WorldWideScience

Sample records for thermochemical water decomposition

  1. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  2. Method for thermochemical decomposition of water

    Science.gov (United States)

    Abraham, Bernard M.; Schreiner, Felix

    1977-01-11

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions: KI, NH.sub.3, CO.sub. 2 and water in an organic solvent such as ethyl or propyl alcohol are reacted to produce KHCO 3 and NH.sub.4 I. The KHCO.sub.3 is thermally decomposed to K.sub.2 CO.sub.3, H.sub.2 O and CO.sub.2, while the NH.sub.4 I is reacted with Hg to produce HgI.sub.2, NH.sub.3 and H.sub.2. The K.sub.2 CO.sub.3 obtained by calcining KHCO.sub.3 is then reacted with HgI.sub.2 to produce Hg, KI, CO and O.sub.2. All products of the reaction are recycled except hydrogen and oxygen.

  3. Energy and exergy analyses of a copper-chlorine thermochemical water decomposition pilot plant for hydrogen production

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2008-01-01

    Nuclear-based hydrogen production via thermochemical water decomposition using a copper-chlorine (Cu-Cl) cycle consists of a series of chemical reactions in which water is split into hydrogen and oxygen as the net result. This is accomplished through reactions involving intermediate copper and chlorine compounds, which are recycled. Energy and exergy analyses are reported here of a Cu-Cl pilot plant, including the relevant chemical reactions. The reference environment is taken to be at a temperature of 298.15 K and atmospheric pressure (1 atm). The chemical exergy of a substance, which is the maximum work that can be obtained from it by taking it to chemical equilibrium with the reference environment at constant temperature and pressure, is calculated with property data for the substance and the reference environment, with enthalpy and entropy values calculated using Shomate equations. The reaction heat, exergy destruction and efficiencies in each chemical reaction vary with the reaction temperature and reference-environment temperature. A parametric study with variable reaction and reference-environment temperatures is also presented. (author)

  4. Thermochemical production of hydrogen from water

    International Nuclear Information System (INIS)

    Funk, J.E.; Conger, W.L.; Carty, R.H.; Barker, R.E.

    1975-01-01

    A review of recent developments in the selection and evaluation of multi-step thermochemical water-splitting cycles is presented. A computerized and thermodynamic and chemical engineering analysis procedure is discussed with calculates, among other things, the thermal efficiency of the process which is defined to be the ratio of the enthalpy change for water decomposition to the total thermal energy required by the process. Changes in the thermodynamic state in each step of the process are also determined. Engineering considerations such as the effect of approach to equilibrium in the chemical reaction steps on the work of separation, and the magnitude of the recycle streams are included. Important practical matters such as thermal regeneration in the product and reactant streams are dealt with in some detail. The effect of reaction temperature on thermal efficiency is described and the use of the analysis procedure is demonstrated by applying it to several processes. (author)

  5. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  6. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  7. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  8. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  9. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  10. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  11. Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production

    International Nuclear Information System (INIS)

    Fu, Guangshi; He, Yong; Zhang, Yanwei; Zhu, Yanqun; Wang, Zhihua; Cen, Kefa

    2016-01-01

    Highlights: • The relation between Ni content and Ni particle dispersion were disclosed. • The effect of Ni content on the catalytic activity of Ni/AC catalyst was revealed. • The optimal content of Ni for Ni/AC catalysts in HI decomposition was found. - Abstract: This work reports the Ni content effect on the Ni/AC catalytic performance in the HI decomposition reaction of the sulfur–iodine (SI) thermochemical cycle for hydrogen production and the Ni/AC catalyst durability in a long-term test. Accordingly, five catalysts with the Ni content ranging from 5% to 15% were prepared by an incipient-wetness impregnation method. The activity of all catalysts was examined under the temperature range of 573–773 K. The catalytic performance evaluation suggests that Ni content plays a significant role in the Ni dispersion, Ni particle size, and eventually the catalytic activity in HI decomposition. 12% is the optimal Ni content for Ni/AC catalysts in HI decomposition which is balanced between poor dispersion of Ni particles and increasing active center. The results of 24 h durability test, which incorporated with BET and TEM investigations of the 12%Ni/AC catalyst before and after the reaction, indicate that establishing a better Ni particle dispersion pattern and improving the stability of Ni particles on the support should be considered in the future.

  12. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  13. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  14. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  15. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Czech Academy of Sciences Publication Activity Database

    Simkó, I.; Furtenbacher, T.; Hrubý, Jan; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Gamache, R. R.; Szidarovszky, T.; Dénes, N.; Császár, A. G.

    2017-01-01

    Roč. 46, č. 2 (2017), č. článku 023104. ISSN 0047-2689 R&D Projects: GA ČR GA16-02647S Institutional support: RVO:61388998 Keywords : heavy water * ideal-gas thermochemical functions * partition function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 4.204, year: 2016

  16. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  17. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  18. Solar hydrogen project - Thermochemical process design

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Ng, L.F.; Rao, M.S.M.; Wu, S.F.; Zoschak, R.J.

    1984-08-01

    The thermochemical decomposition of water using solar energy offers an elegant way of combining solar and chemical technologies to produce a high quality fuel. The DOE has sponsored Foster Wheeler to develop a process design for a solar water-splitting process based on the sulfuric acid/iodine cycle. The study has centered around the design of a sulfuric acid decomposition reactor and the central receiver. Materials' properties impose severe constraints upon the design of decomposition reactor. In this paper, the constraints imposed on the design are specified and a reactor and receiver design is presented together with a preliminary design of the balance of plant.

  19. Deuterium isotope effects in condensed-phase thermochemical decomposition reactions of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

    International Nuclear Information System (INIS)

    Shackelford, S.A.; Coolidge, M.B.; Goshgarian, B.B.; Loving, B.A.; Rogers, R.N.; Janney, J.L.; Ebinger, M.H.

    1985-01-01

    The deuterium isotope effect was applied to condensed-phase thermochemical reactions of HMX and HMX-d 8 by using isothermal techniques. Dissimilar deuterium isotope effects revealed a mechanistic dependence of HMX upon different physical states which may singularly predominate in a specific type of thermal event. Solid-state HMX thermochemical decomposition produces a primary deuterium isotope effect (DIE), indicating that covalent C-H bond rupture is the rate-controlling step in this phase. An apparent inverse DIE is displayed by the mixed melt phase and can be attributed to C-H bond contraction during a weakening of molecular lattice forces as the solid HMX liquefies. The liquid-state decomposition rate appears to be controlled by ring C-N bond cleavage as evidenced by a secondary DIE and higher molecular weight products. These results reveal a dependence of the HMX decomposition process on physical state and lead to a broader mechanistic interpretation which explains the seemingly contradictory data found in current literature reviews. 33 references, 9 figures, 5 tables

  20. Remarks on the thermochemical production of hydrogen from water using heat from the high temperature reactor

    International Nuclear Information System (INIS)

    Barnert, H.

    1980-06-01

    In this report, some aspects of the production of hydrogen from water using heat from the High Temperature Reactor has been studied. These aspects are: the theoretical potential for economic competitivness, the application of hydrogen in the Heat Market, the size of the market potential in the Federal Republic of Germany and the extent of research and development work. In addition another novel proposal for a thermochemical cycle has been studied. For the description of the theoretical potential for economic competitivness, a definition of the 'coupling', has been introduced, which is thermodynamicaly developed; the thermochemical cycle is compared with the thermochemical cycle. Using the coupling, it becomes possible to describe a relation between thermodynamical parameters and the ecomomical basic data of capital costs. Reasons are given from the theoretical point of view for the application of hydrogen as an energy carrier of high exergetic value in the heat market. The discussion of energy problems as 'questions of global survival' leads here to a proposal for the introduction of the term 'extropy'. The market potential in the Federal Republic of Germany is estimated. A further novel proposal for a thermochemical cycle is the 'hydrocarbon-hybrid-process'. The extent of research and development work is explained. (orig.) [de

  1. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  2. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  3. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  4. Study of water nature in tungstoboric acid by thermochemical method

    International Nuclear Information System (INIS)

    Kosmodem'yanskaya, G.V.; Sadykova, M.M.; Spitsyn, V.I.

    1976-01-01

    The kinetics of the dehydration of the crystalline higher hydrates of tungstoboric acid (TBA) were studied. The dehydration of TBA shows first order behaviour. An appreciable proportion of the water in TBA is zeolitic water

  5. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  6. Thermochemical reactivity of 5–15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gokon, Nobuyuki, E-mail: ngokon@eng.niigata-u.ac.jp [Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Suda, Toshinori [Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan); Kodama, Tatsuya [Department of Chemistry & Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan)

    2015-10-10

    Highlights: • 5–15 mol% M-doped ceria are examined for thermochemical two-step water-splitting. • 5 mol% Fe- and Co-doped ceria have stoichiometric production of oxygen and hydrogen. • 10–15 mol% Fe- and Mn-doped ceria showed near-stoichiometric production. - Abstract: The thermochemical two-step water-splitting cycle using transition element-doped cerium oxide (M–CeO{sub 2−δ}; M = Fe, Co, Ni, Mn) powders was studied for hydrogen production from water. The oxygen/hydrogen productivity and repeatability of M–CeO{sub 2−δ} materials with M doping contents in the 5–15 mol% range were examined using a thermal reduction (TR) temperature of 1500 °C and water decomposition (WD) temperatures in the 800–1150 °C range. The temperature, steam partial pressure, and steam flow rate in the WD step had an impact on the hydrogen productivity and production rate. 5 mol% Fe- and Co-doped CeO{sub 2−δ} enhances hydrogen productivity by up to 25% on average compared to undoped CeO{sub 2}, and shows stable repeatability of stoichiometric oxygen and hydrogen production for the cyclic thermochemical two-step water-splitting reaction. In addition, 5 mol% Mn-doped CeO{sub 2−δ}, 10 and 15 mol% Fe- and Mn-doped CeO{sub 2−δ} show near stoichiometric reactivities.

  7. Liquid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and its DNNC-d2, DNNC-d4, DNNC-d6 Structural Isotopomers: Mechanistic Entrance into the DNNC Molecule

    National Research Council Canada - National Science Library

    Shackelford, S. A; Menapace, J. A; Goldman, J. F

    2007-01-01

    ... thermochemical decomposition process. Using IDSC-based KDIE comparisons with the DNNC-d2, DNNC-d4, and DNNC-d6 isotopomers, a more detailed chemical structure/mechanistic relationship emerged by entering the interior of the DNNC molecule...

  8. Technical and economic aspects of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

    International Nuclear Information System (INIS)

    Sultanova, K.D.; Mustafayeva, R.M.; Rzayev, P.F.

    2007-01-01

    Full text: The technical and economic assessment of process of thermo-chemical decomposition of biomass in the processes of transformation of it in power-consuming energy/carriers by the use of the concentrated gel of sun radiation, has been considered

  9. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki

    1976-03-01

    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  10. Hydrogen iodide processing section in a thermochemical water-splitting iodine-sulfur process using a multistage hydrogen iodide decomposer

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sakaba, Nariaki; Imai, Yoshiyuki; Kubo, Shinji; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Kato, Ryoma

    2009-01-01

    A multistage hydrogen iodide (HI) decomposer (repetition of HI decomposition reaction and removal of product iodine by a HIx solution) in a thermochemical water-splitting iodine-sulfur process for hydrogen production using high-temperature heat from the high-temperature gas-cooled reactor was numerically evaluated, especially in terms of the flow rate of undecomposed HI and product iodine at the outlet of the decomposer, in order to reduce the total heat transfer area of heat exchangers for the recycle of undecomposed HI and to eliminate components for the separation. A suitable configuration of the multistage HI decomposer was countercurrent rather than concurrent, and the HIx solution from an electro-electro dialysis at a low temperature was a favorable feed condition for the multistage HI decomposer. The flow rate of undecomposed HI and product iodine at the outlet of the multistage HI decomposer was significantly lower than that of the conventional HI decomposer, because the conversion was increased, and HI and iodine were removed by the HIx solution. Based on this result, an alternative HI processing section using the multistage HI decomposer and eliminating some recuperators, coolers, and components for the separation was proposed and evaluated. The total heat transfer area of heat exchangers in the proposed HI processing section could be reduced to less than about 1/2 that in the conventional HI processing section. (author)

  11. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  12. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  13. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  14. Analysis of the hybrid copper oxide-copper sulfate cycle for the thermochemical splitting of water for hydrogen production

    International Nuclear Information System (INIS)

    Gonzales, Ross B.; Law, Victor J.; Prindle, John C.

    2009-01-01

    The hybrid copper oxide-copper sulfate water-splitting thermochemical cycle involves two principal steps: (1) hydrogen production from the electrolysis of water, SO 2 (g) and CuO(s) at room temperature and (2) the thermal decomposition of the CuSO 4 product to form oxygen and SO 2 , which is recycled to the first step. A four-reaction version of the cycle (known in the literature as Cycle H-5) was used as the basis of the present work. For several of the four reactions, a rotating batch reactor sequence is proposed in order to overcome equilibrium limitations. Pinch technology was used to optimize heat integration. Sensitivity analyses revealed it to be economically more attractive to use a 10 C approach to minimize heat loss (rather than 20 C). Using standard Aspen Plus features and the Peng-Robinson equation of state for separations involving oxygen and sulfur oxides, a proposed flowsheet for the cycle was generated to yield ''Level 3'' results. A cost analysis of the designed plant (producing 100 million kmol/yr hydrogen) indicates a total major equipment cost of approximately $45 million. This translates to a turnkey plant price (excluding the cost of the high-temperature heat source or electrolyzer internals) of approximately $360 million. Based on a $2.50/kg selling price for hydrogen, gross annual revenue could be on the order of $500 million, resulting in a reasonable payback period when all capital and operating costs are considered. Previous efficiency estimates using Level 1 and Level 2 methods gave the process efficiency in the neighborhood of 47-48%. The Level 3 efficiency computation was 24-25% depending on the approach temperature used for recuperation. If the low quality heat rejected by the process can be recovered and used elsewhere, the Level 3 analysis could be as high as 51-53%. (author)

  15. Hydrogen Production From Water By Thermo-Chemical Methods (UT-3): Evaluation of Side Reactions By Simulation Process

    International Nuclear Information System (INIS)

    Rusli, A.

    1997-01-01

    Hydogen fuel with its advantages will be able to replace all the positions of fossil fuels post o il and gas or migas . Among the advantages of hydrogen fuel are pollution free, abundant of raw material in the form of water molecule, flexible in application, able to stroge and transport as well as fossil energy sources (oil and gas). Hydogen could be produced from water by means of thermochemical, thermolysis, photolysis and electrolysis. Nuclear heat (HTGR), solar heat or waste heat from steel industry can be used as energy source for these processes. In case of thermochemical method, some problems realated to production process should be studied and evaluated. Simulation is considered can be applied to study the effects of side reactions and also to resolve its problems in hydrogen production process. In this paper is reported the evalution results of hydrogen production process by thermochemical (UT-3) through both of the experimental and computer simulation. It has been proposed a new flow chart of hydrogen production to achieve the hydrogen production continuously. A simulator has been developed based on experimental data and related mathematical equations. This simulator can be used to scle-up the UT-3 thermochemical cycle for hydrogen production process

  16. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses

    International Nuclear Information System (INIS)

    Michalsky, Ronald; Parman, Bryon J.; Amanor-Boadu, Vincent; Pfromm, Peter H.

    2012-01-01

    Ammonia is an important input into agriculture and is used widely as base chemical for the chemical industry. It has recently been proposed as a sustainable transportation fuel and convenient one-way hydrogen carrier. Employing typical meteorological data for Palmdale, CA, solar energy is considered here as an inexpensive and renewable energy alternative in the synthesis of NH 3 at ambient pressure and without natural gas. Thermodynamic process analysis shows that a molybdenum-based solar thermochemical NH 3 production cycle, conducted at or below 1500 K, combined with solar thermochemical H 2 production from water may operate at a net-efficiency ranging from 23 to 30% (lower heating value of NH 3 relative to the total energy input). Net present value optimization indicates ecologically and economically sustainable NH 3 synthesis at above about 160 tons NH 3 per day, dependent primarily on heliostat costs (varied between 90 and 164 dollars/m 2 ), NH 3 yields (ranging from 13.9 mol% to stoichiometric conversion of fixed and reduced nitrogen to NH 3 ), and the NH 3 sales price. Economically feasible production at an optimum plant capacity near 900 tons NH 3 per day is shown at relative conservative technical assumptions and at a reasonable NH 3 sales price of about 534 ± 28 dollars per ton NH 3 . -- Highlights: ► Conceptual reactant and process improvements of solar-driven NH 3 synthesis at 1 bar. ► Thermodynamic underpinnings of a Molybdenum reactant. ► Process analysis determining energy and materials requirements and the net-efficiency. ► Net present value analysis accounting for yield, investment, and sales price variations.

  17. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  18. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  19. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates

    International Nuclear Information System (INIS)

    Roeb, M.; Monnerie, N.; Schmitz, M.; Sattler, C.; Konstandopoulos, A.G.; Agrafiotis, C.; Zaspalis, V.T.; Nalbandian, L.; Steele, A.; Stobbe, P.

    2006-01-01

    In the European project HYDROSOL a simple two-step thermo-chemical cycle process has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. If concentrated solar radiation is used as the heat source one has a promising method in hand to produce hydrogen without any environmentally critical emissions. The basic idea is to combine a support capable of achieving high temperatures when heated by concentrated solar radiation, with a redox pair system suitable for water dissociation and at the same time for regeneration at these temperatures, so that complete operation of the whole process could be achieved by a single solar energy converter. The feasibility of the process has proven possible in a mini-plant scale using concentrated sunlight provided by the solar furnace in Cologne. Suitable redox materials as coatings and a dedicated receiver-reactor have been developed to produce hydrogen with significant conversions by repeating several subsequent water splitting and regeneration steps. In a design study a possible way of operating the process in commercial scale is demonstrated. (authors)

  20. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  1. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  2. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  3. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  4. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    The power generation efficiency of nuclear plants is mainly determined by the permissible temperatures and pressures of the nuclear reactor fuel and coolants. These parameters are limited by materials properties and corrosion rates and their effect on nuclear reactor safety. The advanced materials for the next generation of CANDU reactors, which employ steam as a coolant and heat carrier, permit the increased steam parameters (outlet temperature up to 625 degree C and pressure of about 25 MPa). Supercritical water-cooled (SCW) nuclear power plants are expected to increase the power generation efficiency from 35 to 45%. Supercritical water-cooled nuclear reactors can be linked to thermochemical water splitting cycles for hydrogen production. An increased steam temperature from the nuclear reactor makes it also possible to utilize its energy in thermochemical water splitting cycles. These cycles are considered by many as one of the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require a heat supply at the temperatures over 550-600 degree C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump which increases the temperature the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. A high temperature chemical heat pump which employs the reversible catalytic methane conversion reaction is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with a SCW nuclear plant on one side and thermochemical water splitting cycle on the other, increases the temperature level of the 'nuclear' heat and, thus, the intensity of

  5. Hydrogen production by water dissociation from a nuclear reactor; Production d'hydrogene par dissociation de l'eau a partir d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This memento presents the production of hydrogen by water decomposition, the energy needed for the electrolysis, the thermochemical cycles for a decomposition at low temperature and the possible nuclear reactors associated. (A.L.B.)

  6. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  7. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  8. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  9. Radiolytic decomposition of water-ethanol mixtures

    International Nuclear Information System (INIS)

    Baquey, Charles

    1968-07-01

    This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed

  10. Novel separation process of gaseous mixture of SO2 and O2 with ionic liquid for hydrogen production in thermochemical sulfur-iodine water splitting cycle

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Gong, Gyeong Taek; Yoo, Kye Sang; Kim, Honggon; Lee, Byoung Gwon; Ahn, Byoung Sung; Jung, Kwang Deog; Lee, Ki Yong; Song, Kwang Ho

    2007-01-01

    Sulfur-Iodine cycle is the most promising thermochemical cycle for water splitting to produce hydrogen which can replace the fossil fuels in the future. As a sub-cycle in the thermochemical Sulfur-Iodine water splitting cycle, sulfuric acid (H 2 SO 4 ) decomposes into oxygen (O 2 ) and sulfur dioxide (SO 2 ) which should be separated for the recycle of SO 2 into the sulfuric acid generation reaction (Bunsen Reaction). In this study, absorption and desorption process of SO 2 by ionic liquid which is useful for the recycle of SO 2 into sulfuric acid generation reaction after sulfuric acid decomposition in the thermochemical Sulfur-Iodine cycle is investigated. At first, the operability as an absorbent for the SO 2 absorption and desorption at high temperature without the volatilization of absorbents which is not suitable for the recycle of absorbent-free SO 2 after the absorption process. The temperature range of operability is determined by TGA and DTA analysis. Most of ionic liquids investigated are applicable at high temperature desorption without volatility around 300 deg. C except [BMIm] Cl, and [BMIm] OAc which show the decomposition of ionic liquids. To evaluate the capability of SO 2 absorption, each ionic liquid is located in the absorption tube and gaseous SO 2 is bubbled into the ionic liquid. During the bubbling, the weight of the system is measured and converted into the absorbed SO 2 amount at each temperature controlled by the heater. Saturated amounts of absorbed SO 2 by ionic liquids at 50 deg. C are presented. The effect of anions for the SO 2 absorption capability is shown in the order of Cl, OAc, MeSO 3 , BF 4 , MeSO 4 , PF 6 , and HSO 4 when they are combined with [BMIm] cation. [BMIm]Cl has the largest amount of SO 2 absorbed which can be the most promising absorbent; however, from the point of operability at high temperature which includes desorption process, [BMIm]Cl is vulnerable to high temperature around 250 deg. C based on the TGA

  11. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku; Sato, Seichi; Ohashi, Hiroshi.

    1997-03-01

    Two kinds of cesium uranates, Cs 2 UO 4 and Cs 2 U 2 O 7 , which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U 3 O 8 and Cs 2 CO 3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs 2 UO 4 and Cs 2 U 2 O 7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs 2 UO 4 and Cs 2 U 2 O 7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  12. Biomass decomposition in near critical water

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, Ali, E-mail: sinag@science.ankara.edu.t [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey); Guelbay, Selen; Uskan, Burcin; Canel, Muammer [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey)

    2010-03-15

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K{sub 2}CO{sub 3}, Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  13. Biomass decomposition in near critical water

    International Nuclear Information System (INIS)

    Sinag, Ali; Guelbay, Selen; Uskan, Burcin; Canel, Muammer

    2010-01-01

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K 2 CO 3 , Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  14. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  15. Regularities of thermochemical characteristics of 1-1, 2-1, 3-1 electrolyte solutions in dimethyl sulfoxide-water and propylene carbonate water mixtures

    International Nuclear Information System (INIS)

    Vorob'ev, A.F.; Monaenkova, A.S.; AlekseeV, G.I.

    1987-01-01

    In an air-tight tilting calorimeter with an isothermal casing enthalpies of praseodymium chloride solution in water, dimethyl sulfoxide (DMSO) - water mixtures, contaning 3.86 and 18.53 mol.% DMSO, and propylene carbonate (PC) - water mixtures, containing 1.85 and 3.23 mol.% PC are measured. The enthalpies of praseodymium chloride solution in the given mixtures in case of infinite solution dilution are determined. Solvation enthalpies of praseodymium and neodymium chlorides, as well as alkali earth metal and magnesium chlorides in water and DMSO - water and PC - water mixtures are calculated. Regularities in thermochemical characteristics of solutions of the given salts in DMSO - water and PC - water mixtures are discussed

  16. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  17. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  18. A pilot test plan of the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro

    2004-01-01

    Research and development (R and D) of hydrogen production systems using high-temperature gas-cooled reactors (HTGR) are being conducted by the Japan Atomic Research Institute (JAERI). To develop the systems, superior hydrogen production methods are essential. The thermochemical hydrogen production cycle, the IS (iodine-sulfur) process, is a prospective candidate, in which heat supplied by HTGR can be consumed for the thermal driving load. With this attractive feature, JAERI will conduct pilot-scale tests, aiming to establish technical bases for practical plant designs using HTGR. The hydrogen will be produced at a maximum rate of 30 m 3 /h, continuously using high-temperature helium gas supplied by a helium gas loop, with an electric heater of about 400 kW. The plant will employ an advanced hydroiodic acid-processing device for efficient hydrogen production, and the usefulness of the device was confirmed from mass and heat balance analysis. Through design works and the hydrogen production tests, valuable data for construction and operation will be acquired to evaluate detailed process performance for practical systems. After completing the pilot-scale tests, JAERI will move onto the next R and D step, which will be demonstrations of the IS process to which heat is supplied from a high-temperature engineering test reactor (HTTR)

  19. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy

  20. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  1. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  2. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  3. Solid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and Its DNNC-d6 Perdeuterio-Labeled Analogue (PREPRINT)

    National Research Council Canada - National Science Library

    Hendrickson, Scott A; Shackleford, Scott A

    2005-01-01

    ...) at 142, 145, and 148 oC. Global rate constants and kinetic deuterium isotope effect (KDIE) data from the exothermic decomposition process suggest that homolytic C-H bond rupture, in one or both types of chemically non-equivalent methylene...

