is applied to the top bounding plane, then a model of stretched walks is obtained. For both models we prove the existence of the limiting free energy for any value of the force and we show that, for compressive forces, the thermodynamic properties of the two models differ substantially. For pulled walks we prove the existence of a phase transition that, by numerical simulation, we estimate to be second order and located at f = 0. By using a pattern theorem for large positive forces we show that almost all sufficiently long stretched walks are knotted. We examine the entanglement complexity of stretched and pulled walks; our numerical results show a sharp reduction with increasing pulling and stretching forces. Finally, we also examine models of pulled and stretched loops. We prove the existence of limiting free energies in these models and consider the knot probability numerically as a function of the applied pulling or stretching force

  7. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  8. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime

    Science.gov (United States)

    Casado-Pascual, Jesús

    2018-03-01

    The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential. Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is shown that, although neither of these two forces induces directed motion when acting separately, when added together, the resultant force generates directed motion along the direction of the force with the shortest period. The dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore, certain aspects of the observed phenomenology are explained by means of symmetry arguments.

  9. The Thermodynamics of Drunk Driving

    Science.gov (United States)

    Thompson, Robert Q.

    1997-05-01

    Chemical and instrumental tests for driving under the influence of alcohol (DUI) measure the concentration of ethanol in the breath (BrAC), while state DUI laws are described in terms of blood alcohol concentration (BAC). Consequently, accurate and fair conversion from BrAC to BAC is crucial to the judicial process. Theoretical treatment of the water-air-ethanol equilibrium system and the related blood-breath-ethanol system, based on principles from general chemistry and biology, yields an equation relating the ratio of BAC to BrAC to the absolute temperature of the breath, the fraction of water in the blood, and the enthalpy and entropy of vaporization of ethanol from aqueous solution. The model equation predicts an average value for the ratio of 2350+100, not significantly different from reported experimental values. An exponential temperature dependence is predicted and has been confirmed experimentally as well. Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC. While the forensic science community uses, and debates, a fixed ratio of 2100, the theoretical model suggests that a value of 1880 should be used to reduce the fraction of false positives to <1%.

  10. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw

  11. Hohlraums energy balance and x-ray drive

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature

  12. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  13. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  14. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    OpenAIRE

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object...

  15. Driving forces for home-based reablement; a qualitative study of older adults' experiences.

    Science.gov (United States)

    Hjelle, Kari Margrete; Tuntland, Hanne; Førland, Oddvar; Alvsvåg, Herdis

    2017-09-01

    As a result of the ageing population worldwide, there has been a growing international interest in a new intervention termed 'reablement'. Reablement is an early and time-limited home-based intervention with emphasis on intensive, goal-oriented and interdisciplinary rehabilitation for older adults in need of rehabilitation or at risk of functional decline. The aim of this qualitative study was to describe how older adults experienced participation in reablement. Eight older adults participated in semi-structured interviews. A qualitative content analysis was used as the analysis strategy. Four main themes emerged from the participants' experiences of participating in reablement: 'My willpower is needed', 'Being with my stuff and my people', 'The home-trainers are essential', and 'Training is physical exercises, not everyday activities'. The first three themes in particular reflected the participants' driving forces in the reablement process. Driving forces are intrinsic motivation in interaction with extrinsic motivation. Intrinsic motivation was based on the person's willpower and responsibility, and extrinsic motivation was expressed to be strengthened by being in one's home environment with 'own' people, as well as by the co-operation with the reablement team. The reablement team encouraged and supported the older adults to regain confidence in performing everyday activities as well as participating in the society. Our findings have practical significance for politicians, healthcare providers and healthcare professionals by contributing to an understanding of how intrinsic and extrinsic motivation influence reablement. Some persons need apparently more extrinsic motivational support also after the time-limited reablement period is completed. The municipal health and care services need to consider individualised follow-up programmes after the intensive reablement period in order to maintain the achieved skills to perform everyday activities and participate in

  16. The driving force role of ruthenacyclobutanes

    KAUST Repository

    Vummaleti, Sai V. C.; Cavallo, Luigi; Poater, Albert

    2015-01-01

    DFT calculations have been used to determine the thermodynamic and kinetic preference for ruthenacyclobutanes resulting from the experimentally proposed interconversion pathways (olefin and alkylidene rotations) through the investigation of cross-metathesis reaction mechanism for neutral Grubbs catalyst, RuCl2(=CHEt)NHC (A), with ethylene and 1-butene as the substrates. Our results show that although the proposed interconversions are feasible due to the predicted low energy barriers (2-6 kcal/mol), the formation of ruthenacyclobutane is kinetically favored over the competitive reactions involving alkylidene rotations. In comparison with catalyst A, the reaction energy profile for cationic Piers catalyst [RuCl2(=CHPCy3)NHC+] (B) is more endothermic in nature with both ethylene and 1-butene substrates.

  17. The driving force role of ruthenacyclobutanes

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-02-07

    DFT calculations have been used to determine the thermodynamic and kinetic preference for ruthenacyclobutanes resulting from the experimentally proposed interconversion pathways (olefin and alkylidene rotations) through the investigation of cross-metathesis reaction mechanism for neutral Grubbs catalyst, RuCl2(=CHEt)NHC (A), with ethylene and 1-butene as the substrates. Our results show that although the proposed interconversions are feasible due to the predicted low energy barriers (2-6 kcal/mol), the formation of ruthenacyclobutane is kinetically favored over the competitive reactions involving alkylidene rotations. In comparison with catalyst A, the reaction energy profile for cationic Piers catalyst [RuCl2(=CHPCy3)NHC+] (B) is more endothermic in nature with both ethylene and 1-butene substrates.

  18. Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces.

    Science.gov (United States)

    Fang, Chuanglin; Li, Guangdong; Wang, Shaojian

    2016-03-01

    Urban landscape spatiotemporal change patterns and their driving mechanisms in China are poorly understood at the national level. Here we used remote sensing data, landscape metrics, and a spatial econometric model to characterize the spatiotemporal patterns of urban landscape change and investigate its driving forces in China between 1990 and 2005. The results showed that the urban landscape pattern has experienced drastic changes over the past 15 years. Total urban area has expanded approximately 1.61 times, with a 2.98% annual urban-growth rate. Compared to previous single-city studies, although urban areas are expanding rapidly, the overall fragmentation of the urban landscape is decreasing and is more irregular and complex at the national level. We also found a stair-stepping, urban-landscape changing pattern among eastern, central, and western counties. In addition, administrative level, urban size, and hierarchy have effects on the urban landscape pattern. We also found that a combination of landscape metrics can be used to supplement our understanding of the pattern of urbanization. The changes in these metrics are correlated with geographical indicators, socioeconomic factors, infrastructure variables, administrative level factors, policy factors, and historical factors. Our results indicate that the top priority should be strengthening the management of urban planning. A compact and congregate urban landscape may be a good choice of pattern for urban development in China.

  19. Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng-Robinson equation of state

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.

  20. Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng-Robinson equation of state

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.

  1. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  2. Quantifying the Driving Forces of Informal Urbanization in the Western Part of the Greater Cairo Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Taher Osman

    2016-06-01

    Full Text Available This paper discusses the driving forces (DFs of informal urbanization (IU in the greater Cairo metropolitan region (GCMR using the Analytic Hierarchy Process (AHP. The IU patterns in the GCMR have been extremely influenced by seven DFs: geographical characteristics, availability of life facilities, economic incentives, land demand and supply, population increase, administrative function, and development plans. This research found that these forces vary significantly in how they influence urban growth in the three study sectors, namely, the middle, north, and south areas in the western part of the GCMR. The forces with the highest influence were economic incentives in the middle sector, population increase in the north sector, and the administrative function in the south sector. Due to the lower availability of buildable land in the middle sector, the land demand and supply force had a lesser influence in this sector compared to in the north and south sectors. The development plans force had medium influence in all sectors. The geographical characteristics force had little influence in both the middle and the north sectors, but higher influence than economic incentives, availability of life facilities, and development plans in the south sector. Because of the spatial variances in life facilities organizations in the GCMR, the life facilities availability force had little effect on IU in the south sector.

  3. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  4. Driving forces and barriers to improved energy performance of buildings: an analysis of energy performance of Swedish buildings, 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2008-06-15

    The building sector is responsible for a substantial part of energy use and green house gas emissions in Europe. This report explores driving forces and barriers to improved energy performance of buildings, using the Swedish building sector as a case. The development of energy performance of buildings in Sweden from 2000 until 2006 is explored by applying a threefold understanding of energy performance of buildings: substitution from fossil fuels to renewable energy, conversion from electrical heating to thermal energy and reduction in energy demand. Three explanatory approaches are used to analyse driving forces and barriers to improved energy performance: the techno-economic approach stresses the physical aspects of infrastructure and technologies, the institutional approach emphasizes the role of institutional factors, while the regulative approach focuses on formal rules and laws. The study concludes that all factors have promoted substitution of fossil fuels with renewable energy, while they have prevented conversion from electrical heating to thermal energy and reduction in energy demand. (author). 95 refs

  5. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    Protein aggregation in aqueous cellular environments is linked to diverse human diseases. Protein aggregation proceeds through a multistep process initiated by conformational transitions, called protein misfolding, of monomer species toward aggregation-prone structures. Various forms of aggregate species are generated through the association of misfolded monomers including soluble oligomers and amyloid fibrils. Elucidating the molecular mechanisms and driving forces involved in the misfolding and subsequent association has been a central issue for understanding and preventing protein aggregation diseases such as Alzheimer's, Parkinson's, and type II diabetes. In this Account, we provide a thermodynamic perspective of the misfolding and aggregation of the amyloid-beta (Aβ) protein implicated in Alzheimer's disease through the application of fluctuating thermodynamics. This approach "dissects" the conventional thermodynamic characterization of the end states into the one of the fluctuating processes connecting them, and enables one to analyze variations in the thermodynamic functions that occur during the course of protein conformational changes. The central quantity in this approach is the solvent-averaged effective energy, f = Eu + Gsolv, comprising the protein potential energy (Eu) and the solvation free energy (Gsolv), whose time variation reflects the protein dynamics on the free energy landscape. Protein configurational entropy is quantified by the magnitude of fluctuations in f. We find that misfolding of the Aβ monomer when released from a membrane environment to an aqueous phase is driven by favorable changes in protein potential energy and configurational entropy, but it is also accompanied by an unfavorable increase in solvation free energy. The subsequent dimerization of the misfolded Aβ monomers occurs in two steps. The first step, where two widely separated monomers come into contact distance, is driven by water-mediated attraction, that is, by a

  6. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    Science.gov (United States)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  7. Thermodynamics of intersecting black branes from interacting elementary branes

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takeshi [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Shiba, Shotaro [Maskawa Institute for Science and Culture, Kyoto Sangyo University,Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan)

    2015-09-14

    If an Einstein-Maxwell-Dilaton system admits the extreme brane solution in which no force works between the parallel branes, the collective motion of nearly parallel branes exhibits the thermodynamical properties which are coincident with those of the corresponding black branes at low energy regime (up to unfixed numerical factors). Hence it may provide the microscopic description of the black branes (p-soup proposal). This fact motivates us to test this proposal in the intersecting black branes which have multiple brane charges and/or momentum along the brane direction. We consider the case that the multiple branes satisfy the intersection rule and feel no force when they are static, and find the agreement to the black hole thermodynamics.

  8. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  9. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  10. NATURE AND DRIVING FORCES OF STRIKE MOVEMENT IN MOLDOVA IN LATE 1980S

    Directory of Open Access Journals (Sweden)

    Галина Евгеньевна Слободянюк

    2016-12-01

    Full Text Available The article discloses the nature and driving forces of the republican protest strike movement in Moldova in the period of perestroika reformsand its impact on the emergence and development of the civil conflict,which became the catalyst for the territorial division of the republic and the creation of the self-proclaimed Transnistrian statehood.In the article there is presented the analysis of the process of formationand activity of the strike movement. The author shows that the United Council of LabourUnionswas the initiator, organizer and the main acting force of the protest of the workers' movement, defending the civil and constitutional rights of the Russian-speaking population of the Transdnistrian region of the Moldavian SSR. The article allows getting an idea of the ways and methods of struggle of the working movement against the Soviet Moldavia nationalist representatives of the Popular front, which operated on the territory of the republic of Moldova. Particular attention is paid to the reasons of occurrence and major activities of the strike movement.Moreover, there are analyzed the consequences of these actions for the further political development of Moldova.

  11. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    International Nuclear Information System (INIS)

    Wu, Wei; Wang, Jin

    2014-01-01

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series

  12. The 4th Thermodynamic Principle?

    International Nuclear Information System (INIS)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-01-01

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible

  13. Design and Synthesis of Distillation Systems using a Driving Force Based Approach

    DEFF Research Database (Denmark)

    Bek-Pedersen, Erik; Gani, Rafiqul

    2004-01-01

    A new integrated framework for synthesis, design and operation of distillation-based separation schemes is presented here. This framework is based on the driving force approach, which provides a measure of the differences in chemical/physical properties between two co-existing phases...... in a separation unit. A set of algorithms has been developed within this framework for design of simple as well as complex distillation columns, for the sequencing of distillation trains, for the determination of appropriate conditions of operation and for retrofit of distillation columns. The main feature of all...... these algorithms is that they provide a simple "visual" method to obtain near-optimal solutions in terms of energy consumption without rigorous simulation and/or optimisation. Several illustrative examples highlighting the application of the integrated approach are also presented. (C) 2003 Published by Elsevier B.V....