  4. Study of water nature in some crystallohydrates of pentasubstituted alkali metal salts of borotungstic acid using thermochemical method

    International Nuclear Information System (INIS)

    Kosmodem'yanskaya, G.V.; Sadykova, M.M.; Spitsyn, V.I.

    1977-01-01

    Kinetics of the dehydration process has been studied and heat of dehydration has been determined for salts 2.5Li 2 O x 0.5B 2 O 3 x 12.0WO 3 x 28.5H 2 O; 2.5Na 2 Ox0.5B 2 O 3 x 12.0WO 3 x 17.5H 2 O; 2.5K 2 O x 0.5B 2 O 3 x12.0WO 3 x 16.5H 2 O; 2.5Cs 2 O x 0.5B 2 O 3 x 12.0WO 3 x6.7H 2 O. Dehydration has been conducted in vacuum at 25-50 deg C. The study of the dehydration process has been performed thermochemically in a differential calorimeter. It has been shown that heat of dehydration depends on the nature of the cation. Lithium salt with a cation of a small radius has the highest heat of dehydration (6.4+-0.2 kcal/mol H 2 O). Cesium salt is dehydrated almost completely. A considerable part of water in crystallohydrates has a salting character. Kinetics of the dehydration process is described by the equation of the monomolecular reaction

  5. Vertical distribution of water in the atmosphere of Venus - A simple thermochemical explanation

    Science.gov (United States)

    Lewis, John S.; Grinspoon, David H.

    1990-01-01

    Several lines of evidence concerning the vertical abundance profile of water in the atmosphere of Venus lead to strikingly unusual distributions (the water vapor abundance decreases sharply in the immediate vicinity of the surface) or to serious conflicts in the profiles (different IR bands suggest water abundances that are discrepant by a factor of 2.5 to 10). These data sets can be reconciled if (1) water molecules associate with carbon dioxide and sulfur trioxide to make gaseous carbonic acid and sulfuric acid in the lower atmosphere, and (2) the discrepant 0.94-micrometer water measurements are due to gaseous sulfuric acid, requiring it to be a somewhat stronger absorber than water vapor in this wavelength region. A mean total water abundance of 50 + or - 20 parts/million and a near-surface free water vapor abundance of 10 + or - 4 parts/million are derived.

  6. Radiation induced decomposition of pentachlorophenol (PCP) in water

    International Nuclear Information System (INIS)

    He Yongke; Liu Jun; Fang Xiangwang; Wu Jilan

    1998-01-01

    The decomposition of PCP in water induced by γ-irradiation has been studied at low PCP concentration under various conditions. PCP is consumed linearly with increasing absorbed doses. PCP could be decomposed almost completely by γ-irradiation at relatively high doses. Chloride ions are increased simultaneously with the consumption of PCP. The amount of chloride increases also linearly with the increasing absorbed dose. At relatively high absorbed dose, almost all chloride atoms in PCP are eliminated. Chemical oxygen demand (COD) has been measured after irradiation. Ozone is a powerful oxidizing agent for PCP. After saturation of 1.09x10 -4 mol.dm -3 PCP aqueous solution with ozone, PCP concentration drops to 1.6x10 -5 mol.dm -3 . The combination of ozonation-ionizing radiation treatment is very effective, which greatly decreased the dose needed. pH and chemical oxygen demand also have been measured after ozonation and irradiation

  7. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    Science.gov (United States)

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  8. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  9. Thermochemical study of deuterium exchange reactions in water-alcohol and alcohol-alcohol systems

    International Nuclear Information System (INIS)

    Khurma, J.R.; Fenby, D.V.

    1979-01-01

    Molar excess enthalpies of water-alcohol systems have been analyzed to give equilibrium constants and enthalpies of the reactions 2ROH + D 2 O = 2ROD + H 2 O (R = CH 3 , C 2 H 5 , n-C 3 H 7 ). The equilibrium constants are significantly greater than the ''random'' value. Molar excess enthalpies of alcohol-alcohol systems have been analyzed to give enthalpies of reactions ROH + R'OD = ROD + R'OH. The enthalpies of water-alcohol and alcohol-alcohol exchange reactions form a self-consistent set and are in good agreement with values from earlier studies. Molar excess enthalpies at 298.15 K are reported for n-C 3 H 7 OH and n-C 3 H 7 OD with H 2 O, D 2 O, CH 3 OH, CH 3 OD, C 2 H 5 OH, and C 2 H 5 OD

  10. Energy balance calculations and assessment of two thermochemical sulfur cycles

    International Nuclear Information System (INIS)

    Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.

    1978-01-01

    Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated

  11. Thermochemical evaluation and preparation of cesium uranates

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Seichi; Ohashi, Hiroshi

    1997-03-01

    Two kinds of cesium uranates, Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U{sub 3}O{sub 8} and Cs{sub 2}CO{sub 3} for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  12. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  13. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    Science.gov (United States)

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  14. Confronting South Africa’s water challenge: A decomposition analysis of water intensity

    Directory of Open Access Journals (Sweden)

    Marcel Kohler

    2016-12-01

    Full Text Available Water is a vital natural resource, demanding careful management. It is essential for life and integral to virtually all economic activities, including energy and food production and the production of industrial outputs. The availability of clean water in sufficient quantities is not only a prerequisite for human health and well-being but the life-blood of freshwater ecosystems and the many services that these provide. Water resource intensity measures the intensity of water use in terms of volume of water per unit of value added. It is an internationally accepted environmental indicator of the pressure of economic activity on a country’s water resources and therefore a reliable indicator of sustainable economic development. The indicator is particularly useful in the allocation of water resources between sectors of the economy since in waterstressed countries like South Africa, there is competition for water among various users, which makes it necessary to allocate water resources to economic activities that are less intensive in their use of water. This study focuses on economy-wide changes in South Africa’s water intensity using both decomposition and empirical estimation techniques in an effort to identify and understand the impact of economic activity on changes in the use of the economy’s water resources. It is hoped that this study will help inform South Africa’s water conservation and resource management policies

  15. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  16. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  17. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  18. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  19. Electrolytic decomposition of N-nitrosodimethylamine in water

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, K; Ladanowski, C; Somers, A; Whittaker, H [Environment Canada, Edmonton, AB (Canada). Emergencies Science Div.; Anantaraman, A [Ottawa Univ., ON (Canada). Electrochemical Science and Technology Centre

    1996-12-31

    The feasibility of electrically reducing N-nitrosodimethylamine (NDMA) in aqueous solutions was studied in a series of bench-scale experiments. The presence of nitrosamines in soil and groundwater is largely associated with missile fuels, but also with pesticides and other chemicals. Inexpensive carbon, stainless steel and nickel electrodes were used to perform the experiments. The electrodes, voltage and solution pH were the variables studied. Results showed that a higher rate of decomposition of NDMA occurred in acidic conditions using a relatively high potential applied to the electrodes. Further studies were suggested to optimize treatment conditions and evaluate the technical and economical feasibility of the process. 9 refs., 2 tabs., 2 figs.

  20. Radiation induced decomposition of chlorinated phenols in water

    Science.gov (United States)

    Getoff, N.; Solar, S.

    Experiments with 4-Cl-phenol as a model compound for pesticides were performed under steady-state conditions using deoxygenated solutions as well as such saturated with air, oxygen or oxygen mixed with ozone. The yield of Cl -ions serviced as an indicator for the degradation process. As main products of the first step of decomposition were identified: polyhydroxybenzenes, aldehydes and acids. The yield of aldehydes was studied as a function of the absorbed dose and substrate concentration. In the presence of ozone a chain-reaction of the oxidative pollutant degradation takes place. Transient absorption spectra and kinetics obtained by preliminary pulse radiolysis studies of 4-Cl-phenol in the presence of oxygen as well as probable reaction mechanisms are also presented.

  1. Radiation induced decomposition of chlorinated phenols in water

    International Nuclear Information System (INIS)

    Getoff, N.; Solar, S.

    1988-01-01

    Experiments with 4-Cl-phenol as a model compound for pesticides were performed under steady-state conditions using deoxygenated solutions as well as solutions saturated with air, oxygen or oxygen mixed with ozone. The yield of Cl - ions served as an indicator for the degradation process. As main products of the first step of decomposition were identified: polyhydroxybenzenes, aldehydes and acids. The yield of aldehydes was studied as a function of the absorbed dose and substrate concentration. In the presence of ozone a chain-reaction of the oxidative pollutant degradation takes place. Transient absorption spectra and kinetics obtained by preliminary pulse radiolysis studies of 4-Cl-phenol in the presence of oxygen as well as probable reaction mechanisms are also presented. (author)

  2. New method for the determination of metolachlor and buprofezin in natural water using orthophthalaldehyde by thermochemically-induced fluorescence derivatization (TIFD).

    Science.gov (United States)

    Mendy, Alphonse; Thiaré, Diène Diégane; Sambou, Souleymane; Khonté, Abdourahmane; Coly, Atanasse; Gaye-Seye, Mame Diabou; Delattre, François; Tine, Alphonse

    2016-05-01

    Herbicide metolachlor (MET) and insecticide buprofezin (BUP) were determined in natural waters by means of a newly-developed, simple and sensitive thermochemically-induced fluorescence derivatization (TIFD) method. The TIFD approach is based on the thermolysis transformation of naturally non-fluorescent pesticides into fluorescent complex O-phthalaldehyde-thermoproduct(s) in water at 70°C for MET and at 80°C for BUP. The TIFD method was optimized with respect to the temperature, pH, complex formation kinetic and pesticides concentrations. The limit of detection (LOD=0.8ngmL(-1) for MET and 3.0ngmL(-1) for BUP) and quantification (LOQ=2.6ngmL(-1) for MET and 9.5 ngmL(-1) for BUP) values were low, and the relative standard deviation (RSD) values were small (between 1.2% and 1.8%), which indicates a good analytical sensitivity and a great repeatability of TIFD method. Recovery studies were performed on spiked well, sea and draining waters samples collected in the Niayes area by using the solid phase extraction (SPE) procedure. Satisfactory recovery results (84-118%) were obtained for the determination of MET and BUP in these natural waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes

    Directory of Open Access Journals (Sweden)

    Yajun Xie

    2015-07-01

    Full Text Available Both water depth and litter quality are important factors influencing litter decomposition in wetlands, but the interactive role of these factors in regulating mass loss and nutrient dynamics is far from clear. The responses of mass loss and nutrient dynamics to simulated water depths and litter quality are investigated in leaves of Carex brevicuspis and leaves and stems of Miscanthus sacchariflorus from the Dongting Lake, China. Three litter types differing in litter quality were incubated for 210 days at three water depths (0 cm, 5 cm, and 80 cm, relative to the water surface in a pond near the Dongting Lake. The litter mass remaining, nitrogen (N, phosphorus (P, organic carbon (organic C, cellulose, and lignin contents were analyzed during the controlled decomposition experiment. Moreover, water properties (temperature, dissolved oxygen content, and conductivity and fungal biomass were also characterized. Initial N and P contents were highest in C. brevicuspis leaves, intermediate in M. sacchariflorus leaves and lowest in M. sacchariflorus stems, whereas the organic C, cellulose, and lignin contents exhibited an opposite trend. After a 210 days incubation, decomposition rate was highest in M. sacchariflorus leaves (0.0034–0.0090 g g-1 DW day-1, in exponential decay model, intermediate in C. brevicuspis leaves (0.0019–0.0041 g g-1 DW day-1, and lowest in M. sacchariflorus stems (0.0005–0.0011 g g-1DW day-1. Decomposition rate of C. brevicuspis leaves was highest at 5 cm water depth, intermediate at 80 cm, and lowest at 0 cm. Decomposition rate of M. sacchariflorus leaves was higher at 5 cm, and 80 cm than at 0 cm water depths. Water depth had no effect on decomposition of M. sacchariflorus stems. At the end of incubation, N and P mineralization was completely in leaf litters with increasing rates along with increasing water depth, while nutrients were accumulated in M. sacchariflorus stem. Organic C, cellulose, and lignin decayed quickly

  4. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  5. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Choi, S; Watanabe, T

    2012-01-01

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  6. [Influence of decomposition of Cladophora sp. on phosphorus concentrations and forms in the overlying water].

    Science.gov (United States)

    Hou, Jin-Zhi; Wei, Quan; Gao, Li; Sun, Wei-Ming

    2013-06-01

    Sediments were sampled in the dominated zone of Cladophora sp. in Rongcheng Swan Lake, and cultivated with algae in the laboratory to reveal the influence of Cladophora decomposition on concentrations and forms of phosphorus in the overlying water. Concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), soluble reactive phosphorus (SRP), particulate phosphorus (PP) and dissolved organic phosphorus (DOP) in overlying water were investigated, and some physicochemical parameters, such as dissolved oxygen (DO), pH and conductivity were monitored during the experiment. In addition, the influence of algae decomposition on P release from sediments was analyzed. Due to the decomposition of Cladophora, DO concentration in the overlying water declined remarkably and reached the anoxic condition (0-0.17 mg x L(-1)). The pH value of different treatments also decreased, and treatments with algae reduced by about 1 unit. Concentrations of TP and different P forms all increased obviously, and the increasing extent was larger with the adding algae amount. TP concentrations of different treatments varied from 0.04 mg x L(-1) to 1.34 mg x L(-1). DOP and PP were the main P forms in the overlying water in algae without sediments treatments, but SRP concentrations became much higher in algae with sediments treatments. The result showed that P forms released from decomposing Cladophora were mainly DOP and PP, and the Cladophora decomposition could also promote the sediments to release P into the overlying water.

  7. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  8. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  9. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  10. Decomposition of dilute residual active chlorine in sea-water

    International Nuclear Information System (INIS)

    Yoshinaga, Tetsutaro; Kawano, Kentaro; Yanagase, Kenjiro; Shiga, Akira

    1985-01-01

    Coastal industries such as power stations require enormous quantities of sea-water for cooling, but the marine organisms in it often result in fouling and/or blockade of the circulating water condenser and pipeworks. To prevent this, chlorine, or hypochlorite by the direct electrolysis of sea-water have been added. Environmental concerns, however, dictate that the residual chlorine concentration at the outlet should be less than the regulated value (0.02 ppm). Methods for decomposing dilute residual chlorine solutions were therefore studied. It was found that: 1) The addition of (raw) sea-water to the sea-water which passed through the condenser lowered the residual chlorine concentration to an greater extent than could be expected by dilution only. 2) Ozonation of the residual chlorine solution led to degradation of OCl - , but in solutions with a residual chlorine concentrations of less than 3 -- 4 ppm, ozonation had no effect. 3) Irradiation with ultra violet light (254 nm) decomposed the residual chlorine. Under the present work conditions (25 0 C: pH 8; depth 10 mm), nearly first order kinetics were to hold [da/dt = ksub((1)) (1-a)sup(n)]. There is a proportional relationship between the kinetic constant (k) and illuminous intensity (L), i.e., ksub((1))[C 0 sup(Cl 2 ): 10 ppm] = 6.56 x 10 -5 L (L = 0 -- 1000 lx). Thus, the use of both sea-water addition and UV irradiation provides a probable method for decomposing a residual chlorine to the expected concentration. (author)

  11. Simulation of radiation-induced ozone decomposition in water in the presence of organic compounds

    International Nuclear Information System (INIS)

    Arai, H.; Namba, H.; Miyata, T.; Arai, M.; Sakumoto, A.; Sunaga, H.

    1995-01-01

    Ozone decomposition in water by electron beam irradiation in the presence of acetic acid and t-butanol was studied by the direct measurement of ozone concentration using a spectroscopy equipped with optical fiber light guides and the computer simulation based on 80 reactions. The calculated data were in fair agreement with the observed data for acetic acid aq. solution. For t-butanol high concentration aq. solution, the calculated data became closer to the observed data when the decomposition of peroxide were assumed to occur to produce HO 2 or O 2 - . At low concentration of the organic solutes, the presence of HCO 3 - or CO 3 2- disturbs the ozone decomposition substantially. The concentrations of active species such as OH radicals during the irradiation were also estimated from the simulation. (author)

  12. Radiolytic decomposition of pesticide carbendazim in waters and wastes for environmental protection

    International Nuclear Information System (INIS)

    Bojanowska-Czajka, A.; Drzewicz, P.; Meczynska, S.; Kruszewski, M.; Zimek, Z.; Nichipor, H.; Galezowska, A.; Nalecz-Jawecki, G.; Trojanowicz, M.; Warsaw University, Warsaw

    2011-01-01

    The radiolytic degradation of widely used fungicide, carbendazim, in synthetic aqueous solutions and industrial wastewater was investigated employing γ-irradiation. The effect of the absorbed dose, initial concentration and pH of irradiated solution on the effectiveness of carbendazim decomposition were investigated. Decomposition of carbendazim in 100 μM concentration in synthetic aqueous solutions required irradiation with 600 Gy dose. The aqueous solutions of carbendazim have been irradiated in different conditions, where particular active radical species from water radiolysis predominate. The obtained data have been compared with the kinetic modeling. The reversed-phase high-performance liquid chromatography was used for the determination of carbendazim and its radiolytic decomposition products in irradiated solutions. The changes of toxicity of irradiated solutions were examined with different test organisms and human leukemia cells. (author)

  13. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  14. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    Global warming is on the increase and the current energy trends are headed towards the use of alternative sources of energy that produce less amounts of carbon dioxide. This paper proposes water as an alternative energy source that is cheap, abundant in nature and will achieve minimum emission goal. The method ...

  15. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  16. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications

    Science.gov (United States)

    Han, Zhen; Cui, Baoshan; Zhang, Yongtao

    2015-09-01

    Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

  17. The water decomposition reactions on boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Suffredini, Hugo B.; Machado, Sergio A.S; Avaca, Luis A.

    2004-01-01

    The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD) electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol -1 , indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol -1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material. (author)

  18. The water decomposition reactions on boron-doped diamond electrodes

    Directory of Open Access Journals (Sweden)

    Suffredini Hugo B

    2004-01-01

    Full Text Available The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol-1, indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol-1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material.

  19. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  20. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  1. Application of Wavelet Decomposition to Removing Barometric and Tidal Response in Borehole Water Level

    Institute of Scientific and Technical Information of China (English)

    Yan Rui; Huang Fuqiong; Chen Yong

    2007-01-01

    Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.

  2. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches.

    Science.gov (United States)

    Hori, Hisao; Hayakawa, Etsuko; Einaga, Hisahiro; Kutsuna, Shuzo; Koike, Kazuhide; Ibusuki, Takashi; Kiatagawa, Hiroshi; Arakawa, Ryuichi

    2004-11-15

    The decomposition of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by UV-visible light irradiation, by H202 with UV-visible light irradiation, and by a tungstic heteropolyacid photocatalyst was examined to develop a technique to counteract stationary sources of PFOA. Direct photolysis proceeded slowly to produce CO2, F-, and short-chain perfluorocarboxylic acids. Compared to the direct photolysis, H2O2 was less effective in PFOA decomposition. On the other hand, the heteropolyacid photocatalyst led to efficient PFOA decomposition and the production of F- ions and CO2. The photocatalyst also suppressed the accumulation of short-chain perfluorocarboxylic acids in the reaction solution. PFOA in the concentrations of 0.34-3.35 mM, typical of those in wastewaters after an emulsifying process in fluoropolymer manufacture, was completely decomposed by the catalyst within 24 h of irradiation from a 200-W xenon-mercury lamp, with no accompanying catalyst degradation, permitting the catalyst to be reused in consecutive runs. Gas chromatography/mass spectrometry (GC/MS) measurements showed no trace of environmentally undesirable species such as CF4, which has a very high global-warming potential. When the (initial PFOA)/(initial catalyst) molar ratio was 10: 1, the turnover number for PFOA decomposition reached 4.33 over 24 h of irradiation.

  3. Modelling a deep water oil/gas spill under conditions of gas hydrate formation and decomposition

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P.D.

    2000-01-01

    A model for the behavior of oil and gas spills at deepwater locations was presented. Such spills are subjected to pressures and temperatures that can convert gases to gas hydrates which are lighter than water. Knowing the state of gases as they rise with the plume is important in predicting the fate of an oil or gas plume released in deepwater. The objective of this paper was to develop a comprehensive jet/plume model which includes computational modules that simulate the gas hydrate formation/decomposition of gas bubbles. This newly developed model is based on the kinetics of hydrate formation and decomposition coupled with mass and heat transfer phenomena. The numerical model was successfully tested using results of experimental data from the Gulf of Mexico. Hydrate formation and decomposition are integrated with an earlier model by Yapa and Zheng for underwater oil or gas jets and plumes. The effects of hydrate on the behavior of an oil or gas plume was simulated to demonstrate the models capabilities. The model results indicate that in addition to thermodynamics, the kinetics of hydrate formation/decomposition should be considered when studying the behavior of oil and gas spills. It was shown that plume behavior changes significantly depending on whether or not the local conditions force the gases to form hydrates. 25 refs., 4 tabs., 12 figs

  4. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  5. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  6. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City

    Directory of Open Access Journals (Sweden)

    Jiefeng Kang

    2017-01-01

    Full Text Available Decomposition of the urban water footprint can provide insight for water management. In this paper, a new decomposition method based on the log-mean Divisia index model (LMDI was developed to analyze the driving forces of water footprint changes, attributable to food consumption. Compared to previous studies, this new approach can distinguish between various factors relating to urban and rural residents. The water footprint of food consumption in Xiamen City, from 2001 to 2012, was calculated. Following this, the driving forces of water footprint change were broken down into considerations of the population, the structure of food consumption, the level of food consumption, water intensity, and the population rate. Research shows that between 2001 and 2012, the water footprint of food consumption in Xiamen increased by 675.53 Mm3, with a growth rate of 88.69%. Population effects were the leading contributors to this change, accounting for 87.97% of the total growth. The food consumption structure also had a considerable effect on this increase. Here, the urban area represented 94.96% of the water footprint increase, driven by the effect of the food consumption structure. Water intensity and the urban/rural population rate had a weak positive cumulative effect. The effects of the urban/rural population rate on the water footprint change in urban and rural areas, however, were individually significant. The level of food consumption was the only negative factor. In terms of food categories, meat and grain had the greatest effects during the study period. Controlling the urban population, promoting a healthy and less water-intensive diet, reducing food waste, and improving agriculture efficiency, are all elements of an effective approach for mitigating the growth of the water footprint.

  7. Solar radiation influence on the decomposition process of diclofenac in surface waters

    International Nuclear Information System (INIS)

    Bartels, Peter; Tuempling, Wolf von

    2007-01-01

    Diclofenac can be detected in surface water of many rivers with human impacts worldwide. The observed decrease of the diclofenac concentration in waters and the formation of its photochemical transformation products under the impact of natural irradiation during one to 16 days are explained in this article. In semi-natural laboratory tests and in a field experiment it could be shown, that sunlight stimulates the decomposition of diclofenac in surface waters. During one day intensive solar radiation in middle European summer diclofenac decomposes in the surface layer of the water (0 to 5 cm) up to 83%, determined in laboratory exposition experiments. After two weeks in a field experiment, the diclofenac was not detectable anymore in the water surface layer (limit of quantification: 5 ng/L). At a water depth of 50 cm, within two weeks 96% of the initial concentration was degraded, while in 100 cm depth 2/3 of the initial diclofenac concentration remained. With the decomposition, stable and meta-stable photolysis products were formed and observed by UV detection. Beyond that the chemical structure of these products were determined. Three transformation products, that were not described in the literature so far, were identified and quantified with GC-MS

  8. R and D thermochemical I-S process at JAERI

    International Nuclear Information System (INIS)

    Onuki, K.; Kubo, S.; Nakajima, H.; Higashi, S.; Kasahara, S.; Ishiyama, S.; Okuda, H.

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted a study on the thermochemical water-splitting process of the iodine-sulfur family (IS process). In the IS process, water will react with iodine and sulfur dioxide to produce hydrogen iodide and sulfuric acid, which are then decomposed thermally to produce hydrogen and oxygen. High temperature nuclear heat, mainly supplied by a High Temperature Gas-cooled Reactor (HTGR), is used to drive the endothermic decomposition of sulfuric acid. JAERI has demonstrated the feasibility of the water-splitting hydrogen production process by carrying out laboratory-scale experiments in which combined operation of fundamental reactions and separations using the IS process was performed continuously. At present, the hydrogen production test is continuing, using a scaled-up glass apparatus. Corrosion-resistant materials for constructing a large-scale plant and process improvements by introducing advanced separation techniques, such as membrane separation, are under study. Future R and D items are discussed based on the present activities. (author)

  9. Radiation-induced decomposition of small amounts of trichloroethylene in drinking water

    International Nuclear Information System (INIS)

    Proksch, E.; Gehringer, P.; Szinovatz, W.; Eschweiler, H.