  14. Computational simulations of direct contact condensation as the driving force for water hammer

    International Nuclear Information System (INIS)

    Ceuca, Sabin-Cristian

    2015-01-01

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  15. Computational simulations of direct contact condensation as the driving force for water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin-Cristian

    2015-04-27

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  16. Control rod drive

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1986-01-01

    A reactor core, one or more control rods, and a control rod drive are described for selectively inserting and withdrawing the one or more control rods into and from the reactor core, which consists of: a support structure secured beneath the reactor core; control rod positioning means supported by the support structure for movably supporting the control rod for movement between a lower position wherein the control rod is located substantially beneath the reactor core and an upper position wherein at least an upper portion of the control rod extends into the reactor core; transmission means; primary drive means connected with the control rod positioning means by the transmission means for positioning the control rod under normal operating conditions; emergency drive means for moving the control rod from the lower position to the upper position under emergency conditions, the emergency drive means including a weight movable between an upper and a lower position, means for movably supporting the weight, and means for transmitting gravitational force exerted on the weight to the control rod positioning means to move the control rod upwardly when the weight is pulled downwardly by gravity; the transmission means connecting the control rod positioning means with the emergency drive means so that the primary drive means effects movement of the weight and the control rod in opposite directions under normal conditions, thus providing counterbalancing to reduce the force required for upward movement of the control rod under normal conditions; and restraint means for restraining the fall of the weight under normal operating conditions and disengaging the primary drive means to release the weight under emergency conditions

  17. Bacterial protease uses distinct thermodynamic signatures for substrate recognition.

    Science.gov (United States)

    Bezerra, Gustavo Arruda; Ohara-Nemoto, Yuko; Cornaciu, Irina; Fedosyuk, Sofiya; Hoffmann, Guillaume; Round, Adam; Márquez, José A; Nemoto, Takayuki K; Djinović-Carugo, Kristina

    2017-06-06

    Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.

  18. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  19. Driving forces behind the increasing cardiovascular treatment intensity.A dynamic epidemiologic model of trends in Danish cardiovascular drug utilization.

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten

    . Objectives: To investigate the driving forces behind the increasing treatment prevalence of cardiovascular drugs, in particular statins, by means of a dynamic epidemiologic drug utilization model. Methods: Material: All Danish residents older than 20 years by January 1, 1996 (4.0 million inhabitants), were...

  20. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  1. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  2. Stabilization of car-caravan combination using independent steer and drive/or brake forces distribution

    Directory of Open Access Journals (Sweden)

    Ossama Mokhiamar

    2015-09-01

    Full Text Available Once a combined vehicle becomes unstable, it is very difficult for a driver to stabilize it especially under severe driving conditions, such as turning with braking. This is mainly due to the effect of the towed vehicle on the towing vehicle through the hitch jackknifing. This effect makes the handling characteristics of a car-caravan combination different from those of a single vehicle. Therefore, this paper proposes a control design concept for an optimum distribution of longitudinal and lateral forces of the four tires of a towing vehicle. The mean objectives of the control system were to stabilize the motion of an articulated vehicle utilizing the tires entire ability in both longitudinal and lateral directions as well as to make the handling characteristics of an articulated vehicle similar to those of a single one. The sliding control law based on vehicle planar equations of motion is used to derive the control laws. The proposed control system is evaluated under severe driving conditions and compared with the results of integrated control systems. The robustness of the articulated vehicle motion with the proposed control against the coefficient of friction variation is discussed.

  3. Combination spindle-drive system for high precision machining

    Science.gov (United States)

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  4. The Driving Forces of Guest Substitution in Gas Hydrates—A Laser Raman Study on CH4-CO2 Exchange in the Presence of Impurities

    Directory of Open Access Journals (Sweden)

    Bettina Beeskow-Strauch

    2012-02-01

    Full Text Available The recovery of CH4 gas from natural hydrate formations by injection of industrially emitted CO2 is considered to be a promising solution to simultaneously access an unconventional fossil fuel reserve and counteract atmospheric CO2 increase. CO2 obtained from industrial processes may contain traces of impurities such as SO2 or NOx and natural gas hydrates may contain higher hydrocarbons such as C2H6 and C3H8. These additions have an influence on the properties of the resulting hydrate phase and the conversion process of CH4-rich hydrates to CO2-rich hydrates. Here we show results of a microscopic and laser Raman in situ study investigating the effects of SO2-polluted CO2 and mixed CH4-C2H6 hydrate on the exchange process. Our study shows that the key driving force of the exchange processes is the establishment of the chemical equilibrium between hydrate phase and the surrounding phases. The exchange rate is also influenced by the guest-to-cavity ratio as well as the thermodynamic stability in terms of p-T conditions of the original and resulting hydrate phase. The most effective molecule exchange is related to structural changes (sI-sII which indicates that hydrate decomposition and reformation processes are the occurring processes.

  5. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  6. Climatic driving forces in inter-annual variation of global FPAR

    Science.gov (United States)

    Peng, Dailiang; Liu, Liangyun; Yang, Xiaohua; Zhou, Bin

    2012-09-01

    Fraction of Absorbed Photosynthetically Active Radiation (FPAR) characterizes vegetation canopy functioning and its energy absorption capacity. In this paper, we focus on climatic driving forces in inter-annual variation of global FPAR from 1982 to 2006 by Global Historical Climatology Network (GHCN-Monthly) data. Using FPAR-Simple Ratio Vegetation Index (SR) relationship, Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) was used to estimate FPAR at the global scale. The correlation between inter-annual variation of FPAR and temperature, precipitation derived from GHCN-Monthly was examined, during the periods of March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF) over from 1982 to 2006. The analysis of climatic influence on global FPAR revealed the significant correlation with temperature and precipitation in some meteorological stations area, and a more significant correlation with precipitation was found than which with temperature. Some stations in the regions between 30° N and 60° N and around 30° S in South America, where the annual FPAR variation showed a significant positive correlation with temperature (P forest of Africa and Amazon during the dry season of JJA and SON.

  7. Petroleum Development in Russian Barents sea: Driving Forces and Constraints

    International Nuclear Information System (INIS)

    Moe, Arild; Joergensen, Anne-Kristin

    2000-01-01

    The potential of the Barents Sea for petroleum production has attracted interest for many years. In the Russian sector of this ocean, enormous gas finds and substantial oil resources have now been proven, and the first real licensing for field development in the area has just begun. Despite the area's potential, there are strong conflicts of interest. The report examines the forces alternatively driving and hindering offshore hydrocarbon development in the Russian sector of the Barents Sea. It describes exploration activities beginning during the Soviet period and extending to the present. The status of the major development projects financed in part with foreign capital, and conflicting regional and central government interests involved in such development, is described and evaluated. Coverage includes a discussion of the various regional interests in petroleum activities, with a particular focus on the conversion of naval yards in the area and the emergence of Rosshelf, an oil/gas conglomerate formed to facilitate such conversion. It also reviews the planned licensing rounds and the results of the first round. Finally, it discusses supplies from the Barents Sea in the context of overall Russian energy supply and energy development strategies. (author)

  8. How statistical forces depend on thermodynamics and kinetics of driven media

    Czech Academy of Sciences Publication Activity Database

    Basu, U.; Maes, C.; Netočný, Karel

    2015-01-01

    Roč. 114, č. 25 (2015), "250601-1"-"250601-5" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : stochastic thermodynamics * nonequilibrium steady states * active matter Subject RIV: BE - Theoretical Physics Impact factor: 7.645, year: 2015

  9. Control rod drive

    International Nuclear Information System (INIS)

    Watando, Kosaku; Tanaka, Yuzo; Mizumura, Yasuhiro; Hosono, Kazuya.

    1975-01-01

    Object: To provide a simple and compact construction of an apparatus for driving a drive shaft inside with a magnetic force from the outside of the primary system water side. Structure: The weight of a plunger provided with an attraction plate is supported by a plunger lift spring means so as to provide a buffer action at the time of momentary movement while also permitting the load on lift coil to be constituted solely by the load on the drive shaft. In addition, by arranging the attraction plate and lift coil so that they face each other with a small gap there-between, it is made possible to reduce the size and permit efficient utilization of the attracting force. Because of the small size, cooling can be simply carried out. Further, since there is no mechanical penetration portion, there is no possibility of leakage of the primary system water. Furthermore, concentration of load on a latch pin is prevented by arranging so that with a structure the load of the control rod to be directly beared through the scrum latch. (Kamimura, M.)

  10. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  11. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    Science.gov (United States)

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  12. Quantum thermodynamics of the resonant-level model with driven system-bath coupling

    Science.gov (United States)

    Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.

    2018-02-01

    We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.

  13. The Driving Forces for the Practice of Strategic Planning in SMEs: Evidence from Harare Metropolitan Province, Zimbabwe

    OpenAIRE

    Maxwell Sandada; Raynold Tinomudaishe Chikwama

    2016-01-01

    Despite Zimbabwe sharing with the rest of the world, the notion that SMEs are the impeccable engines to economic revival, growth and development, many of the nation`s SMEs are plagued with high failure rates. Previous studies carried out in most foreign countries suggested that the high failure rate of SMEs was attributable to lack of strategic planning among a host of other factors. Against this backdrop, the purpose of this study was to examine the driving forces for the practic...

  14. EXTERNAL FORCES DRIVING CHANGE IN THE ROMANIAN SMALL AND MEDIUM SIZED ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Roiban Roxana Nadina

    2012-07-01

    Full Text Available Change is a constant in everyday life confronting organizations to continuously adapt their strategy, structure, processes, and culture in order to survive and stay competitive on the market. Implementing organizational change is one of the most important skills required for managers and in the meantime the most difficult one. The forces driving change within an organization, that can be either external or internal, are those that propel a company forward towards change and in order to identify the need for change and make the proper changes, managers have to develop a tool that allows them to analyze how does the environment influence their business activities. A vision for change will clarify the directions in which the organization needs to move, starting from its current state and taking in consideration the existing opportunities and threats from the environment that allow to move to a future desired state. The purpose of this paper is to identify the concern for change in the Romanian small and medium sized enterprises by presenting and explaining the past and present influences of the main external forces that have determined the need for change in the last 3-5 years and to make recommendations about future possible changes that have to be performed by managers for a better harmonization with the environment. The research method used for this study is the interview on a sample that contains some of the most relevant SME’s from the western side of Romania, from different industries. We analyzed the main external forces that had an impact on the small and medium sized enterprises and how were they generating the need for organizational change, in order to see which present and future changes are required.

  15. New active machine tool drive mounting on the frame

    Directory of Open Access Journals (Sweden)

    Švéda J.

    2007-10-01

    Full Text Available The paper deals with the new active mounting of the machine tool drives. The commonly used machine tools are at this time mainly equipped with fix-mounting of the feed drives. This structure causes full transmission of the force shocks to the machine bed and thereby restricts the dynamic properties of the motion axis and the whole machine. The spring-mounting of the feed drives is one of the possibilities how to partially suppress the vibrations. The force that reacts to the machine tool bed is transformed thereby the vibrations are lightly reduced. Unfortunately the transformation is not fully controlled. The new active mounting of the machine tool drives allows to fully control the force behaviour that react to the machine body. Thereby the number of excited frequencies on the machine tool bed is significantly reduced. The active variant of the feed drive mounting is characterized by the synergistic cooperation between two series-connected actuators (“motor on motor”. The paper briefly describes design, control techniques and optimization of the feed drives with the new active mounting conception.

  16. Kinematic, dynamic, and thermodynamic impacts of hook-echo hydrometeors, including explorations into the utilization of polarimetric radar data

    Science.gov (United States)

    Askelson, Mark Anthony

    Recent studies have revealed that the thermodynamic properties of the rear flank downdraft (RFD) may dictate whether or not a supercell becomes tornadic. Since hydrometeors are thought to be an important driving force for the RFD, it is postulated that they may be important to its thermodynamic properties and, possibly, to tornadogenesis. The role hook-echo hydrometeors play in driving RFDs is investigated by estimating hook-echo hydrometeor types and amounts from polarimetric radar data and by using that information to drive a relatively simple downdraft model. Soundings for the individual cases are used to initialize the downdraft model in order to replicate the environments of the storms as closely as possible. Since this effort and others like it require the quantitative utilization of radar data, issues pertaining to this are explored. In addition to analyses of coordinate transformation equations and an innovative objective analysis technique for weather radar data, the difficult problem of response functions for arbitrary weight functions and data distributions was considered. A novel approach to this problem revealed that the local response function for distance dependent weighted averaging schemes is the complex conjugate of the normalized Fourier transform of the effective weight function. This facilitates new research avenues, especially regarding analyses of irregularly spaced data. Simulations of hydrometeor driven RFDs show that hydrometeor fields inferred from radar data are able to drive significant downdrafts without the influence of vertical perturbation pressure gradients. Moreover, they reveal that above the boundary layer supercell environments are relatively resistant to downdrafts whereas within the boundary layer they are generally supportive of downdrafts. It appears that in many supercell environments relatively large hail (≥1 cm in diameter) or vertical perturbation pressure gradients may be needed to drive deep midlevel downdrafts that

  17. Conservation laws and symmetries in stochastic thermodynamics.

    Science.gov (United States)

    Polettini, Matteo; Bulnes-Cuetara, Gregory; Esposito, Massimiliano

    2016-11-01

    Phenomenological nonequilibrium thermodynamics describes how fluxes of conserved quantities, such as matter, energy, and charge, flow from outer reservoirs across a system and how they irreversibly degrade from one form to another. Stochastic thermodynamics is formulated in terms of probability fluxes circulating in the system's configuration space. The consistency of the two frameworks is granted by the condition of local detailed balance, which specifies the amount of physical quantities exchanged with the reservoirs during single transitions between configurations. We demonstrate that the topology of the configuration space crucially determines the number of independent thermodynamic affinities (forces) that the reservoirs generate across the system and provides a general algorithm that produces the fundamental affinities and their conjugate currents contributing to the total dissipation, based on the interplay between macroscopic conservations laws for the currents and microscopic symmetries of the affinities.

  18. Constitution and thermodynamics of Pt-La alloys

    International Nuclear Information System (INIS)

    Reimann, S.; Schaller, H.-J.

    2006-01-01

    A complete set of thermodynamic functions was determined for the Pt-La system from electromotive force measurements on galvanic cells in the temperature range from 923 to 1073 K using CaF 2 single crystals as solid electrolytes. The phases on the platinum-rich side show pronounced negative deviations from ideal mixing behaviour; at 1073 K and infinite dilution, for instance, the relative partial excess Gibbs energy of La was determined to be -315 kJ/mol. Two effects are discussed to account for the deviations from ideal mixing behaviour: the transfer of the valence electrons of La to the electron gas of the alloy and the lattice distortion brought about by the size difference of the components. The phase relations were investigated by means of thermal, and X-ray analyses. The thermodynamic description of the system was optimized using experimental data from the present thermodynamic and phase diagram work. The calculated thermodynamic functions as well as the calculated phase diagram turned out to be in excellent accordance with the experimental results

  19. Entropic forces drive contraction of cytoskeletal networks

    Czech Academy of Sciences Publication Activity Database

    Braun, M.; Lánský, Zdeněk; Hilitski, F.; Dogic, Z.; Diez, S.