    1989-01-01

    Solutions of 10 ppm trichloroethylene in air-saturated drinking waters are decomposed by γ radiation with initial G-values, G 0 , around 3-5 molecules per 100 eV. At lower concentrations, the G 0 -values decrease with decreasing trichloroethylene concentration and with increasing amounts of inorganic (especially HCO 3 - ) and organic solutes. From the results, a semi-empirical formula is derived which allows an estimation of G 0 -values for the trichloroethylene decomposition in drinking waters of given composition. (author)

  10. Diaminoethane adsorption and water substitution on hydrated TiO2: a thermochemical study based on first-principles calculations.

    Science.gov (United States)

    Hémeryck, Anne; Motta, Alessandro; Swiatowska, Jolanta; Pereira-Nabais, Catarina; Marcus, Philippe; Costa, Dominique

    2013-07-14

    Epoxy-amines are used as structural adhesives deposited on Ti. The amine adhesion to a Ti surface depends highly on the surface state (oxidation, hydroxylation). Amines may adsorb above preadsorbed water molecules or substitute them to bind directly to surface Ti(4+) Lewis acid sites. The adsorption of a model amine molecule, diaminoethane (DAE), on a model surface, hydrated TiO2-anatase (101) surface, is investigated using Density Functional Theory including Dispersive forces (DFT-D) calculations. DAE adsorption and water substitution by DAE are exothermic processes and turn nearly isoenergetic at high coverage with adsorption-substitution energies around -0.3 eV (including dispersion forces and ZPE). Complementary ab initio molecular dynamics studies also suggest that the formation of an amine-water interaction induces water desorption from the surface at room temperature, a preliminary step towards the amine-Ti bond formation. An atomistic thermodynamic approach is developed to evaluate the interfacial free energy balance of both processes (adsorption and substitution). The main contributions to the energetic balance are dispersive interactions between molecules and the surface on the exergonic side, translational and rotational entropic contributions on the endergonic one. The substitution process is stabilized by 0.55 eV versus the adsorption one when free solvation, rotational and vibrational energies are considered. The main contribution to this free energy gain is due to water solvation. The calculations suggest that in toluene solvent with a water concentration of 10(-4) M or less, a full DAE layer replaces a preadsorbed water layer for a threshold concentration of DAE ≥ 0.1 M.

  11. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors

    International Nuclear Information System (INIS)

    Andreoni, V.; Galmarini, S.

    2012-01-01

    A decomposition analysis is used to investigate the main factors influencing the CO 2 emissions of European transport activities for the period 2001–2008. The decomposition method developed by Sun has been used to investigate the carbon dioxide emissions intensity, the energy intensity, the structural changes and the economy activity growth effects for the water and the aviation transport sectors. The analysis is based on Eurostat data and results are presented for 14 Member States, Norway and EU27. Results indicate that economic growth has been the main factor behind the carbon dioxide emissions increase in EU27 both for water and aviation transport activities. -- Highlights: ► Decomposition analysis is used to investigate factors that influenced the energy-related CO 2 emissions of European transport. ► Economic growth has been the main factor affecting the energy-related CO 2 emissions increases. ► Investigating the CO 2 emissions drivers is the first step to define energy efficiency policies and emission reduction strategies.

  12. System and process for producing fuel with a methane thermochemical cycle

    Science.gov (United States)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  13. Water Complexes of Cytochrome P450: Insights from Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Hajime Hirao

    2013-06-01

    Full Text Available Water is a small molecule that nevertheless perturbs, sometimes significantly, the electronic properties of an enzyme’s active site. In this study, interactions of a water molecule with the ferric heme and the compound I (Cpd I intermediate of cytochrome P450 are studied. Energy decomposition analysis (EDA schemes are used to investigate the physical origins of these interactions. Localized molecular orbital EDA (LMOEDA implemented in the quantum chemistry software GAMESS and the EDA method implemented in the ADF quantum chemistry program are used. EDA reveals that the electrostatic and polarization effects act as the major driving force in both of these interactions. The hydrogen bonding in the Cpd I•••H2O complex is similar to that in the water dimer; however, the relative importance of the electrostatic effect is somewhat larger in the water dimer.

  14. Decomposition of ρ-nonylphenols in water by 60Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Taguchi, Mitsumasa; Kojima, Takuji; Namba, Hideki

    2005-01-01

    ρ-Nonylphenols (NPs), one of endocrine disrupting chemicals, are used as plastic flexibilizers or nonionic surfactants, and widely released into the water environment. Hydroxyl radicals produced from water molecules by γ-ray irradiation have high oxidation reactivity. Recently, treatments with the hydroxyl radicals have drawn much attention to conserve the water environment. In this study, decompositions of NPs in water were investigated using hydroxyl radicals by 60 Co γ-rays irradiation. The concentrations of the NPs at initial concentration from 45 to 1000 nM were decomposed by γ-ray irradiation. Qualitative and quantitative analyses of NPs were carried out by high performance liquid chromatography. The decomposition curves of NPs at each initial concentration were analyzed as single exponential functions. Alkylphenol activity of aqueous NPs solution, which was estimated by enzyme-linked immunosorbent assay, implies the irradiation products have alkylphenol activity. Two products having molecular weight of 236 were investigated by liquid chromatography-mass spectrometry, and were considered to be ρ-nonylcatechol and 1-(ρ-hydroxyphenyl)-1-nonanol on the basis of the oxidation mechanisms of ρ-cresol and 4-ethylphenol. (author)

  15. Liquid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and its DNNC-d2, DNNC-d4, DNNC-d6 Structural Isotopomers: Mechanistic Entrance into the DNNC Molecule (Preprint)

    National Research Council Canada - National Science Library

    Shackelford, S. A; Menapace, J. A; Goldman, J. F

    2007-01-01

    ... decomposition process. Using IDSC-based KDIE comparisons with the DNNC-d2, DNNC-d4, and DNNC-d6 isotopomers, a more detailed chemical structure/mechanistic relationship emerged by entering the interior of the DNNC molecule...

  16. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water.

    Science.gov (United States)

    Korajkic, Asja; Parfrey, Laura Wegener; McMinn, Brian R; Baeza, Yoshiki Vazquez; VanTeuren, Will; Knight, Rob; Shanks, Orin C

    2015-02-01

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is known about how these communities change due to mixing and subsequent decomposition of the sewage contaminant. We investigated decay of sewage in upper Mississippi River using Illumina sequencing of 16S and 18S rRNA gene hypervariable regions and qPCR for human-associated and general fecal Bacteroidales indicators. Mixtures of primary treated sewage and river water were placed in dialysis bags and incubated in situ under ambient conditions for seven days. We assessed changes in microbial community composition under two treatments in a replicated factorial design: sunlight exposure versus shaded and presence versus absence of native river microbiota. Initial diversity was higher in sewage compared to river water for 16S sequences, but the reverse was observed for 18S sequences. Both treatments significantly shifted community composition for eukaryotes and bacteria (P treatments for both 16S (R = 0.50; P > 0.001) and 18S (R = 0.91; P = 0.001) communities. A comparison of 16S sequence data and fecal indicator qPCR measurements indicated that the latter was a good predictor of overall bacterial community change over time (rho: 0.804-0.814, P = 0.001). These findings suggest that biotic interactions, such as predation by bacterivorous protozoa, can be critical factors in the decomposition of sewage in freshwater habitats and support the use of Bacteroidales genetic markers as indicators of fecal pollution. Published by Elsevier Ltd.

  17. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  18. Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates: A New Process for Thermochemical Heat Storage.

    Science.gov (United States)

    Hatada, Naoyuki; Shizume, Kunihiko; Uda, Tetsuya

    2017-07-01

    Thermal energy storage based on chemical reactions is a prospective technology for the reduction of fossil-fuel consumption by storing and using waste heat. For widespread application, a critical challenge is to identify appropriate reversible reactions that occur below 250 °C, where abundant low-grade waste heat and solar energy might be available. Here, it is shown that lanthanum sulfate monohydrate La 2 (SO 4 ) 3 ⋅H 2 O undergoes rapid and reversible dehydration/hydration reactions in the temperature range from 50 to 250 °C upon heating/cooling with remarkably small thermal hysteresis (water is removed from, or inserted in La 2 (SO 4 ) 3 ⋅H 2 O with progressive change in hydration number x without phase change. It is also revealed that only a specific structural modification of La 2 (SO 4 ) 3 exhibits this reversible dehydration/hydration behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Decomposition of colored wastewater for recycling water by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Sekiguchi, Masayuki; Sawai, Teruko

    1995-01-01

    Utilization of advanced treated water from wastewater treatment plants for the restoration of waterway is in progress to improve the waterside environment. However, the colored wastewater containing molasses pigments, melanoidins, is not decolorized by activated sludge process, and the water can not be applied for recycling water. We have studied the radiation treatment for decolorization of wastewater discharged from baker's yeast factory. The decolorization after decomposition of colored biorefractory organic substances in wastewater, enhancement in biodegradability and effective decrease in values of COD were observed after gammaray irradiation. Although the decrease in values of COD was observed, however chromaticity was not improved after the combined treatment of wastewater by radiation together with activated sludge. The result suggests that it is necessary to find the optimum conditions for stimulation of sludge in the combined treatment. (author)

  20. Hierarchical prediction of industrial water demand based on refined Laspeyres decomposition analysis.

    Science.gov (United States)

    Shang, Yizi; Lu, Shibao; Gong, Jiaguo; Shang, Ling; Li, Xiaofei; Wei, Yongping; Shi, Hongwang

    2017-12-01

    A recent study decomposed the changes in industrial water use into three hierarchies (output, technology, and structure) using a refined Laspeyres decomposition model, and found monotonous and exclusive trends in the output and technology hierarchies. Based on that research, this study proposes a hierarchical prediction approach to forecast future industrial water demand. Three water demand scenarios (high, medium, and low) were then established based on potential future industrial structural adjustments, and used to predict water demand for the structural hierarchy. The predictive results of this approach were compared with results from a grey prediction model (GPM (1, 1)). The comparison shows that the results of the two approaches were basically identical, differing by less than 10%. Taking Tianjin, China, as a case, and using data from 2003-2012, this study predicts that industrial water demand will continuously increase, reaching 580 million m 3 , 776.4 million m 3 , and approximately 1.09 billion m 3 by the years 2015, 2020 and 2025 respectively. It is concluded that Tianjin will soon face another water crisis if no immediate measures are taken. This study recommends that Tianjin adjust its industrial structure with water savings as the main objective, and actively seek new sources of water to increase its supply.

  1. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  2. Detection of Water Contamination Events Using Fluorescence Spectroscopy and Alternating Trilinear Decomposition Algorithm

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2017-01-01

    Full Text Available The method based on conventional index and UV-vision has been widely applied in the field of water quality abnormality detection. This paper presents a qualitative analysis approach to detect the water contamination events with unknown pollutants. Fluorescence spectra were used as water quality monitoring tools, and the detection method of unknown contaminants in water based on alternating trilinear decomposition (ATLD is proposed to analyze the excitation and emission spectra of the samples. The Delaunay triangulation interpolation method was used to make the pretreatment of three-dimensional fluorescence spectra data, in order to estimate the effect of Rayleigh and Raman scattering; ATLD model was applied to establish the model of normal water sample, and the residual matrix was obtained by subtracting the measured matrix from the model matrix; the residual sum of squares obtained from the residual matrix and threshold was used to make qualitative discrimination of test samples and distinguish drinking water samples and organic pollutant samples. The results of the study indicate that ATLD modeling with three-dimensional fluorescence spectra can provide a tool for detecting unknown organic pollutants in water qualitatively. The method based on fluorescence spectra can be complementary to the method based on conventional index and UV-vision.

  3. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  4. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  5. Radiation-induced decomposition of trace amounts of 17 β-estradiol in water

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Taguchi, Mitsumasa; Arai, Hidehiko; Hiratsuka, Hiroshi; Namba, Hideki; Kojima, Takuji

    2004-01-01

    The radiation-induced decomposition of trace amounts of 17 β-estradiol (E2) in water was studied as a function of the dose of 60 Co γ-rays. The rate constant of the reaction of the OH radicals with E2 was estimated to be 1.6x10 10 mol dm -3 s -1 by a comparison with the known rate constant for the reaction with phenol. Both E2 and E2-equivalent concentrations were estimated by LC-MS and ELISA, and decreased with an increase in γ-rays dose. E2 (1.8 nmol dm -3 ) in water was degraded almost completely by irradiations up to 10 Gy. The estrogen activity of the same sample solution still remained at a dose of 10 Gy, but decreased at 30 Gy to the lower than the threshold level of contamination to induce some estrogenic effects on the environmental ecology

  6. Production cost comparisons of hydrogen from fossil and nuclear fuel and water decomposition

    Science.gov (United States)

    Ekman, K. R.

    1981-01-01

    The comparative costs entailed in producing hydrogen by major technologies that rely on petroleum, natural gas, coal, thermochemical cycles, and electrolysis are examined. Techniques were developed for comparing these processes by formulating the process data and economic assessments on a uniform and consistent basis. These data were normalized to permit a meaningful comparative analysis of product costs of these processes.

  7. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Kyung; Zoh, Kyung-Duk, E-mail: zohkd@snu.ac.kr

    2013-04-01

    Photo-decomposition of methylmercury (MeHg) in surface water is thought to be an important process that reduces the bioavailability of mercury (Hg) to aquatic organisms. In this study, photo-initiated decomposition of MeHg was investigated under UVA irradiation in the presence of natural water constituents including NO{sub 3}{sup −}, Fe{sup 3+}, and HCO{sub 3}{sup −} ions, and dissolved organic matter such as humic and fulvic acid. MeHg degradation followed the pseudo-first-order kinetics; the rate constant increased with increasing UVA intensity (0.3 to 3.0 mW cm{sup −2}). In the presence of NO{sub 3}{sup −}, Fe{sup 3+}, and fulvic acid, the decomposition rate of MeHg increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO{sub 3}{sup −} ions lowered the degradation rate through a radical scavenging effect. Increasing the pH of the solution increased the degradation rate constant by enhancing the generation of hydroxyl radicals. Hydroxyl radicals play an important role in the photo-decomposition of MeHg in water, and natural constituents in water can affect the photo-decomposition of MeHg by changing radical production and inhibition. - Highlights: ► The abiotic photodecomposition of methylmercury (MeHg) in water was examined. ► UVA light is a primary factor inducing MeHg photodecomposition in water. ► Fulvic acid, NO{sub 3}{sup −}, and Fe{sup 3+} ion increased MeHg photo-decomposition rate significantly. ► Humic acid and HCO{sub 3}{sup −} ions inhibited photodecomposition through radical scavenging. ► OH radical is an important compound affecting photodecomposition of MeHg in water.

  8. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Directory of Open Access Journals (Sweden)

    Yulin Li

    Full Text Available The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined.A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis with contrasting substrate chemistry (e.g. N concentration, lignin content in this study in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter.These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species

  9. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Science.gov (United States)

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species should be considered

  10. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  11. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  12. Confronting South Africa’s water challenge: A decomposition analysis of water intensity

    OpenAIRE

    Marcel Kohler

    2016-01-01

    Water is a vital natural resource, demanding careful management. It is essential for life and integral to virtually all economic activities, including energy and food production and the production of industrial outputs. The availability of clean water in sufficient quantities is not only a prerequisite for human health and well-being but the life-blood of freshwater ecosystems and the many services that these provide. Water resource intensity measures the intensity of water use in terms of vo...

  13. Confronting South Africa's water challenge: a decomposition analysis of water intensity

    OpenAIRE

    Kohler, Marcel

    2016-01-01

    Water is a vital natural resource, demanding careful management. It is essential for life and integral to virtually all economic activities, including energy and food production and the production of industrial outputs. The availability of clean water in sufficient quantities is not only a prerequisite for human health and well-being but the life-blood of freshwater ecosystems and the many services that these provide. Water resource intensity measures the intensity of water use in terms of vo...

  14. Measurement of water decomposition products after the irradiation with high-energy heavy-ion beams

    International Nuclear Information System (INIS)

    Katsumura, Y.; Yamashita, S.; Muroya, Y.; Lin, M.; Miyazaki, T.; Kudo, H.; Murakami, T.

    2005-01-01

    We measured the G-values of water decomposition products produced by high-energy heavy-ion beams. It was found that the evaluated yields are consistent with reported ones. In other words, with the increase of LET, the radical yields decrease, and the molecular yields increase and tend to level off. But the evaluated yields are slightly higher than reported values. So we have started two trials. One is to check the values with experiment again, and the other is to explain the difference between the yields by using the spur diffusion model. In order to explain the values quantitatively, the spur diffusion model has been applied and track structure has been investigated. (author)

  15. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    Science.gov (United States)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  16. Reproducible automated breast density measure with no ionizing radiation using fat-water decomposition MRI.

    Science.gov (United States)

    Ding, Jie; Stopeck, Alison T; Gao, Yi; Marron, Marilyn T; Wertheim, Betsy C; Altbach, Maria I; Galons, Jean-Philippe; Roe, Denise J; Wang, Fang; Maskarinec, Gertraud; Thomson, Cynthia A; Thompson, Patricia A; Huang, Chuan

    2018-04-06

    Increased breast density is a significant independent risk factor for breast cancer, and recent studies show that this risk is modifiable. Hence, breast density measures sensitive to small changes are desired. Utilizing fat-water decomposition MRI, we propose an automated, reproducible breast density measurement, which is nonionizing and directly comparable to mammographic density (MD). Retrospective study. The study included two sample sets of breast cancer patients enrolled in a clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 patients). The majority of MRI scans (59 scans) were performed with a 1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (seven scans) were performed with a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-water separation technique. After automated breast segmentation, breast density was calculated using FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to MR-based breast density (MRD) to be comparable to MD. A previous breast density measurement, Fra80-the ratio of breast voxels with density changes and treatment response. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  17. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  18. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  19. A process for the thermochemical poduction of H2

    International Nuclear Information System (INIS)

    Norman, J.H.; Russell, J.L. Jr.; Porter, J.T. II; McCorkl, K.H.; Roemer, T.S.; Sharp, Robert.

    1976-01-01

    A process is described for the thermochemical production of H 2 from water. HI 3 and H 2 SO 4 are prepared by chemical reaction between I 2 , SO 2 and H 2 O. Then HI 3 is heated and decomposed into H 2 and I 2 . The heat is produced by a nuclear reactor [fr

  20. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  1. Achievement report on research and development in the Sunshine Project in fiscal 1977. Research and development of water decomposition using mixture cycles composed by thermo-chemistry, photo-chemistry and electrochemistry; 1977 nendo netsukagaku, hikari kagaku, denki kagaku konsei cycle ni yoru suibunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    Discussions are being made on manufacture of hydrogen and oxygen from water decomposition using mixture cycles composed by thermo-chemistry, photo-chemistry and electrochemistry using ferrous sulfate and iodine. Photo-chemical reaction produces Fe(OH)SO{sub 4} and HI, but due to difficulty of isolating Fe(OH)SO{sub 4}, photo-chemical reaction that can obtain the compound as Fe{sub 2}(SO{sub 4}){sub 3} was introduced. A method was introduced that can perform HI isolation simultaneously while performing reaction to reduce Fe{sup 3+} and turn it into Fe{sup 2+} (generating oxygen) by means of electrolysing the liquid after the former reaction. The electrolytic process decomposes HI into hydrogen and iodine (discussions on thermo-chemical decomposition is also continued). Since the photo-chemical reaction can cause reverse reaction, discussions were given on the reaction process in order to suppress the reverse reaction and enhance the conversion efficiency. This paper describes the achievements during fiscal 1977. A quantification method was elucidated on individual iodine components so that it can be used for computerized control (measurement of absorbance of I{sub 3}{sup -}) . An electrolytic tank was discussed that decomposes and isolates photo-chemical reaction products before the reverse reaction occurs. Heat diffusion method was also discussed that isolates hydrogen from HI decomposition products. (NEDO)

  2. Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4

    International Nuclear Information System (INIS)

    Faradzhev, N.S.; Perry, C.C.; Kusmierek, D.O.; Fairbrother, D.H.; Madey, T.E.

    2004-01-01

    The kinetics of decomposition and subsequent chemistry of adsorbed CF 2 Cl 2 , activated by low-energy electron irradiation, have been examined and compared with CCl 4 . These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF 2 Cl 2 and CCl 4 dissociation increase in an H 2 O (D 2 O) environment (2-3x), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H 2 O, using 180 eV incident electrons, are measured (using TPD) to be 1.0±0.2x10 -15 cm 2 for CF 2 Cl 2 and 2.5±0.2x10 -15 cm 2 for CCl 4 . RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl - and F - anions in the halocarbon/water films and production of H 3 O + , CO 2 , and intermediate compounds COF 2 (for CF 2 Cl 2 ) and COCl 2 , C 2 Cl 4 (for CCl 4 ) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation

  3. Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition

    Science.gov (United States)

    Zokagoa, Jean-Marie; Soulaïmani, Azzeddine

    2012-06-01

    This article presents a reduced-order model (ROM) of the shallow water equations (SWEs) for use in sensitivity analyses and Monte-Carlo type applications. Since, in the real world, some of the physical parameters and initial conditions embedded in free-surface flow problems are difficult to calibrate accurately in practice, the results from numerical hydraulic models are almost always corrupted with uncertainties. The main objective of this work is to derive a ROM that ensures appreciable accuracy and a considerable acceleration in the calculations so that it can be used as a surrogate model for stochastic and sensitivity analyses in real free-surface flow problems. The ROM is derived using the proper orthogonal decomposition (POD) method coupled with Galerkin projections of the SWEs, which are discretised through a finite-volume method. The main difficulty of deriving an efficient ROM is the treatment of the nonlinearities involved in SWEs. Suitable approximations that provide rapid online computations of the nonlinear terms are proposed. The proposed ROM is applied to the simulation of hypothetical flood flows in the Bordeaux breakwater, a portion of the 'Rivière des Prairies' located near Laval (a suburb of Montreal, Quebec). A series of sensitivity analyses are performed by varying the Manning roughness coefficient and the inflow discharge. The results are satisfactorily compared to those obtained by the full-order finite volume model.

  4. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  5. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    Science.gov (United States)

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.

  6. Control of xenon oscillations in Advanced Heavy Water Reactor via two-stage decomposition

    International Nuclear Information System (INIS)

    Munje, R.K.; Parkhe, J.G.; Patre, B.M.

    2015-01-01

    Highlights: • Singularly perturbed model of Advanced Heavy Water Reactor is explored. • Composite controller is designed using slow subsystem alone, which achieves asymptotic stability. • Nonlinear simulations are carried out under different transient conditions. • Performance of the controller is found to be satisfactory. - Abstract: Xenon induced spatial oscillations developed in large nuclear reactors, like Advanced Heavy Water Reactor (AHWR) need to be controlled for safe operation. Otherwise, a serious situation may arise in which different regions of the core may undergo variations in neutron flux in opposite phase. If these oscillations are left uncontrolled, the power density and rate of change of power at some locations in the reactor core may exceed their respective thermal limits, resulting in fuel failure. In this paper, a state feedback based control strategy is investigated for spatial control of AHWR. The nonlinear model of AHWR including xenon and iodine dynamics is characterized by 90 states, 5 inputs and 18 outputs. The linear model of AHWR, obtained by linearizing the nonlinear equations is found to be highly ill-conditioned. This higher order model of AHWR is first decomposed into two comparatively lower order subsystems, namely, 73rd order ‘slow’ subsystem and 17th order ‘fast’ subsystem using two-stage decomposition. Composite control law is then derived from individual subsystem feedback controls and applied to the vectorized nonlinear model of AHWR. Through the dynamic simulations it is observed that the controller is able to suppress xenon induced spatial oscillations developed in AHWR and the overall performance is found to be satisfactory

  7. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    Science.gov (United States)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  8. Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane.

    Science.gov (United States)

    Vanraes, Patrick; Willems, Gert; Daels, Nele; Van Hulle, Stijn W H; De Clerck, Karen; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Nikiforov, Anton; Leys, Christophe

    2015-04-01

    In recent decades, several types of persistent substances are detected in the aquatic environment at very low concentrations. Unfortunately, conventional water treatment processes are not able to remove these micropollutants. As such, advanced treatment methods are required to meet both current and anticipated maximally allowed concentrations. Plasma discharge in contact with water is a promising new technology, since it produces a wide spectrum of oxidizing species. In this study, a new type of reactor is tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD) plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane. Atrazine is chosen as model micropollutant with an initial concentration of 30 μg/L. While the H2O2 and O3 production in the reactor is not influenced by the presence of the membrane, there is a significant increase in atrazine decomposition when the membrane is added. With membrane, 85% atrazine removal can be obtained in comparison to only 61% removal without membrane, at the same experimental parameters. The by-products of atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. Formation of these by-products is more pronounced when the membrane is added. These results indicate the synergetic effect of plasma discharge and pollutant adsorption, which is attractive for future applications of water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of sodium carbonate catalyst weight on production of bio-oil via thermochemical liquefaction of corncobs in ethanol-water solution

    Science.gov (United States)

    Sembodo, Bregas Siswahjono Tatag; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Lignocellulosic biomass has recently received serious attention as an energy source that can replace fossil fuels. Corncob is one of lignocellulosic biomass wastes, which can be further processed into bio-oil through thermochemical liquefaction process. Bio-oil is expected to be further processed into fuel oil. In this research the effect of Na2CO3 catalyst weight on the yield of bio-oil was investigated. The composition of bio-oil produced in this process was analyzed by GC-MS. Bio-oil formation rate were analyzed through mathematical model development. First model aasumed as an isothermal process, while second model was not. It is found that both models were able to provide a good approach to experimental data. The average reaction rate constants was obtained from isothermal model, while the activation energy level and collision factors were obtained from non-isothermal model. The reaction rate will increase by addition of Na2CO3 (0 - 0.5 g) as catalyst to 250 mL system solution, then the activation energy will decrease from 1964.265 joules/mole to 1029.994 joules/mole. The GC-MS analysis results showed that the bio-oil were contained of ester compounds, phenolic compounds, cyclic compunds, heterocyclic compounds, and poly-alcohols compounds.