    2016-01-01

    Roč. 38, č. 5 (2016), s. 474-481 ISSN 0265-9247 R&D Projects: GA ČR(CZ) GA15-17488S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : cytoskeleton * depletion forces * entropic forces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.441, year: 2016

  20. Thermodynamics of the vehicle. 2. ed.; Thermodynamik des Kraftfahrzeugs

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [California Univ., Berkeley, CA (United States); Paris Univ., 75 (France); Pisa Univ. (Italy); Perugia Univ. (Italy); Kronstadt Univ. (Russian Federation)

    2012-07-01

    The vehicle is characterized by thermodynamic processes at almost all levels: Drive systems (from internal combustion engines and hybrids to electric motors with fuel cells), charging, cooling and heating circuits, air conditioners, aerodynamics of the vehicle body, damper systems, fuel injection systems, exhaust systems, brakes, tires. However, due to an enhanced complexity and phenomenological approach the thermodynamics is a challenge for engineers. This book under considerations combines the theoretical principles and their mathematical presentation with applications in the automotive technology. Numerous specific examples facilitate the understanding and practical application of the basic knowledge. In addition to corrections and updates, the new edition under consideration contains more practical exercises and in-depth questions.

  1. Structure and relative importance of ponderomotive forces and current drive generated by converted fast waves in pre-heated low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K

    2003-05-12

    The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.

  2. Direct Thermodynamic Measurements of the Energetics of Information Processing

    Science.gov (United States)

    2017-08-08

    Title: Direct thermodynamic measurements of the energetics of information processing Report Term: 0-Other Email : roukes@caltech.edu Distribution...INVESTIGATOR(S): Phone Number: 6263952916 Principal: Y Name: PhD Michael L. Roukes Email : roukes@caltech.edu PARTICIPANTS: Person Months Worked: 1.00... writing of this final DURIP report. These initial data directly demonstrate our ability to drive and detect nanomechanical motion at ultralow

  3. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  4. Probabilistic analysis for identifying the driving force of protein folding

    Science.gov (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  5. The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2013-04-01

    Living cells are spatially bounded, low entropy systems that, although far from thermodynamic equilibrium, have persisted for billions of years. Schrödinger, Prigogine, and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy, and entropy. This provided valuable insights, but not a comprehensive model. We propose the first principles of living systems must include: (1) Information dynamics, which permits conversion of energy to order through synthesis of specific and reproducible, structurally-ordered components; and (2) Nonequilibrium thermodynamics, which generate Darwinian forces that optimize the system.Living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, but this apparently precarious state allows critical response that includes: (1) Feedback so that loss of order due to environmental perturbations generate information that initiates a corresponding response to restore baseline state. (2) Death due to a return to thermodynamic equilibrium to rapidly eliminate systems that cannot maintain order in local conditions. (3) Mitosis that rewards very successful systems, even when they attain order that is too high to be sustainable by environmental energy, by dividing so that each daughter cell has a much smaller energy requirement. Thus, nonequilibrium thermodynamics are ultimately responsible for Darwinian forces that optimize system dynamics, conferring robustness sufficient to allow continuous existence of living systems over billions of years.

  6. Small Systems and Limitations on the Use of Chemical Thermodynamics

    Science.gov (United States)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  7. A liquid helium piston pump with a superconducting drive

    International Nuclear Information System (INIS)

    Schmidt, C.

    1984-01-01

    This chapter describes a bellows pump where the driving force is achieved by an arrangement of three superconducting coils. The pump was designed for use in the supercritical helium flow circuit of the LCT-conductor test facility. The main advantage of the superconducting drive, compared to conventional pumps with external drive, is the compact design. Force transferring parts between 4.2 K and room temperature are not necessary. The pump was tested in a closed loop arrangement. The superconducting drive for a piston pump consists of a moving coil in a constant background field. Other coil configurations and the upscaling of the pump design are discussed

  8. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  9. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement

    International Nuclear Information System (INIS)

    Fobel, Ryan; Fobel, Christian; Wheeler, Aaron R.

    2013-01-01

    We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

  10. Driving forces behind the increasing cardiovascular treatment intensity.A dynamic epidemiologic model of trends in Danish cardiovascular drug utilization.

    DEFF Research Database (Denmark)

    Kildemoes, Helle Wallach; Andersen, Morten

    . Objectives: To investigate the driving forces behind the increasing treatment prevalence of cardiovascular drugs, in particular statins, by means of a dynamic epidemiologic drug utilization model. Methods: Material: All Danish residents older than 20 years by January 1, 1996 (4.0 million inhabitants), were...

  11. Quantum thermodynamic cycles and quantum heat engines. II.

    Science.gov (United States)

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  12. FDR (drive-dynamics-control) - a new driving safety system with active control of brake and drive forces in the dynamic fringe range; FDR, ein neues Fahrsicherheitssystem mit aktiver Regelung der Brems- und Antriebskraefte im fahrdynamischen Grenzbereich

    Energy Technology Data Exchange (ETDEWEB)

    Erhardt, R. [Bosch (R.) GmbH, Stuttgart (Germany); Zanten, A.T. van [Bosch (R.) GmbH, Stuttgart (Germany)

    1995-12-31

    BOSCH is going to introduce a new driving safety system in 1995, the FDR (drive-dynamics-control). Using the measured and estimated dynamic magnitudes as a basis, the system calculates inhowfar the actual vehicle motion differs from the desired stable trace- and direction-consistent handling properties. Depending on the driving situation and driver`s wishes the braking and driving forces at the wheels are adjusted with a considerable divergence in order to achieve the desired handling properties. The system improves the driving stability in all operating states as soon as the dynamic limiting range is reached. It even reduces the risk of skidding in case of extreme steering manoeuvres and also enables the safe control of the vehicle in critical traffic situations. Furthermore the system offers improved basic anti-skid braking system and anti-slip control functions. Due to these advantages it can be expected that the FDR is going to make an important contribution to avoiding accidents and reducing damage. (orig.) [Deutsch] Mit FDR (Fahr-Dynamik-Regelung) wird BOSCH 1995 ein neues Fahrsicherheitssystem einfuehren. Das System berechnet auf der Basis gemessener und geschaetzter fahrdynamischer Groessen, wie stark die tatsaechliche Fahrzeugbewegung von einem gewuenschten stabilen, spur- und richtungstreuen Fahrverhalten abweicht. Die Brems- und Antriebskraefte an den Raedern werden bei deutlicher Abweichung abhaengig von Fahrsituation und Fahrerwunsch so eingestellt, dass die Abweichung minimiert und das gewuenschte Fahrverhalten weitgehend erreicht wird. Das System verbessert die Fahrstabilitaet in allen Betriebszustaenden, sobald der fahrdynamische Grenzbereich erreicht wird. Es reduziert selbst bei extremen Lenkmanoevern die Schleudergefahr drastisch und ermoeglicht auch in kritischen Verkehrssituationen die sicherere Beherrschung des Fahrzeugs. Darueberhinaus bietet das System verbesserte ABS- und ASR-Grundfunktionen. Diese Vorteile lassen erwarten, dass FDR einen

  13. On the driving force for crack growth during thermal actuation of shape memory alloys

    Science.gov (United States)

    Baxevanis, T.; Parrinello, A. F.; Lagoudas, D. C.

    2016-04-01

    The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.

  14. Casualisation of the nursing workforce in Australia: driving forces and implications.

    Science.gov (United States)

    Creegan, Reta; Duffield, Christine; Forrester, Kim

    2003-01-01

    This article provides an overview of the extent of casualisation of the nursing workforce in Australia, focusing on the impact for those managing the system. The implications for nurse managers in particular are considerable in an industry where service demand is difficult to control and where individual nurses are thought to be increasingly choosing to work casually. While little is known of the reasons behind nurses exercising their preference for casual work arrangements, some reasons postulated include visa status (overseas trained nurses on holiday/working visas); permanent employees taking on additional shifts to increase their income levels; and those who elect to work under casual contracts for lifestyle reasons. Unknown is the demography of the casual nursing workforce, how these groups are distributed within the workforce, and how many contracts of employment they have across the health service--either through privately managed nursing agencies or hospital managed casual pools. A more detailed knowledge of the forces driving the decisions of this group is essential if health care organisations are to equip themselves to manage this changing workforce and maintain a standard of patient care that is acceptable to the community.

  15. Towards Thermodynamics with Generalized Uncertainty Principle

    International Nuclear Information System (INIS)

    Moussa, Mohamed; Farag Ali, Ahmed

    2014-01-01

    Various frameworks of quantum gravity predict a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Introducing quantum gravity effect makes a considerable change in the density of states inside the volume of the phase space which changes the statistical and thermodynamical properties of any physical system. In this paper we investigate the modification in thermodynamic properties of ideal gases and photon gas. The partition function is calculated and using it we calculated a considerable growth in the thermodynamical functions for these considered systems. The growth may happen due to an additional repulsive force between constitutes of gases which may be due to the existence of GUP, hence predicting a considerable increase in the entropy of the system. Besides, by applying GUP on an ideal gas in a trapped potential, it is found that GUP assumes a minimum measurable value of thermal wavelength of particles which agrees with discrete nature of the space that has been derived in previous studies from the GUP

  16. On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2018-04-01

    The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.

  17. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    Science.gov (United States)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  18. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database

  19. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  20. Predictions of Phase Separation in Three-Component Lipid Membranes by the MARTINI Force Field

    DEFF Research Database (Denmark)

    Davis, Ryan S.; Sunil Kumar, P. B.; Sperotto, Maria Maddalena

    2013-01-01

    The phase behavior of the coarse-grained MARTINI model for three-component lipid bilayers composed of dipalmytoyl-phosphatidylcholine (DPPC), cholesterol (Chol), and an unsaturated phosphatidylcholine (PC) was systematically investigated by molecular dynamics simulations. The aim of this study...... is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field...... PCs, such as dilinoleyl-phosphatidylcholine (DUPC) and diarachidonoyl-phosphatidylcholine (DAPC). Through systematic tweaking of the interactions between the hydrophobic groups of the PC molecules, we show that the appearance of phase separation in three-component lipid bilayers, as modeled through...

  1. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  2. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    Science.gov (United States)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  3. An analysis of the driving forces of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Dong Yanli; Ishikawa, Masanobu; Liu Xianbing; Wang Can

    2010-01-01

    By using the latest China-Japan input-output data sets and the index decomposition analysis (IDA) approach, this article analyzes the driving forces of CO 2 emissions embodied in trade between the two countries during 1990-2000. We found that the growth of trade volume had a large influence on the increase of CO 2 emissions embodiments in bilateral trade. The dramatic decline in carbon intensity of the Chinese economy is a primary cause in offsetting CO 2 emissions exported from China to Japan over 1995-2000. We argue that a better understanding of the factors affecting CO 2 emissions embodied in international trade will assist in seeking more effective climate policies with wider participation in the post-Kyoto regime.

  4. A thermodynamic description of quarks at the subquark level

    International Nuclear Information System (INIS)

    Fitzpatrick, G.L.

    1985-01-01

    A thermodynamic basis for the description of quarks at the subquark level is proposed. It is suggested that subquarks are ultrarelativistic objects confined to the quark radius R. Thus they experience accelerations of the order a≅c/sup 2//R. But this means that information excluding horizons (iota) comparable to quark radii R, namely iota≅c/sup 2//a≅R, are present. Such horizons force us to describe quarks, at the subquark level, via thermodynamics. This thermodynamic description must involve unconventional negative energy Rindler vacua, rather than the conventional zero energy Minkowski vacuum. In an average thermodynamic sense, these Rindler vacua cancel excess kinetic energy of the subquarks, thereby removing an objection to theories involving subquarks. In any such theory it is necessary to assign an Unruh temperature T, where kT≅(h/2πc)a≅(hc/2πR), to the subquark matter. The author argues that T must be the temperature of the early universe phase transition (probably first order) at which quarks condensed into hadrons. Thus quarks have a temperature T independent of hadron mass. He shows how quark properties may be derived in the foregoing thermodynamic context

  5. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    Science.gov (United States)

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  6. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua

    2013-01-01

    Between 1996 and 2006, CO 2 emissions in Taiwan increased by approximately 60%, with the industrial sector accounting for 50% of that increase. Among all industrial sectors, iron and steel, petrochemicals, electronics, textiles, pulp and paper and cement accounted for approximately three-quarters of the total industrial CO 2 emissions. Identifying the driving forces behind increased CO 2 emissions in these six sectors could be valuable for the development of effective environmental policy. This study used two-tier KLEM input–output structural decomposition analysis (I-O SDA) to analyze the factors that lead to changes in CO 2 emissions. Empirical results obtained in Taiwan reveal that increased exports level and elevated domestic autonomous final demand level were the main reasons for increases in CO 2 emissions. Technological changes in materials and labor tended to decrease CO 2 emissions, while the power generation mix contributed significantly to the increase. Relevant strategies for reducing CO 2 emissions from energy-intensive sectors are also highlighted. - Highlights: • Identifying the driving forces behind increased CO 2 emissions is important. • This study uses two-tier KLEM I-O SDA to analyze the changes in CO 2 emissions. • Three issues are identified to achieve future CO 2 emissions reduction in Taiwan

  7. Rotating magnetic field current drive-theory and experiment

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  8. Complexation (cucurbit[6]uril-pyrene): Thermodynamic and spectroscopic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sueldo Occello, Valeria N.; Rossi, Rita H. de; Veglia, Alicia V., E-mail: aveglia@fcq.unc.edu.ar

    2015-02-15

    The influence of the macrocyclic compound cucurbit[6]uril (CB6) on the photophysical properties of the fluorophore pyrene (PYR) has been studied. Guest–host interaction was observed by UV–visible spectroscopy and spectrofluorimetry. The fluorescence of PYR was significantly increased in the presence of CB6. The binding equilibrium constants for the complex with 1:1 stoichiometry were determined in HCOOH 55% w/v. The values of the association constants, K{sub A}, and the fluorescence quantum yield ratios between complexed and free substrate, ϕ{sup PYR–CB6}/ϕ{sup PYR}, at different temperatures were (3.1±0.9)×10{sup 2} M{sup −1} and (5.1±0.2), (3.6±0.5)×10{sup 2} M{sup −1} and (5.9±0.1), (4.8±0.7)×10{sup 2} M{sup −1} and (5.5±0.1) at 15.0 °C, 25.0 °C and 40.0 °C, respectively. The enthalpic and entropic contributions to the complexation process were determined, yielding ΔS=(92±3) J mol{sup −1} K{sup −1} and ΔH=(13±1) kJ mol{sup −1}. From these results it can be concluded that the complex formation is mainly driven by the entropic term. The forces involved in the complexation are interpreted from the sign and magnitude of the thermodynamic parameters obtained. The partial inclusion of PYR or the formation of a suspended complex is proposed in base of all the data. The interaction is also demonstrated in the solid state by differential scanning calorimetric (DSC) measurements. - Highlights: • The cucurbit[6]uril (CB6) effects on the absorption and fluorescence of pyrene (PYR) were analyzed. • The association constant (K{sub A}) and the stoichiometry of the complex were determined. • The complex formation was confirmed by differential scanning calorimetry (DSC). • The thermodynamic parameters were determined. • The hydrophobic entropic contribution is the main driving force for the PYR–CB6 complex formation.