  10. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    Ronchi, C.; Turrini, F.

    1990-01-01

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  11. Membranes for H2 generation from nuclear powered thermochemical cycles

    International Nuclear Information System (INIS)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene

    2006-01-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H 2 SO 4 into O 2 , SO 2 , and H 2 O at temperatures around 850 C. In-situ removal of O 2 from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A x Sr 1-x Co 1-y B y O 3-δ (A=La, Y; B=Cr-Ni), in particular the family La x Sr 1-x Co 1-y Mn y O 3-δ (LSCM), and doped La 2 Ni 1-x M x O 4 (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H 2 SO 4 decomposition reactor study (at Sandia), in which our membranes were tested in the actual H 2 SO 4 decomposition step

  12. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  13. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  14. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  15. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  16. Construction apparatus for thermochemical hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, S.; Nakajima, H.; Higashi, S.; Onuki, K.; Akino, S.S.N. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan). Nuclear Heat Utilization Engineering Lab

    2001-06-01

    Studies have been carried out at the Japan Atomic Energy Research Institute (JAERI) on hydrogen production through thermochemical processes such as water-splitting. These studies are classified with iodine-sulphur cycle studies using heat from high temperature gas-cooled reactors. An experimental apparatus was constructed with fluorine resin, glass and quartz. It can produce hydrogen at a rate of 50 litres per hour. Electricity provides the heat required for the operation. The closed chemical process requires special control techniques. The process flow diagram for the apparatus was designed based on the results of previous studies including one where hydrogen production was successfully achieved at a rate of one liter per hour for 48 hours. Experimental operations under atmospheric pressure will be carried out for the next four years to develop the process. The data will be used in the next research and development programs aimed at designing a bench-scale apparatus. 7 refs., 1 tab., 8 figs.

  17. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  18. Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2008-12-01

    Foliage of terrestrial plants provides an important energy and nutrient source to aquatic ecosystems but also represents a potential source of contaminants, such as mercury (Hg). In this study, we examined how different stream water types and terrestrial tree species influenced the release of Hg from senesced litter to the water and its subsequent methylation during hypoxic litter decomposition. After laboratory incubations of maple leaf litter for 66 days, we observed 10-fold differences in dissolved Hg (DHg, tree species collected at the same site and incubated with the same source water, litter from slower decomposing species (e.g., cedar and pine) yielded higher DHg concentrations than those with more labile carbon (e.g., maple and birch). Percent MeHg, however, was relatively similar among different leaf species (i.e., 61-86%). Our study is the first to demonstrate that stream water chemistry and terrestrial plant litter characteristics are important factors determining Hg release and methylation during hypoxic litter decomposition. These results suggest that certain watershed and aquatic ecosystem properties can determine the levels of MeHg inputs during litterfall events.

  19. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2017-06-01

    Full Text Available SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  20. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    Science.gov (United States)

    Xiao, Song; Li, Yi; Zhang, Xiaoxing; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju

    2017-06-01

    SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP) and excellent dielectric strength. In this paper, we analyzed the possible decomposition paths of C5F10O under micro-water environment through density functional theory. We also evaluated the ionization parameters and toxicity of the decomposition products. The results show that OH• and H• produced by H2O exhibited a catalytic effect on the decomposition of C5F10O. CF4, C2F6, C3F6, C3F8, C4F10, C5F12, C6F14, C3F7COH, C3F7OH, CF3COH, C3F7H, and CF3OH were produced in the micro-water environment. Based on molecular configuration calculation, the ionization parameters of these products were inferior to perfluorocarbons, such as C3F8, leading to reduced insulation performance of the system. Moreover, CF2O and HF are hazardous to human health and equipment safety. Results will provide a basis for further study of the insulation characteristic of the C5F10O gas mixture under micro-water condition to guide the formulation of their relevant international standards prior to engineering applications.

  1. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  2. Study of the hydrolysis reaction of the copper-chloride hybrid thermochemical cycle using optical spectrometries

    International Nuclear Information System (INIS)

    Doizi, D.; Borgard, J.M.; Dauvois, V.; Roujou, J.L.; Zanella, Y.; Croize, L.; Cartes, Ph.; Hartmann, J.M.

    2010-01-01

    The copper-chloride hybrid thermochemical cycle is one of the best potential low temperature thermochemical cycles for the massive production of hydrogen. It could be used with nuclear reactors such as the sodium fast reactor or the supercritical water reactor. Nevertheless, this thermochemical cycle is composed of an electrochemical reaction and two thermal reactions. Its efficiency has to be compared with other hydrogen production processes like alkaline electrolysis for example. The purpose of this article is to study the viability of the copper chloride thermochemical cycle by studying the hydrolysis reaction of CuCl 2 which is not favoured thermodynamically. To better understand the occurrence of possible side reactions, together with a good control of the kinetics of the hydrolysis reaction, the use of optical absorption spectrometries, UV visible spectrometry to detect molecular chlorine which may be formed in side reactions, FTIR spectrometry to follow the concentrations of H 2 O and HCl is proposed. (authors)

  3. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif [Applied Chemistry Laboratories, PINSTECH, PO Nilore, Islamabad (Pakistan)

    2003-11-01

    Plasmacatalytic effects of {alpha}-alumina, {gamma}-alumina, and silica gel in a pulsed corona discharge (PCD) reactor on the decomposition of aqueous methylene blue are described. Methylene blue concentration in the effluent was reduced to 23% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of {alpha}-alumina further reduced it to 8%, {gamma}-alumina to 4%, and silica gel to below the detection limits. PCDs with silica gel were run for >100 h in a continuous flow reactor and methylene blue in the effluent remained below the detection limit. A hybrid system of plasmacatalysis and ozonation is also described. Phenol concentration in the effluent was reduced to 84% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of either silica gel or ozone further reduced it to around 35%, and simultaneous addition of silica gel and ozone to 14% of inlet concentration. Decolourization of pre-adsorbed methylene blue on silica gel has been demonstrated. Adsorption and stabilization of the chemically active species on silica gel was indicated by experimental evidence. A significant improvement in the rate of decomposition of organic pollutants in water has been realized by hybridizing plasmacatalysis and ozonation in a PCD reactor.

  4. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif

    2003-01-01

    Plasmacatalytic effects of α-alumina, γ-alumina, and silica gel in a pulsed corona discharge (PCD) reactor on the decomposition of aqueous methylene blue are described. Methylene blue concentration in the effluent was reduced to 23% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of α-alumina further reduced it to 8%, γ-alumina to 4%, and silica gel to below the detection limits. PCDs with silica gel were run for >100 h in a continuous flow reactor and methylene blue in the effluent remained below the detection limit. A hybrid system of plasmacatalysis and ozonation is also described. Phenol concentration in the effluent was reduced to 84% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of either silica gel or ozone further reduced it to around 35%, and simultaneous addition of silica gel and ozone to 14% of inlet concentration. Decolourization of pre-adsorbed methylene blue on silica gel has been demonstrated. Adsorption and stabilization of the chemically active species on silica gel was indicated by experimental evidence. A significant improvement in the rate of decomposition of organic pollutants in water has been realized by hybridizing plasmacatalysis and ozonation in a PCD reactor

  5. Using decomposition kinetics to model the removal of mine water pollutants in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Tarutis, W J; Unz, R F [Pennsylvania State University, University Park, PA (United States)

    1994-01-01

    Although numerous mathematical models have been used to describe decomposition, few, if any, have been used to model the removal of pollutants in constructed wetlands. A steady state method based on decomposition kinetics and reaction stoichiometry has been developed which simulates the removal of ferrous iron entering wetlands constructed for mine drainage treatment. Input variables for the model include organic matter concentration, reaction rate coefficient, porosity and dry density, and hydraulic detection time. Application of the model assumes complete anaerobic conditions within the entire substrate profile, constant temperature, no additional organic matter input, and subsurface flow only. For these ideal conditions, model simulations indicate that wetlands constructed with readily decomposable substrates rich in organic carbon are initially capable of removing far greater amounts of iron than wetlands built with less biodegradable substrates. However, after three to five years of operation this difference becomes negligible. For acceptable long-term treatment performance, therefore, periodic additions of decomposable organic matter will be required.

  6. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  7. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  8. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    Science.gov (United States)

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  9. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  10. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  11. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  12. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  13. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.

    Science.gov (United States)

    Fath, Andreas; Sacher, Frank; McCaskie, John E

    2016-01-01

    Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.

  14. JAEA’s R&D on the Thermochemical Hydrogen Production IS Process

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Iwatsuki, Jin; Takegami, Hiroaki; Yan, Xing L.; Kubo, Shinji

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has studied iodine-sulfur (IS) process, a thermochemical cycle to produce hydrogen by water splitting. This process is a candidate application of high temperature heat from high temperature gas-cooled reactors. This paper outlines the IS process study in JAEA, in particular recent situation of the R&D. Reactor components and a total process facility are tested to evaluate their integrity. A Bunsen reactor, a H_2SO_4 decomposer and a HI decomposer made of industrial materials such as SiC ceramic, fluoroplastic and lining materials have been examined separately as reactor components. A semibatch test and a thermal cycle test were operated in the Bunsen reactor. H_2SO_4 decomposition test is in a bayonet type reactor and HI decomposition test in an adiabatic radial flow type reactor are now under way. On the basis of a demonstration of continuous hydrogen production of 31 NL/h by a glass apparatus, an experimental apparatus of the total IS process has just been constructed to verify integrity of process components of industrial materials, H_2 production scale of which is 200 NL/h. Electro-electrodialysis (EED) cells to concentrate HI before distillation and a SiC-made bayonet type H_2SO_4 decomposer are applied in the facility. Process data of EED cells has been collected aiming to improve H_2 production thermal efficiency. Influence of temperature, composition in solution and existence of impurities on the cell properties has been investigated. Reduction of heat input to a HI separation step by applying the results of the study was shown. (author)

  15. Use of high energy radiation in decomposition and removal of organic water pollutants

    International Nuclear Information System (INIS)

    Toelgyessy, P.

    1990-01-01

    The present review deals with the radiation chemistry of dilute aqueous solutions of organic substances emphasizing the possibility of use of high energy radiation in waste water treatment. Effects of radiation on biodegradability, toxicity to water organisms and changes in molecules of solutes showing resistance to biochemical degradation and toxicity to water organisms are discussed. (author) 31 refs

  16. Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O

    NARCIS (Netherlands)

    Ferchaud, C.; Scherpenborg, R.A.A.; Zondag, H.A.; Boer, de R.

    2013-01-01

    An interesting thermochemical material for compact seasonal heat storage is magnesium sulfate heptahydrate MgSO4.7H2O. Previous studies in the field showed that this material presents a storage energy density of 1 GJ/m3 when the material is built in a TC storage system with a 50% porosity packed bed

  17. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.

    Science.gov (United States)

    Zhou, Yan-Li; Jiang, He-Long; Cai, Hai-Yuan

    2015-04-28

    Settlement of cyanobacterial bloom biomass (CBB) into sediments in eutrophic lakes often induced the occurrence of black water agglomerate and then water quality deterioration. This study investigated the effect of sediment microbial fuel cell (SMFC) on CBB removal in sediments and related water pollution. Sediment bulking and subsequent black water from decomposition of settled CBB happened without SMFC, but were not observed over 100-day experiments with SMFC employment. While CBB in sediments improved power production from SMFC, the removal efficiency of organic matters in CBB-amended sediments with SMFC was significantly lower than that without SMFC. Pyrosequencing analysis showed higher abundances of the fermentative Clostridium and acetoclastic methanogen in CBB-amended bulk sediments without SMFC than with SMFC at the end of experiments. Obviously, SMFC operation changed the microbial community in CBB-amended sediments, and delayed the CBB degradation against sediment bulking. Thus, SMFC could be potentially applied as pollution prevention in CBB-settled and sensitive zones in shallow lakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  19. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  20. Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    NARCIS (Netherlands)

    Gaeini, M.; Saris, L.; Zondag, H.A.; Rindt, C.C.M.

    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the

  1. Process simulation of nuclear-based thermochemical hydrogen production with a copper-chlorine cycle

    International Nuclear Information System (INIS)

    Chukwu, C.C.; Naterer, G.F.; Rosen, M.A.

    2008-01-01

    Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen without fossil fuels. The copper-chlorine (Cu-Cl) cycle, in which water is decomposed into hydrogen and oxygen, is promising for thermochemical hydrogen production in conjunction with a Supercritical Water Cooled Reactor. Here, the cycle efficiency is examined using the Aspen Plus process simulation code. Possible efficiency improvements are discussed. The results are expected to assist the development of a lab-scale cycle demonstration, which is currently being undertaken at University of Ontario Institute of Technology in collaboration with numerous partners. (author)

  2. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    Science.gov (United States)

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  3. Synergy between TiO2 and CoxOy sites in electrocatalytic water decomposition

    NARCIS (Netherlands)

    Szyja, B.M.; van Santen, R.A.

    2015-01-01

    A computational study of the cooperative effect of a small four-atom Co oxide cluster supported on the TiO2 anatase (100) surface in the electrochemical water splitting reaction is presented. The results have been obtained including explicit solvent water molecules by means of Car-Parrinello MD

  4. Hydrogen production at <550 C using a low temperature thermochemical cycle

    International Nuclear Information System (INIS)

    Lewis, M.A.; Serban, M.; Basco, J.K.

    2004-01-01

    A Department of Energy goal is to identify new technologies for producing hydrogen cost effectively without greenhouse gas emissions. Thermochemical cycles are one of the potential options under investigation. Thermochemical cycles consist of a series of reactions in which water is thermally decomposed and all other chemicals are recycled. Only heat and water are consumed. However, most thermochemical cycles require process heat at temperatures of 850-900 deg C. Argonne National Laboratory is developing low temperature cycles designed for lower temperature heat, 500-550 deg C, which is more readily available. For this temperature region, copper-chlorine (Cu-Cl) cycles are the most promising cycle. Several Cu-Cl cycles have been examined in the laboratory and the most promising cycle has been identified. Proof-of-principle experiments are nearly complete. A preliminary assessment of cycle efficiency is promising. Details of the experiments and efficiency calculations are discussed. (author)

  5. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  6. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  7. Sustainable energy with thermochemical storage; Duurzame energie met thermochemische opslag

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, M. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2010-03-15

    The Energy research Centre of the Netherlands ECN) foresees an important role for heat in sustainable construction of buildings. Using salt hydrates the surplus of heat can be stored in the summer which then can be used in the winter. By means of thermochemical storage natural gas for heating tap water or houses is no longer necessary. [Dutch] Energieonderzoek Centrum Nederland (ECN) ziet voor warmteopslag een belangrijke rol weggelegd in het duurzaam bouwen. Met behulp van zouthydraten kan de overtollige warmte in de zomer opgeslagen worden om deze in de winter weer vrij te maken. Met deze thermochemische opslag is in de nabije toekomst aardgas overbodig voor de verwarming van kraanwater of woonhuis.

  8. Thermochemical hydrogen production studies at LLNL: a status report

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    Currently, studies are underway at the Lawrence Livermore National Laboratory (LLNL) on thermochemical hydrogen production based on magnetic fusion energy (MFE) and solar central receivers as heat sources. These areas of study were described earlier at the previous IEA Annex I Hydrogen Workshop (Juelich, West Germany, September 23-25, 1981), and a brief update will be given here. Some basic research has also been underway at LLNL on the electrolysis of water from fused phosphate salts, but there are no current results in that area, and the work is being terminated

  9. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  10. Thermochemical transformations of anthracene oil

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, M.A.

    1979-01-01

    The basic technological step in electrode pitch production is the thermal processing of the original pitch, combined in some cases with air treatment. The thermal process of electrode pitch production is outstandingly simple and economical, but offers little scope for regulating the product quality. When the coal tar regulating the product quality has been highly pyrolyzed, it becomes difficult to produce a medium electrode pitch in conformity with GOST 10200-73 as regards its content of substances insoluble in quinoline (..cap alpha../sub 1/-fraction). It is particularly difficult to make ptich with a softening point of 85 to 90/sup 0/C from highly pyrolyzed coal tar, since this involves a prolonged treatment which increases the ..cap alpha../sub 1/-fraction content. These difficulties, associated with persistent consumer demand for higher electrode pitch quality, have greatly activated the search for new methods of making electrode pitch. A survey of the Soviet and foreign literature shows that the investigations now in progress relate both to methods of developing new production techniques and to methods of adjusting the initial feedstock composition by the addition of high-boiling coal-tar fractions, pitch distillates, highly aromatized petroleum refinery products and so on. As a result of experiments it was found that: (1) When anthracene oil is heated, its contents of condensation products (..cap alpha../sub 1/- and ..cap alpha..-fractions) increase quite slowly compared with pitch; consequently the electrode pitch production process is prolonged by mixing the two feedstock materials. (2) When the anthracene oil is heat treated first, condensation products form and accumulate in it and its thermochemical transformation activity is enhanced. (3) The use of heat-treated anthracene oil will clearly intensify the electrode pitch production process and raise the product quality.

  11. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Science.gov (United States)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  12. Thermochemical equilibrium in a kernel of a UN TRISO coated fuel particle

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Lim, H. S.; Cho, M. S.; Lee, W. J.

    2012-01-01

    A coated fuel particle (CFP) with a uranium mononitride (UN) kernel has been recently considered as an advanced fuel option, such as in fully ceramic micro encapsulated (FCM) replacement fuel for light water reactors (LWRs). In FCM fuel, a large number of tri isotropic coated fuel particles (TRISOs) are embedded in a silicon carbide (SiC) matrix. Thermochemical equilibrium calculations can predict the chemical behaviors of a kernel in a TRISO of FCM fuel during irradiation. They give information on the kind and quantity of gases generated in a kernel during irradiation. This study treats the quantitative analysis of thermochemical equilibrium in a UN TRISO of FCM LWR fuel using HSC software

  13. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Achievement report on research and development in the Sunshine Project in fiscal 1976. Research and development of water decomposition by using a hybrid cycle composed of thermo-chemistry and photo-chemistry; 1976 nendo netsukagaku oyobi hikari kagaku hybrid cycle ni yoru mizu bunkai no kenkyu kahatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes water decomposition by using a hybrid cycle composed of thermo-chemistry and photo-chemistry. Ferric sulfate and HI are obtained from ferrous sulfate and iodine via photo-chemical reaction. This is an endothermic reaction of 10.8 kcal. Then, the photo-chemically reacted aqueous solution is electrolysed to separate HI, while Fe{sup 3+} (ferric ion) is reduced and converted into Fe{sup 2+} (ferrous ion). Oxygen is generated at this time. Since mixed potential is made from iron oxidation and reduction potential and iodine potential, the electrolytic efficiency is greatly influenced by electrode materials. Ideally, an electrode material that causes only the reduction of Fe{sup 3+}, but not other reactions is preferable. The HI is decomposed into hydrogen and iodine by electrolysis. Research is continuing to acquire hydrogen from HI thermo-chemically. Endothermic reaction heat of 7 to 8 kcal has been obtained in photo-chemical reaction, the heat quantity being close to the theoretical value of 10.8. A result close to the theoretical value may be expected if the electrode material problem is solved. The basic research will be continued for a high possibility of linking the research to a pilot plant in the future. (NEDO)

  15. Report on achievements in fiscal 1984 on research and development commissioned from Sunshine Project. Research and development of water decomposition using the mixed cycle of thermo-chemistry, photo-chemistry, and electro-chemistry; 1984 nendo netsu kagaku, hikari kagaku, denki kagaku konsei cycle ni yoru suibunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    Researches have been performed on water decomposition by multiplex utilization of solar beam, and the achievements in fiscal 1984 were reported. In fiscal 1984, activity coefficients for iron ions and iodide ions having been discussed by the previous fiscal year were derived, and free energy variation amount and accumulated energy amount generated as a result of photo-chemical reactions were derived. Values derived in the experiment were low, which are the values at room temperatures, and higher values are expected under elevated temperatures. In an experiment using a beam irradiation electrolytic tank, investigations were made on thermo-chemical isolation and electrolytic isolation of HI. Since HI is strongly acidic, it does not get liberated unless phosphoric acid concentration and temperature are increased, which is a condition opposing to easiness of the photo-chemical reaction. Therefore, an experiment on HI was performed not only on isolation due to heat, but also isolation by electrolysis, where the intended result was obtained. The mixed system of a photo-chemical system and an electrolytic system requires a system configuration that considers dynamic matching conditions, for which a system to perform measurements simultaneously on a large number of kinds was found effective. (NEDO)

  16. Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle

    International Nuclear Information System (INIS)

    Ventas, R.; Vereda, C.; Lecuona, A.; Venegas, M.

    2012-01-01

    Highlights: ► Experimental study of a thermochemical compressor for absorption/compression cycle. ► Spray adiabatic absorber using NH 3 –LiNO 3 solution working fluid. ► It is able to operate between 57 and 110 °C varying concentration between 0.46 and 0.59. ► The increase of absorber pressure decreases the circulation ratio. ► The numerical model performed agrees with the experimental results. -- Abstract: An experimental study of a thermochemical compressor with ammonia–lithium nitrate solution as working fluid has been carried out. This compressor incorporates a single-pass adiabatic absorber and all the heat exchangers are of the plate type: absorber subcooler, generator and solution heat exchanger. The thermochemical compressor has been studied as part of a single-effect absorption chiller hybridized with an in-series low-pressure compression booster. The adiabatic absorber uses fog jet injectors. The generator hot water temperatures for the external driving flow are in the range of 57–110 °C and the absorber pressures range between 429 and 945 kPa. Experimental results are compared with a numerical model showing a high agreement. The performance of the thermochemical compressor, evaluated through the circulation ratio, improves for higher absorber pressures, indicating the potential of pressure boosting. For the same circulation ratio, the driving hot water inlet temperature decreases with the rise of the absorber pressure. The thermochemical compressor, based on an adiabatic absorber, can produce refrigerant with very low driving temperatures, between 57 and 70 °C, what is interesting for solar cooling applications and very low temperature residual heat recovery. Efficiencies and cooling power are offered when this hybrid thermochemical compressor is implemented in a chiller, showing the effect of different operating parameters.

  17. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  18. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  19. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  20. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  1. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  2. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  3. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  4. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    International Nuclear Information System (INIS)

    D’Cruz, Bessy; Samuel, Jadu; George, Leena

    2014-01-01

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H 2 evolution and was found to be 1.514 mmol/g/h

  5. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    Energy Technology Data Exchange (ETDEWEB)

    D’Cruz, Bessy [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); Samuel, Jadu, E-mail: jadu_samuel@yahoo.co.in [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); George, Leena [Catalysis and Inorganic Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-11-20

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H{sub 2} evolution and was found to be 1.514 mmol/g/h.

  6. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  7. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  8. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  9. U-Shaped Fiber-Optic Detection Elements for Investigation of Photocatalytic Decomposition of Toluene Dissolved in Water

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Bartoň, Ivo; Mrázek, Jan; Podrazký, Ondřej

    2014-01-01

    Roč. 27, May (2014), s. 244-252 ISSN 2306-8515 R&D Projects: GA ČR GAP102/12/2361 Institutional support: RVO:67985882 Keywords : Toluene detection * Photocatalytic decomposition * U-Shaped fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  11. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Science.gov (United States)

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  12. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  13. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  14. Decomposition of water and production of H{sub 2} using semiconductor-photocatalytic effect induced by gamma ray from high radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y; Kawaguchi, K; Myouchin, M [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1996-12-31

    The technology of the radiolytic decomposition of water leading to hydrogen production was demonstrated to explore a new field in the utilization of radiation and radioactive elements. The technology used consisted of a photoassisted catalytic method which has been generally investigated for photocatalysis using a semiconductor and light in an electrochemical study. In our study, gamma radiation from Co-60 was used instead of light, and a significant amount of evolved hydrogen was detected. Our preliminary experiments proved the possibility of converting the energy ionizing radiation (gamma radiation) into chemical energy (hydrogen) using a semiconductor-photocatalytic effect. (author).

  15. Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O

    OpenAIRE

    Song Xiao; Yi Li; Xiaoxing Zhang; Shuangshuang Tian; Zaitao Deng; Ju Tang

    2017-01-01

    SF6 is widely used in all kinds of high-voltage electrical equipment because of its excellent insulation and arc-extinguishing performance. However, this compound leads to serious greenhouse effect, which harms the environment. Many research institutions are now actively in search of SF6 alternative gas. C5F10O has attracted much attention as an alternative gas with low global warming potential (GWP) and excellent dielectric strength. In this paper, we analyzed the possible decomposition path...

  16. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  18. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  19. Solar thermochemical processing system and method

    Science.gov (United States)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar; Leith, Steven D.; Palo, Daniel R.; Dagle, Robert A.

    2018-04-24

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  20. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  1. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  2. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  3. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  4. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  5. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Ribe, F.L.; Werner, R.W.

    1981-01-01

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li 2 O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H 2 and O 2

  6. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  7. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  8. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  10. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the 'old C' (peat) sequestered under prior anoxic conditions. Responses of the 'new C' (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the 'new C' by measuring the relative importance of (1) environmental parameters (WL depth, temperature, soil chemistry) and (2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and

  11. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  12. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  13. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  14. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    Science.gov (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  15. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.

    Science.gov (United States)

    Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs

    2006-05-01

    Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.

  16. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  17. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  18. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  19. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.

    Science.gov (United States)

    Balow, Robert B; Lundin, Jeffrey G; Daniels, Grant C; Gordon, Wesley O; McEntee, Monica; Peterson, Gregory W; Wynne, James H; Pehrsson, Pehr E

    2017-11-15

    Zirconium hydroxide (Zr(OH) 4 ) has excellent sorption properties and wide-ranging reactivity toward numerous types of chemical warfare agents (CWAs) and toxic industrial chemicals. Under pristine laboratory conditions, the effectiveness of Zr(OH) 4 has been attributed to a combination of diverse surface hydroxyl species and defects; however, atmospheric components (e.g., CO 2 , H 2 O, etc.) and trace contaminants can form adsorbates with potentially detrimental impact to the chemical reactivity of Zr(OH) 4 . Here, we report the hydrolysis of a CWA simulant, dimethyl methylphosphonate (DMMP) on Zr(OH) 4 determined by gas chromatography-mass spectrometry and in situ attenuated total reflectance Fourier transform infrared spectroscopy under ambient conditions. DMMP dosing on Zr(OH) 4 formed methyl methylphosphonate and methoxy degradation products on free bridging and terminal hydroxyl sites of Zr(OH) 4 under all evaluated environmental conditions. CO 2 dosing on Zr(OH) 4 formed adsorbed (bi)carbonates and interfacial carbonate complexes with relative stability dependent on CO 2 and H 2 O partial pressures. High concentrations of CO 2 reduced DMMP decomposition kinetics by occupying Zr(OH) 4 active sites with carbonaceous adsorbates. Elevated humidity promoted hydrolysis of adsorbed DMMP on Zr(OH) 4 to produce methanol and regenerated free hydroxyl species. Hydrolysis of DMMP by Zr(OH) 4 occurred under all conditions evaluated, demonstrating promise for chemical decontamination under diverse, real-world conditions.

  20. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  1. Influence of solar radiation and biotic interactions on bacterial and eukaryotic communities associated with sewage decomposition in ambient water

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biot...

  2. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  3. Radiation treatment of organic substances which are difficult to decompose for utilizing sewage water again. Radiation decomposition of lignin

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Sawai, Taruko; Tanabe, Hiroko

    1996-01-01

    The sewerage model projects utilizing sewage-treated water and the sewerage model project for the future city executed in Tokyo are described. It is important to obtain the treated water which is suitable to purposes by setting up the target for control and reducing the organic contamination which is difficult to decompose. In fiscal year 1995, as to the decomposing treatment of lignin by radiation, the effect of reducing coloring and the influence when actual flowing-in sewage and treated water coexist were examined. The experimental samples were lignin aqueous solution, synthetic sewage and flowing-in sewage, treated water, and the mixture of treated water and synthetic sewage. The measurement of water quality is explained. The γ ray irradiation with a Co-60 source was carried out. The results of respective samples are reported. When total organic carbon was at the level in flowing-in sewage and treated water, irradiation was effective for eliminating coloring. The soluble organic substances which are difficult to decompose were efficiently decomposed by irradiation. (K.I.)

  4. Thermochemical treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Petrov, G.A.; Dmitriev, S.A.; Trusov, B.G.; Semenov, K.N.; Klimov, V.L.

    2001-01-01

    Spent ion exchange resins (IER) is a principal type of radioactive waste constantly generated by nuclear plants of various functions. The reduction of volume of this waste and its treatment to the forms suitable for long-term disposal is an urgent problem facing the present-day atomic energetics. Nowadays the technological process THOR (Studsvik, Sweden) based on the thermodestruction of IER is the best developed and realized on the industrial scale. Unfortunately, this process requires expensive equipment and great energy consumption for the moisture to be evaporated and thereafter IER to be destroyed by heat. Meanwhile the capability of some elements (Mg, Al, Si, Ti etc.) has long been known and practical use found for active interaction with water in combustion regime. This property of the metals has been used in the development of new technology of treatment of IERs in SIA ''Radon''. Wet IER is mixed with powder metal fuel (PMF) which represents a mixture of metal powder, a quantity of burning activator and some technological additives. On initiation, the mixture of IER with PMF burns without extra energy supply to generate enough heat for the moisture to be evaporated and products of IER decomposition to be destroyed and evaporated. To burn out the products of IER evaporation the air is used. The thermodynamic simulation data and the results of experiments using a pilot plant show that radionuclides contained in IER are chemically bound in ash residue consisting of metal oxides, spinel, silicates, etc. According to the experimental data, radionuclides in amounts of 90% or more of Cs-137 and up to 95% of Sr-90 and Co-60 are fixed in the ash residue. The residue volume is several times less than the initial volume of IER. Concentrations of hazard gases in off-gases do not exceed maximum permissible ones accepted in different countries. The technological process is easy to perform, it does not require sophisticated equipment and great energy consumption which

  5. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  6. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  7. Thermochemical data acquisition - Reactor safety programme 1988-1991

    International Nuclear Information System (INIS)

    Ball, R.G.J.; Rand, M.H.; Cordfunke, E.H.P.; Konings, R.J.M.

    1991-10-01

    Thermochemical data are required for specific fission product and reactor materials compounds in order to quantify the consequences of a severe accident within a light water reactor. Approximately 40 important compounds/systems have been identified for study for which thermodynamic data did not exist or were inadequate. Work is described on the analysis of approximately half of these systems. Experimental studies have been undertaken to determine the thermodynamic quantities of the following compounds : Cs 2 MoO 4 , CsBO 2 , Cs 2 RuO 4 , Cs 2 RuO 4 , Cs 2 Mno 4 , Cs 2 CrO 4 , Cs 2 TeO 3 ,Cs 2 Te, InI, InI 3 , In 2 I 6 , In 2 Te, Cd(OH) 2 , Cd(OH) 2 , TeO(OH) 2 ,CdI 2 , Cd 2 I 4 , Cs 2 CdI 4 , CsCdI 3 , Cs 2 CdI 4 , Cs 3 PO 4 and Cd-In-Ag. Critical assessments have been made on the following systems : In-I, In-Te, Cd-I, Sr-B-O and Ba-B-O. The thermodynamic quantities of these compounds have been calculated over the temperature range from 298 to 3000 K. The adoption of these data within appropriate modelling codes will allow the fission product species and transport to be predicted with greater confidence, thus providing more accurate assessments of the consequences of severe reactor accidents

  8. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  9. Environmental impacts of thermochemical biomass conversion. Final report

    International Nuclear Information System (INIS)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W.

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given

  10. The Characterization and Hydrogen Production from Water Decomposition with Methanol in a Semi-Batch Type Reactor Using In, P-TiO2s

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2011-01-01

    Full Text Available The photocatalytic production of hydrogen from water using solar energy is potentially a clean and renewable source for hydrogen fuel. This study examines the production of hydrogen over In, P-TiO2s photocatalysts. 1 mol% In-TiO2 and P-TiO2 were produced using the solvothermal method and were treated at 500 and 800∘C to obtain anatase and rutile structure, respectively. The photocatalysts were characterized by X-ray diffraction, photoluminescence spectra, X-ray spectroscopy, UV-visible spectroscopy, and scanning electron microscopy. The production of H2 from methanol photodecomposition was greater over the rutile structure than over the anatase structure of TiO2. Moreover, the amount of hydrogen was enhanced over In-TiO2 and P-TiO2 compared to that over pure TiO2; the production increased by about 30%. The structural effect and the addition of In, P have significant influence on the H2 production from methanol/water decomposition.

  11. Effect of ionite decomposition products on the reactor coolant pH in a boiling-water reactor

    International Nuclear Information System (INIS)

    Bredikhin, V.Ya.; Moskvin, L.N.

    1982-01-01

    The effect of products resulting from thermal radiolysis of ionites on water-chemical regime of NPP with RBMK is considered basing on investigations conducted in a boiling type experimental reactor. Data are presented on dynamics of changes in the specific electric conductivity and pH of the coolant following destruction of ion exchange groups and ionite matrix under the effect of reactor radiation. The authors draw a conclusion that radiation destruction of ionito fine disperse suspension or high-molecular soluble compounds in the reactor are, probably, one of the main reasons for variations in pH values of the coolant at NPP in non-correction water chemical regime

  12. Nicotinamides: Evaluation of thermochemical experimental properties

    International Nuclear Information System (INIS)

    Zhabina, Aleksandra A.; Nagrimanov, Ruslan N.; Emel’yanenko, Vladimir N.; Solomonov, Boris N.; Verevkin, Sergey P.

    2016-01-01

    Highlights: • Vapor pressures measured by transpiration method. • Enthalpies of solution measured using high-precision solution calorimetry. • Enthalpies of fusion measured by DSC. • Sublimation enthalpies derived from transpiration and solution calorimetry in agreement. • Experimental results evaluated and compared with G4 calculations. - Abstract: Vapor pressures of the isomeric 2-, 3-, and 4-pyridinecarboxamides were measured by using the transpiration method. The enthalpies of sublimation/vaporization of these compounds at 298.15 K were derived from vapor pressure temperature dependences. The enthalpies of solution of the isomeric pyridinecarboxamides were measured with the high-precision solution calorimetry. The enthalpies of sublimation of 3- and 4-pyridinecarboxamides were independently derived with help of the solution calorimetry based procedure. The enthalpies of fusion of the pyridinecarboxamides were measured by the DSC. Thermochemical data isomeric pyridinecarboxamides were collected, evaluated, and tested for internal consistency. The high-level G4 quantum-chemical method was used for mutual validation of the experimental and theoretical gas phase enthalpies of formation successfully.

  13. Static Thermochemical Model of COREX Melter Gasifier

    Science.gov (United States)

    Srishilan, C.; Shukla, Ajay Kumar

    2018-02-01

    COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

  14. Thermochemical parameters of caffeine, theophylline, and xanthine

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Tuan Cuong; Truong Ba Tai [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Vu Thi Thu Ha [Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Minh Tho Nguyen, E-mail: minh.nguyen@chem.kuleuven.b [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2010-04-15

    Thermochemical parameters of caffeine 1, theophylline 2, xanthine 3, uracil, and imidazole derivatives are determined by quantum chemical calculations. Using the composite G3B3 method, the standard heat of formation of caffeine in the gaseous phase amounts to DELTA{sub f}H{sub g}{sup 0}(1)=-243+-8kJ.mol{sup -1}, which lends a support for the recent experimental value of -237.0 +- 2.5 kcal . mol{sup -1}. We also obtain DELTA{sub f}H{sub g}{sup 0}(2)=-232+-8kJ.mol{sup -1}andDELTA{sub f}H{sub g}{sup 0}(3)=-209+-8kJ.mol{sup -1}. The adiabatic ionization energies are IE{sub a}(1) = 7.9 eV, IE{sub a}(2) = 8.1 eV, and IE{sub a}(3) = 8.5 eV using B3LYP calculations. The enhanced ability of caffeine to eject electron, as compared to the parent compounds and cyclic components, is of interest with regard to its potential use as a corrosion inhibitor.

  15. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  16. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  17. Decomposition analysis of cupric chloride hydrolysis in the Cu-Cl cycle of hydrogen production

    International Nuclear Information System (INIS)

    Daggupati, V.N.; Naterer, G.F.; Gabriel, K.S.; Gravelsins, R.; Wang, Z.

    2009-01-01

    This paper examines cupric chloride solid conversion during hydrolysis in a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production. The hydrolysis reaction is a challenging step, in terms of the excess steam requirement and the decomposition of cupric chloride (CuCl 2 ) into cuprous chloride (CuCl) and chlorine (Cl 2 ). The hydrolysis and decomposition reactions are analyzed with respect to the chemical equilibrium constant. The effects of operating parameters are examined, including the temperature, pressure, excess steam and equilibrium conversion. A maximization of yield and selectivity are very important. Rate constants for the simultaneous reaction steps are determined using a uniform reaction model. A shrinking core model is used to determine the rate coefficients and predict the solid conversion time, with diffusional and reaction control. These new results are useful for scale-up of the engineering equipment in the thermochemical Cu-Cl cycle for hydrogen production. (author)

  18. In situ study of glasses decomposition layer

    International Nuclear Information System (INIS)

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  19. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Subagyono, Dirgarini J.N.; Marshall, Marc; Jackson, W. Roy; Chaffee, Alan L.

    2015-01-01

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H 2 O (with or without catalyst) were compared with products from liquefaction of dry biomass under N 2 , at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H 2 O produced higher yields of oil than N 2 . • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  20. Studies of water electrolysis in polymeric membrane cells; Estudos de eletrolise aquosa em celulas de membrana polimerica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Silva, M.A.; Linardi, M.; Saliba-Silva, A.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The membrane electrolysis has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with non-carbogenic causing no harm by producing gases deleterious to the environment. (author)

  1. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  2. Thermochemical performance analysis of solar driven CO_2 methane reforming

    International Nuclear Information System (INIS)

    Fuqiang, Wang; Jianyu, Tan; Huijian, Jin; Yu, Leng

    2015-01-01

    Increasing CO_2 emission problems create urgent challenges for alleviating global warming, and the capture of CO_2 has become an essential field of scientific research. In this study, a finite volume method (FVM) coupled with thermochemical kinetics was developed to analyze the solar driven CO_2 methane reforming process in a metallic foam reactor. The local thermal non-equilibrium (LTNE) model coupled with radiative heat transfer was developed to provide more temperature information. A joint inversion method based on chemical process software and the FVM coupled with thermochemical kinetics was developed to obtain the thermochemical reaction parameters and guarantee the calculation accuracy. The detailed thermal and thermochemical performance in the metal foam reactor was analyzed. In addition, the effects of heat flux distribution and porosity on the solar driven CO_2 methane reforming process were analyzed. The numerical results can serve as theoretical guidance for the solar driven CO_2 methane reforming application. - Highlights: • Solar driven CO_2 methane reforming process in metal foam reactor is analyzed. • FVM with chemical reactions was developed to analyze solar CO_2 methane reforming. • A joint inversion method was developed to obtain thermochemical reaction parameters. • Results can be a guidance for the solar driven CO_2 methane reforming application.

  3. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    Science.gov (United States)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  4. Decomposition of p-nonylphenols in water and elimination of their estrogen activities by 6Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Taguchi, Mitsumasa; Ohtani, Yoshimi; Takigami, Machiko; Shimada, Yoshitaka; Kojima, Takuji; Hiratsuka, Hiroshi; Namba, Hideki

    2006-01-01

    Concentration of p-nonylphenols (NPs) in water at 1 μmol dm -3 was decreased exponentially with absorbed dose when NPs were irradiated by 6 Co γ-rays. Two products having molecular weight of 236, presumably OH adducts of NPs, were detected by LC-MS analyses. The elimination of estrogen activity of aqueous NPs solution including such irradiation products at 5000 Gy (J kg -1 ) was confirmed by the yeast two-hybrid assay. These results should expand the application of ionizing radiation to the treatment of NPs

  5. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  6. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO{sub 2} nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alenzi, Naser; Ehlig-Economides, Christine [Harold Vance Department of Petroleum Engineering, Texas A and M University, College Station, TX 77843 (United States); Liao, Wei-Ssu; Cremer, Paul S. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States); Sanchez-Torres, Viviana; Cheng, Zhengdong [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843 3136 (United States)

    2010-11-15

    Though less frequently studied for solar-hydrogen production, films are more convenient to use than powders and can be easily recycled. Anatase TiO{sub 2} films decorated with Ag nanoparticles are synthesized by a rapid, simple, and inexpensive method. They are used to cleave water to produce H{sub 2} under UV light in the presence of methanol as a hole scavenger. A simple and sensitive method is established here to monitor the time course of hydrogen production for ultralow amounts of TiO{sub 2}. The average hydrogen production rate of Ag/TiO{sub 2} anatase films is 147.9 {+-} 35.5 {mu}mol/h/g. Without silver, it decreases dramatically to 4.65 {+-} 0.39 {mu}mol/h/g for anatase TiO{sub 2} films and to 0.46 {+-} 0.66 {mu}mol/h/g for amorphous TiO{sub 2} films fabricated at room temperature. Our method can be used as a high through-put screening process in search of high efficiency heterogeneous photocatalysts for solar-hydrogen production from water-splitting. (author)

  7. UV Photocatalytic Activity for Water Decomposition of SrxBa1−xNb2O6 Nanocrystals with Different Components and Morphologies

    Directory of Open Access Journals (Sweden)

    Guoqiang Han

    2017-01-01

    Full Text Available Strontium barium niobate SrxBa1-xNb2O6 (SBN nanocrystals with different components (x=0.2, 0.4, 0.6, and 0.8 were synthesized by Molten Salt Synthesis (MSS method at various reaction temperatures (T = 950°C, 1000°C, 1050°C, and 1100°C. The SBN nanocrystals yielded through flux reactions possess different morphologies and sizes with a length of about ~100 nm~7 μm and a diameter of about ~200~500 nm. The Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques were used to study the compositions, structures, and morphologies of the nanocrystals. The absorption edges of the SBN nanocrystals are at a wavelength region of approximate 390 nm, which corresponds to band-gap energy of ~3.18 eV. The SBN nanocrystals with different sizes display different photocatalytic activity under ultraviolet light in decomposition of water. The SBN60 nanocrystals exhibit stable photocatalytic rates (~100~130 μmol of H2·g−1·h−1 for hydrogen production. The SBN nanocrystals can be a potential material in the application of photocatalysis and micro/nanooptical devices.

  8. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging of multiple myeloma: initial clinical efficiency results

    International Nuclear Information System (INIS)

    Takasu, Miyuki; Tani, Chihiro; Sakoda, Yasuko; Ishikawa, Miho; Tanitame, Keizo; Date, Shuji; Akiyama, Yuji; Awai, Kazuo; Sakai, Akira; Asaoku, Hideki; Kajima, Toshio

    2012-01-01

    To evaluate the effectiveness of the iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL) MRI to quantify tumour infiltration into the lumbar vertebrae in myeloma patients without visible focal lesions. The lumbar spine was examined with 3 T MRI in 24 patients with multiple myeloma and in 26 controls. The fat-signal fraction was calculated as the mean value from three vertebral bodies. A post hoc test was used to compare the fat-signal fraction in controls and patients with monoclonal gammopathy of undetermined significance (MGUS), asymptomatic myeloma or symptomatic myeloma. Differences were considered significant at P 2 -microglobulin-to-albumin ratio were entered into the discriminant analysis. Fat-signal fractions were significantly lower in patients with symptomatic myelomas (43.9 ±19.7%, P 2 -microglobulin-to-albumin ratio facilitated discrimination of symptomatic myeloma from non-symptomatic myeloma in patients without focal bone lesions. circle A new magnetic resonance technique (IDEAL) offers new insights in multiple myeloma. (orig.)

  9. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  10. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  11. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  12. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-02-15

    The thermochemical Copper-Chlorine (Cu-Cl) cycle is an emerging new method of nuclear-based hydrogen production. In the process, water is decomposed into hydrogen and oxygen through several physical and chemical processes. In this paper, a Distributed Control System (DCS) is designed for the thermochemical Cu-Cl cycle. The architecture and the communication networks of the DCS are discussed. Reliability of the DCS is assessed using fault trees. In the assessment, the impact of the malfunction of the actuators, sensors, controllers and communication networks on the overall system reliability is investigated. This provides key information for the selection of control system components, and determination of their inspection frequency and maintenance strategy. The hydrogen reactor unit, which is one of the major components in the thermochemical Cu-Cl cycle, is used to demonstrate the detailed design and analysis. (author)

  13. Influence of Absorption of Thermal Radiation in the Surface Water Film on the Characteristics and Ignition Conditions

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen V.

    2016-01-01

    Full Text Available The results of the mathematical modeling of homogeneous particle ignition process of coal-water fuel covered with water film have been presented in article. The set co-occurring physical (inert heating, evaporation of water film and thermochemical (thermal degradation, inflammation process have been considered. Heat inside the film has been considered as the model of radiation-conductive heat transfer. Delay times have been determined according to the results of numerical modeling of the ignition. It has been shown that the water film can have a significant impact on performance and the ignition conditions. It has been found that heating main fuel layer occurs in the process of evaporation of water film. For this reason, the next (after the evaporation of the water film thermal preparation (coal heating, thermal decomposition of the organic part of the fuel and inflammation occur faster.

  14. Estimation of Paddy Rice Variables with a Modified Water Cloud Model and Improved Polarimetric Decomposition Using Multi-Temporal RADARSAT-2 Images

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2016-10-01

    Full Text Available Rice growth monitoring is very important as rice is one of the staple crops of the world. Rice variables as quantitative indicators of rice growth are critical for farming management and yield estimation, and synthetic aperture radar (SAR has great advantages for monitoring rice variables due to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its phenological changes were considered when the double-bounce scattering between the rice canopy and the underlying surface was firstly considered as well. Then, three scattering components from an improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index (LAI, rice height (h, and the fresh and dry biomass of ears (Fe and De. The accuracy validation showed the MWCM was suitable for the estimation of rice variables during the whole growth season. The validation results showed that the MWCM could predict the temporal behaviors of the rice variables well during the growth cycle (R2 > 0.8. Compared with the original water cloud model (WCM, the relative errors of rice variables with the MWCM were much smaller, especially in the vegetation phase (approximately 15% smaller. Finally, it was discussed that the MWCM could be used, theoretically, for extensive applications since the empirical coefficients in the MWCM were determined in general cases, but more applications of the MWCM are necessary in future work.

  15. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  16. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition

    International Nuclear Information System (INIS)

    Henglein, A.

    1979-01-01

    Organic free radicals of high negative redox potential such as α-alcohol radicals were found to transfer electrons to colloidal silver particles stabilized by sodium dodecyl sulfate in aqueous solution. The colloidal particles thus became a pool of stored electrons that could reduce water to form hydrogen or react with suitable acceptors in solution. The organic radicals were produced by irradiation, using suitable scavengers for the primary radicals from the radiolysis of the aqueous solvent. The solutions initially contained silver ions at 1 x 10 -4 - 2 x 10 -3 M. At doses below 10 5 rd, the silver ions were completely reduced to form the colloidal catalyst. In this dose range, the corresponding hydrogen yield amounted to 1 molecule per 100 eV. It increased steeply at higher doses up to 3 molecules per 100 eV. The H 2 yield decreased with increasing dose rate and with increasing pH in alkaline solutions. It was highest at a concentration of sodium dodecyl sulfate of 1 x 10 -3 M, i.e., far below the critical micelle concentration of this surfactant. Changes in the absorption spectrum of the colloid are attributed to changes in the size of the silver particles upon charging up with electrons. The competition of radical-colloid reactions with radical-radical deactivation in the bulk of solution or at the surface of the colloidal particles is also discussed. 11 figures

  17. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  18. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  19. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    Science.gov (United States)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  20. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  1. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  2. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  3. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  4. The NAGRA/PSI thermochemical database: new developments

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W.; Berner, U.; Thoenen, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Pearson, F.J.Jr. [Ground-Water Geochemistry, New Bern, NC (United States)

    2000-07-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  5. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  6. The NAGRA/PSI thermochemical database: new developments

    International Nuclear Information System (INIS)

    Hummel, W.; Berner, U.; Thoenen, T.; Pearson, F.J.Jr.

    2000-01-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  7. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  8. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  9. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  10. Cascading pressure reactor and method for solar-thermochemical reactions

    Science.gov (United States)

    Ermanoski, Ivan

    2017-11-14

    Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.

  11. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...