  9. Rising electricity consumption: Driving forces and consequences. The case of rural Zanzibar

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Tanja [Centre for Development and the Environment (SUM), Univ. of Oslo (Norway)

    2007-07-01

    The paper addresses the current, rising electricity consumption in the southern, rural locality of Zanzibar and seeks to account for the range of driving forces behind people's changed practices. The author argues that these forces are, on the one hand, determined by the availability of new technologies and through global and national institutions and influences such as Islam, commercials and changes in the governmental sector (health, education). On the other hand, the paper explores the way such influences interplay with the internal dynamics related to increasing consumption. Through an analysis of the particular character and dynamics of social and cultural life in this region, the author explains why some practices are less likely to change than other practices. For example, people in Zanzibar keep electricity (freezers and stoves) at a distance from their food. By contrast, electric light is perceived as intimately related to education, as illustrated when school children are sent to school for night classes before important exams. To which extent may general approaches to the study of energy consumption draw on this empirical case from Zanzibar? In other contexts, the patterns of people's electricity use certainly differ. In terms of sustainable energy policies, each locality has a particular set of challenges and goals, which to varying degree may be related to poverty reduction and concern for the environment. Methodologically, however, the author argues that the phenomenon of energy consumption may be studied and understood within the same framework of analysis; one that pays attention to both external and internal dynamics, the material and social aspects of technologies and the importance of power relations, gender and negotiations.

  10. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Mizuno, Katsuyuki.

    1976-01-01

    Object: To restrict the reduction in performance due to stress corrosion cracks by making use of condensate produced in a turbine steam condenser. Structure: Water produced in a turbine steam condenser is forced into a condensed water desalting unit by low pressure condensate pump. The condensate is purified and then forced by a high pressure condensate pump into a feedwater heater for heating before it is returned to the reactor by a feedwater pump. Part of the condensate issuing from the condensate desalting unit is branched from the remaining portion at a point upstream the pump and is withdrawn into a control rod drive water pump after passing through a motordriven bypass valve, an orifice and a condenser water level control valve, is pressurized in the control rod drive water desalting unit and supplied to a control rod drive water pressure system. The control rod is vertically moved by the valve operation of the water pressure system. Since water of high oxygen concentration does not enter during normal operation, it is possible to prevent the stress cracking of the stainless steel apparatus. (Nakamura, S.)

  11. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  12. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  13. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  14. Limitations and Functions: Four Examples of Integrating Thermodynamics

    Science.gov (United States)

    Chang, Wheijen

    2011-01-01

    Physics students are usually unaware of the limitations and functions of related principles, and they tend to adopt "hot formulas" inappropriately. This paper introduces four real-life examples for bridging five principles, from fluids to thermodynamics, including (1) buoyant force, (2) thermal expansion, (3) the ideal-gas law, (4) the 1st law,…

  15. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  16. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    Science.gov (United States)

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  17. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2017-12-09

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  18. Counterevidence to the ion hammering scenario as a driving force for the shape elongation of embedded nanoparticles

    Science.gov (United States)

    Amekura, H.; Okubo, N.; Tsuya, D.; Ishikawa, N.

    2017-08-01

    Counterevidence is provided in the ion-hammering scenario as a driving force for the shape elongation of embedded nanoparticles (NPs) under swift heavy ion irradiation (SHII). Ion-induced compaction and the hammering, which are both induced in silica under SHII, dominate at low and high fluences, respectively, causing a crossover between them around a fluence of ˜4 × 1012 ions/cm2. Nevertheless, the shape elongation of NPs detected by the optical dichroism exhibits nearly linear dependence in a wide fluence range between ˜1 × 1011 and 2 × 1013 ions/cm2, indicating that the hammering does not play an important role.

  19. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  20. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  1. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  2. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  3. Current Drive in a Ponderomotive Potential with Sign Reversal

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; J.M. Rax; I.Y. Dodin

    2003-07-30

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  4. Current Drive in a Ponderomotive Potential with Sign Reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.; Dodin, I.Y.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play

  5. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive

    Science.gov (United States)

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its

  6. Autoimmunity as a Driving Force of Cognitive Evolution

    Directory of Open Access Journals (Sweden)

    Serge Nataf

    2017-10-01

    Full Text Available In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific

  7. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase...

  8. Application of mathematical experimental planning in the investigation of thermodynamic properties of three- component alloys

    International Nuclear Information System (INIS)

    Sokolovskaya, E.M.; Guzej, L.S.; Tikhankin, G.A.; Meshkov, L.L.

    1977-01-01

    Thermodynamic properties of solid solutions of niobium and tungsten in nickel have been investigated by the method of electromotive forces with the use of simplex-matrix experiment planning techniques. The planning matrix and the results of investigating the thermodynamic properties of alloys of the nickel-niobium-tungsten system at 1250 deg are presented. The application of experiment planning has made it possible to obtain sufficient information concerning the thermodynamics of solid solutions of niobium and tungsten in nickel from the experimental data for six ternary alloys only

  9. Studies on Pidotimod Enantiomers With Chiralpak-IA: Crystal Structure, Thermodynamic Parameters and Molecular Docking.

    Science.gov (United States)

    Dou, Xiaorui; Su, Xin; Wang, Yue; Chen, Yadong; Shen, Weiyang

    2015-11-01

    Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x-ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak-IA based on amylose derivatized with tris-(3, 5-dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl-tert-butyl-ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak-IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. © 2015 Wiley Periodicals, Inc.

  10. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  11. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  12. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  13. Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis

    International Nuclear Information System (INIS)

    Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika

    2016-01-01

    Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.

  14. The Driving Forces of Subsidiary Absorptive Capacity

    DEFF Research Database (Denmark)

    Schleimer, Stephanie C.; Pedersen, Torben

    2013-01-01

    The study investigates how a multinational corporation (MNC) can promote the absorptive capacity of its subsidiaries. The focus is on what drives the MNC subsidiary's ability to absorb marketing strategies that are initiated by the MNC parent, as well as how the subsidiary enacts on this absorptive...... as a purposeful response to this dual embeddedness. An analysis of marketing strategy absorptions undertaken by 213 subsidiaries reveals that MNCs can assist their subsidiaries to compete in competitive and dynamic focal markets by forming specific organizational mechanisms that are conducive to the development...

  15. The driving forces for nitrogen and phosphorus flows in the food chain of china, 1980 to 2010.

    Science.gov (United States)

    Hou, Y; Ma, L; Gao, Z L; Wang, F H; Sims, J T; Ma, W Q; Zhang, F S

    2013-07-01

    Nitrogen (N) and phosphorus (P) use and losses in China's food chain have accelerated in the past three decades, driven by population growth, rapid urbanization, dietary transition, and changing nutrient management practice. There has been little detailed quantitative analysis of the relative magnitude of these driving forces throughout this period. Therefore, we analyzed changes in N and P flows and key drivers behind changes in the food (production and consumption) chain at the national scale from 1980 to 2010. Food (N and P) consumption increased by about fivefold in urban settings over this period but has decreased in rural settings since the 1990s. For urban settings, the integrated driving forces for increased food consumption were population growth, which accounted for ∼60%, and changing urban diets toward a greater emphasis on the consumption of animal products. Nutrient inputs and losses in crop and animal productions have continuously increased from 1980 to 2010, but the rates of decadal increase were greatly different. Increased total inputs and losses in crop production were primarily driven by increased crop production for food demand (68-96%) in the 1980s but were likely offset in the 2000s by improved nutrient management practices, as evidenced by decreased total inputs to and losses from cropland for harvesting per nutrient in crop. The contributions of animal production to total N and P losses to waters from the food chain increased by 34 and 60% from 1980 to 2010. These increases were caused mainly by decreased ratios of manure returned to cropland. Our study highlights a larger impact of changing nutrient management practice than population growth on elevated nutrient flows in China's food chain. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. CAE DEVELOPMENT OF PRECESSIONAL DRIVES USING AUTODESK INVENTOR PLATFORM

    Directory of Open Access Journals (Sweden)

    Ion BOSTAN

    2010-06-01

    Full Text Available The paper presents the modelling and simulation of precessional drives designed in two variants capable of high transmission ratio and torque for one stage compact construction. The constructions were designed in Inventor and also as multi body systems in otionInventor. The simulations of the drives provide information concerning positions, velocities, accelerations, point trajectories, forces and moments, energies, as well as contact forces at the contact between gear teeth and satellite teeth and other data concerning the system.

  17. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Moazami, Hamid Reza [School of Physics and Accelerators, NSTRI, P. O. Box, 11365-8486, Tehran (Iran, Islamic Republic of); Hosseiny Davarani, Saied Saeed, E-mail: ss-hosseiny@sbu.ac.ir [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Mohammadi, Jamil; Nojavan, Saeed [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Abrari, Masoud [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of)

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m{sup −1} and 111 kV m{sup −1} in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  18. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-01-01

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m −1 and 111 kV m −1 in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  19. Ameliorative design for CARR safety rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Xuewei; Luo Zhong; Zhen Jianxiao; Wang Yulin

    2014-01-01

    The problem of safety rod accident dropped during C commissioning phase for China Advanced Research Reactor (CARR) was analyzed, and the reason was that the solenoid valve in safety rod drive mechanism (SRDM) driven loop was breakdown because of long-playing work. To solve this safe hidden trouble, SRDM was redesigned, and a new type of 'hydro lifting-hydro and electromagnetic holding' SRDM was presented, using Ansoft Maxwell to make a finite element analysis on new SRDM, working out electromagnetic field distribution and electromagnetic force of new SRDM. The results show that the value of electromagnetic force produced by electromagnetic force holding unit reaches 2.12 times about the weight of safety rod drive line, and it has some margins. (authors)

  20. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  1. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-11-25

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  2. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  3. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  4. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  5. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  6. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations

    International Nuclear Information System (INIS)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B.

    2016-01-01

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni 7 Zr 2 alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni 7 Zr 2 has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni 7 Zr 2 alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni 7 Zr 2 compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s −1 at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s −1

  7. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  8. Mining spatial information to investigate the evolution of karst rocky desertification and its human driving forces in Changshun, China.

    Science.gov (United States)

    Xu, Erqi; Zhang, Hongqi; Li, Mengxian

    2013-08-01

    The processes of karst rocky desertification (KRD) have been found to cause the most severe environmental degradation in southwestern China. Understanding the driving forces that cause KRD is essential for managing and restoring the areas that it impacts. Studies of the human driving forces of KRD are limited to the county level, a specific administrative unit in China; census data are acquired at this scale, which can lead to scale biases. Changshun County is studied here as a representative area and anthropogenic influences in the county are accounted for by using Euclidean distances for the proximity to roads and settlements. We propose a standard coefficient of human influence (SOI) that standardizes the Euclidean distances for different KRD transformations to compare the effects of human activities in different areas. In Changshun County, the individual influences of roads and settlements share similar characteristics. The SOIs of improved KRD transformation types are almost negative, but the SOIs of deteriorated types are nearly positive except for one form of KRD turning to the extremely severe KRD. The results indicated that the distribution and evolution of the KRD areas from 2000 to 2010 in Changshun were affected positively by human activities (e.g., KRD restoration projects) and also negatively (e.g., by intense and irrational land use). Our results demonstrate that the spatial techniques and SOI used in this study can effectively incorporate information concerning human influences and internal KRD transformations. This provides a suitable approach for studying the relationships between human activities and KRD processes at fine scales. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China

    Directory of Open Access Journals (Sweden)

    Guihua Dong

    2008-02-01

    Full Text Available This paper analyzes the urban-rural land-use change of Chongqing and its policydimensional driving forces from 1995 to 2006, using high-resolution Landsat TM(Thematic Mapper data of 1995, 2000 and 2006, and socio-economic data from bothresearch institutes and government departments. The outcomes indicated that urban-ruralland-use change in Chongqing can be characterized by two major trends: First, thenon-agricultural land increased substantially from 1995 to 2006, thus causing agriculturalland especially farmland to decrease continuously. Second, the aggregation index of urbansettlements and rural settlements shows that local urban-rural development experienced aprocess of changing from aggregation (1995-2000 to decentralization (2000-2006.Chongqing is a special area getting immersed in many important policies, which includethe establishment of the municipality directly under the Central Government, the buildingof Three Gorges Dam Project, the Western China Development Program and theGrain-for-Green Programme, and bring about tremendous influences on its land-usechange. By analyzing Chongqing’s land-use change and its policy driving forces, someimplications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That ismore attentions need to be paid to curbing excessive and idle rural housing andconsolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing landmanagement into accounts, so as to coordinate and balance the urban-rural development.

  10. Thermodynamics of Minerals Stable Near the Earth's Surface

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra

    2003-01-01

    OAK B262 Research and Education Activities We are working on developing calorimetric techniques for sulfide minerals. We have completed calorimetric studies of (Na, K, H3O) jarosites, of Na and K jarosite -alunite solid solutions, and of Cr6+ - containing jarosites. We are now working on phases containing As and Pb. These studies are important to issues of heavy metal pollution in the environment. A number of postdocs, graduate students, and undergrads have participated in the research. We have active collaboration with Dirk Baron, faculty at California State University, Bakersfield. In a collaboration with Peter Burns, Notre Dame University, we are working on thermochemistry of U6+ minerals. Navrotsky has participated in a number of national workshops that are helping to define the interfaces between nanotechnology and earth/environmental science. Major Findings Our first finding on uranyl minerals shows that studtite, a phase containing structural peroxide ion, is thermodynamically unstable in the absence of a source of aqueous peroxide ion but is thermodynamically stable in contact with a solution containing peroxide concentrations expected for the radiolysis of water in contact with spent nuclear fuel. This work is in press in Science. We have a consistent thermodynamic data set for the (Na, K, H3O) (Al, Fe) jarosite, alunite minerals and for Cr6+ substituting for S6+ in jarosite. The latter phases represent one of the few solid sinks for trapping toxic Cr6+ in groundwater. Contributions within Discipline Better understanding of thermodynamic driving for and constraints on geochemical and environmental processes

  11. Study on anti-seismic test of control rod driving system suspended by magnetic force

    International Nuclear Information System (INIS)

    Zhang Zhihua; Qian Dazhi; Xu Xianqi; Huang Hongwen; Zhang Zhengming; Wu Xinxin; Hu Xiao

    2012-01-01

    To verify the stability, reliability and security function in extreme conditions, the anti-seismic test of control rod drive line was conducted. Drop-time of control rod drive line in different earthquake intensities was got. The response and strain values of control rod drive line acceleration on SL-1, SL-2 level were measured. Safety functions of control rod drive line were validated in different work conditions. Anti-seismic test data shows that the driving system can keep the structure's integrality and realize operation function under OBE and SSE. (authors)

  12. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  13. Consistent Automation Solutions for Electrohydraulic Drives in Times of Industry 4.0

    OpenAIRE

    Köckemann, Albert; Birke, Benno

    2016-01-01

    Electrohydraulic drives are primarily used whenever a low power/weight ratio, a compact build and/or large forces are required for individual applications. These drives are often used together with electric drive technology in machines. However, in terms of automation, unlike electric drives, electrohydraulic drives are still largely connected via analog interfaces and centralized closed control loops today. To compensate for this competitive disadvantage of hydraulic drive technology and, at...

  14. The nature of motive force

    CERN Document Server

    Pramanick, Achintya Kumar

    2014-01-01

    In this monograph Prof. Pramanick explicates the law of motive force, a fundamental law of nature that can be observed and appreciated as an addition to the existing laws of thermodynamics. This unmistakable and remarkable tendency of nature is equally applicable to all other branches of studies. He first conceptualized the law of motive force in 1989, when he was an undergraduate student. Here he reports various applications of the law in the area of  thermodynamics, heat transfer, fluid mechanics and solid mechanics, and shows how it is possible to solve analytically century-old unsolved problems through its application. This book offers a comprehensive account of the law and its relation to other laws and principles, such as the generalized conservation principle, variational formulation, Fermat’s principle, Bejan’s constructal law, entropy generation minimization, Bejan’s method of intersecting asymptotes and equipartition principle. Furthermore, the author addresses some interrelated fundamental p...

  15. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    Science.gov (United States)

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  16. Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden

    International Nuclear Information System (INIS)

    Thollander, Patrik; Backlund, Sandra; Trianni, Andrea; Cagno, Enrico

    2013-01-01

    Highlights: • Results are based on a questionnaire in the European foundry industry. • The energy efficiency potential is assed to be 7.5% of the total energy use. • Most important drivers to and barriers for energy efficiency are financial followed by organizational. • EPC is used among 23% of the foundries, third party financing among 12%. • Large energy management improvement potentials are uncovered. - Abstract: Energy management plays an important role in the transformation of industrial energy systems towards improved energy efficiency and increased sustainability. This paper aims to study driving forces for improved energy efficiency in some European energy-intensive foundry industries. The investigation has been conducted as a multiple case study involving 65 foundries located in Finland, France, Germany, Italy, Poland, Spain, and Sweden. The most relevant perceived driving forces were found to be financially related, followed by organizational driving forces. Nevertheless, some differences can be appreciated according to the firm’s size and country. Almost half of the studied foundries lack a long-term energy strategy, about one-fourth stated that they have used Energy Performance Contracting (EPC), and only approximately one in ten foundries have used Third Party Financing (TPF). Among the studied foundries, three out of five have conducted an energy audit. On average, the energy saving potential according to the respondents is stated to be 7.5%. In conclusion, energy management in the European foundry industry, despite increasing energy prices and extensive energy policy actions taken by the EU, still seems to have great improvement potential, calling for future research and policy actions in the field

  17. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department

    2017-08-23

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.

  18. New force replica exchange method and protein folding pathways probed by force-clamp technique.

    Science.gov (United States)

    Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan

    2008-01-28

    We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes

  19. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations

    Science.gov (United States)

    Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo

    2016-04-01

    We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.

  20. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  1. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    Science.gov (United States)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  2. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Influence of van-der-Waals like interactions on the thermodynamic Casimir effect; Einfluss van-der-Waals-artiger Wechselwirkungen auf den thermodynamischen Casimir-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Grueneberg, Daniel

    2008-02-15

    To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T{>=}T{sub c,{infinity}}). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x{sup -(d+{sigma}}{sup )} for large separations x, where the value of the parameter {sigma} is restricted to the interval 2<{sigma}<4. By solving an appropriate spherical model in 2thermodynamic Casimir force and its leading corrections are obtained. To study the case n<{infinity}, which in 2thermodynamic Casimir force and its leading corrections are evaluated to two-loop order. It is shown that both in the spherical model and in the O(n)-symmetrical case with n<{infinity} to two-loop order, the thermodynamic Casimir force in the presence of the long-range interaction decays algebraically {proportional_to}L{sup -(d+{sigma}}{sup )} at fixed temperature T>T{sub c,{infinity}} on sufficiently large length scales. (orig.)

  4. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    DEFF Research Database (Denmark)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten

    2008-01-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG  = -33...... yield was rarely less than -20 kJ mol-1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic...... and kinetic drive, whereas the rate activity mainly depends on kinetic regulation....

  5. The Driving Forces of Cultural Complexity : Neanderthals, Modern Humans, and the Question of Population Size.

    Science.gov (United States)

    Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi

    2017-03-01

    The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

  6. Output Force Enhancement of Scratch Drive Actuator in Low-Voltage Region by Using Flexible Joint

    Directory of Open Access Journals (Sweden)

    Shawn CHEN

    2010-04-01

    Full Text Available Here a low-voltage scratch drive actuator (LVSDA is proposed by incorporating flexible joint into the conventional SDA to improve performance in low-voltage region. Experimental results show that, at the same total plate length of 80 mm and width of 65 mm, the proposed LVSDA can be actuated as low as 40 V, much lower than 80 V, the minimum required input voltage of the conventional SDA. From finite element analysis by CosmosWorks, yielding effect is found to be a critical factor. Before yielding, LVSDA can provide better performance than SDA at the same input voltage. However, the yielding stress in flexible joint would limit the achievable maximum output force in high-voltage region. By varying joint length, width, or location, LVSDA is shown to be operated in low-voltage region where the conventional SDA can not be operated, and can still provide comparable performance as SDA in high-voltage region.

  7. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  8. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. H.; Hu, L.; Yang, S. J.; Wang, W. L.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields a fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.

  9. Thermodynamic limits on the size and size distribution of nucleic acids synthesized in vitro: the role of pyrophosphate hydrolysis.

    Science.gov (United States)

    Peller, L

    1977-02-08

    The free-energy change of phosphodiester bond formation from nucleoside triphosphates is more favorable than with nucleoside diphosphates as substrates. Base-stacking interactions can make significant contributions to both delta G degrees ' values. Pyrophosphate hydrolysis when it accompanies the former reaction dominates all thermodynamic considerations. Three experimental situations are discussed in which high-molecular-weight polynucleotides are synthesized without a strong driving force for covalent bond formation. For one of these, a kinetic scheme is presented which encompasses an early narrow Poisson distribution of chain lengths with ultimate passage to a disperse equilibrium population of chain sizes. Hydrolytic removal of pyrophosphate expands the time scale for this undesirable process by a factor of 10(9), while it enormously elevates the thermodynamic ceiling for the average degrees of polymerization in the other two examples. The electron micrographically revealed broad size population from an early study of partial replication of a T7 DNA template is found to adhere (fortuitously) to a disperse most probable representation. Some possible origins are examined for the branched structures in this product, as well as in a later investigation of replication of this nucleic acid. The achievement of both very high molecular weights and sharply peaked size distributions in polynucleotides synthesized in vitro will require coupling to inorganic pyrophosphatase action as in vivo.

  10. Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS.

    Science.gov (United States)

    Li, Xiao; Niu, Xiang; Wang, Bing; Gao, Peng; Liu, Yu

    2016-01-01

    Dynamic change in soil erosion is an important focus of regional ecological restoration research. Here, the dynamic changes of soil erosion and its driving forces in the Dahei Mountain ecological restoration area of northern China were analyzed by LANDSAT TM remote sensing captured via geographic information system (GIS) technologies during three typical periods in 2004, 2008 and 2013. The results showed the following: (1) a decrease in intensive erosion and moderate erosion areas, as well as an increase in light erosion areas, was observed during two periods: one from 2004 to 2008 and the other from 2008 to 2013. (2) Between 2004 and 2008, the variation in the range of slight erosion was the largest (24.28%), followed by light erosion and intensive erosion; between 2008 and 2013, the variation in the range of intensive erosion area was the largest (9.89%), followed by slight erosion and moderate erosion. (3) Socioeconomic impact, accompanied by natural environmental factors, was the main driving force underlying the change in soil erosion within the ecological restoration area. In particular, the socioeconomic factors of per capita forest area and land reclamation rate, as well as the natural environmental factor of terrain slope, significantly influenced soil erosion changes within the ecological restoration area.

  11. Proceedings of the international conference on maglev and linear drives

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book contains papers presented at a conference on Maglev and linear drives. Topics covered include: Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle; Power supply system to drive HSST - Expo '86; and Thrust and levitation force characteristics of linear synchronous motors

  12. Thermodynamics and Chemistry by Howard DeVoe

    Science.gov (United States)

    Gislason, Eric A.

    2001-09-01

    is obviously true, but I never would have thought of it without the author's help! DeVoe also takes great pains to discuss the subtleties in the definitions of heat and work when frictional forces are present, which of course they are in any real process. (This is a complicated topic, which I have written on myself in this Journal [Gislason, E. A.; Craig, N. C. J. Chem. Educ.1987, 64, 660.]) I was particularly impressed by the appendix entitled "Forces, Energy, and Work", which takes the fundamental principles of classical mechanics, applies them to a collection of particles in a closed system, and derives an expression for thermodynamic work. The author is also very good at giving clear qualitative explanations of thermodynamic concepts. For example, I found his presentation of the second law using Carnot engines (Section 4.2) remarkably understandable. Most thermodynamics books do not present this material as clearly. Similarly I enjoyed reading Section 4.7, "What is the 'Meaning' of Entropy", where he shows how entropy can be thought of both as a "measure of unavailable work" and as a "measure of disorder". A third thing I like very much about this book is that DeVoe shows how important thermodynamic quantities such as temperature are actually measured. A good example of this is the detailed descriptions of measuring heat capacities using either adiabatic calorimeters or isothermal-jacket calorimeters (Section 5.5.2). One of the real highlights of the book is the detailed description of how data from a bomb calorimeter experiment are used to obtain standard molar enthalpies of combustion. The many steps that are needed to go from a temperature change measured in the calorimeter to the desired standard enthalpy are spelled out in detail in Section 8.5.2. Then, to reinforce all of the concepts, there is a 16-part homework problem that worries about such things as the Washburn corrections and uses such data as second virial coefficients, Henry's law constants, and

  13. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    Science.gov (United States)

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  14. Analysis of Vehicle Steering and Driving Bifurcation Characteristics

    Directory of Open Access Journals (Sweden)

    Xianbin Wang

    2015-01-01

    Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.

  15. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  16. Protein electron transfer: is biology (thermo)dynamic?

    International Nuclear Information System (INIS)

    Matyushov, Dmitry V

    2015-01-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  17. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    Science.gov (United States)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  18. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  19. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  20. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  1. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  2. Optimization of spent fuel pool weir gate driving mechanism

    Science.gov (United States)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  3. Current drive in a ponderomotive potential with sign reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Dodin, I.Y.; Rax, J.M.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect, which operates somewhat like a Maxwell demon, can be practiced upon both ions and electrons. The current-drive efficiencies, in principle, might be higher than those possible with conventional rf current-drive techniques. It remains, however, for us to identify how the effect might be implemented in a magnetic fusion device in a practical manner

  4. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  5. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    . Condensation cannot occur fast enough to maintain relative humidity in a cloud exactly at saturation, thereby trapping some water vapor in metastable supersaturation. Only then can the water vapor condense. Thus ultimately condensation is a thermodynamically nonspontaneous process forced by super-moist-adiabatic lapse rates. Yet water vapor plays vital roles in atmospheric thermodynamics and kinetics. Convective weather systems and storms in a dry atmosphere (e.g., dust devils can extract only the work represented by partial neutralization of super-dry-adiabatic lapse rates to dry-adiabaticity. At typical atmospheric temperatures in the tropics, where convective weather systems and storms are most frequent and active, the moist-adiabatic lapse rate is much smaller (thus much closer to isothermality, and hence represents much more extractable work, than the dry—the thermodynamic advantage of water vapor. Moreover, the large heat of condensation (and to a lesser extent fusion of water facilitates much faster heat transfer from Earth’s surface to the tropopause than is possible in a dry atmosphere, thereby facilitating much faster extraction of work, i.e., much greater power, than is possible in a dry atmosphere—the kinetic advantage of water vapor.

  6. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  7. THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC

    Directory of Open Access Journals (Sweden)

    V. I. Khilmon

    2015-01-01

    Full Text Available The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The  slippage  of  the  traction  drives  is  difficult  to  reproduce  in  laboratory;  therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.