  12. Usefulness of R2* maps generated by iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence for cerebral artery dissection

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ayumi; Shinohara, Yuki; Fujii, Shinya; Miyoshi, Fuminori; Kuya, Keita; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological, and Therapeutic Science, Faculty of Medicine, Yonago (Japan); Yamashita, Eijiro [Tottori University Hospital, Division of Clinical Radiology, Yonago (Japan)

    2015-09-15

    Acute intramural hematoma resulting from cerebral artery dissection is usually visualized as a region of intermediate signal intensity on T1-weighted images (WI). This often causes problems with distinguishing acute atheromatous lesions from surrounding parenchyma and dissection. The present study aimed to determine whether or not R2* maps generated by the iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence (IDEAL IQ) can distinguish cerebral artery dissection more effectively than three-dimensional variable refocusing flip angle TSE T1WI (T1-CUBE) and T2*WI. We reviewed data from nine patients with arterial dissection who were assessed by MR images including R2* maps, T2*WI, T1-CUBE, and 3D time-of-flight (TOF)-MRA. We visually assessed intramural hematomas in each patient as positive (clearly visible susceptibility effect reflecting intramural hematoma as hyperintensity on R2* map and hypointensity on T2*WI), negative (absent intramural hematoma), equivocal (difficult to distinguish between intramural hematoma and other paramagnetic substances such as veins, vessel wall calcification, or hemorrhage) and not evaluable (difficult to determine intramural hematoma due to susceptibility artifacts arising from skull base). Eight of nine patients were assessed during the acute phase. Lesions in all eight patients were positive for intramural hematoma corresponding to dissection sites on R2* maps, while two lesions were positive on T2*WI and three lesions showed high-intensity on T1-CUBE reflected intramural hematoma during the acute phase. R2* maps generated using IDEAL IQ can detect acute intramural hematoma associated with cerebral artery dissection more effectively than T2*WI and earlier than T1-CUBE. (orig.)

  13. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  14. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  15. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  16. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  17. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.

    Science.gov (United States)

    He, Yao; Ma, Xiaoqian; Zeng, Guangbo

    2015-02-01

    The thermochemical processes of lignocellulosic biomass and its mixtures with poly(vinyl chloride) (PVC) fractions were investigated by thermogravimetric analysis in CO2 atmosphere. Superposition property was assumed to examine whether and/or to what extent interactions occurred during the mixture decomposition. Results showed that interactions existed, of which the intensities changed with reaction stage, heating rate and PVC quantity, and they actively behaved toward the decomposition in most cases. With PVC presence, lignocellulosic biomass turned from three-stage to four-stage decomposition process where the reactions occurred at lower temperatures with heightened intensity, especially in the first stage. The measured activation energies calculated by Ozawa-Flynn-Wall and Vyazovkin methods were of minor difference <5 kJ/mol, and comparing them between materials in each stage confirmed the results of interaction impact. This work provides a theoretical basis bringing about the possibilities of recycling CO2 into a reaction medium of thermo-treatment of lignocellulosic material with PVC contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Kinetics of the thermal decomposition of nickel iodide

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Shimizu, Saburo; Onuki, Kaoru; Ikezoe, Yasumasa; Sato, Shoichi

    1984-01-01

    Thermal decomposition kinetics of NiI 2 under constant I 2 partial pressure was studied by thermogravimetry. The reaction is considered as a reaction step of the thermochemical hydrogen production process in the Ni-I-S system. At temperatures from 775K to 869K and under I 2 pressures from 0 to 960Pa, the decomposition started at the NiI 2 pellet surface and the reactant-product interface moved interior at a constant rate until the decomposed fraction, α, reached 0.6. The overall reaction rate at a constant temperature can be expressed as the difference of the constant decomposition (forward) rate, which is proportional to the equilibrium dissociation pressure of NiI 2 , and the iodide formation (backward) rate, which is proportional to the I 2 pressure. The apparent activation energy of the decomposition was 147 kJ.mol -1 , which is very close to the heat of reaction, 152 kJ.mol -1 calculated from the equilibrium dissociation pressure. The electron microscopic observations, revealed that the reaction product obtained by decomposing NiI 2 under pure He atomosphere was composed of relatively well grown cubic Ni crystals. Whereas, the decomposed product obtained under I 2 -He mixture was composed of larger but disordered crystals. (author)

  19. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  20. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  1. Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66 for the Decomposition and Enhanced Adsorption of Micropollutants in Water

    Directory of Open Access Journals (Sweden)

    Marion Schelling

    2018-02-01

    Full Text Available We report on the successful functionalization of cotton fabrics with a water-stable metal–organic framework (MOF, UiO-66, under mild solvothermal conditions (80 °C and its ability to adsorb and degrade water micropollutants. The functionalized cotton samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. UiO-66 crystals grew in a uniform and conformal manner over the surface of the cotton fibers. The cotton fabrics functionalized with UiO-66 frameworks exhibited an enhanced uptake capacity for methylchlorophenoxypropionic acid (MCPP, a commonly used herbicide. The functionalized fabrics also showed photocatalytic activity, demonstrated by the degradation of acetaminophen, a common pharmaceutical compound, under simulated sunlight irradiation. These results indicate that UiO-66 can be supported on textile substrates for filtration and photocatalytic purposes and that these substrates can find applications in wastewater decontamination and micropollutant degradation.

  2. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  3. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  4. Assessment of thermochemical hydrogen production. Project 61010 (formerly 8994) final report, July 1, 1977-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Lee, T.S.; Schreiber, J.D.

    1979-05-01

    The Institute of Gas Technology's (IGT) assessment of thermochemical water-splitting processes is given. Eight tasks were performed: evaluation of load-line efficiencies; hydrogen bromide electrolysis; maximum attainable thermal efficiency on a specific bromide hybrid cycle; development of electrolyzer elements for H/sub 2/SO/sub 3/; feasibility of high-temperature reference-state thermochemical cycles; interfacing characteristics - solar high-temperature heat sources; analysis of solar and solar hybrid heat sources; and laboratory assessment of cycle with high-temperature step. Engineering analyses were done on two thermochemical hydrogen production cycles - IGT's cycles B-1 and H-5. The load line efficiency for B-1 was 18.1% and for H-5 37.4%. The electrolysis of HBr (aq) on three substrates: platinum, porous graphite, and vitreous graphite was investigated. Platinum proved to be the most efficient electrode surface, with vitreous graphite showing no promise, and porous graphite showing only slightly better results. On platinum, cell voltages of under 1.0 volt were obtained at current densities up to 200 mA/cm/sup 2/. Five new members of the metal-metal oxide class of cycles were derived. The maximum attainable efficiencies of these high-temperature, two-step cycles range from 64 to 86%. Six high-temperature metal oxide-metal sulfate cycles were derived. Performance and capital costs data for a wide range of solar primary heat sources were tabulated.

  5. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  6. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  7. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  8. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  9. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  10. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  11. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  12. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies.

    Science.gov (United States)

    Drozd, Ksenia V; Manin, Alex N; Churakov, Andrei V; Perlovich, German L

    2017-03-01

    Experimental multistage cocrystal screening of the antituberculous drug 4-aminosalicylic acid (PASA) has been conducted with a number of coformers (pyrazinamide (PYR), nicotinamide (NAM), isonicotinamide (iNAM), isoniazid (INH), caffeine (CAF) and theophylline (TPH)). The crystal structures of 4-aminosalicylic acid cocrystals with isonicotinamide ([PASA+iNAM] (2:1)) and methanol solvate with caffeine ([PASA+CAF+MeOH] (1:1:1)) have been determined by single X-ray diffraction experiments. For the first time for PASA cocrystals it has been found that the structural unit of the [PASA+iNAM] cocrystal (2:1) is formed by 2 types of heterosynthons: acid-pyridine and acid-amide. The desolvation study of the [PASA+CAF+MeOH] cocrystal solvate (1:1:1) has been conducted. The correlation models linking the melting points of the cocrystals with the melting points of the coformers used in this paper have been developed. The thermochemical and solubility properties for all the obtained cocrystals have been studied. Cocrystallization has been shown to lead not only to PASA solubility improving but also to its higher stability against the chemical decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Thermochemical study of MoS2 oxidation

    International Nuclear Information System (INIS)

    Filimonov, D.S.; Topor, N.D.; Kesler, Ya.A.

    1990-01-01

    Thermochemical studies of oxidation processes of metallic molybdenum, sulfur, molybdenum disulfide under different conditions in microcalorimeter are conducted. Values of thermal effects which are used to calculate standard formation enthalpy of MoS 2 and which correlate well are obtained. Δ f H 0 (MoS 2 ,298.15 K) recommended value constitutes (-223.0±16.7) kJ/mol

  14. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  15. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  16. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  17. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  18. Process development for elemental recovery from PGM tailings by thermochemical treatment: Preliminary major element extraction studies using ammonium sulphate as extracting agent.

    Science.gov (United States)

    Mohamed, Sameera; van der Merwe, Elizabet M; Altermann, Wladyslaw; Doucet, Frédéric J

    2016-04-01

    Mine tailings can represent untapped secondary resources of non-ferrous, ferrous, precious, rare and trace metals. Continuous research is conducted to identify opportunities for the utilisation of these materials. This preliminary study investigated the possibility of extracting major elements from South African tailings associated with the mining of Platinum Group Metals (PGM) at the Two Rivers mine operations. These PGM tailings typically contain four major elements (11% Al2O3; 12% MgO; 22% Fe2O3; 34% Cr2O3), with lesser amounts of SiO2 (18%) and CaO (2%). Extraction was achieved via thermochemical treatment followed by aqueous dissolution, as an alternative to conventional hydrometallurgical processes. The thermochemical treatment step used ammonium sulphate, a widely available, low-cost, recyclable chemical agent. Quantification of the efficiency of the thermochemical process required the development and optimisation of the dissolution technique. Dissolution in water promoted the formation of secondary iron precipitates, which could be prevented by leaching thermochemically-treated tailings in 0.6M HNO3 solution. The best extraction efficiencies were achieved for aluminium (ca. 60%) and calcium (ca. 80%). 35% iron and 32% silicon were also extracted, alongside chromium (27%) and magnesium (25%). Thermochemical treatment using ammonium sulphate may therefore represent a promising technology for extracting valuable elements from PGM tailings, which could be subsequently converted to value-added products. However, it is not element-selective, and major elements were found to compete with the reagent to form water-soluble sulphate-metal species. Further development of this integrated process, which aims at achieving the full potential of utilisation of PGM tailings, is currently underway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. OPTIMIZED WTE CONVERSION OF MUNICIPAL SOLID WASTE IN SHANGHAI APPLYING THERMOCHEMICAL TECHNOLOGIES

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  20. Assessment of a closed thermochemical energy storage using energy and exergy methods

    International Nuclear Information System (INIS)

    Abedin, Ali Haji; Rosen, Marc A.

    2012-01-01

    Highlights: ► Thermodynamics assessments are reported for a general closed thermochemical thermal energy storage system. ► Energy and exergy efficiencies of various processes in a closed thermochemical TES are evaluated and compared. ► Understanding is enhanced of thermochemical TES technologies and their potential implementations. ► Exergy analysis is observed to be useful when applied to thermochemical TES, with or in place of energy analysis. - Abstract: Thermal energy storage (TES) is an important technology for achieving more efficient and environmentally benign energy systems. Thermochemical TES is a type of TES with the potential for high energy density and is only recently being considered intensively. To improve understanding of thermochemical TES systems and their implementation, energy and exergy analyses are beneficial. Here, thermodynamics assessments are presented for a general closed thermochemical TES system, including assessments and comparisons of the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Locations and causes of thermodynamic losses in thermochemical TES systems are being specified using exergy analysis. The analytical methodology applied in this study identifies that energy and exergy efficiencies differ for thermochemical TESs, e.g. the energy efficiency for a case study is approximately 50% while the exergy efficiency is about 10%. Although the focus is to evaluate thermodynamic efficiencies, other design parameters such as cost, and environmental impact also need to be examined in assessing thermochemical storage. The efficiencies for thermochemical TES provided here should be helpful for designing these energy systems and enhancing their future prospects.

  1. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  2. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  3. Thermal decomposition of UO3-2H20

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account

  4. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  5. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  6. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  7. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  8. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  9. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  10. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)

    1997-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  11. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  12. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  13. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  14. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  15. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  16. Revisiting dibenzothiophene thermochemical data: Experimental and computational studies

    International Nuclear Information System (INIS)

    Freitas, Vera L.S.; Gomes, Jose R.B.; Ribeiro da Silva, Maria D.M.C.

    2009-01-01

    Thermochemical data of dibenzothiophene were studied in the present work by experimental techniques and computational calculations. The standard (p 0 =0.1MPa) molar enthalpy of formation, at T = 298.15 K, in the gaseous phase, was determined from the enthalpy of combustion and sublimation, obtained by rotating bomb calorimetry in oxygen, and by Calvet microcalorimetry, respectively. This value was compared with estimated data from G3(MP2)//B3LYP computations and also with the other results available in the literature.

  17. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  18. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  19. Decomposing Nekrasov decomposition

    International Nuclear Information System (INIS)

    Morozov, A.; Zenkevich, Y.

    2016-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  20. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  1. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  2. FDG decomposition products

    International Nuclear Information System (INIS)

    Macasek, F.; Buriova, E.

    2004-01-01

    In this presentation authors present the results of analysis of decomposition products of [ 18 ]fluorodexyglucose. It is concluded that the coupling of liquid chromatography - mass spectrometry with electrospray ionisation is a suitable tool for quantitative analysis of FDG radiopharmaceutical, i.e. assay of basic components (FDG, glucose), impurities (Kryptofix) and decomposition products (gluconic and glucuronic acids etc.); 2-[ 18 F]fluoro-deoxyglucose (FDG) is sufficiently stable and resistant towards autoradiolysis; the content of radiochemical impurities (2-[ 18 F]fluoro-gluconic and 2-[ 18 F]fluoro-glucuronic acids in expired FDG did not exceed 1%

  3. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Preparation and thermochemical stability of uranium-zirconium-carbonitrides

    International Nuclear Information System (INIS)

    Kouhsen, C.

    1975-08-01

    This investigation deals with the preparation and the thermochemical stability of uranium-zirconium-carbonitrides as well as with the mechanism of (U,Zr) (C,N)-preparation by carbothermic reduction of uranium-zirconium-oxide. Single-phase (U,Zr) (C,N)-solid solutions with U:Zr-propertions of 3:1, 1:1, and 1:3 were prepared from oxide powder. The thermochemical stability of the (U,Zr) (C,N)-solid solutions against carbon was measured for varying Zr- and N-contents and for several temperatures; the results indicate an increase of the uranium carbide stability potential by the formation of (U,Zr) (C,N)-solid solutions. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 were calculated and the correlation between the M(C,N)-lattice constant and the N-content was evaluated. Through an intensive investigation of the reaction mechanism, several different reaction paths were found; for each of them the characteristical diffusion of matter was explained by means of the microsections. It was shown that the Zr-concentration of the oxide reactant and the heating rate during the carbothermic reduction influence the species of the reaction product, especially the homogeneity of the (U,Zr) (C,N)-solid solution. (orig.) [de

  5. Towards the renewal of the NEA Thermochemical Database

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Costa, Davide; Bossant, Manuel

    2015-01-01

    The Thermochemical Database (TDB) Project was created three decades ago as a joint undertaking of the NEA Radioactive Waste Management Committee and the NEA Data Bank. The project involves the collection of high-quality and traceable thermochemical data for a set of elements (mainly minor actinides and fission products) relevant to geophysical modelling of deep geological repositories. Funding comes from 15 participating organisations, primarily national nuclear waste authorities and research institutions. The quantities that are stored in the TDB database are: the standard molar Gibbs energy and enthalpy of formation, the standard molar entropy and, when available, the heat capacity at constant pressure, together with their uncertainty intervals. Reaction data are also provided: equilibrium constant of reaction, molar Gibbs energy of reaction, molar enthalpy of reaction and molar entropy of reaction. Data assessment is carried out by teams of expert reviewers through an in-depth analysis of the available scientific literature, following strict guidelines defined by the NEA to ensure the accuracy and self-consistency of the adopted datasets. Thermochemical data that has been evaluated and selected over the years have been published in the 13 volumes of the Chemical Thermodynamics series. They are also stored in a database that is updated each time the study of a new element is completed. The TDB selected data are made available to external third parties through the NEA web site where data extracted from the database can be displayed and downloaded as plain text files. Following recent recommendations of the Task Force on the Future Programme of the NEA Data Bank to enhance scientific expertise and user services, a renewal of the software managing the TDB database is being undertaken. The software currently used was designed 20 years ago and is becoming obsolete. Redesigning the application will provide an opportunity to correct current shortcomings and to develop

  6. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  7. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Ghandehariun, S.; Wang, Z.; Naterer, G.F.; Rosen, M.A.

    2015-01-01

    Highlights: • Thermal efficiency of a thermochemical cycle of hydrogen production is improved. • Direct contact heat recovery from molten salt is analyzed. • Falling droplets quenched into water are investigated experimentally. - Abstract: This paper investigates the heat transfer and X-ray diffraction patterns of solidified molten salt droplets in heat recovery processes of a thermochemical Cu–Cl cycle of hydrogen production. It is essential to recover the heat of the molten salt to enhance the overall thermal efficiency of the copper–chlorine cycle. A major portion of heat recovery within the cycle can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show that it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

  8. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions

    OpenAIRE

    Koh, Kai Seng; Chin, Jitkai; Wahida Ku Chik, Tengku F.

    2013-01-01

    Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition ...

  9. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead

  10. Rapid Return of Nitrogen but not Phosphorus to Ecosystem Nutrition During Decomposition of Quagga Mussel Tissue in Sand, Mud, or Water During Oxic or Anoxic Incubation: Implications for Phytoplankton Bioenergetics.

    Science.gov (United States)

    Cooney, E. M.; Cuhel, R. L.; Aguilar, C.

    2016-02-01

    In 2003 Quagga mussels were found to have invaded Lake Michigan. Their presence has changed the structure of the lake both ecologically (benthification) as well as chemically (oligotrophication). They consume large amounts of phytoplankton, which decreases the particulate nitrogen and phosphorous nutrients available to other consumers including zooplankton. As a result, fisheries productivity has decreased nearly 95%. Recently reaching the end of the first life cycle, in death they release a portion of these nutrients back into the freshwater system during decomposition. This work determined amounts of phosphorus and nitrogen nutrient recycling for several relevant sediment-water interface conditions: oxic vs anoxic in water, mud, or sand over a weeklong period. Concentrations of ammonium, soluble reactive phosphorus, and nitrate were used to analyze nutrient release as decomposition took place. In a short time up to 25% of tissue N was released as ammonia, and under oxic conditions in mud or sand, nitrification converted some of the ammonia to nitrate. Unexpectedly, mussels decaying in anoxic conditions released ammonium much more slowly. A slower rate of release in ammonium for the intact body with the shell (burial) was observed when compared to ground mussel tissue (detritivory). Nitrate was removed in anoxic incubations, indicating anaerobic denitrification. Phosphate release was initially higher under anoxic conditions than those decaying aerobically. There was no significant difference in the amount or rate of release of SRP between ground mussel and whole bodied with the shell. The anoxic treatment showed similar patterns of release for both ground mussel and intact body with shell. Most important, phosphate was subsequently removed in all treatments and diffusible nutrient was minimal (<100nM). The results link to nutrient assimilation patterns of deep phytoplankton communities, which can replace nitrate with ammonium as an N source.

  11. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  12. Decomposition of lake phytoplankton. 1

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    Short-time (24 h) and long-time (4-6 d) decomposition of phytoplankton cells were investigasted under in situ conditions in four Danish lakes. Carbon-14-labelled, dead algae were exposed to sterile or natural lake water and the dynamics of cell lysis and bacterial utilization of the leached products were followed. The lysis process was dominated by an initial fast water extraction. Within 2 to 4 h from 4 to 34% of the labelled carbon leached from the algal cells. After 24 h from 11 to 43% of the initial particulate carbon was found as dissolved carbon in the experiments with sterile lake water; after 4 to 6 d the leaching was from 67 to 78% of the initial 14 C. The leached compounds were utilized by bacteria. A comparison of the incubations using sterile and natural water showed that a mean of 71% of the lysis products was metabolized by microorganisms within 24 h. In two experiments the uptake rate equalled the leaching rate. (author)

  13. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  14. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  15. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  17. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  18. The NEA thermochemical database project. 30 years of accomplishments

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Brassinnes, Stephane

    2015-01-01

    The NEA Thermochemical Database (TDB) Project (www.oecd-nea.org/dbtdb/) provides a database of chemical thermodynamic values treating the most significant elements related to nuclear waste management. The work carried out since the initiation of TDB in 1984 has resulted in the publication of thirteen major reviews and a large set of selected values that have become an international reference in the field, as they are characterized for their accuracy, consistency and high quality. Herein, we describe the basis, scientific principles and organization of the TDB project, together with its evolution from its inception to the present organization as a joint undertaking under Article 5(b) of the Statute of the OECD Nuclear Energy Agency (NEA).

  19. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  20. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  1. Environmental requirements in thermochemical and biochemical conversion of biomass

    International Nuclear Information System (INIS)

    Frings, R.M.; Mackie, K.L.; Hunter, I.R.

    1992-01-01

    Many biological and thermochemical processing options exist for the conversion of biomass to fuels. Commercially, these options are assessed in terms of fuel product yield and quality. However, attention must also be paid to the environmental aspects of each technology so that any commercial plant can meet the increasingly stringent environmental legislation in the world today. The environmental aspects of biological conversion (biogasification and bioliquefaction) and thermal conversion (high pressure liquefaction, flash pyrolysis, and gasification) are reviewed. Biological conversion processes are likely to generate waste streams which are more treatable than those from thermal conversion processes but the available data for thermal liquefaction are very limited. Close attention to waste minimisation is recommended and processing options that greatly reduce or eliminate waste streams have been identified. Product upgrading and its effect on wastewater quality also requires attention. Emphasis in further research studies needs to be placed on providing authentic waste streams for environmental assessment. (author)

  2. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  3. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  4. Thermochemical and thermophysical properties of minor actinide compounds

    International Nuclear Information System (INIS)

    Minato, Kazuo; Takano, Masahide; Otobe, Haruyoshi; Nishi, Tsuyoshi; Akabori, Mitsuo; Arai, Yasuo

    2009-01-01

    Burning or transmutation of minor actinides (MA: Np, Am, Cm) that are classified as the high-level radioactive waste in the current nuclear fuel cycle is an option for the advanced nuclear fuel cycle. Although the thermochemical and thermophysical properties of minor actinide compounds are essential for the design of MA-bearing fuels and analysis of their behavior, the experimental data on minor actinide compounds are limited. To support the research and development of the MA-bearing fuels, the property measurements were carried out on minor actinide nitrides and oxides. The lattice parameters and their thermal expansions were measured by high-temperature X-ray diffractometry. The specific heat capacities were measured by drop calorimetry and the thermal diffusivities by laser-flash method. The thermal conductivities were determined by the specific heat capacities, thermal diffusivities and densities. The oxygen potentials were measured by electromotive force method.

  5. An approach to thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Besmann, T.M.; Beahm, E.C.; Spear, K.E.

    1998-01-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses

  6. Characteristics of thermochemical treated EN10090 X50 steel

    International Nuclear Information System (INIS)

    Schmitz, S.; Graf, K.; Scheid, A.; Moreno, A.

    2014-01-01

    EN10090 X50 steel is commonly used for engine valves to withstand severe operation conditions involving high temperature and corrosion from fuel and combustion gas. Usually, to enhance wear performance, valves undergo nitriding thermochemical treatment by salt baths. The aim of this work is to produce diffusion layers at least 20μm thick with hardness higher than 700HV by plasma surface treatment with no continuous compounds layer using nitrogen and methane based atmospheres. Samples were characterized by laser Confocal and scanning electron microscopy, X-ray diffraction and Vickers hardness. Salt bath treatment induced formation of undesirable compounds layer at the surface and a diffusion layer thicker than 40μm, with hardness arising 1280HV_0_,_0_1_0. Plasma surface treatment produced diffusion layer thicker than 40μm with no continuous compounds layer and mean hardness varying from 750 to 960HV_0_,_0_1_0. (author)

  7. Experiments of HI decomposition in Iodine-sulfur process

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2006-02-01

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H 2 O) at atmospheric pressure. Almost pure H 2 O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H 2 O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg

  8. Experiments of HI decomposition in Iodine-sulfur process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2006-02-15

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H{sub 2}O) at atmospheric pressure. Almost pure H{sub 2}O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H{sub 2}O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg.

  9. Nagra thermochemical data base. II. Supplement data 05/92

    International Nuclear Information System (INIS)

    Pearson, F.J.; Berner, U.; Hummel, W.

    1992-05-01

    Chemical thermodynamic data for aqueous species, minerals, and gases are required by Nagra for geochemical modelling. The Nagra thermochemical data base contains core and supplemental data. Core data for well-characterised entities were individually carefully selected and given by Pearson and Berner (1991). Supplemental data are for less common entities and for elements principally of safety assessment concern. They were selected in groups from other data bases for geochemical modelling and did not receive individual scrutiny. This report gives tables with the Nagra thermochemical data as of 5/92. It includes the core data described in the earlier report with supplemental data for the elements aluminium, silicon, iron, and manganese, the actinides thorium, uranium, neptunium, plutonium, and americium, and elements found as fission or activation products in nuclear waste, including nickel, zirconium, niobium, molybdenum, technetium, palladium, tin, selenium and iodine. Aqueous complexes of four representative organic anions are also included. The sources of these supplemental data are described in the text. Other compilations of data were examined during the selection on the supplemental data. These included the data bases used at the Paul Scherrer Institut with the geochemical programs MINEQL as of 3/91, PHREEQE as of 4/91, and the HATCHES 3.0 data base. This report also gives tables comparing selected data in these three data bases with values from the Nagra data base. This data base has not yet been tested for a full range of nuclear waste management applications, although such work is in progress. It should thus be regarded as a reference fixed point for quality assurance purpose and not critically reviewed standard. (author) tabs., refs

  10. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  11. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  12. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  13. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  14. SEWAGE DECOMPOSITION IN AMBIENT WATER: INFLUENCE OF SOLARRADIATION AND BIOTIC INTERACTIONS ON MICROORGANISM COMMUNITIES AND BACTEROIDALES REAL-TIME QUANTITATIVE PCR MEASUREMENTS - poster

    Science.gov (United States)

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  15. Photochemical decomposition of H2O and HN3 using colloidal semiconductor catalysts as a method of tritium recovery from water

    International Nuclear Information System (INIS)

    Monserrat, K.J.; D'Souza, L.M.

    1985-02-01

    Colloidal semiconductor redox catalysts were used to accelerate the photodecomposition of water and ammonia in aqueous solution. Parameters that affect overall catalytic efficiency, e.g. support material, doping and surface modification, were investigated

  16. Thermochemical Erosion Modeling of the 25-MM M242/M791 Gun System

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1997-01-01

    The MACE gun barrel thermochemical erosion modeling code addresses wall degradations due to transformations, chemical reactions, and cracking coupled with pure mechanical erosion for the 25-mm M242/M791 gun system...

  17. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Werner, R.W.; Ribe, F.L.

    1981-01-01

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  19. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  20. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  1. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  2. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  3. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  4. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  5. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  6. Effect of electrostatic interaction on thermochemical behavior of 12-crown-4 ether in various polar solvents

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2010-01-01

    The enthalpies of solution of 12-crown-4 ether have been measured in chloroform, ethyl acetate, acetone, pyridine, acetonitrile and methanol at 298.15 K. The values of enthalpy of solvation and solute-solvent interaction were determined from the obtained results and similar literature data for 12-crown-4 in solvents of various polarities. It was shown that the certain correlation is observed between the enthalpy of solute-solvent interaction and the squared dipole moment of the solvent molecules for solutions in tetrachlormethane, ethyl acetate, pyridine, acetonitrile, DMF, DMSO and propylene carbonate. This means that the electrostatic interaction of 12-crown-4 with polar solvent molecules contributes significantly to the exothermic effect of solvation. The understated negative value was found for the enthalpy of interaction of 12-crown-4 with acetone that can be connected with domination of low polar conformer of the crown ether in acetone medium. The most negative values of enthalpy of solvation are observed for solutions in chloroform and water because of hydrogen bonding between O-atoms of crown ether and molecules of the indicated solvents. This effect is not observed for methanol. The negative coefficient of pairwise solute-solute interaction in methanol indicates that the effects of solvophobic solute-solute interaction and H-bonding of the ether molecule with chain associates of methanol are not evinced in the thermochemical behavior of 12-crown-4.

  7. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  8. Investigations on the photoelectrochemical decomposition of water using solar radiation (photolysis). Final report. Untersuchung zur photoelektrochemischen Wasserzersetzung mit Hilfe von Sonnenenergie (Photolyse). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R N

    1985-01-01

    Laboratory experiments were carried out on illuminated TiO/sub 2/-electrodes to examine the possibility of conversion and storage of solar radiation in a chemical system especially as hydrogen from the photolysis of water. Methods of preparation of new photosensitive semiconducting electrodes were studied. For the preparation of the electrodes various technique of vapour deposition and surface treatment including ion implantation were employed. The thin-layered electrodes were characterized by absorption spectroscopy and by electrochemical methods. The results of the investigations are published in 29 original contributions quoted as references and in 3 PhD thesis of co-workers. Using solar radiation only small yields of hydrogen were obtained in the photolysis of water on TiO/sub 2/ electrodes. Nevertheless it is concluded that photoelectrochemistry possesses a high potential in photocatalysis and in investigations of photooxidation processes occurring in the atmosphere. (orig.) With 36 refs., 2 tabs., 56 figs.

  9. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least—Squares Estimation (IDEAL (Reeder et al. 2005 Automated Spine Survey Iterative Scan Technique (ASSIST (Weiss et al. 2006

    Directory of Open Access Journals (Sweden)

    Kenneth L. Weiss

    2008-01-01

    Full Text Available Background and Purpose: Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation.Methods: The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV sagittal stations, utilizing out-of-phase fast gradient echo (FGRE and T1 and/or T2 weighted fast spin echo (FSE IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T. Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST analysis software for automated vertebral numbering.Results: In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps.Conclusion: IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.

  10. Thermochemical study of cyanopyrazines: Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Morais, Victor M.F.; Matos, M. Agostinha R.

    2006-01-01

    The standard (p - bar =0.1MPa) molar energy of combustion, at T=298.15K, of crystalline 2,3-dicyanopyrazine was measured by static bomb calorimetry, in oxygen atmosphere. The standard molar enthalpy of sublimation, at T=298.15K, was obtained by Calvet Microcalorimetry, allowing the calculation of the standard molar enthalpy of formation of the compound, in the gas phase, at T=298.15K: Δ f H m - bar (g)=(518.7+/-3.4)kJ.mol -1 . In addition, the geometries of all cyanopyrazines were obtained using density functional theory with the B3LYP functional and two basis sets: 6-31G* and 6-311G**. These calculations were then used for a better understanding of the relation between structure and energetics of the cyanopyrazine systems. These calculations also reproduce measured standard molar enthalpies of formation with some accuracy and do provide estimates of this thermochemical parameter for those compounds that could not be studied experimentally, namely the tri- and tetracyanopyrazines: the strong electron withdrawing cyano group on the pyrazine ring makes cyanopyrazines highly destabilized compounds

  11. SWINE MANURE SOLIDS SEPARATION AND THERMOCHEMICAL CONVERSION TO HEAVY OIL

    Directory of Open Access Journals (Sweden)

    Shuangning Xiu

    2009-05-01

    Full Text Available Separation of solids from liquid swine manure and subsequent thermo-chemical conversion (TCC of the solids fraction into oil is one way of reducing the waste strength and odor emission. Such processing also provides a potential means of producing renewable energy from animal wastes. Gravity settling and mechanical separation techniques, by means of a centrifuge and belt press, were used to remove the solids from liquid swine manure. The solid fractions from the above separation processes were used as the feedstock for the TCC process for oil production. Experiments were conducted in a batch reactor with a steady temperature 305 oC, and the corresponding pressure was 10.34 Mpa. Gravity settling was demonstrated to be capable of increasing the total solids content of manure from 1% to 9%. Both of the mechanical separation systems were able to produce solids with dry matter around 18% for manure, with 1% to 2% initial total solids. A significant amount of volatile solid (75.7% was also obtained from the liquid fraction using the belt press process. The oil yields of shallow pit manure solids and deep pit manure solids with belt press separation were 28.72% and 29.8% of the total volatile solids, respectively. There was no visible oil product obtained from the deep pit manure solids with centrifuge separation. It is believed that it is the volatile solid content and the other components in the manure chemical composition which mainly deter-mine the oil production.

  12. Thermochemical properties of media for pyrometallurgical nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hosoya, Yuji; Terai, Takayuki

    1998-01-01

    Molten chloride/cadmium system is considered to be applied to a solvent in pyrochemical reprocessing of spent nuclear fuel. In this work, phase diagrams for molten chloride systems were constructed, using NdCl 3 as an imitative substance in place of UCl 3 or PuCl 3 . Hastelloy-X (Ni/Cr21/Fe18/Mo9/W) was examined as a structural material for the corrosion-resistance against molten chloride baths containing NdCl 3 . The process of corrosion was thermochemically discussed and the form of the corrosion was illustrated. Rutherford backscattering spectroscopy was successfully applied to determine the elemental distribution profile of specimens tested on the compatibility with molten chloride mixture at elevated temperature. Ferritic steel was also examined as another candidate material for the compatibility with molten cadmium covered with LiCl-KCl eutectic salt. Variation of near-surface composition was observed by comparing the results of Rutherford backscattering spectroscopy obtained before and after the dipping. (author)

  13. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  14. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    Science.gov (United States)

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  15. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    Science.gov (United States)

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  16. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    Kosmidou, Theodora; Haehner, Peter

    2009-01-01

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I 2 (l) + SO 2 (g) +2 H 2 O (l) → 2HI (l) + H 2 SO 4 (l) (70-120 deg. C); H 2 SO 4 (l) → H 2 O (l) + SO 2 (g) + 1/2 O 2 (g) (800-900 deg. C); 2HI (l) → I 2 (g) + H 2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO 2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO 2 rich environment at 850 o C under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H 2 O, 12.25 SO 2 , 6.13 O 2 , balance N 2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with

  17. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  18. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  19. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  20. Art of spin decomposition

    International Nuclear Information System (INIS)

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-01-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  1. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  2. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  3. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  4. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    Science.gov (United States)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  5. Evaluation of the R2* value in invasive ductal carcinoma with respect to hypoxic-related prognostic factors using iterative decomposition of water and fat with echo asymmetry and least-squares emission (IDEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Mari; Aoki, Takatoshi; Kinoshita, Shunsuke; Fujii, Masami; Korogi, Yukunori [University of Occupational and Environmental Health, Department of Radiology, Kitakyushu (Japan); Shimajiri, Shohei [University of Occupational and Environmental Health, Department of Pathology and Cell Biology, Kitakyushu (Japan); Matsuyama, Atsuji [University of Occupational and Environmental Health, Department of Pathology and Oncology, Kitakyushu (Japan); Katsuki, Takefumi; Inoue, Yuzuru [University of Occupational and Environmental Health, First Department of Surgery, Kitakyushu (Japan); Nagata, Yoshika; Tashima, Yuko [University of Occupational and Environmental Health, Second department of Surgery, Kitakyushu (Japan)

    2017-10-15

    To correlate the R2* value obtained by iterative decomposition of water and fat with echo asymmetry and least-squares emission (IDEAL) with fibrotic focus (FF), microvessel density and hypoxic biomarker (HIF-1α) in breast carcinoma. Forty-two patients who were diagnosed with invasive ductal carcinoma (IDC) of the breast underwent breast MRI including IDEAL before surgery. The entire region of interest (ROI) was delineated on the R2* map, and average tumour R2* value was calculated for each ROI. Histological specimens were evaluated for the presence of FF, the microvessel density (the average microvessel density and the ratio of peripheral to central microvessel density), and the grading of HIF-1α. FF was identified in 47.6% (20/42) of IDCs. Average R2* value for IDC with FF (42.4±13.2 Hz) was significantly higher than that without FF (28.5±13.9 Hz) (P = 0.01). Spearman rank correlation suggested that the average R2* value correlated with the grade of HIF-1α and the ratio of peripheral to central microvessel density for IDCs (P < 0.001). Quantification of tumour R2* using IDEAL is associated with the presence of FF and the overexpression of HIF-1α, and may therefore be useful in predicting hypoxia of breast carcinoma. (orig.)

  6. Physical properties of peats as related to degree of decomposition

    Science.gov (United States)

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  7. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Directory of Open Access Journals (Sweden)

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  8. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  9. Decomposition of lake phytoplankton. 2

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    The lysis process of phytoplankton was followed in 24 h incubations in three Danish lakes. By means of gel-chromatography it was shown that the dissolved carbon leaching from different algal groups differed in molecular weight composition. Three distinct molecular weight classes (>10,000; 700 to 10,000 and < 700 Daltons) leached from blue-green algae in almost equal proportion. The lysis products of spring-bloom diatoms included only the two smaller size classes, and the molecules between 700 and 10,000 Daltons dominated. Measurements of cell content during decomposition of the diatoms revealed polysaccharides and low molecular weight compounds to dominate the lysis products. No proteins were leached during the first 24 h after cell death. By incubating the dead algae in natural lake water, it was possible to detect a high bacterial affinity towards molecules between 700 and 10,000 Daltons, although the other size classes were also utilized. Bacterial transformation of small molecules to larger molecules could be demonstrated. (author)

  10. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  11. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  12. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  13. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thelhawadigedara, Lahiru Niroshan Jayakody [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Christopher W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pleitner, Brenna P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cleveland, Nicholas S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitham, Jason M. [Oak Ridge National Laboratory; Giannone, Richard J. [Oak Ridge National Laboratory; Klingeman, Dawn M. [Oak Ridge National Laboratory; Brown, Robert C. [Iowa State University; Brown, Steven D. [Oak Ridge National Laboratory; LanzaTech, Inc.; Hettich, Robert L. [Oak Ridge National Laboratory; Guss, Adam M. [Oak Ridge National Laboratory

    2018-04-17

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putida grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.

  14. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis.

    Science.gov (United States)

    Hernández, Ana Belén; Okonta, Felix; Freeman, Ntuli

    2017-07-01

    Thermochemical valorisation processes that allow energy to be recovered from sewage sludge, such as pyrolysis and gasification, have demonstrated great potential as convenient alternatives to conventional sewage sludge disposal technologies. Moreover, these processes may benefit from CO 2 recycling. Today, the scaling up of these technologies requires an advanced knowledge of the reactivity of sewage sludge and the characteristics of the products, specific to the thermochemical process. In this study the behaviour of sewage sludge during thermochemical conversion, under different atmospheres (N 2 , CO 2 and air), was studied, using TGA-FTIR, in order to understand the effects of different atmospheric gases on the kinetics of degradation and on the gaseous products. The different steps observed during the solid degradation were related with the production of different gaseous compounds. A higher oxidative degree of the atmosphere surrounding the sample resulted in higher reaction rates and a shift of the degradation mechanisms to lower temperatures, especially for the mechanisms taking place at temperatures above 400 °C. Finally, a multiple first-order reaction model was proposed to compare the kinetic parameters obtained under different atmospheres. Overall, the highest activation energies were obtained for combustion. This work proves that CO 2 , an intermediate oxidative atmosphere between N 2 and air, results in an intermediate behaviour (intermediate peaks in the derivative thermogravimetric curves and intermediate activation energies) during the thermochemical decomposition of sewage sludge. Overall, it can be concluded that the kinetics of these different processes require a different approach for their scaling up and specific consideration of their characteristic reaction temperatures and rates should be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Danburite decomposition by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Ashurov, N.A.; Mirsaidov, U.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by hydrochloric acid. The interaction of boron containing ores of Ak-Arkhar Deposit of Tajikistan with mineral acids, including hydrochloric acid was studied. The optimal conditions of extraction of valuable components from danburite composition were determined. The chemical composition of danburite of Ak-Arkhar Deposit was determined as well. The kinetics of decomposition of calcined danburite by hydrochloric acid was studied. The apparent activation energy of the process of danburite decomposition by hydrochloric acid was calculated.

  16. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  17. AUTONOMOUS GAUSSIAN DECOMPOSITION

    International Nuclear Information System (INIS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes

  18. Development and thermochemical characterizations of vermiculite/SrBr_2 composite sorbents for low-temperature heat storage

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M.

    2016-01-01

    Novel EVM/SrBr_2 composite sorbents with different salt contents were developed for low-temperature thermal energy storage (TES). Simulative sorption experiment was conducted to obtain the sorption kinetics diagram and identify threshold salt content that composite sorbents can hold without solution leakage. Distribution of salt embedded in EVM was observed by extreme-resolution scanning electron microscopy (ER-SEM). Thermochemical characterizations including desorption performance and desorption heat were fully investigated by analyzing simultaneous thermal analyzer (STA) results. Results reveal that sorption process of composite sorbents is divided into three parts: water adsorption of EVM, water adsorption of SrBr_2 crystal and liquid-gas absorption of SrBr_2 solution. Since SrBr_2 solution can be hold in macrospores of EVM, water uptake and energy storage density are greatly increased. It appears that the composite sorbent of EVMSrBr_240 is a promising material for thermal energy storage, with water uptake of 0.53 g/g, mass energy storage density of 0.46 kWh/kg and volume energy storage density of 105.36 kWh/m"3. - Highlights: • Vermiculite/SrBr_2 composite sorbents were developed for thermal energy storage. • Water uptake of composite sorbents is divided into three phases. • Energy storage density of each sorption phase is evaluated via calculations. • EVMSrBr_240 is chosen as optimal sorbent without solution leakage.

  19. Probing cycle stability and reversibility in thermochemical energy storage – CaC_2O_4·H_2O as perfect match?

    International Nuclear Information System (INIS)

    Knoll, Christian; Müller, Danny; Artner, Werner; Welch, Jan M.; Werner, Andreas; Harasek, Michael; Weinberger, Peter

    2017-01-01

    Highlights: • CaC_2O_4·H_2O dehydration is fully reversible between 25 °C and 200 °C. • Isothermal cycling between hydrate and anhydrate phase can be triggered by the water vapour concentration. • High reaction rates and full reversibility demonstrated over 100 cycles. • Material shows no ageing effects or reactivity decrease. - Abstract: The dehydration and subsequent rehydration of calcium oxalate monohydrate has yet to find application in thermochemical energy storage. Unlike for many other salt hydrates, complete reversibility of the dehydration-rehydration reaction was observed. Additionally, it was found that the rehydration temperature is strongly affected by the water vapour concentration: Full reversibility is not only achieved at room-temperature, but, depending on the water vapour concentration, at up to 200 °C. This allows isothermal switching of the material between charging and discharging by a change of the H_2O-partial pressure. Cycle stability of the material was tested by a long-term stress experiment involving 100 charging and discharging cycles. No signs of material fatigue or reactivity loss were found. In-situ powder X-ray diffraction showed complete rehydration of the material within 300 s. The experimental findings indicate that the CaC_2O_4·H_2O/CaC_2O_4 system is perfectly suited for technical application as a thermochemical energy storage medium.

  20. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Yang Xuwu; Sun Wujuan; Ke Congyu; Zhang Hangguo; Wang Xiaoyan; Gao Shengli

    2007-01-01

    Fourteen rare earth complexes with salicylic acid RE(HSal) 3 .nH 2 O (HSal = C 7 H 5 O 3 ; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, Δ c U, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δ c H m 0 , and standard molar enthalpies of formation, Δ f H m o , were calculated

  1. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  2. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  3. Thermochemical treatment of the pay zone in the well RK-3

    Energy Technology Data Exchange (ETDEWEB)

    Labudovic, V

    1970-02-01

    The elements are given for the calculation of the thermochemical treatment of the Well RK-3. From the diagram, the Mg and HCl reaction velocity vs. pressure and the temperature vs. the quantity of the reacted CaCO/sub 3/ can be read out. These are important elements for the calculation of a thermochemical treatment. A comparison of calculated and measured temperatures and the factors influencing the heat conductivity of the formation rock is given. The heating range at formation depths is calculated. The relation quantity of warm acid vs. injection pressure also is given.

  4. REITP3-Hazard evaluation program for heat release based on thermochemical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yoshiaki.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering; Kawakatsu, Yuichi. [Oji Paper Corp., Tokyo (Japan); Wada, Yuji. [National Institute for Resources and Environment, Tsukuba (Japan); Yoshida, Tadao. [Hosei University, Tokyo (Japan). College of Engineering

    1999-06-30

    REITP3-A hazard evaluation program for heat release besed on thermochemical calculation has been developed by modifying REITP2 (Revised Estimation of Incompatibility from Thermochemical Properties{sup 2)}. The main modifications are as follows. (1) Reactants are retrieved from the database by chemical formula. (2) As products are listed in an external file, the addition of products and change in order of production can be easily conducted. (3) Part of the program has been changed by considering its use on a personal computer or workstation. These modifications will promote the usefulness of the program for energy hazard evaluation. (author)

  5. Thermodynamic limits on the performance of a solar thermochemical energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    General expressions for the exergetic and work recovery efficiencies of thermochemical storage systems have been developed by assuming that the reaction process is the only source irreversibility within the closed-loop system. These have been used to plot contours of constant efficiency for the ammonia-based thermochemical system. The effect of spontaneous separation of mixtures due to the preferential condensation of ammonia has been examined analytically and graphically. The analysis presented represents a necessary prerequisite for the optimization of system efficiencies by reactor design. (author)

  6. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  7. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  8. Thermochemical properties for isooctane and carbon radicals: computational study.

    Science.gov (United States)

    Snitsiriwat, Suarwee; Bozzelli, Joseph W

    2013-01-17

    Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.

  9. Real interest parity decomposition

    Directory of Open Access Journals (Sweden)

    Alex Luiz Ferreira

    2009-09-01

    Full Text Available The aim of this paper is to investigate the general causes of real interest rate differentials (rids for a sample of emerging markets for the period of January 1996 to August 2007. To this end, two methods are applied. The first consists of breaking the variance of rids down into relative purchasing power pariety and uncovered interest rate parity and shows that inflation differentials are the main source of rids variation; while the second method breaks down the rids and nominal interest rate differentials (nids into nominal and real shocks. Bivariate autoregressive models are estimated under particular identification conditions, having been adequately treated for the identified structural breaks. Impulse response functions and error variance decomposition result in real shocks as being the likely cause of rids.O objetivo deste artigo é investigar as causas gerais dos diferenciais da taxa de juros real (rids para um conjunto de países emergentes, para o período de janeiro de 1996 a agosto de 2007. Para tanto, duas metodologias são aplicadas. A primeira consiste em decompor a variância dos rids entre a paridade do poder de compra relativa e a paridade de juros a descoberto e mostra que os diferenciais de inflação são a fonte predominante da variabilidade dos rids; a segunda decompõe os rids e os diferenciais de juros nominais (nids em choques nominais e reais. Sob certas condições de identificação, modelos autorregressivos bivariados são estimados com tratamento adequado para as quebras estruturais identificadas e as funções de resposta ao impulso e a decomposição da variância dos erros de previsão são obtidas, resultando em evidências favoráveis a que os choques reais são a causa mais provável dos rids.

  10. Final Report UCLA-Thermochemical Storage with Anhydrous Ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Adrienne [Univ. of California, Los Angeles, CA (United States)

    2018-02-05

    In ammonia-based thermochemical energy storage (TCES), ammonia is dissociated endothermically as it absorbs solar energy during the daytime. When energy is required, the reverse reaction releases energy to heat a working fluid such as steam, to produce electricity. Ammonia-based TCES has great advantages of simplicity, low cost reactants, and a strong industrial base in the conventional ammonia industry. The concept has been demonstrated over three decades of research at Australian National University, achieving a 24-hour demonstration of a complete system. At the start of this project, three challenges were identified that would have to be addressed to show that the system is technically and economically viable for incorporation into a CSP plant with an advanced, high temperature power block. All three of these challenges have now been addressed: 1. The ammonia synthesis reaction had not, to our knowledge, been carried out at temperatures consistent with modern power blocks (i.e., ~650°C). The technical feasibility of operating a reactor under high-temperature, near-equilibrium conditions was an unknown, and was therefore a technical risk. The project has successfully demonstrated steam heating to 650°C and energy recovery to steam at the 5 kWt level. 2. The ammonia system has a relatively low enthalpy of reaction combined with gas phase reactants. This is not a direct disadvantage since the reactants themselves are low cost. The challenge lies in storing the required volume of reactants cost effectively. Therefore, a second key goal was to show, through techno-economic analysis, that underground storage technologies can be used to store the energy-rich gas at a cost that is consistent with the SunShot cost goal. We have identified two promising technologies for gas storage: storage in salt caverns has an estimated cost of 1(USD)/kWht and storage in drilled shafts could be on the order of 7(USD)/kWht. Together these two options answer the technical challenge

  11. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermodynamic anomaly in magnesium hydroxide decomposition

    International Nuclear Information System (INIS)

    Reis, T.A.

    1983-08-01

    The Origin of the discrepancy in the equilibrium water vapor pressure measurements for the reaction Mg(OH) 2 (s) = MgO(s) + H 2 O(g) when determined by Knudsen effusion and static manometry at the same temperature was investigated. For this reaction undergoing continuous thermal decomposition in Knudsen cells, Kay and Gregory observed that by extrapolating the steady-state apparent equilibrium vapor pressure measurements to zero-orifice, the vapor pressure was approx. 10 -4 of that previously established by Giauque and Archibald as the true thermodynamic equilibrium vapor pressure using statistical mechanical entropy calculations for the entropy of water vapor. This large difference in vapor pressures suggests the possibility of the formation in a Knudsen cell of a higher energy MgO that is thermodynamically metastable by about 48 kJ / mole. It has been shown here that experimental results are qualitatively independent of the type of Mg(OH) 2 used as a starting material, which confirms the inferences of Kay and Gregory. Thus, most forms of Mg(OH) 2 are considered to be the stable thermodynamic equilibrium form. X-ray diffraction results show that during the course of the reaction only the equilibrium NaCl-type MgO is formed, and no different phases result from samples prepared in Knudsen cells. Surface area data indicate that the MgO molar surface area remains constant throughout the course of the reaction at low decomposition temperatures, and no significant annealing occurs at less than 400 0 C. Scanning electron microscope photographs show no change in particle size or particle surface morphology. Solution calorimetric measurements indicate no inherent hgher energy content in the MgO from the solid produced in Knudsen cells. The Knudsen cell vapor pressure discrepancy may reflect the formation of a transient metastable MgO or Mg(OH) 2 -MgO solid solution during continuous thermal decomposition in Knudsen cells

  13. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  14. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an

  15. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The o...

  16. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  17. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  18. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  19. The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison

    Directory of Open Access Journals (Sweden)

    Jesse Sky Daystar

    2015-07-01

    Full Text Available The financial and environmental performance of the National Renewable Energy Lab’s (NREL thermochemical and biochemical biofuel conversion processes are examined herein with pine, eucalyptus, unmanaged hardwood, switchgrass, and sweet sorghum. The environmental impacts of the process scenarios were determined by quantifying greenhouse gas (GHG emissions and TRACI impacts. Integrated financial and environmental performance metrics were introduced and used to examine the biofuel production scenarios. The thermochemical and biochemical conversion processes produced the highest financial performance and lowest environmental impacts when paired with pine and sweet sorghum, respectively. The high ash content of switchgrass and high lignin content of loblolly pine lowered conversion yields, resulting in the highest environmental impacts and lowest financial performance for the thermochemical and biochemical conversion processes, respectively. Biofuel produced using the thermochemical conversion process resulted in lower TRACI single score impacts and somewhat lower GHG emissions per megajoule (MJ of fuel than using the biochemical conversion pathway. The cost of carbon mitigation resulting from biofuel production and corresponding government subsidies was determined to be higher than the expected market carbon price. In some scenarios, the cost of carbon mitigation was several times higher than the market carbon price, indicating that there may be other more cost-effective methods of reducing carbon emissions.

  20. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass

    Science.gov (United States)

    Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan. Li

    2013-01-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...

  1. To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2007-01-01

    Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper

  2. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  3. Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock

    International Nuclear Information System (INIS)

    Madanayake, Buddhike Neminda; Gan, Suyin; Eastwick, Carol; Ng, Hoon Kiat

    2016-01-01

    Jatropha curcas seed cake is a viable feedstock for co-firing with coal as it has the advantages of being renewable, carbon-neutral and sourced from a versatile plant. Torrefaction, a mild pyrolysis treatment by heating in a N_2 atmosphere, was investigated as a technique to improve the thermochemical properties of the biomass, primarily the HHV (higher heating value). The temperature and holding time were varied in the ranges of 200–300 °C and 0–60 min, respectively, to form a 5-level full-factorial experimental matrix. An optimum envelope of torrefaction parameters was identified in the range of 280 °C to >45 min at 220–250 °C under a heating rate of 10 °C/min. This results in an enhancement of the HHV from 24 MJ/kg to more than 27 MJ/kg, which is within the range of coal, while maintaining an energy yield higher than 90%. The relationships between the HHV and the proximate fixed carbon content as well as the elemental CHO content were also investigated. Through "1"3C NMR (nuclear magnetic resonance) spectroscopy, hemicellulose was determined as the most volatile component, undergoing decomposition before 250 °C while cellulose only degraded fully in the 250–300 °C range and lignin decomposition spanned from 200 °C to beyond 300 °C. - Highlights: • The optimum parameters ranged from 280 °C to >45 min at 220–250 °C. • In this range, the higher heating value was enhanced by 20% to 27 MJ/kg. • A positive correlation exists between the HHV and the fixed carbon content. • H/C and O/C ratios of the biomass shifted towards those of coal. • Degradation of hemicellulose, cellulose and lignin components was investigated.

  4. A 2D nickel-based energetic MOFs incorporating 3,5-diamino-1,2,4-triazole and malonic acid: Synthesis, crystal structure and thermochemical study

    International Nuclear Information System (INIS)

    Yang, Qi; Song, Xiaxia; Ge, Jing; Zhao, Guowei; Zhang, Wendou; Xie, Gang; Chen, Sanping; Gao, Shengli

    2016-01-01

    Highlights: • An energetic MOFs with dinuclear nickel unit has been synthesized and characterized. • The Arrhenius equation, derived from kinetics analysis, is ln k = 55.89 − 332.01 × 10 3 /RT. • The standard molar enthalpy of formation of the compound is determined by a thermochemical cycle. • The molar heat capacity at T = 298.15 K is determined to be 1.42 ± 0.11 J · K −1 · g −1 . - Abstract: A new energetic MOFs, {[Ni 2 (C 2 H 5 N 5 ) 2 (C 3 H 2 O 4 ) 2 (H 2 O)]·3H 2 O} n (Hdatrz (C 2 H 5 N 5 ) = 3,5-diamino-1,2,4-triazole, H 2 mal (C 3 H 4 O 4 ) = malonic acid), has been synthesized and characterized by element analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound featured a 2D layer structure with dinuclear Ni(II) unit. Thermal analysis demonstrated that the compound after dehydration have good thermostability with decomposition temperature up to 633 K. The non-isothermal kinetics for the compound was studied by Kissinger’s and Ozawa’s methods. The Arrhenius equation of initial thermal decomposition process of compound can be expressed as ln k = 55.89 − 332.01 × 10 3 /RT. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound, and standard molar enthalpy of dissolution of reactants and products were measured by RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2766.3 ± 2.3) kJ · mol −1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be 1.42 ± 0.11 J · K −1 · g −1 by RD496-2000 calorimeter.

  5. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  6. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  7. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  8. Kinetic study of the thermal decomposition of uranium metaphosphate, U(PO{sub 3}){sub 4}, into uranium pyrophosphate, UP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Chul, E-mail: nhcyang@kaeri.re.kr; Kim, Hyung-Ju; Lee, Si-Young; Yang, In-Hwan; Chung, Dong-Yong

    2017-06-15

    The thermochemical properties of uranium compounds have attracted much interest in relation to thermochemical treatments and the safe disposal of radioactive waste bearing uranium compounds. The characteristics of the thermal decomposition of uranium metaphosphate, U(PO{sub 3}){sub 4}, into uranium pyrophosphate, UP{sub 2}O{sub 7}, have been studied from the view point of reaction kinetics and acting mechanisms. A mixture of U(PO{sub 3}){sub 4} and UP{sub 2}O{sub 7} was prepared from the pyrolysis residue of uranium-bearing spent TBP. A kinetic analysis of the reaction of U(PO{sub 3}){sub 4} into UP{sub 2}O{sub 7} was conducted using an isoconversional method and a master plot method on the basis of data from a non-isothermal thermogravimetric analysis. The thermal decomposition of U(PO{sub 3}){sub 4} into UP{sub 2}O{sub 7} followed a single-step reaction with an activation energy of 175.29 ± 1.58 kJ mol{sup −1}. The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev model (A3), which describes that there are certain restrictions on nuclei growth of UP{sub 2}O{sub 7} during the solid-state decomposition of U(PO{sub 3}){sub 4}. - Highlights: •Thermal decomposition kinetics of U(PO{sub 3}){sub 4} into UP{sub 2}O{sub 7} was investigated. •The thermal decomposition followed a single-step reaction with an activation energy of 175.3 ± 1.6 kJ mol{sup −1}. •The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev (A3).

  9. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  10. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  11. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  12. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, Xavier; Carles, Philippe; Anzieu, Pascal

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (author)

  13. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, X.; Carles, P.; Anzieu, P.

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (authors)

  14. Biological decomposition of aqueous solutions from soil cleaning

    International Nuclear Information System (INIS)

    Kniebusch, M.M.; Sekoulov, I.

    1993-01-01

    The biological cleaning of process water from soil cleaning and from contaminated groundwater required the development of new types of reaction systems. With the introduced membrane biofilm reactor, even substances difficult to decompose can be removed from contaminated water. Previous investigations of the elimination of pyrene in the presence of n-hexadecane show an optimum temperature at 30 C. An increase of scale is possible based on the invesstigations carried out on the aerobic biological decomposition of polycyclic aromatic hydrocarbons. (orig.) [de

  15. Lie bialgebras with triangular decomposition

    International Nuclear Information System (INIS)

    Andruskiewitsch, N.; Levstein, F.

    1992-06-01

    Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula for the universal R-matrix. (author). 17 refs

  16. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  17. Probability inequalities for decomposition integrals

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mesiar, Radko

    2017-01-01

    Roč. 315, č. 1 (2017), s. 240-248 ISSN 0377-0427 Institutional support: RVO:67985556 Keywords : Decomposition integral * Superdecomposition integral * Probability inequalities Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0470959.pdf

  18. Thermal decomposition of ammonium hexachloroosmate

    DEFF Research Database (Denmark)

    Asanova, T I; Kantor, Innokenty; Asanov, I. P.

    2016-01-01

    Structural changes of (NH4)2[OsCl6] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH4)2[OsCl6] transforms directly to meta...

  19. Achievement report on research and development in the Sunshine Project in fiscal 1979. Research and development on water decomposition by using mixed cycle of thermo-chemistry, photo-chemistry and electrochemistry; 1979 nendo netsukagaku, hikari kagaku, denki kagaku konsei cycle ni yoru mizu bunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes achievements in research and development in the Sunshine Project in fiscal 1979 on water decomposition by using mixed cycle of thermo-chemistry, photo-chemistry and electrochemistry. In research on the light irradiation electrolytic process, with an objective of improving the reaction efficiency, discussions were given by raising light intensity on the irradiated surface as high as 13 times that of the sunlight. The subsequent process is electrolysis of products from photo-chemical reaction, and the product concentration should be high enough to have HI decomposition (hydrogen acquisition) proceed with high efficiency. Experiments were carried out at 0.03 to 0.1M as iodine concentrations (product HI concentration at 3%). A photo-chemical reaction rate of 80% was obtained at light intensity as high as 12 times that of the sunlight, and iodine concentration of 0.07 mM. The efficiency was 15%. Raising temperature causes the reaction rate to decrease, but it can be supplemented by raising the light intensity, where high concentration HI content was obtained. Rate controlling process in the reaction was elucidated from activation energies in the reaction process of each element on the iodine concentrations from 3 to 30 mM used in the photo-chemical reaction. Experiments were performed on HI decomposition (hydrogen acquisition) by using a heat diffusion column. Separation performance in a filled type column was worse than that in an empty type column, which requires future discussions. (NEDO)

  20. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  1. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625 o C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single-reheat option

  2. Nitrogen deposition does not enhance Sphagnum decomposition.

    Science.gov (United States)

    Manninen, S; Kivimäki, S; Leith, I D; Leeson, S R; Sheppard, L J

    2016-11-15

    Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3(-) or NH4(+). We studied effects of elevated wet deposition of NO3(-) vs. NH4(+) alone (8 or 56kgNha(-1)yr(-1) over and above the background of 8kgNha(-1)yr(-1) for 5 to 11years) or combined with phosphorus (P) and potassium (K) on Sphagnum quality for decomposers, mass loss, and associated changes in hummock pore water in an ombrotrophic bog (Whim). Adding N, especially as NH4(+), increased N concentration in Sphagnum, but did not enhance mass loss from Sphagnum. Mass loss seemed to depend mainly on moss species and climatic factors. Only high applications of N affected hummock pore water chemistry, which varied considerably over time. Overall, C and N cycling in this N treated bog appeared to be decoupled. We conclude that moss species, seasonal and annual variation in climatic factors, direct negative effects of N (NH4(+) toxicity) on Sphagnum production, and indirect effects (increase in pH and changes in plant species dominance under elevated NO3(-) alone and with PK) drive Sphagnum decomposition and hummock C and N dynamics at Whim. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  4. Litter Decomposition Rate of Avicennia marina and Rhizophora apiculata in Pulau Dua Nature Reserve, Banten

    Directory of Open Access Journals (Sweden)

    Febriana Siska

    2016-05-01

    Full Text Available Litter decomposition rate is useful method to determine forest fertility level. The aims of this study were to measure decomposition rate, and analyze the nutrient content released organic carbon, nitrogen, and phosphor from Avicennia marina and Rhizophora apiculata litters during the decomposition process. The research was conducted in the Pulau Dua Nature Reserve, Serang-Banten on A. marina and R. apiculata forest communities. Litter decomposition rate measurements performed in the field. Litter that has been obtained with the trap system is inserted into litter bag and than tied to the roots or trees to avoid drifting sea water. Litter decomposition rate was measured every 15 days and is accompanied by analysis of the content of organic C , total N and P. Our research results showed decomposition rate of A. marina (k= 0.83 was higher than that of R. apiculata (k= 0.41. Differences of  leaf anatomical structure and sea water salinity  influenced to the rate of litter decomposition. Organic C released was declined with longer of litter decomposition, on the contrary of releasing N and P nutrients.

  5. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-01-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the

  6. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  7. Haemolytic activity of uranium compounds haemolysis by thermochemical derivatives of ammonium uranate

    International Nuclear Information System (INIS)

    Stuart, W.I.; Tucker, A.D.; Adams, R.B.

    1975-01-01

    A study has been made of the haemolytic action on human erythrocytes by ammonium uranate (AU) and various thermochemical products of AU. These products were obtained by heating AU in hydrogen at 5 0 C min -1 to various temperatures. Haemolysis has been interpreted in terms of a diffusion model which for each product yields a single parameter Ksub(N), the haemolytic activity factor. The magnitude of Ksub(N) is a convenient measure of the ability of a powder to damage erythrocytes. The haemolytic activity of certain thermochemical derivatives indicates an exceptionally high potential for damage to erythrocytes. Infrared and thermoanalytical measurements have shown that the high activity of these products derives principally from a self-reduction reaction, induced by heating AU to 400-420 0 C in hydrogen. (author)

  8. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  9. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  10. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  11. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  12. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  13. Ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-05-15

    We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. CCE-based electrodes vastly outperform a bare carbon electrode. Optimization of the organosilicate loading revealed maximum electrode performance was achieved with 36 wt% and was explained in terms of the optimal balance of active area and anion transport properties. (author)

  14. Experimental investigation and thermochemical assessment of the system Cu-Y-O

    International Nuclear Information System (INIS)

    Zimmermann, E.; Mohammad, A.; Boudene, A.; Neuschuetz, D.

    1995-01-01

    Experimental investigations of the thermochemical properties of the phases in the system Cu-Y-O by means of DTA, EMF, TG and calorimetric measurements are reported. The results together with critically selected data from the literature are used for a complete assessment of the Gibbs energies of the ternary phases (based on the Standard Element Reference State, SER). For the binary subsystems critically assessed data from the literature are used. (orig.)

  15. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  16. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  17. Definitive Ideal-Gas Thermochemical Functions of the (H2O)-O-16 Molecule

    Czech Academy of Sciences Publication Activity Database

    Furtenbacher, T.; Szidarovszky, T.; Hrubý, Jan; Kyuberis, A. A.; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Császár, A. G.

    2016-01-01

    Roč. 45, č. 4 (2016), č. článku 043104. ISSN 0047-2689 R&D Projects: GA ČR(CZ) GA16-02647S Institutional support: RVO:61388998 Keywords : ideal-gas thermochemical quantities * ortho- and para-H2 16O * partition function Subject RIV: BJ - Thermodynamics Impact factor: 4.204, year: 2016 http://aip.scitation.org/doi/pdf/10.1063/1.4967723

  18. Investigation of innovative thermochemical energy storage processes and materials for building applications

    OpenAIRE

    Aydin, Devrim

    2016-01-01

    In this study, it is aimed to develop an innovative thermochemical energy storage system through material, reactor and process based investigations for building space heating applications. The developed system could be integrated with solar thermal collectors, photovoltaic panels or heat pumps to store any excess energy in the form of heat for later use. Thereby, it is proposed to address the problem of high operational costs and CO2 emissions released by currently used fossil fuel based heat...

  19. SolarSyngas: Results from a virtual institute developing materials and key components for solar thermochemical fuel production

    Science.gov (United States)

    Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert

    2016-05-01

    The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented

  20. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland.

    Science.gov (United States)

    Wu, Suqing; He, Shengbing; Zhou, Weili; Gu, Jianya; Huang, Jungchen; Gao, Lei; Zhang, Xu

    2017-12-01

    Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH 3 -N and organic nitrogen while those from cattail litter included organic nitrogen and NO 3 - -N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  2. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  3. Thermochemical nonequilibrium analysis of O2+Ar based on state-resolved kinetics

    International Nuclear Information System (INIS)

    Kim, Jae Gang; Boyd, Iain D.

    2015-01-01

    Highlights: • Thermochemical nonequilibrium studies for three lowest lying electronic states of O 2 . • The complete sets of the rovibrational state-to-state transition rates of O 2 +Ar. • Rovibrational relaxations and coupled chemical reactions of O 2 . • Nonequilibrium reaction rates of O 2 derived from the quasi-steady state assumption. - Abstract: The thermochemical nonequilibrium of the three lowest lying electronic states of molecular oxygen, O 2 (X 3 Σ g - ,a 1 Δ g ,b 1 Σ g + ), through interactions with argon is studied in the present work. The multi-body potential energy surfaces of O 2 +Ar are evaluated from the semi-classical RKR potential of O 2 in each electronic state. The rovibrational states and energies of each electronic state are calculated by the quantum mechanical method based on the present inter-nuclear potential of O 2 . Then, the complete sets of the rovibrational state-to-state transition rate coefficients of O 2 +Ar are calculated by the quasi-classical trajectory method including the quasi-bound states. The system of master equations constructed by the present state-to-state transition rate coefficients are solved to analyze the thermochemical nonequilibrium of O 2 +Ar in various heat bath conditions. From these studies, it is concluded that the vibrational relaxation and coupled chemical reactions of each electronic state needs to be treated as a separate nonequilibrium process, and rotational nonequilibrium needs to be considered at translational temperatures above 10,000 K

  4. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  5. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  6. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  7. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  8. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  9. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  10. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  11. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  12. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  13. Lattice potential energies and thermochemical properties of triethylammonium halides (Et3NHX) (X = Cl, Br, and I)

    International Nuclear Information System (INIS)

    Liu Yupu; Tan Zhicheng; Di Youying; Xing Yiting; Zhang Peng

    2012-01-01

    Highlights: ► The crystal structures of (Et 3 NHX) (X = Cl, Br, and I) were determined. ► Lattice potential energies and ionic radius of the common cation were obtained. ► Molar enthalpies of dissolution at infinite dilution were derived. ► Relative partial molar enthalpies were derived. ► Hydration enthalpy of Et 3 NH + was calculated. - Abstract: A series of triethylammonium halides (Et 3 NHCl, Et 3 NHBr, and Et 3 NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et 3 NH + was calculated to be ΔH + = −(150.386 ± 4.071) kJ · mol −1 by designing a thermochemical cycle.

  14. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  15. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research and development of electrolysis of water using thermochemical/photochemical/electrochemical mixed cycle; 1982 nendo netsu kagaku, hikari kagaku, denki kagaku konsei cycle ni yoru suibunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    The research and development aims to increase the yield of light energy conversion in a photochemical reaction and thereby to increase the efficiency of the reaction of electrolysis of water. In the research, the electrochemical properties of Fe{sup 3+}/Fe{sup 2+} and I{sub 3}{sup -}/I{sup -} systems in a phosphoric acid solution are examined. As for the behavior of iodine ions I and I{sub 3}, their capacity coefficient rises with a rise in temperature at any phosphoric acid concentration level. Furthermore, more water molecules are disengaged from hydrated iodine ions with an increase in the concentration of phosphoric acid, and the now naked iodine ions are higher in activity coefficient. The behavior of iron ions in phosphoric acid is observed by use of a rotating electrode. Although the activity coefficient ratio of iron ions and iodine ions exerts a great influence in the process of conversion from light energy to chemical energy, the outcome of experiment indicates that the ratio is low for both iron- and iodine-based systems. It is consequently concluded that an energy conversion rate of approximately 10kcal/mol is expected from a photochemical reaction as in the case of hydrated systems. (NEDO)

  16. FY 1985 report on research and development project commissioned by the Sunshine Project. Research and development of electrolysis of water by combined thermochemical, photochemical and electrochemical cycles; 1985 nendo netsu kagaku, hikari kagaku, denki kagaku konsei cycle ni yoru mizu bunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-03-01

    Reported herein are the FY 1985 research results on the combined water electrolysis cycles by effective utilization of sunlight. The tests for determining activity coefficient of an iron/iodine system is continued from the previous year, and the results are used to find the optimum conditions under which the photochemical and electrolysis reactions are effected simultaneously in a light-irradiated electrolysis tank. It is found that a photochemical reaction efficiency of approximately 0.3% is obtained at 5 W/cm{sup 2} as light intensity and 25 degrees C. For electrolysis of water by the multi-stage hybrid cycles, it is necessary for the reaction in each stage to proceed to almost the same extent so that it gives a just enough quantity of product for the subsequent stage. The data obtained are analyzed comprehensively, while taking the system matching conditions into consideration. The system for simultaneously measure two or more parameters, developed in the previous year, is equipped with a high-level language compiler of high effective speed, to simultaneously measure these parameters at shorter intervals. (NEDO)

  17. An efficient hybrid sulfur process using PEM electrolysis with a bayonet decomposition reactor - HTR2008-58207

    International Nuclear Information System (INIS)

    Gorensek, M. B.; Summers, W. A.; Lahoda, E. J.; Bolthrunis, C. O.; Greyvenstein, R.

    2008-01-01

    The Hybrid Sulfur (HyS) Process is being developed to produce hydrogen by water-splitting using heat from advanced nuclear reactors. It has the potential for high efficiency and competitive hydrogen production cost, and has been demonstrated at a laboratory scale. As a two-step process, the HyS is one of the simplest thermochemical cycles. The sulfuric acid decomposition reaction is common to all sulfur cycles, including the Sulfur-Iodine (SI) cycle. What distinguishes the HyS Process from the other sulfur cycles is the use of sulfur dioxide (SO 2 ) to depolarize the anode of a water electrolyzer. The two critical HyS Process components are the SO 2 - depolarized electrolyzer (SDE), and the high-temperature decomposition reactor. A proton exchange membrane (PEM)- type SDE and a silicon carbide bayonet-type high-temperature decomposition reactor are being developed for DOE's Nuclear Hydrogen Initiative (NHI) by Savannah River National Laboratory (SRNL) and by Sandia National Laboratories (SNL), respectively. The ultimate goal of the NHI-sponsored work is to couple the SDE and the reactor in an integrated laboratory scale experiment to prove the technical readiness of the HyS cycle for the NGNP demonstration. This paper describes the flowsheet that is being prepared to combine these two components into a viable process and presents the latest performance projections and economics for a HyS Process coupled to a PBMR heat source. The basic flowsheet for this process has been described elsewhere [4]. It requires an acid concentration section because the SDE product, which is limited to no more than 50% H 2 SO 4 by cell voltage considerations, is too dilute to be fed directly to the bayonet, which needs at least 65% H 2 SO 4 in the feed for acceptable performance. Optimization involved trade-offs between decomposition reaction and acid concentration heat requirements. The PBMR heat source can split its heat output between the decomposition reaction and either steam

  18. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN solutions

    Directory of Open Access Journals (Sweden)

    Kai Seng Koh

    2013-09-01

    Full Text Available Decomposition of hydroxylammonium nitrate (HAN solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 °C regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.

  19. Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration

    International Nuclear Information System (INIS)

    Xu, Da; Liu, Qibin; Lei, Jing; Jin, Hongguang

    2015-01-01

    Highlights: • A new middle-and-low temperature solar thermochemical CCHP system is proposed. • The thermodynamic performances of the new system are numerically evaluated. • The superiorities of the new system are demonstrated. - Abstract: In this paper, a new distributed energy system that integrates the mid-and-low temperature solar energy thermochemical process and the methanol decomposition is proposed. Through the solar energy receiver/reactor, the energy collected by a parabolic trough concentrator, at 200–300 °C, is used to drive the decomposition reaction of the methanol into the synthesis gas, and thus the solar thermal energy is converted to the chemical energy. The chemical energy of the synthesis gas released in the combustion chamber of a micro gas turbine is used to drive the combined cooling heating and power systems. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under the considerations of the changes of the solar irradiation intensity, the off-design performances of the micro turbine and the variations of the load, the design and off-design thermodynamic performances of the system and the characteristics of the chemical energy storage are numerically studied. Numerical results indicate that the primary energy ratio of the system is 76.40%, and the net solar-electricity conversion rate reaches 22.56%, which is higher than exiting large-scale solar thermal power plants. Owing to the introduction of a the solar thermochemical energy storage in the proposed system, the power generation efficiency is insensitive to the variations of the solar radiation, and thus an efficient and stable utilization approach of the solar thermal energy is achieved at all work condition

  20. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have