  8. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  9. Driving forces: Motor vehicle trends and their implications for global warming, energy strategies, and transportation planning

    International Nuclear Information System (INIS)

    MacKenzie, J.J.; Walsh, M.P.

    1990-01-01

    Cars, trucks, and other vehicles have long been linked to smog and other urban pollution, but the part they play in the larger complex of atmospheric and energy ills that we now face is often overlooked. In Driving Forces: Motor Vehicle Trends and Their Implications for Global Warming, Energy Strategies, and Transportation Planning, James J. MacKenzie, senior associate in World Resources Institute's Program in Climate, Energy, and Pollution, and Michael P. Walsh, an international consultant on transportation and environmental issues, fill in this knowledge gap with new data and analyses. They spell out four policy shifts that can help hold the line on global warming: improve new-vehicle efficiency; make transportation more efficient; cut other greenhouse gas emissions; create the green car of the future. The report focuses especially on the US, which pioneered the automotive revolution and leads the world in oil imports and emissions

  10. Finite-Time Approach to Microeconomic and Information Exchange Processes

    Directory of Open Access Journals (Sweden)

    Serghey A. Amelkin

    2009-07-01

    Full Text Available Finite-time approach allows one to optimize regimes of processes in macrosystems when duration of the processes is restricted. Driving force of the processes is difference of intensive variables: temperatures in thermodynamics, values in economics, etc. In microeconomic systems two counterflow fluxes appear due to the only driving force. They are goods and money fluxes. Another possible case is two fluxes with the same direction. The processes of information exchange can be described by this formalism.

  11. Ratchet baryogenesis and an analogy with the forced pendulum

    Science.gov (United States)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  12. Thermodynamic studies of hydriodic acid in ethylene glycol-water mixtures from electromotive force measurements

    International Nuclear Information System (INIS)

    Elsemongy, M.M.; Abdel-Khalek, A.A.

    1983-01-01

    The standard potentials of the Ag-AgI electrode in twenty ethylene glycol-water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt|H 2 (g, 1atm)| HOAc(m 1 ), NaOAc(m 2 ), KI(m 3 ), solvent|AgI|Ag at nine different temperatures ranging from 15 to 55 0 C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI, from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. (Author)

  13. Relationship between thermodynamic driving force and one-way fluxes in reversible processes.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    Full Text Available Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  14. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  15. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  16. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  17. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  18. Discerning Thermodynamic Basis of Self-Organization in Critical Zone Structure and Function

    Science.gov (United States)

    Richardson, M.; Kumar, P.

    2017-12-01

    Self-organization characterizes the spontaneous emergence of order. Self-organization in the Critical Zone, the region of Earth's skin from below the groundwater table to the top of the vegetation canopy, involves the interaction of biotic and abiotic processes occurring through a hierarchy of temporal and spatial scales. The self-organization is sustained through input of energy and material in an open system framework, and the resulting formations are called dissipative structures. Why do these local states of organization form and how are they thermodynamically favorable? We hypothesize that structure formation is linked to energy conversion and matter throughput rates across driving gradients. Furthermore, we predict that structures in the Critical Zone evolve based on local availability of nutrients, water, and energy. By considering ecosystems as open thermodynamic systems, we model and study the throughput signatures on short times scales to determine origins and characteristics of ecosystem structure. This diagnostic approach allows us to use fluxes of matter and energy to understand the thermodynamic drivers of the system. By classifying the fluxes and dynamics in a system, we can identify patterns to determine the thermodynamic drivers for organized states. Additionally, studying the partitioning of nutrients, water, and energy throughout ecosystems through dissipative structures will help identify reasons for structure shapes and how these shapes impact major Critical Zone functions.

  19. The thermodynamical foundation of electronic conduction in solids

    Science.gov (United States)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  20. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification

    Science.gov (United States)

    Zhao, Y.; Qin, R. S.; Chen, D. F.

    2013-08-01

    A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.

  1. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  2. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  3. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of

  4. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  5. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    International Nuclear Information System (INIS)

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  6. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  7. Electromagnetic design calculation of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Qirong; Zhu Jingchang

    1991-01-01

    Electromagnetic design calculation of the step-by-step magnetic jacking control rod drive mechanism includes magnetic field force calculation and design calculation of magnetomotive force for three electromagnetic iron and their coilds. The basic principle and method of electromagnetic design calculation had been expounded to take the lift magnet and lift coil for example

  8. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  9. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  10. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  11. Research Problems Associated with Limiting the Applied Force in Vibration Tests and Conducting Base-Drive Modal Vibration Tests

    Science.gov (United States)

    Scharton, Terry D.

    1995-01-01

    The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.

  12. Active mechanics in living oocytes reveal molecular-scale force kinetics

    Science.gov (United States)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  13. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  14. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina

    2017-09-01

    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  15. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  16. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  17. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  18. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  19. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  20. Social Innovation : Driving Forces of Social Innovation in MNC

    OpenAIRE

    Tam, Hoising; Osadcha, Liudmyla

    2017-01-01

    Multinational Corporations (MNCs) currently face not only a dynamic business environment and challenging profit target, but also increased expectations from the public to take responsibility for addressing social, economic, and environmental issues. There is a tendency that the leading companies in the global market, especially MNCs, put more effort to the Social Innovation (SI). This study is to investigate what drives the MNCs to be involved in social innovation. In order to find out the re...

  1. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  2. On the ternary Ag – Cu – Ga system: Electromotive force measurement and thermodynamic modeling

    International Nuclear Information System (INIS)

    Gierlotka, Wojciech; Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof; Handzlik, Piotr

    2015-01-01

    The ternary silver–copper–gallium system found application as a solder material in jewel crafting and electronics, thus a phase diagram of this system seems to be important tool, which is necessary for a proper application of different alloys. The activity of gallium in liquid phase was determined by electromotive measurement technique and after that the equilibrium diagram of Ag – Cu – Ga was modeled based on available experimental data using Calphad approach. A set of Gibbs energies was found and used for calculation a phase diagram and thermodynamic properties of liquid phase. The experimental data was reproduced well by calculation. - Highlights: • For the first time activity of Ga in liquid Ag – Cu – Ga alloys was measured. • For the first time the ternary Ag – Cu – Ga system was thermodynamically modeled. • Modeled Ag – Cu – Ga system reproduces experimental data well

  3. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  4. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  5. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    International Nuclear Information System (INIS)

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-01-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays

  6. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    Science.gov (United States)

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    Science.gov (United States)

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  8. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  9. Selection of Belt Conveyors Drive Units Number by Technical –Economical Analysis

    OpenAIRE

    Despodov, Zoran; Mijalkovski, Stojance; Adjiski, Vancho; Panov, Zoran

    2014-01-01

    In this paper is presented a methodology for selection of belt conveyor drive units number by technical - economical analysis of their parameters. Belt Conveyors with follow drive arrangement will be considered: one, two, three and four drive units. In the technical - economical analysis are including: Tension forces, Power of belt conveyor, Costs for belt, Costs for power and reducers, Total cost for belt conveyor system.

  10. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  11. The death drive in tourism studies

    NARCIS (Netherlands)

    Buda, Dorina Maria

    2015-01-01

    The psychoanalytical concept of the death drive postulated by Freud and Lacan refers to a constant force at the junction between life and death, which is not understood in a biological sense of physical demise of the body, nor in opposition to life. Tourist experiences in conflict zones can be more

  12. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  14. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  15. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  16. The Britannica Guide to Heat, Force, and Motion

    CERN Document Server

    Gregersen, Erik

    2010-01-01

    Many of the world's most common processes and interactions are governed by the laws of thermodynamics and mechanics. While the transfer, release, or absorption of heat often accompany chemical reactions or seem inherent to mechanical systems, they are also familiar to anyone who has ever spent time outdoors on a warm day or touched a hot plate. Likewise, any physical body?large or small, solid or fluid?is subject to a wide range of forces that trigger motion. This detailed compendium explores the foundations and laws of both thermodynamics and mechanics as well as the lives of those individual

  17. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G.; Loh, Watson; Airoldi, Claudio

    2009-01-01

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms (Δ ads C p ). For the yellow dye, it is observed that the values of Δ ads H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative Δ ads G values indicate spontaneous adsorption processes. Almost all adsorption entropy values (Δ ads S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2 3 full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone

  18. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, Antonio R. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil)], E-mail: cestari@ufs.br; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil); Loh, Watson; Airoldi, Claudio [Universidade Estadual de Campinas, Instituto de Quimica, CP 6154, 13083-970, Campinas, Sao Paulo (Brazil)

    2009-01-15

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms ({delta}{sub ads}C{sub p}). For the yellow dye, it is observed that the values of {delta}{sub ads}H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative {delta}{sub ads}G values indicate spontaneous adsorption processes. Almost all adsorption entropy values ({delta}{sub ads}S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2{sup 3} full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone.

  19. Current drive by Alfven waves in elongated cross section tokamak

    International Nuclear Information System (INIS)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A.; Assis, A.S. de

    1997-01-01

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves 9GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  20. Current drive by Alfven waves in elongated cross section tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Assis, A.S. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves (GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  1. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    Directory of Open Access Journals (Sweden)

    Umberto Cugini

    2013-10-01

    Full Text Available In this article, we present an approach that uses both two force sensitive handles (FSH and a flexible capacitive touch sensor (FCTS to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user’s fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  2. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    Science.gov (United States)

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  3. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  4. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  5. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2013-01-01

    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  6. Capillary adhesion in the limit of saturation: Thermodynamics, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2008-01-01

    We introduce a simple thermodynamic argument for capillary adhesion forces, for various geometries, in the limit of saturation of the bulk phase. For one specific geometry (i.e., the sphere¿plate geometry such as that found in the colloidal probe AFM technique), we provide evidence of the validity

  7. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels

    NARCIS (Netherlands)

    Head, D.A.; Briels, Willem J.; Gompper, G.

    2014-01-01

    In the presence of adenosine triphosphate, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modeling can help to quantify the relationship between individual

  8. Analyzing driving forces behind changes in energy vulnerability of Spanish electricity generation through a Divisia index-based method

    International Nuclear Information System (INIS)

    Fernández González, P.; Moreno, B.

    2015-01-01

    Highlights: • We propose and develop the LMDI approach to factorize changes in electricity bill vulnerability. • Spanish vulnerability (1995–2011) markedly grew mainly by increasing gas dependence. • Fuel price increase and growing importance of electricity damage energy security. • Energy intensity advances & fuel diversification: insufficient to drive vulnerability. • Main recommendation: enhance internal energy market and common external EU strategy. - Abstract: High energy dependence on fossil raises vulnerability concerns about security of supply and energy cost. This research examines the impact of high dependence of imported fuels for power generation in Spain through the quantification and analysis of the driving forces behind the change in its electricity bill. Following logarithmic mean Divisia indexes approach, we present and perform a new method that enables a complete decomposition of changes in electricity vulnerability into contributions from several drivers. In fact, we identify five predefined factors behind the variations in vulnerability in Spain during the 1998–2011 period: fuel price, average heat rate, fuel dependence, degree of electricity importance and energy intensity. The application of this approach reveals a significant increase in Spanish vulnerability in the last two decades, promoted by increments in fuel price and importance of electricity over the primary energy consumption, but especially by increasing fuel dependence (particularly gas dependence). Therefore, findings mainly advocate for those strategies aimed at reducing Spanish energy dependence. Also those improving thermal efficiency and energy intensity are indicated

  9. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  10. Mesoscopic nonequilibrium thermodynamics of solid surfaces and interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic three-dimensional space.

    Science.gov (United States)

    Ogurtani, Tarik Omer

    2006-04-14

    A theory of irreversible thermodynamics of curved surfaces and interfaces with triple junction singularities is elaborated to give a full consideration of the effects of the specific surface Gibbs free energy anisotropy in addition to the diffusional anisotropy, on the morphological evolution of surfaces and interfaces in crystalline solids. To entangle this intricate problem, the internal entropy production associated with arbitrary virtual displacements of triple junction and ordinary points on the interfacial layers, embedded in a multicomponent, multiphase, anisotropic composite continuum system, is formulated by adapting a mesoscopic description of the orientation dependence of the chemical potentials in terms of the rotational degree of freedom of individual microelements. The rate of local internal entropy production resulted generalized forces and conjugated fluxes not only for the grain boundary triple junction transversal and longitudinal movements, but also for the ordinary points. The natural combination of the mesoscopic approach coupled with the rigorous theory of irreversible thermodynamics developed previously by the global entropy production hypothesis yields a well-posed, nonlinear, moving free-boundary value problem in two-dimensional (2D) space, as a unified theory. The results obtained for 2D space are generalized into the three-dimensional continuum by utilizing the invariant properties of the vector operators in connection with the descriptions of curved surfaces in differential geometry. This mathematical model after normalization and scaling procedures may be easily adapted for computer simulation studies without introducing any additional phenomenological system parameters (the generalized mobilities), other than the enlarged concept of the surface stiffness.

  11. Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes

    NARCIS (Netherlands)

    Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.

    2010-01-01

    Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte

  12. Electromotor control rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Baker, S.M.

    1975-01-01

    The positioning of a control rod arranged in a pressure vessel takes place with a drive. This protrudes out of the pressure vessel through a support and is formed from a rotating field motor with energy source, e.g. alternating current connection. Its stator surrounds a section of a pressure casing which covers the length of the drive. The rotor is arranged in the pressure casing and interacts with a shaft lying in the rotation axis. Furthermore, segments are hinged on it, each of which forms two arms of a rocker. Each segment can be revolved against a storing force in a plane containing the rotation axis, through the stator field acting on one of the rocker arms. In order that the drive motor is automatically blocked should the electricity supply fail, the other rocker arm can be connected with a fixed cased component of the drive having the effect of a friction break or a form-locking mechanical catch. (DG/LH) [de

  13. Stochastic thermodynamics, fluctuation theorems and molecular machines

    International Nuclear Information System (INIS)

    Seifert, Udo

    2012-01-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (review article)

  14. A Unified Methodology for Aerospace Systems Integration Based on Entropy and the Second Law of Thermodynamics: Aerodynamics Assessment

    National Research Council Canada - National Science Library

    Camberos, Jose A; Nomura, Shohei; Stewart, Jason; Figliola, Richard

    2004-01-01

    .... The objective of this project is to relate work-potential losses (exergy destruction) to the aerodynamics forces in an attempt to validate a new design methodology based on the second law of thermodynamic...

  15. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  16. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  17. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  18. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  19. Quantum thermodynamics for driven dissipative bosonic systems

    Science.gov (United States)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  20. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  1. Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin

    International Nuclear Information System (INIS)

    Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane

    2012-01-01

    This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series

  2. An examination of the concept of driving point receptance

    Science.gov (United States)

    Sheng, X.; He, Y.; Zhong, T.

    2018-04-01

    In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.

  3. Thermodynamic analysis of the tetragonal to monoclinic transformation in a constrained zirconia microcrystal

    International Nuclear Information System (INIS)

    Garvie, R.C.

    1985-01-01

    A thermodynamic analysis was made of a simple model comprising a transforming t-ZrO 2 microcrystal of size d constrained in a matrix subjected to a hydrostatic tensile stress field. The field generated a critical size range such that a t-particle transformed if dsub(cl) < d < dsub(cu). The lower limit dsub(cl) exists because at this point the maximum energy (supplied by the applied stress) which can be taken up by the crystal is insufficient to drive the transformation. The upper limit dsub(cu) is a consequence of the microcrystal being so large that it transforms spontaneously when the material is cooled to room temperature. Using the thermodynamic (Griffith) approach and assuming that transformation toughening is due to the dilational strain energy, this mechanism accounted for about one-third of the total observed effective surface energy in a peak-aged Ca-PSZ alloy. (author)

  4. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.

    2002-01-01

    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  5. Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2013-03-01

    Full Text Available In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.

  6. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  7. Smart management - Driving forces and conditions for the development of advanced electricity networks; Smart ledning - Drivkrafter och foerutsaettningar foer utveckling av avancerade elnaet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Oerjan; Staahl, Benjamin (Blue Inst., Stockholm (Sweden))

    2011-02-15

    This report describes the development of Intelligent Networks, or Smart Grids. It is divided into two sections. The first section highlights the basics of what is called 'smart' grid technology, what the underlying driving forces are and how the conditions for market looks like. It also depicts the impact on consumers, emerging business logics and ongoing investment and incentives in the world. The first part ends with an operator map of the market. The second part takes a closer look on some key areas and includes a simple reminder of technology related to smart grids

  8. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes

    International Nuclear Information System (INIS)

    Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao

    2016-01-01

    The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)

  9. Decomposing changes in the aggregate labor force participation rate

    OpenAIRE

    Hotchkiss, Julie L.

    2009-01-01

    This paper presents a simple methodology for decomposing changes in the aggregate labor force participation rate (LFPR) over time into demographic group changes in labor force participation behavior and in population share. The purpose is to identify the relative importance of behavioral changes and population changes as driving forces behind changes in the aggregate LFPR.

  10. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  11. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  12. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  13. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  14. Small and Medium Sized Reactors: Driving Forces and Technology Development

    International Nuclear Information System (INIS)

    Gowin, P.J.; Kupitz, J.

    2002-01-01

    There will be growing demands for energy in the coming decades. One aspect of particular importance is that prospects for nuclear energy will to a considerable extent be influenced by developing countries. Since population growth will occur primarily in developing countries nuclear energy cannot play a significant global role without being a viable option in these countries. Since new power plants to be built will have to be compatible with regional electricity grids, this may result in a greater focus on plants in the small and medium range, defined by the International Atomic Energy Agency (IAEA) to produce up to 700 Megawatt of electrical power. This paper first examines the driving forces that could influence the development of nuclear energy in general and of Small and Medium Sized Reactors (SMRs) in particular in the next decades and identifies key factors in that process. Concerns over climate change may to a certain extent influence the discussion on future energy options. Other factors of equal importance for the future of nuclear are a continued emphasis on maintaining high safety standards, the implementation of acceptable solutions for spent fuel and radioactive waste disposal and a globally accepted non-proliferation regime, factors that may in turn have an impact on public acceptance. Economic competitiveness of nuclear energy is an additional important factor, and without being commercially viable, no energy source can in the long run represent a major and stable component in a competitive energy sector. The introduction of SMRs in developing countries poses additional challenges, such as investment limitations. Technology development plays an important role in keeping the nuclear option open for countries wishing to use nuclear reactors to meet their energy needs, and advances in reactor design will be important to enable a significant nuclear component in developing countries. This paper considers the contribution that nuclear science and

  15. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    Science.gov (United States)

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.

  16. Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change

    International Nuclear Information System (INIS)

    Libo Wu; Kaneko, S.; Matsuoka, S.

    2005-01-01

    It is noteworthy that income elasticity of energy consumption in China shifted from positive to negative after 1996, accompanied by an unprecedented decline in energy-related CO 2 emissions. This paper therefore investigate the evolution of energy-related CO 2 emissions in China from 1985 to 1999 and the underlying driving forces, using the newly proposed three-level 'perfect decomposition' method and provincially aggregated data. The province-based estimates and analyses reveal a 'sudden stagnancy' of energy consumption, supply and energy-related CO 2 emissions in China from 1996 to 1999. The speed of a decrease in energy intensity and a slowdown in the growth of average labor productivity of industrial enterprises may have been the dominant contributors to this 'stagnancy'. The findings of this paper point to the highest rate of deterioration of state-owned enterprises in early 1996, the industrial restructuring caused by changes in ownership, the shutdown of small-scale power plants, and the introduction of policies to improve energy efficiency as probable factors. Taking into account the characteristics of those key driving forces, we characterize China's decline of energy-related CO 2 emissions as a short-term fluctuation and incline to the likelihood that China will resume an increasing trend from a lower starting point in the near future. (author)

  17. On the derivation of thermodynamic restrictions for materials with internal state variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1987-07-01

    Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de

  18. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  19. COMPETITIVENESS IN SERVICES, DRIVING FORCE OF ECONOMIC DEVELOPMENT

    OpenAIRE

    RAMONA PÎRVU; MARIA DANATIE ENESCU

    2012-01-01

    The competitiveness of a nation is ensured by the profitable activity of firms. They strengthen their position in the domestic and international markets through global strategies whose purpose is to increase productivity and maintain it at a high level. For this, the company must take into account both the internal economic environment which ensures operating conditions and the external economic environment’s development. The five competitive forces determine the industry’s profitability beca...

  20. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  1. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  2. A Quadruped Micro-Robot Based on Piezoelectric Driving

    Directory of Open Access Journals (Sweden)

    Qi Su

    2018-03-01

    Full Text Available Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  3. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  4. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  5. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.

    2011-01-01

    We hereby introduce a new hybrid thermodynamic-structural approach to the coarse-graining of polymers. The new model is developed within the framework of the MARTINI force-field (Marrink et al., J. Phys. Chem. B, 2007, 111, 7812), which uses mainly thermodynamic properties as targets...... of microseconds. Finally, we tested our model in dilute conditions. The collapse of the polymer chains in a bad solvent and the swelling in a good solvent could be reproduced....

  6. Stepping movement analysis of control rod drive mechanism

    International Nuclear Information System (INIS)

    Xu Yantao; Zu Hongbiao

    2013-01-01

    Background: Control rod drive mechanism (CRDM) is one of the important safety-related equipment for nuclear power plants. Purpose: The operating parameters of stepping movement, including lifting loads, step distance and step velocity, are all critical design targets. Methods: FEA and numerical simulation are used to analyze stepping movement separately. Results: The motion equations of the movable magnet in stepping movement are established by load analysis. Gravitation, magnetic force, fluid resistance and spring force are all in consideration in the load analysis. The operating parameters of stepping movement are given. Conclusions: The results, including time history curves of force, speed and etc, can positively used in the design of CRDM. (authors)

  7. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator

    Directory of Open Access Journals (Sweden)

    Keng Huat Koh

    2014-06-01

    Full Text Available This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force and V (driving voltage within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  8. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.

    Science.gov (United States)

    Koh, Keng Huat; Sreekumar, M; Ponnambalam, S G

    2014-06-25

    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F - V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.

  9. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  10. Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces

    Directory of Open Access Journals (Sweden)

    Rémi Tailleux

    2016-09-01

    Full Text Available In this paper, a theory for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity J n . Physically, J n has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure. Mathematically, minimising | J n | in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events (being understood here as adiabatic and isohaline events with non-zero buoyancy, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost being more efficient than purely neutral processes with zero energy cost. The latter mechanism occurs in the wedge of instability, and its source of energy is the coupling between baroclinicity, thermobaricity, and density compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential

  11. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.

    Science.gov (United States)

    Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi

    2016-06-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods.

  12. Control rod drives

    International Nuclear Information System (INIS)

    Furumitsu, Yutaka.

    1981-01-01

    Purpose: To improve the reliability of a device for driving an LMFBR type reactor control rod by providing a buffer unit having a stationary electromagnetic coil and a movable electromagnetic coil in the device to thereby avord impact stress at scram time and to simplify the structure of the buffer unit. Constitution: A non-contact type buffer unit is constructed with a stationary electromagnetic coil, a cable for the stationary coil, a movable electromagnetic coil, a spring cable for the movable coil, and a backup coil spring or the like. Force produced at scram time is delivered without impact by the attracting or repelling force between the stationary coil and the movable coil of the buffer unit. Accordingly, since the buffer unit is of a non-contact type, there is no mechanical impact and thus no large impact stress, and as it has simple configuration, the reliability is improved and the maintenance can be conducted more easily. (Yoshihara, H.)

  13. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  14. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    International Nuclear Information System (INIS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng

    2010-01-01

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  15. The Driving Forces for the Practice of Strategic Planning in SMEs: Evidence from Harare Metropolitan Province, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Maxwell Sandada

    2016-08-01

    Full Text Available Despite Zimbabwe sharing with the rest of the world, the notion that SMEs are the impeccable engines to economic revival, growth and development, many of the nation`s SMEs are plagued with high failure rates. Previous studies carried out in most foreign countries suggested that the high failure rate of SMEs was attributable to lack of strategic planning among a host of other factors. Against this backdrop, the purpose of this study was to examine the driving forces for the practice of strategic planning in SMEs. A quantitative cross sectional study was conducted among active SMEs who are registered with the Ministry of Small and Medium Enterprises and Cooperative Development in Zimbabwe. The study revealed that globalisation, business ownership motivations, environmental dynamism and innovation & technological advancement have a positive and statistically significant influence on the adoption or practice of strategic planning among SMEs. The study has important implications for the practice and implementation of strategic planning among SMEs especially in the context of a developing country such as Zimbabwe.

  16. Control rod drives

    International Nuclear Information System (INIS)

    Oonuki, Koji.

    1981-01-01

    Purpose: To increase the driving speed of control rods at rapid insertion with an elongate control rod and an extension pipe while ensuring sufficient buffering performance in a short buffering distance, by providing a plurality of buffers to an extension pipe between a control rod drive source and a control rod in LMFBR type reactor. Constitution: First, second and third buffers are respectively provided to an acceleration piston, an extension pipe and a control rod respectively and the insertion positions for each of the buffers are displaced orderly from above to below. Upon disconnection of energizing current for an electromagnet, the acceleration piston, the extension pipe and the control rod are rapidly inserted in one body. The first, second and third buffers are respectively actuated at each of their falling strokes upon rapid insertion respectively, and the acceleration piston, the extension pipe and the control rod receive the deceleration effect in the order correspondingly. Although the compression force is applied to the control rod only near the stroke end, it does not cause deformation. (Kawakami, Y.)

  17. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.

    Science.gov (United States)

    Kleidon, Axel

    2009-06-01

    The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

  18. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  19. Nonequilibrium molecular dynamics: The first 25 years

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments

  20. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  1. Energy analysis of control rod drive mechanism in HTR-10

    International Nuclear Information System (INIS)

    Bo Hanliang; Wu Yuanqiang

    2000-01-01

    This paper presents a theoretical model for the control rod drive mechanism for the 10 MW High Temperature Gas Cooled Reactor (HTR-10) and analyzes accidents which may occur in the drive mechanism, for example, chain break, coupling damage and other damage scenarios. The results show that the matching problem between buffer capability and coupling strength is the main reason for coupling damage; increased temperatures would reduce eddy damping and cause a mismatch between buffer capability and coupling strength; and the displacement of the buffer spring will affect the coupling force. The results provide a theoretical basis for the design of the control rod drive mechanism for HTR-10

  2. Linear Motor for Drive of Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Milan Krasl

    2006-01-01

    Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.

  3. Noninductive current drive for INTOR: A comparison of four driver options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Evans, K. Jr.; Mikkelsen, D.R.; Ignat, D.W.; Mau, T.K.

    1987-01-01

    The current drive power and normalized efficiency are calculated for the INTOR tokamak, including spatial profiles of the plasma and current density. Current drive requirements are computed for purely steady state operation with no electromotive force and also in the presence of a reversed emf typical of start-up or transformer recharging. Results are obtained for lower-hybrid-waves, high frequency fast waves, low frequency fast waves and neutral beam injection

  4. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  5. VEHICLE DRIVING CYCLE OPTIMISATION ON THE HIGHWAY

    Directory of Open Access Journals (Sweden)

    Zinoviy STOTSKO

    2016-06-01

    Full Text Available This paper is devoted to the problem of reducing vehicle energy consumption. The authors consider the optimisation of highway driving cycle a way to use the kinetic energy of a car more effectively at various road conditions. The model of a vehicle driving control at the highway which consists of elementary cycles, such as accelerating, free rolling and deceleration under forces of external resistance, was designed. Braking, as an energy dissipation regime, was not included. The influence of the various longitudinal profiles of the road was taken into consideration and included in the model. Ways to use the results of monitoring road and traffic conditions are presented. The method of non-linear programming is used to design the optimal vehicle control function and phase trajectory. The results are presented by improved typical driving cycles that present energy saving as a subject of choice at a specified schedule.

  6. Unlocking Ft: Modeling thermodynamic controls and isotope fractionation factors in nutrient limited environments

    Science.gov (United States)

    Druhan, J. L.; Giannetta, M.; Sanford, R. A.

    2017-12-01

    In recent years, reactive transport principles have expanded from early applications, largely based in contaminant hydrology, to a wide range of biologically mediated redox environments including marine sedimentary diagenesis, terrestrial metal ore deposits, soils, and critical zone weathering profiles. A common observation across this diversity of systems is that they often function under energetically limited conditions in comparison to those typical of contaminated aquifers subject to engineered remediation techniques. As a result, the kinetic rate expressions traditionally employed within reactive transport frameworks to simulate microbially mediated redox transformations have required modification. This was recognized in a series of seminal papers by Jin and Bethke (2005, 2007) in which the authors expanded upon a Monod rate law to include a thermodynamic potential factor `Ft' which exerts a limitation on the overall rate based on the thermodynamic driving force of the electron transfer reaction. This new rate expression is now commonly implemented within many of the major reactive transport software packages, though appropriate application has yet to be thoroughly demonstrated. Notably, the characteristically large partitioning of stable isotopes during microbially mediated reactions, which is extensively utilized to identify and quantify these redox transformations, has yet to be simulated under conditions in which the Ft term may be expected to exert a significant mass dependent influence. Here, we develop a series of simplified simulations for the microbially mediated reduction of sulfate based on the datasets reported by Jin and Bethke, and apply appropriate mass-bias within the Ft term to consider the extent to which the resulting isotopic fractionation is consistent with that observed in energetically limited systems. We show that the Ft term can exert a significant influence on the observed fractionation factor under common environmental conditions

  7. Comprehensive 3D-elastohydrodynamic simulation of hermetic compressor crank drive

    Science.gov (United States)

    Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.

    2017-08-01

    Mechanical, electrical and thermodynamic losses form the major loss mechanisms of hermetic compressors for refrigeration application. The present work deals with the investigation of the mechanical losses of a hermetic compressor crank drive. Focus is on 3d-elastohydrodynamic (EHD) modelling of the journal bearings, piston-liner contact and piston secondary motion in combination with multi-body and structural dynamics of the crank drive elements. A detailed description of the model development within the commercial software AVL EXCITE Power Unit is given in the work. The model is used to create a comprehensive analysis of the mechanical losses of a hermetic compressor. Further on, a parametric study concerning oil viscosity and compressor speed is carried out which shows the possibilities of the usage of the model in the development process of hermetic compressors for refrigeration application. Additionally, the usage of the results in an overall thermal network for the determination of the thermal compressor behaviour is discussed.

  8. Quantum refrigerators and the third law of thermodynamics.

    Science.gov (United States)

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  9. Assessing LULC changes over Chilika Lake watershed in Eastern India using Driving Force Analysis

    Science.gov (United States)

    Jadav, S.; Syed, T. H.

    2017-12-01

    Rapid population growth and industrial development has brought about significant changes in Land Use Land Cover (LULC) of many developing countries in the world. This study investigates LULC changes in the Chilika Lake watershed of Eastern India for the period of 1988 to 2016. The methodology involves pre-processing and classification of Landsat satellite images using support vector machine (SVM) supervised classification algorithm. Results reveal that `Cropland', `Emergent Vegetation' and `Settlement' has expanded over the study period by 284.61 km², 106.83 km² and 98.83 km² respectively. Contemporaneously, `Lake Area', `Vegetation' and `Scrub Land' have decreased by 121.62 km², 96.05 km² and 80.29 km² respectively. This study also analyzes five major driving force variables of socio-economic and climatological factors triggering LULC changes through a bivariate logistic regression model. The outcome gives credible relative operating characteristics (ROC) value of 0.76 that indicate goodness fit of logistic regression model. In addition, independent variables like distance to drainage network and average annual rainfall have negative regression coefficient values that represent decreased rate of dependent variable (changed LULC) whereas independent variables (population density, distance to road and distance to railway) have positive regression coefficient indicates increased rate of changed LULC . Results from this study will be crucial for planning and restoration of this vital lake water body that has major implications over the society and environment at large.

  10. Boomers and seniors: The driving force behind leisure participation

    Science.gov (United States)

    Lynda J. Sperazza; Priya Banerjee

    2010-01-01

    The 76 million Americans in the Baby Boomer population are the force behind the changing demographic picture of society today. Boomers' spending habits and lifestyle choices will also have a powerful influence on retirement and leisure in the coming decades. Boomers will redefine retirement and are expected to demand more than current senior programs and...

  11. Synchronous Switching of Non-Line-Start Permanent Magnet Synchronous Machines between Inverter to Grid Drives

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2016-01-01

    tracking. Furthermore, the method of switching the NLSPMSMs from grid to inverter drives, which is named as backward switching is also proposed. No position sensors are used, and the extended ElectroMotive Force (EMF) based position sensorless control algorithm is adopted during inverter drive. Experiments...

  12. Thermodynamic theory of transport in magnetized plasmas

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1990-10-01

    Transport laws relating thermodynamic flows to forces by means of transport coefficients in a magnetized plasma are derived here from basic plasmadynamics and nonequilibrium thermodynamics. Macroscopic balance equations are derived in the first part, taking into account the energy of relative diffusion between species in an exact way. The resulting plasmadynamical equations appear to be more general than the usual ones. In the second part, the particular features of a two-temperature diffusing plasma are taken into account in deriving the balance equation for the entropy density, the differences with thermodynamics of neutral fluid mixtures or metals are explained. The general expressions obtained for the entropy production rate are used in part III to derive transport laws. Onsager symmetry relations are applied to interrelate crossed transport coefficients. Basic transport coefficients are the electrical conductivity, the thermo-electric coefficient, along with the thermal conductivities and the viscosities for each species. The slight difference between thermo-electric effect and thermo-diffusion is explained. An important resistive thermo-electric effect appears which describes crossed transport coefficients between thermal and electric flows. Because of the anisotropy introduced by the magnetic field, the transport coefficients are tensors, with non diagonal elements associated with the Hall, Nernst and Ettinghausen effects in the plasma. The field geometry and applications to several particular cases are treated explicitly in part IV, namely the neo-classical transport laws. The Ettinghausen effect appears to play an important role in the transport laws for radial electron heat flow and particle flow in confined plasmas. Practical prescriptions are given to apply the Onsager symmetry relations in a correct way

  13. Gravity: one of the driving forces for evolution.

    Science.gov (United States)

    Volkmann, D; Baluska, F

    2006-12-01

    Mechanical load is 10(3) larger for land-living than for water-living organisms. As a consequence, antigravitational material in form of compound materials like lignified cell walls in plants and mineralised bones in animals occurs in land-living organisms preferentially. Besides cellulose, pectic substances of plant cell walls seem to function as antigravitational material in early phases of plant evolution and development. A testable hypothesis including vesicular recycling processes into the tensegrity concept is proposed for both sensing of gravitational force and responding by production of antigravitational material at the cellular level.

  14. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  15. Interplay between magnetism and energetics in Fe-Cr alloys from a predictive noncollinear magnetic tight-binding model

    DEFF Research Database (Denmark)

    Soulairol, R.; Barreteau, Cyrille; Fu, Chu-Chun

    2016-01-01

    Magnetism is a key driving force controlling several thermodynamic and kinetic properties of Fe-Cr systems. We present a tight-binding model for Fe-Cr, where magnetism is treated beyond the usual collinear approximation. A major advantage of this model consists in a rather simple fitting procedur...

  16. Fundamental limitations on 'warp drive' spacetimes

    International Nuclear Information System (INIS)

    Lobo, Francisco S N; Visser, Matt

    2004-01-01

    'Warp drive' spacetimes are useful as 'gedanken-experiments' that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of 'superluminal' communication. After carefully formulating the Alcubierre and Natario warp drive spacetimes, and verifying their non-perturbative violation of the classical energy conditions, we consider a more modest question and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second orders of the warp-bubble velocity, v. Since we take the warp-bubble velocity to be non-relativistic, v << c, we are not primarily interested in the 'superluminal' features of the warp drive. Instead we focus on a secondary feature of the warp drive that has not previously been remarked upon-the warp drive (if it could be built) would be an example of a 'reaction-less drive'. For both the Alcubierre and Natario warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. A particularly interesting feature of this construction is that it is now meaningful to think of placing a finite mass spaceship at the centre of the warp bubble, and then see how the energy in the warp field compares with the mass-energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp field, since by definition the point at the centre of the warp bubble moves on a geodesic and is 'massless'. That is, in Alcubierre's original formalism and in the Natario formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natario warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship

  17. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    Science.gov (United States)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  18. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  19. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  20. Base drive for paralleled inverter systems

    Science.gov (United States)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  1. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Paola eGamba

    2015-06-01

    Full Text Available Alzheimer’s disease (AD, the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid β peptides and neurofibrillary tangles within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism.The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier. The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death.This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.

  2. A drastic reorganization of industry in the world.What is the driving force

    Directory of Open Access Journals (Sweden)

    Shinji Naruo

    2010-05-01

    Full Text Available The purpose of this paper is to show the method and model to analyze the driving force to reorganize the industry. Due to the global economy, many large scale M&A and affiliations are happening in the world. The business alliance and integration are happening in the advanced countries, the transition countries, and the developing countries. There are some factors to impact the reorganization of industry. One is government policy. Another is the market economy. The government has the industrial policy. It guides and leads the industrial structure of the country. Advanced countries had experienced the advancement of industrial structure. On the process of industrial structure advancement, the country improved national income (GNP. Through the process, the enterprise in the industry had experienced integration and separation in the industry. The theory of industrial structure supports the framework of this approach.On the other hand, the market economy also had influenced to the reorganization of industry. Business cycle, competition, and innovation had influenced the reorganization of industry. In capitalism, the shareholder of the company pushes the company to maximize the profit. The shareholder’s pressure could influence the decision of M&A.The theory of industrial organization supports the framework of this approach.The enterprise is in the business environment. Top management of the company is responsible to make a decision to merge or acquire the company. However, the decision is affected by other factors out of business environment. The shareholder influenced the individual enterprise decision. The government policy influenced the industrial structure. This could impose the enterprise to accept the amalgamation in the industry.Both of two influence the reorganization of industry.

  3. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  4. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    Science.gov (United States)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  5. Inverse Dynamic Analysis for Various Drivings in Kinematic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

  6. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  7. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  8. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  9. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  10. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  11. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  12. Extended driving impairs nocturnal driving performances.

    Directory of Open Access Journals (Sweden)

    Patricia Sagaspe

    Full Text Available Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years participated Inappropriate line crossings (ILC in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05 for the intermediate (1-5 am driving session and by 4.0 (CI, 1.7 to 9.4; P<.001 for the long (9 pm-5 am driving session. Compared to the reference session (9-10 pm, the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001, 15.4 (CI, 4.6 to 51.5; P<.001 and 24.3 (CI, 7.4 to 79.5; P<.001, respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05 and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01. At night, extended driving impairs driving performances and therefore should be limited.

  13. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  14. Tape edge study in a linear tape drive with single-flanged guides

    International Nuclear Information System (INIS)

    Goldade, A.V.; Bhushan, Bharat

    2004-01-01

    Improved tape guiding and tape dimensional stability are essential for magnetic tape linear recoding formats to take advantage of vastly increased track density and thereby achieve higher storage capacities. Tape guiding is dependent on numerous parameters, such as type of the guides and tape path geometry, quality of virgin tape edge, drive operating parameters (e.g., tape speed and tape tension), mechanical properties of the tape, and tape geometry (e.g., cupping and curvature). The objective of the present study is to evaluate guiding and tribological performance of single-flanged guides with porous air bearings in a linear tape drive. A comparison of guiding performance of the dual flanged stationary guides and single-flanged guides with porous air bearings is performed. The effect of tape path geometry, drive operating conditions (speed and tension) and tape edge quality of factory-slit tapes on tape guiding are evaluated during short-term tests. A lateral force measurement technique is used to measure the force exerted by the tape edge on the guide flange. A technique for the lateral tape motion measurement is used to study the effect of continuous sliding on tape guiding. Wear tests up to 5000 cycles are conducted and coefficient of friction and lateral tape motion are monitored to study the effect of drive operating conditions (speed and tension), edge quality of factory-slit tapes and tape thickness on tape guiding. Optical microscopy, atomic force microscopy and scanning electron microscopy are employed to study and quantify the quality of tape edge

  15. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  16. Motive, desire, drive: the discourse of force

    Directory of Open Access Journals (Sweden)

    Alan Blum

    2013-12-01

    Full Text Available A review of the original paper on motive by Blum and McHugh (1971 is used as an occasion to make transparent an approach to social theory as it has developed over the years in their work. This method, in treating motive as an illustration, engages it as an example of the status of the signifier as a symptom of interpretive conflict endemic to any situation of action, always inviting an analysis of the symbolic order and imaginative structure that sustains the distinction as a force in social life. In this paper, motive in particular is unpacked to show how it serves as an indication of fundamental ambiguity with respect to a problem-solving situation, revealing in this case constant perplexity in relation to the enigmatic character of what comes to view on any occasion and the recurrent contestation that is released.

  17. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  18. Absorption solar cooling systems using optimal driving temperatures

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Ventas, Rubén; Vereda, Ciro; López, Ricardo

    2015-01-01

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH 3 /LiNO 3 , either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H 2 O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH 3 /LiNO 3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H 2 O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature t g,op for solar cooling in Madrid. • 3 absorption cycles tested: H 2 O/LiBr and NH 3 /LiNO 3 single effect and hybrid. • The t g,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than t g,op

  19. Spontaneous formation of small unilamellar vesicles by pH jump: A pH gradient across the bilayer membrane as the driving force

    International Nuclear Information System (INIS)

    Hauser, H.; Mantsch, H.H.; Casal, H.L.

    1990-01-01

    31 P NMR and infrared spectroscopic methods have been used to study the formation of small unilamellar vesicles by the pH-jump method. It is shown that increasing the pH of different lamellar phospholipid dispersions (phosphatidic acids and phosphatidylserines) induces a pH gradient. This pH gradient is estimated to be 4 ± 1 pH units, and its direction is such that the inner monolayer of the vesicles is at lower pH. There is spectroscopic evidence for tighter packing of the lipid hydrocarbon chains in the inner monolayer, probably due to the constraints imposed by the high curvature of the small vesicles formed. These results are discussed in terms of the driving force of the spontaneous vesiculation

  20. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr