WorldWideScience

Sample records for thermochemical hydrogen program

  1. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  2. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  3. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  4. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  5. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  6. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  7. Construction apparatus for thermochemical hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, S.; Nakajima, H.; Higashi, S.; Onuki, K.; Akino, S.S.N. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan). Nuclear Heat Utilization Engineering Lab

    2001-06-01

    Studies have been carried out at the Japan Atomic Energy Research Institute (JAERI) on hydrogen production through thermochemical processes such as water-splitting. These studies are classified with iodine-sulphur cycle studies using heat from high temperature gas-cooled reactors. An experimental apparatus was constructed with fluorine resin, glass and quartz. It can produce hydrogen at a rate of 50 litres per hour. Electricity provides the heat required for the operation. The closed chemical process requires special control techniques. The process flow diagram for the apparatus was designed based on the results of previous studies including one where hydrogen production was successfully achieved at a rate of one liter per hour for 48 hours. Experimental operations under atmospheric pressure will be carried out for the next four years to develop the process. The data will be used in the next research and development programs aimed at designing a bench-scale apparatus. 7 refs., 1 tab., 8 figs.

  8. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  9. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  10. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  11. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  12. Process simulation of nuclear-based thermochemical hydrogen production with a copper-chlorine cycle

    International Nuclear Information System (INIS)

    Chukwu, C.C.; Naterer, G.F.; Rosen, M.A.

    2008-01-01

    Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen without fossil fuels. The copper-chlorine (Cu-Cl) cycle, in which water is decomposed into hydrogen and oxygen, is promising for thermochemical hydrogen production in conjunction with a Supercritical Water Cooled Reactor. Here, the cycle efficiency is examined using the Aspen Plus process simulation code. Possible efficiency improvements are discussed. The results are expected to assist the development of a lab-scale cycle demonstration, which is currently being undertaken at University of Ontario Institute of Technology in collaboration with numerous partners. (author)

  13. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  14. Nuclear-produced hydrogen by a thermochemical Cu-Cl plant for passenger hydrogen trains

    International Nuclear Information System (INIS)

    Marin, G.; Naterer, G.; Gabriel, K.

    2010-01-01

    This paper compares the technical and economic aspects of electrification of a passenger-train operation in Ontario Canada, versus operation with hydrogen trains using nuclear-produced hydrogen. A local GO Transit diesel operation in Ontario has considered electrification as an alternative to reduce greenhouse gas emissions of passenger trains in the Toronto area. Hydrogen production from nuclear energy via a thermo-chemical Copper-Chlorine (Cu-Cl) cycle for train operation is shown to have lower emissions than direct electrification. It significantly reduces the greenhouse gas emissions compared to diesel operation. A bench-mark reference case used for the nuclear thermo-chemical Cu-Cl cycle is the Sulfur-Iodine (S-I) cycle, under investigation in the USA, Japan, and France, among others. The comparative study in this paper considers a base case of diesel operated passenger trains, within the context of a benefits case analysis for train electrification, for GO Transit operations in Toronto, and the impact of each cost component is discussed. The cost analysis includes projected prices of fuel cell trains, with reference to studies performed by train operators. (author)

  15. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  16. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  17. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  18. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  19. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  20. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  1. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  2. Hydrogen Production From Water By Thermo-Chemical Methods (UT-3): Evaluation of Side Reactions By Simulation Process

    International Nuclear Information System (INIS)

    Rusli, A.

    1997-01-01

    Hydogen fuel with its advantages will be able to replace all the positions of fossil fuels post o il and gas or migas . Among the advantages of hydrogen fuel are pollution free, abundant of raw material in the form of water molecule, flexible in application, able to stroge and transport as well as fossil energy sources (oil and gas). Hydogen could be produced from water by means of thermochemical, thermolysis, photolysis and electrolysis. Nuclear heat (HTGR), solar heat or waste heat from steel industry can be used as energy source for these processes. In case of thermochemical method, some problems realated to production process should be studied and evaluated. Simulation is considered can be applied to study the effects of side reactions and also to resolve its problems in hydrogen production process. In this paper is reported the evalution results of hydrogen production process by thermochemical (UT-3) through both of the experimental and computer simulation. It has been proposed a new flow chart of hydrogen production to achieve the hydrogen production continuously. A simulator has been developed based on experimental data and related mathematical equations. This simulator can be used to scle-up the UT-3 thermochemical cycle for hydrogen production process

  3. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  4. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  5. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  6. Thermochemical hydrogen production studies at LLNL: a status report

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    Currently, studies are underway at the Lawrence Livermore National Laboratory (LLNL) on thermochemical hydrogen production based on magnetic fusion energy (MFE) and solar central receivers as heat sources. These areas of study were described earlier at the previous IEA Annex I Hydrogen Workshop (Juelich, West Germany, September 23-25, 1981), and a brief update will be given here. Some basic research has also been underway at LLNL on the electrolysis of water from fused phosphate salts, but there are no current results in that area, and the work is being terminated

  7. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  8. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  9. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  10. Hydrogen production at <550 C using a low temperature thermochemical cycle

    International Nuclear Information System (INIS)

    Lewis, M.A.; Serban, M.; Basco, J.K.

    2004-01-01

    A Department of Energy goal is to identify new technologies for producing hydrogen cost effectively without greenhouse gas emissions. Thermochemical cycles are one of the potential options under investigation. Thermochemical cycles consist of a series of reactions in which water is thermally decomposed and all other chemicals are recycled. Only heat and water are consumed. However, most thermochemical cycles require process heat at temperatures of 850-900 deg C. Argonne National Laboratory is developing low temperature cycles designed for lower temperature heat, 500-550 deg C, which is more readily available. For this temperature region, copper-chlorine (Cu-Cl) cycles are the most promising cycle. Several Cu-Cl cycles have been examined in the laboratory and the most promising cycle has been identified. Proof-of-principle experiments are nearly complete. A preliminary assessment of cycle efficiency is promising. Details of the experiments and efficiency calculations are discussed. (author)

  11. Remarks on the thermochemical production of hydrogen from water using heat from the high temperature reactor

    International Nuclear Information System (INIS)

    Barnert, H.

    1980-06-01

    In this report, some aspects of the production of hydrogen from water using heat from the High Temperature Reactor has been studied. These aspects are: the theoretical potential for economic competitivness, the application of hydrogen in the Heat Market, the size of the market potential in the Federal Republic of Germany and the extent of research and development work. In addition another novel proposal for a thermochemical cycle has been studied. For the description of the theoretical potential for economic competitivness, a definition of the 'coupling', has been introduced, which is thermodynamicaly developed; the thermochemical cycle is compared with the thermochemical cycle. Using the coupling, it becomes possible to describe a relation between thermodynamical parameters and the ecomomical basic data of capital costs. Reasons are given from the theoretical point of view for the application of hydrogen as an energy carrier of high exergetic value in the heat market. The discussion of energy problems as 'questions of global survival' leads here to a proposal for the introduction of the term 'extropy'. The market potential in the Federal Republic of Germany is estimated. A further novel proposal for a thermochemical cycle is the 'hydrocarbon-hybrid-process'. The extent of research and development work is explained. (orig.) [de

  12. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-02-15

    The thermochemical Copper-Chlorine (Cu-Cl) cycle is an emerging new method of nuclear-based hydrogen production. In the process, water is decomposed into hydrogen and oxygen through several physical and chemical processes. In this paper, a Distributed Control System (DCS) is designed for the thermochemical Cu-Cl cycle. The architecture and the communication networks of the DCS are discussed. Reliability of the DCS is assessed using fault trees. In the assessment, the impact of the malfunction of the actuators, sensors, controllers and communication networks on the overall system reliability is investigated. This provides key information for the selection of control system components, and determination of their inspection frequency and maintenance strategy. The hydrogen reactor unit, which is one of the major components in the thermochemical Cu-Cl cycle, is used to demonstrate the detailed design and analysis. (author)

  13. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  14. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  15. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, Xavier; Carles, Philippe; Anzieu, Pascal

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (author)

  16. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, X.; Carles, P.; Anzieu, P.

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (authors)

  17. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  18. Multi-state system in a fault tree analysis of a nuclear based thermochemical hydrogen plant

    International Nuclear Information System (INIS)

    Zhang, Y.

    2008-01-01

    Nuclear-based hydrogen generation is a promising way to supply hydrogen for this large market in the future. This thesis focuses on one of the most promising methods, a thermochemical Cu-Cl cycle, which is currently under development by UOIT, Atomic Energy of Canada Limited (AECL) and the Argonne National Laboratory (ANL). The safety issues of the Cu-Cl cycle are addressed in this thesis. An investigation of major accident scenarios shows that potential tragedies can be avoided with effective risk analysis and safety management programs. As a powerful and systematic tool, fault tree analysis (FTA) is adapted to the particular needs of the Cu-Cl system. This thesis develops a new method that combines FTA with a reliability analysis tool, multi-state system (MSS), to improve the accuracy of FTA and also improve system reliability. (author)

  19. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  20. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    International Nuclear Information System (INIS)

    Nakamura, Naoya; Miyaoka, Hiroki; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2013-01-01

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition

  1. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  2. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  3. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Ribe, F.L.; Werner, R.W.

    1981-01-01

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li 2 O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H 2 and O 2

  4. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  5. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  6. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  7. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  8. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  9. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  10. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  11. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  12. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  13. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  14. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  15. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  16. Thermochemical reactivity of 5–15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gokon, Nobuyuki, E-mail: ngokon@eng.niigata-u.ac.jp [Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Suda, Toshinori [Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan); Kodama, Tatsuya [Department of Chemistry & Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan)

    2015-10-10

    Highlights: • 5–15 mol% M-doped ceria are examined for thermochemical two-step water-splitting. • 5 mol% Fe- and Co-doped ceria have stoichiometric production of oxygen and hydrogen. • 10–15 mol% Fe- and Mn-doped ceria showed near-stoichiometric production. - Abstract: The thermochemical two-step water-splitting cycle using transition element-doped cerium oxide (M–CeO{sub 2−δ}; M = Fe, Co, Ni, Mn) powders was studied for hydrogen production from water. The oxygen/hydrogen productivity and repeatability of M–CeO{sub 2−δ} materials with M doping contents in the 5–15 mol% range were examined using a thermal reduction (TR) temperature of 1500 °C and water decomposition (WD) temperatures in the 800–1150 °C range. The temperature, steam partial pressure, and steam flow rate in the WD step had an impact on the hydrogen productivity and production rate. 5 mol% Fe- and Co-doped CeO{sub 2−δ} enhances hydrogen productivity by up to 25% on average compared to undoped CeO{sub 2}, and shows stable repeatability of stoichiometric oxygen and hydrogen production for the cyclic thermochemical two-step water-splitting reaction. In addition, 5 mol% Mn-doped CeO{sub 2−δ}, 10 and 15 mol% Fe- and Mn-doped CeO{sub 2−δ} show near stoichiometric reactivities.

  17. REITP3-Hazard evaluation program for heat release based on thermochemical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yoshiaki.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering; Kawakatsu, Yuichi. [Oji Paper Corp., Tokyo (Japan); Wada, Yuji. [National Institute for Resources and Environment, Tsukuba (Japan); Yoshida, Tadao. [Hosei University, Tokyo (Japan). College of Engineering

    1999-06-30

    REITP3-A hazard evaluation program for heat release besed on thermochemical calculation has been developed by modifying REITP2 (Revised Estimation of Incompatibility from Thermochemical Properties{sup 2)}. The main modifications are as follows. (1) Reactants are retrieved from the database by chemical formula. (2) As products are listed in an external file, the addition of products and change in order of production can be easily conducted. (3) Part of the program has been changed by considering its use on a personal computer or workstation. These modifications will promote the usefulness of the program for energy hazard evaluation. (author)

  18. Thermodynamic comparison of two processes of hydrogen production: steam methane reforming-A solar thermochemical process

    International Nuclear Information System (INIS)

    Gomri, Rabah; Boumaza, Mourad

    2006-01-01

    Hydrogen is mainly employed like primary product, for the synthesis of ammonia. The ammonia is synthesized by chemically combining hydrogen and nitrogen under pressure, in the presence of a catalyst. This ammonia is used, for the production of the nitrate fertilizers. Nowadays hydrogen gains more attention mainly because, it is regarded as a future significant fuel by much of experts. The widespread use of hydrogen as source of energy could help to reduce the concern concerning the safety of energy, the total change of climate and the quality of air. Hydrogen is presented then as an excellent alternate initially and as substitute thereafter. It can play a role even more significant than conventional energies. Indeed, it has the advantage of being nonpolluting and it can use the same means of transport as conventional energies. For Algeria, it proves of importance capital. It not only makes it possible to increase and diversify its energy reserves and its exports but also to provide for its energy needs which become increasingly significant. Although hydrogen can be produced starting from a large variety of resources using a range of various technologies, the natural gas is generally preferred and will remain in the near future the principal primary product for the manufacture of hydrogen. Currently the most effective means of production of hydrogen is the Steam Reforming of Natural Gas (SMR). This process is seen as a one of principal technologies for the production of hydrogen. The disadvantages of this process it's that it consumes a great quantity of primary energy and that it releases in the atmosphere the gases that contribute to the warming of the plane. Among the alternatives processes of hydrogen production one can quote solar thermochemical processes. In this study, an exergetic analysis of the process of hydrogen production based on Zn/ZnO redox reactions is presented. In the first part of this study, an exergetic analysis is made for a temperature of the

  19. Assessment of thermochemical hydrogen production. Project 61010 (formerly 8994) final report, July 1, 1977-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Lee, T.S.; Schreiber, J.D.

    1979-05-01

    The Institute of Gas Technology's (IGT) assessment of thermochemical water-splitting processes is given. Eight tasks were performed: evaluation of load-line efficiencies; hydrogen bromide electrolysis; maximum attainable thermal efficiency on a specific bromide hybrid cycle; development of electrolyzer elements for H/sub 2/SO/sub 3/; feasibility of high-temperature reference-state thermochemical cycles; interfacing characteristics - solar high-temperature heat sources; analysis of solar and solar hybrid heat sources; and laboratory assessment of cycle with high-temperature step. Engineering analyses were done on two thermochemical hydrogen production cycles - IGT's cycles B-1 and H-5. The load line efficiency for B-1 was 18.1% and for H-5 37.4%. The electrolysis of HBr (aq) on three substrates: platinum, porous graphite, and vitreous graphite was investigated. Platinum proved to be the most efficient electrode surface, with vitreous graphite showing no promise, and porous graphite showing only slightly better results. On platinum, cell voltages of under 1.0 volt were obtained at current densities up to 200 mA/cm/sup 2/. Five new members of the metal-metal oxide class of cycles were derived. The maximum attainable efficiencies of these high-temperature, two-step cycles range from 64 to 86%. Six high-temperature metal oxide-metal sulfate cycles were derived. Performance and capital costs data for a wide range of solar primary heat sources were tabulated.

  20. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study

  1. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Ghandehariun, S.; Wang, Z.; Naterer, G.F.; Rosen, M.A.

    2015-01-01

    Highlights: • Thermal efficiency of a thermochemical cycle of hydrogen production is improved. • Direct contact heat recovery from molten salt is analyzed. • Falling droplets quenched into water are investigated experimentally. - Abstract: This paper investigates the heat transfer and X-ray diffraction patterns of solidified molten salt droplets in heat recovery processes of a thermochemical Cu–Cl cycle of hydrogen production. It is essential to recover the heat of the molten salt to enhance the overall thermal efficiency of the copper–chlorine cycle. A major portion of heat recovery within the cycle can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show that it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

  2. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  3. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  4. Collection of summaries of Sunshine Program achievement reports for fiscal 1981. Hydrogen energy; 1981 nendo sunshine keikaku seika hokokusho gaiyoshu. Suuiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-04-01

    The collection includes research on hydrogen production through the electrolysis of water using an acid-type solid polymer electrolyte, electrolysis of water using an alkali-type solid polymer electrolyte, thermochemical method using an iodine-based cycle, thermochemical method using a bromine-based cycle, thermochemical method using a mixed cycle, high-temperature direct thermolysis, and the utilization of solar radiation. Furthermore, it includes a study of materials to build a iodine-based cycle apparatus. In a research on the transportation and storage of hydrogen, technologies of hydrogen transportation and storage using metallic hydrides are taken up. In a research on the application of hydrogen, technologies of hydrogen combustion and hydrogen-fueled engines are discussed. In a research on hydrogen safety measures, technologies for the prevention of hydrogen explosion disasters and of hydrogen embrittlement of materials in use with hydrogen are studied. In addition, a study is conducted of a hydrogen energy total system, and research and development is carried out of a plant that produces hydrogen by means of the high-temperature high-pressure electrolysis of water. (NEDO)

  5. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  6. Technical files. Hydrogen memento; Fiches techniques. Memento de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a compilation of 30 technical files about hydrogen and its related technologies. These files cover the following aspects: general considerations (world energy consumption growth, contribution of developing countries, atmospheric pollution and greenhouse effect, health impacts, actions implemented at the world scale, role of hydrogen); glossary and acronyms; units used and conversions; world energy situation (primary production, sectoral consumption, demand trends, environmental impact, situation of fossil fuel reserves); French energy situation (primary sources, energy independence ratio, electric power status, evolutions and trends of the French energy demand); fuel cells; basic data on hydrogen (thermodynamic properties and data); hydrogen production by water electrolysis, application to small capacity systems; thermochemical water dissociation; water photo-electrolysis; hydrogen pipeline networks in the world; mechanical energy production; hydrogen thermal engines; aeronautic applications; research laboratories; industrial actors of the hydrogen sector (companies, activities, geographical situation, financial structure, strategy, R and D, cooperations, projects etc..); hydrogen flammability and explosiveness; transport and storage safety; standards and regulations about hydrogen safety in France, in Europe and in the rest of the world; hydrogen programs in the world; the programs financed by the European Union; the German programs; the programs in Island, France and UK; the programs in North America; the Japanese programs; table of the main recent R and D projects per type of program; light vehicles with fuel cells; the Daimler-Chrysler program. (J.S.)

  7. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  8. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  9. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  10. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    Science.gov (United States)

    Pareja, R.; de La Cruz, R. M.; Pedrosa, M. A.; González, R.; Chen, Y.

    1990-04-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T~2400 K results in a large concentration of both hydride (H-) ions and anion vacancies (>1024 m-3). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e+-H-] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H- concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H-ions. These results suggest the existence of bound [e+-H-] states when positrons are trapped by the H- ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e+-H-] states. From the values of the intermediate lifetime component, a value of (570+/-50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ~(1-3) ns is attributed to pick-off annihilation of ortho-Ps states.

  11. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  12. Solar hydrogen project - Thermochemical process design

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Ng, L.F.; Rao, M.S.M.; Wu, S.F.; Zoschak, R.J.

    1984-08-01

    The thermochemical decomposition of water using solar energy offers an elegant way of combining solar and chemical technologies to produce a high quality fuel. The DOE has sponsored Foster Wheeler to develop a process design for a solar water-splitting process based on the sulfuric acid/iodine cycle. The study has centered around the design of a sulfuric acid decomposition reactor and the central receiver. Materials' properties impose severe constraints upon the design of decomposition reactor. In this paper, the constraints imposed on the design are specified and a reactor and receiver design is presented together with a preliminary design of the balance of plant.

  13. Study of the hydrolysis reaction of the copper-chloride hybrid thermochemical cycle using optical spectrometries

    International Nuclear Information System (INIS)

    Doizi, D.; Borgard, J.M.; Dauvois, V.; Roujou, J.L.; Zanella, Y.; Croize, L.; Cartes, Ph.; Hartmann, J.M.

    2010-01-01

    The copper-chloride hybrid thermochemical cycle is one of the best potential low temperature thermochemical cycles for the massive production of hydrogen. It could be used with nuclear reactors such as the sodium fast reactor or the supercritical water reactor. Nevertheless, this thermochemical cycle is composed of an electrochemical reaction and two thermal reactions. Its efficiency has to be compared with other hydrogen production processes like alkaline electrolysis for example. The purpose of this article is to study the viability of the copper chloride thermochemical cycle by studying the hydrolysis reaction of CuCl 2 which is not favoured thermodynamically. To better understand the occurrence of possible side reactions, together with a good control of the kinetics of the hydrolysis reaction, the use of optical absorption spectrometries, UV visible spectrometry to detect molecular chlorine which may be formed in side reactions, FTIR spectrometry to follow the concentrations of H 2 O and HCl is proposed. (authors)

  14. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates

    International Nuclear Information System (INIS)

    Roeb, M.; Monnerie, N.; Schmitz, M.; Sattler, C.; Konstandopoulos, A.G.; Agrafiotis, C.; Zaspalis, V.T.; Nalbandian, L.; Steele, A.; Stobbe, P.

    2006-01-01

    In the European project HYDROSOL a simple two-step thermo-chemical cycle process has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. If concentrated solar radiation is used as the heat source one has a promising method in hand to produce hydrogen without any environmentally critical emissions. The basic idea is to combine a support capable of achieving high temperatures when heated by concentrated solar radiation, with a redox pair system suitable for water dissociation and at the same time for regeneration at these temperatures, so that complete operation of the whole process could be achieved by a single solar energy converter. The feasibility of the process has proven possible in a mini-plant scale using concentrated sunlight provided by the solar furnace in Cologne. Suitable redox materials as coatings and a dedicated receiver-reactor have been developed to produce hydrogen with significant conversions by repeating several subsequent water splitting and regeneration steps. In a design study a possible way of operating the process in commercial scale is demonstrated. (authors)

  15. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  16. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 deg. C

    International Nuclear Information System (INIS)

    Petri, M.C.; Yyldyz, B.; Klickman, A.E.

    2006-01-01

    Hydrogen demand is increasing, but there are few options for affordable hydrogen production free of greenhouse gas emissions. Nuclear power is one of the most promising options. Most research is focused on high-temperature electrolytic and thermochemical processes for nuclear-generated hydrogen, but it will be many years before very high temperature reactors become commercially available. For light water reactors or supercritical reactors, low-temperature water electrolysis is a currently available technology for hydrogen production. Higher efficiencies may be gained through thermo-electrochemical hydrogen production cycles, but there are only a limited number that have heat requirements consistent with the lower temperatures of light-water reactor technology. Indeed, active research is ongoing for only three such cycles in the USA. Reductions in electricity and system costs would be needed (or the imposition of a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation. The interactions between hydrogen and electricity markets and hydrogen and electricity producers are complex and will evolve as the markets evolve. (author)

  17. Hydrogen iodide processing section in a thermochemical water-splitting iodine-sulfur process using a multistage hydrogen iodide decomposer

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sakaba, Nariaki; Imai, Yoshiyuki; Kubo, Shinji; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Kato, Ryoma

    2009-01-01

    A multistage hydrogen iodide (HI) decomposer (repetition of HI decomposition reaction and removal of product iodine by a HIx solution) in a thermochemical water-splitting iodine-sulfur process for hydrogen production using high-temperature heat from the high-temperature gas-cooled reactor was numerically evaluated, especially in terms of the flow rate of undecomposed HI and product iodine at the outlet of the decomposer, in order to reduce the total heat transfer area of heat exchangers for the recycle of undecomposed HI and to eliminate components for the separation. A suitable configuration of the multistage HI decomposer was countercurrent rather than concurrent, and the HIx solution from an electro-electro dialysis at a low temperature was a favorable feed condition for the multistage HI decomposer. The flow rate of undecomposed HI and product iodine at the outlet of the multistage HI decomposer was significantly lower than that of the conventional HI decomposer, because the conversion was increased, and HI and iodine were removed by the HIx solution. Based on this result, an alternative HI processing section using the multistage HI decomposer and eliminating some recuperators, coolers, and components for the separation was proposed and evaluated. The total heat transfer area of heat exchangers in the proposed HI processing section could be reduced to less than about 1/2 that in the conventional HI processing section. (author)

  18. Degradation of materials under conditions of thermochemical cycles for hydrogen production

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Stolberg, L.

    2010-01-01

    A capsule method has been developed and employed to measure the degradation rates of selected materials under some of the most challenging conditions relevant to the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles for hydrogen production. The materials tested so far include metals and engineering alloys, structural and functional polymers, elastomers, carbon-based materials, ceramics and glasses, and composites. A number of characterization methods have been used to detect and quantify the degradation of the diverse materials and, when feasible, establish the mode of attack. The paper details the results of this ongoing experimental investigation. The investigation currently focuses on the copper-chlorine hybrid cycle. The environment representative of the conditions in the electrolyser subsystem was approximated with an aqueous solution of hydrochloric acid (13.6 mol/kg), copper(II) chloride (1.36 mol/kg) and copper(I) chloride (1.36 mol/kg) at 160°C and 2.5 MPa (absolute). The current (tentative) recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper-chlorine hybrid cycle, and the associated rationale, are presented and discussed. (author)

  19. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Pareja, R.; la Cruz, R.M. de; Pedrosa, M.A.; Gonzalez, R.; Chen, Y.

    1990-01-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T∼2400 K results in a large concentration of both hydride (H - ) ions and anion vacancies (>10 24 m -3 ). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e + -H - ] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H - concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H - ions. These results suggest the existence of bound [e + -H - ] states when positrons are trapped by the H - ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e + -H - ] states. From the values of the intermediate lifetime component, a value of (570±50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ∼(1--3) ns is attributed to pick-off annihilation of ortho-Ps states

  20. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  1. Energy and exergy analyses of a copper-chlorine thermochemical water decomposition pilot plant for hydrogen production

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2008-01-01

    Nuclear-based hydrogen production via thermochemical water decomposition using a copper-chlorine (Cu-Cl) cycle consists of a series of chemical reactions in which water is split into hydrogen and oxygen as the net result. This is accomplished through reactions involving intermediate copper and chlorine compounds, which are recycled. Energy and exergy analyses are reported here of a Cu-Cl pilot plant, including the relevant chemical reactions. The reference environment is taken to be at a temperature of 298.15 K and atmospheric pressure (1 atm). The chemical exergy of a substance, which is the maximum work that can be obtained from it by taking it to chemical equilibrium with the reference environment at constant temperature and pressure, is calculated with property data for the substance and the reference environment, with enthalpy and entropy values calculated using Shomate equations. The reaction heat, exergy destruction and efficiencies in each chemical reaction vary with the reaction temperature and reference-environment temperature. A parametric study with variable reaction and reference-environment temperatures is also presented. (author)

  2. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  3. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  4. JAEA’s R&D on the Thermochemical Hydrogen Production IS Process

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Iwatsuki, Jin; Takegami, Hiroaki; Yan, Xing L.; Kubo, Shinji

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has studied iodine-sulfur (IS) process, a thermochemical cycle to produce hydrogen by water splitting. This process is a candidate application of high temperature heat from high temperature gas-cooled reactors. This paper outlines the IS process study in JAEA, in particular recent situation of the R&D. Reactor components and a total process facility are tested to evaluate their integrity. A Bunsen reactor, a H_2SO_4 decomposer and a HI decomposer made of industrial materials such as SiC ceramic, fluoroplastic and lining materials have been examined separately as reactor components. A semibatch test and a thermal cycle test were operated in the Bunsen reactor. H_2SO_4 decomposition test is in a bayonet type reactor and HI decomposition test in an adiabatic radial flow type reactor are now under way. On the basis of a demonstration of continuous hydrogen production of 31 NL/h by a glass apparatus, an experimental apparatus of the total IS process has just been constructed to verify integrity of process components of industrial materials, H_2 production scale of which is 200 NL/h. Electro-electrodialysis (EED) cells to concentrate HI before distillation and a SiC-made bayonet type H_2SO_4 decomposer are applied in the facility. Process data of EED cells has been collected aiming to improve H_2 production thermal efficiency. Influence of temperature, composition in solution and existence of impurities on the cell properties has been investigated. Reduction of heat input to a HI separation step by applying the results of the study was shown. (author)

  5. Status and Planning of South Africa's Nuclear Hydrogen Production Program

    Energy Technology Data Exchange (ETDEWEB)

    Ravenswaay, J. P.; Niekerk, F.; Kriek, R. J.; Blom, E.; Krieg, H. M.; Niekerk, W. M. K.; Merwe, F.; Vosloo, H. C. M. [North-West University, Potchefstroom (South Africa)

    2009-05-15

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The Strategy will focus on research, development and innovation for (amongst others) by building on the existing knowledge in High Temperature Gas Cooled Reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production methods. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centers (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing Hydrogen Production, Storage, Distribution as well as Codes and Standards programs within the framework of the DST strategic objectives. A 700kW Heliostat field is to be constructed at the CSIR. It is planned that the following processes will be investigated there: Steam Methane Reforming, High Temperature Steam Electrolysis, Metal-oxide redox process. At the NWU the main focus will be on the large scale, CO{sub 2} free, hydrogen production through thermo-chemical water splitting using nuclear heat from a suitable heat source such as a HTGR. The following will be investigated: Plasma-arc reforming of methane, Investigating the integration of a HTGR with a coal-to-liquid process, steel manufacture and ammonia production, The Hybrid-Sulphur process for the production of hydrogen.

  6. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  7. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  8. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  9. Nuclear hydrogen - possibilities for Brazil; Hidrogenio nuclear - possibilidades para o Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio]. E-mail: saliba@ipen.br

    2008-07-01

    The energy vector hydrogen represents a good possibility to replace fossil fuels. One of the main renewable sources of interest for hydrogen is water, which is abundant and can be decomposed directly into pure H{sub 2} and O{sub 2}. This water splitting can be performed by the following methods: electrolysis, thermal decomposition, and thermochemical cycles. The thermochemical cycles and high temperature electrolysis (HTE) are often thought to be feasible methods to be associated with a High Temperature Gas cooled Reactor (HTGR). Both routines have high efficiency at temperature range of 700-950 deg C. In this work, is presented an attainable proposal for Brazilian production of hydrogen based on a HTGR followed by HTE system. A research group at Fuel Cell and Hydrogen Center - CCCH at IPEN/CNEN-SP has elaborated a working plan for 10 years, where it is proposed a R and D line for hydrogen production based on nuclear energy supplied by HTGR. So, in this work, a Brazilian program for researching in this area is proposed inviting potential cooperation. (author)

  10. Haemolytic activity of uranium compounds haemolysis by thermochemical derivatives of ammonium uranate

    International Nuclear Information System (INIS)

    Stuart, W.I.; Tucker, A.D.; Adams, R.B.

    1975-01-01

    A study has been made of the haemolytic action on human erythrocytes by ammonium uranate (AU) and various thermochemical products of AU. These products were obtained by heating AU in hydrogen at 5 0 C min -1 to various temperatures. Haemolysis has been interpreted in terms of a diffusion model which for each product yields a single parameter Ksub(N), the haemolytic activity factor. The magnitude of Ksub(N) is a convenient measure of the ability of a powder to damage erythrocytes. The haemolytic activity of certain thermochemical derivatives indicates an exceptionally high potential for damage to erythrocytes. Infrared and thermoanalytical measurements have shown that the high activity of these products derives principally from a self-reduction reaction, induced by heating AU to 400-420 0 C in hydrogen. (author)

  11. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  12. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  13. Collection of outlines of achievement reports for fiscal 1976 on Sunshine Program. Hydrogen energy; 1976 nendo sunshine keikakaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Twenty studies are outlined, which are: Hydrogen production technology using electrolysis (Osaka National Research Institute); Hydrogen production technology using high-temperature/high-pressure electrolysis (Showa Denko K.K., and 1 other); Hydrogen production technologies using thermochemical method (4 articles - Osaka National Research Institute; Tokyo National Research Institute; Hitachi, Ltd.; Mitsubishi Heavy Industries, Ltd.); Water decomposition by thermochemical and photochemical hybrid cycle (Yokohama National University); Hydrogen production technology using direct thermolysis (Electrotechnical Laboratory); Hydrogen solidification technology (2 articles - Osaka National Research Institute; Tokyo National Research Institute); Combustion technology (Osaka National Research Institute); Materials for fuel cells (Osaka National Research Institute); Manufacture of fuel cells (Electrotechnical Laboratory); Systematization of fuel cells (Electrotechnical Laboratory); Hydrogen-fueled engine (Mechanical Engineering Laboratory); Disaster prevention technologies for gaseous and liquid hydrogen, etc. (Tokyo National Research Institute); Prevention of embrittlement of materials used with hydrogen (Chugoku National Research Institute); Refining, transportation, and storage systems, and safety techniques for hydrogen (Industrial Research Institute); Hydrogen energy total system (Electrotechnical Laboratory); Comprehensive examination of hydrogen-using subsystems and peripheral technologies (Electrochemical Society of Japan, and 6 others). (NEDO)

  14. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  15. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  16. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  17. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  18. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  19. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  20. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Survey on patent and information (Hydrogen energy); 1982 nendo tokkyo joho chosa kenkyu seika hokokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Patents related to the research under the Sunshine Program are surveyed so as to ensure that the program be promoted smoothly and efficiently. Since the scope of the hydrogen energy technology is extensive, branches supposed to be relatively important only are surveyed, which include the production of hydrogen (thermochemical process, photochemical process, and electrolysis), storage and transportation of hydrogen, safety of hydrogen, hydrogen fuel cells, hydrogen-fueled engines, and hydrogen combustion devices. The basic policy to follow in the extraction of necessary patents is that all related to the hydrogen energy technology be collected from as many fields as possible. However, it is impossible to read all the laid-open patents. Under such circumstances, out of the items in IPC (International Patent Classification) used by the Patent Agency, those deemed to be closely related to the hydrogen energy technology are designated and, when the classification item attached to the official gazette matches one of the IPC classification items, it is extracted as a desired item after deliberation of its relationship with the hydrogen energy technology. (NEDO)

  1. Thermochemical production of hydrogen from water

    International Nuclear Information System (INIS)

    Funk, J.E.; Conger, W.L.; Carty, R.H.; Barker, R.E.

    1975-01-01

    A review of recent developments in the selection and evaluation of multi-step thermochemical water-splitting cycles is presented. A computerized and thermodynamic and chemical engineering analysis procedure is discussed with calculates, among other things, the thermal efficiency of the process which is defined to be the ratio of the enthalpy change for water decomposition to the total thermal energy required by the process. Changes in the thermodynamic state in each step of the process are also determined. Engineering considerations such as the effect of approach to equilibrium in the chemical reaction steps on the work of separation, and the magnitude of the recycle streams are included. Important practical matters such as thermal regeneration in the product and reactant streams are dealt with in some detail. The effect of reaction temperature on thermal efficiency is described and the use of the analysis procedure is demonstrated by applying it to several processes. (author)

  2. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  3. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  4. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  5. Research and development on chemical reactors made of industrial structural materials and hydriodic acid concentration technique for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Iwatsuki, Jin; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Onuki, Kaoru

    2015-10-01

    Japan Atomic Energy Agency has been conducting a study on IS process for thermochemical hydrogen production in order to develop massive hydrogen production technology for hydrogen society. Integrity of the chemical reactors and concentration technology of hydrogen iodide in HIx solution were studied. In the former study, the chemical reactors were trial-fabricated using industrial materials. A test of 30 times of thermal cycle test under circulating condition of the Bunsen reaction solution showed integrity of the Bunsen reactor made of fluororesin lined steel. Also, 100 hours of reaction tests showed integrity of the sulfuric acid decomposer made of silicon carbide and of the hydrogen iodide decomposer made of Hastelloy C-276. In the latter study, concerning electro-electrodialysis using cation-exchange membrane, sulfuric acid in the anolyte had little influence on the concentration performance. These results suggest the purification system of HIx solution can be simplified. Based on the Nernst-Planck equation and the Smoluchowski equation, proton transport number, water permeance, and IR drop of the cation exchange membrane were formulated. The derived equations enable quantitative estimation for the performance indexes of Nafion ® membrane and, also, of ETFE-St membranes made by radiation-induced graft polymerization method. (author)

  6. Method for thermochemical decomposition of water

    Science.gov (United States)

    Abraham, Bernard M.; Schreiner, Felix

    1977-01-11

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions: KI, NH.sub.3, CO.sub. 2 and water in an organic solvent such as ethyl or propyl alcohol are reacted to produce KHCO 3 and NH.sub.4 I. The KHCO.sub.3 is thermally decomposed to K.sub.2 CO.sub.3, H.sub.2 O and CO.sub.2, while the NH.sub.4 I is reacted with Hg to produce HgI.sub.2, NH.sub.3 and H.sub.2. The K.sub.2 CO.sub.3 obtained by calcining KHCO.sub.3 is then reacted with HgI.sub.2 to produce Hg, KI, CO and O.sub.2. All products of the reaction are recycled except hydrogen and oxygen.

  7. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  8. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  9. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  10. Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview

    International Nuclear Information System (INIS)

    Vitart, X.; Le Duigou, A.; Carles, P.

    2006-01-01

    The sulfur-iodine thermo-chemical cycle is considered to be one of the most promising routes for massive hydrogen production, using high temperature heat from a Generation IV VHTR. We propose here a brief overview of the main questions raised by this cycle, along with the general lines of French CEA's program

  11. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Directory of Open Access Journals (Sweden)

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  12. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  13. Hydrogen production by the iodine-sulphur thermochemical cycle. Total and partial pressure measurements

    International Nuclear Information System (INIS)

    D Doizi; V Dauvois; J L Roujou; V Delanne; P Fauvet; B Larousse; O Hercher; P Carles; C Moulin

    2006-01-01

    The iodine sulphur thermochemical cycle appears to be one of the most promising candidate for the massive production of hydrogen using nuclear energy. The key step in this cycle is the HI distillation section which must be optimized to get a good efficiency of the overall cycle. The concept of reactive versus extractive distillation of HI has been proposed because of its potentiality. The design and the optimization of the reactive distillation column requires the knowledge of the liquid vapour equilibrium over the ternary HI-I 2 -H 2 O mixtures up to 300 C and 100 bars. A general methodology based on three experimental devices imposed by the very corrosive and concentrated media will be described: 1) I1 for the total pressure measurement versus different ternary compositions. 2) I2 for the partial and total pressure measurements around 130 C and 2 bars to validate the choice of the analytical optical 'online' techniques we have proposed. 3) I3 for the partial and total pressures measurements in the process domain. The results obtained on pure samples, binary mixtures HI-H 2 O and ternary mixtures using an experimental design analysis in the experimental device I2 will be discussed. (authors)

  14. Membranes for H2 generation from nuclear powered thermochemical cycles

    International Nuclear Information System (INIS)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene

    2006-01-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H 2 SO 4 into O 2 , SO 2 , and H 2 O at temperatures around 850 C. In-situ removal of O 2 from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A x Sr 1-x Co 1-y B y O 3-δ (A=La, Y; B=Cr-Ni), in particular the family La x Sr 1-x Co 1-y Mn y O 3-δ (LSCM), and doped La 2 Ni 1-x M x O 4 (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H 2 SO 4 decomposition reactor study (at Sandia), in which our membranes were tested in the actual H 2 SO 4 decomposition step

  15. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  16. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  17. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Science.gov (United States)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  18. Nuclear hydrogen production programme in the United States

    International Nuclear Information System (INIS)

    Sink, C.

    2010-01-01

    The Nuclear Hydrogen Initiative (NHI) is focused on demonstrating the economic, commercial-scale production of hydrogen using process heat derived from nuclear energy. NHI-supported research has concentrated to date on three technologies compatible with the Next Generation Nuclear Plant (NGNP): high temperature steam electrolysis (HTE); sulphur-iodine (S-I) thermochemical; and hybrid sulphur (HyS) thermochemical. In 2009 NHI will down select to a single technology on which to focus its future development efforts, for which the next step will be a pilot-scale experiment. (author)

  19. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  20. WE-NET: Japanese hydrogen program

    International Nuclear Information System (INIS)

    Mitsugi, Chiba; Harumi, Arai; Kenzo, Fukuda

    1998-01-01

    The Agency of Industrial Science and Technology (AIST), in the Ministry of International Trade and Industry (MITI), started the New Sunshine Program in 1993 by unifying the Sunshine Program (R and D on new energy technology), the Moonlight Program (R and D on energy conservation technology), and the Research and Development Program for Environmental Technology. The objective of the new program is to develop innovative technologies to allow sustainable growth while solving energy and environmental issues. One of the new projects in this program is the ''International Clean Energy System Technology Utilizing Hydrogen (World Energy Network)'': WE-NET. The goal of WE-NET is to construct a worldwide energy network for effective supply, transportation and utilization of renewable energy using hydrogen. The WE-NET program extends over 28 years from 1993 to 2020. In Phase 1, we started core research in areas such as development of high efficiency technologies including hydrogen production using polymer electrolyte membrane water electrolysis, hydrogen combustion turbines, etc. (author)

  1. Thermodynamic of the associated cycle and application to the assembly of thermochemical iodine sulphur cycle and a nuclear engine for the hydrogen production

    International Nuclear Information System (INIS)

    Dumont, Y.

    2008-01-01

    This thesis is devoted to the design of an assembly of a hydrogen production process by the thermochemical iodine-sulphur cycle and a nuclear reactor. The suggested coupling network uses a power cycle which produces a work which is directly used for the heat pump running. The purpose of this thermodynamic cycle association is to recover the rejected energy at low temperature of a process to provide the energy needs of this same process at high temperature. This association is applied to the studied coupling. The construction of the energy distribution network is designed by the pinch analysis. In the case of a conventional coupling, the efficiency of hydrogen production is 22.0%. By integrating the associated cycles into the coupling, the efficiency of production is 42.6%. The exergetic efficiency, representative of the energy using quality, increases from 58.7% to 85.4%. (author) [fr

  2. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Werner, R.W.; Ribe, F.L.

    1981-01-01

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  3. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  4. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  5. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  6. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  7. R and D thermochemical I-S process at JAERI

    International Nuclear Information System (INIS)

    Onuki, K.; Kubo, S.; Nakajima, H.; Higashi, S.; Kasahara, S.; Ishiyama, S.; Okuda, H.

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted a study on the thermochemical water-splitting process of the iodine-sulfur family (IS process). In the IS process, water will react with iodine and sulfur dioxide to produce hydrogen iodide and sulfuric acid, which are then decomposed thermally to produce hydrogen and oxygen. High temperature nuclear heat, mainly supplied by a High Temperature Gas-cooled Reactor (HTGR), is used to drive the endothermic decomposition of sulfuric acid. JAERI has demonstrated the feasibility of the water-splitting hydrogen production process by carrying out laboratory-scale experiments in which combined operation of fundamental reactions and separations using the IS process was performed continuously. At present, the hydrogen production test is continuing, using a scaled-up glass apparatus. Corrosion-resistant materials for constructing a large-scale plant and process improvements by introducing advanced separation techniques, such as membrane separation, are under study. Future R and D items are discussed based on the present activities. (author)

  8. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  9. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  10. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  11. Thermal energy distribution analysis for hydrogen production in RGTT200K conceptual design

    International Nuclear Information System (INIS)

    Tumpal Pandiangan; Ign Djoko Irianto

    2011-01-01

    RGTT200K is a high temperature gas-cooled reactor (HTGR) which conceptually designed for power generation, hydrogen production and desalination. Hydrogen production process in this design uses thermochemical method of Iodine-Sulphur. To increase the thermal conversion efficiency in hydrogen production installations, it needs to design a thermal energy distribution and temperature associated with the process of thermo-chemical processes in the method of Iodine-Sulphur. In this method there are 7 kinds of processes: (i) H 2 SO4 decomposition reaction (ii) treatment of vaporization (iii) treatment of pre vaporizer (iv) treatment of flash 4 (v) treatment of decomposition of HI (vi) treatment of the flash 1-3 and (vii) Bunsen reaction. To regulate the distribution of energy and temperature appropriate to the needs of each process used 3 pieces of heat exchanger (HE). Calculation of energy distribution through the distribution of helium gas flow has been done with Scilab application programs, so that can know the distribution of thermal energy for production of 1 mole of hydrogen. From this model, it can calculate the thermal energy requirement for production of hydrogen at the desired capacity. In the conceptual design of RGTT200K, helium discharge has been designed by 20 kg/s, so that an efficient hydrogen production capacity needed to produce 15347.8 for 21.74 mole of H 2 . (author)

  12. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  13. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  14. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    Kosmidou, Theodora; Haehner, Peter

    2009-01-01

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I 2 (l) + SO 2 (g) +2 H 2 O (l) → 2HI (l) + H 2 SO 4 (l) (70-120 deg. C); H 2 SO 4 (l) → H 2 O (l) + SO 2 (g) + 1/2 O 2 (g) (800-900 deg. C); 2HI (l) → I 2 (g) + H 2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO 2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO 2 rich environment at 850 o C under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H 2 O, 12.25 SO 2 , 6.13 O 2 , balance N 2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with

  15. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  16. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  17. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  18. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki

    1976-03-01

    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  19. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  20. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  1. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  2. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  3. Surveys and researches on trends of technologies related to hydrogen; Suiso ni kansuru gijutsu doko chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This report covers surveys of the latest technological trends in relation to the production, storage, and transportation of hydrogen as energy. Also included in the report are surveys of hydrogen, fuel cells, and wind energy centering about Europe. At the 4th World Hydrogen Energy Conference (Pasadena, U.S., June 1982), a number of essays were presented concerning the utilization of hydrogen, production of hydrogen, thermochemical processes, hybrid processes, photochemical processes, photo/thermochemical processes, other processes, fuel cells, metallic hydrides, etc. This report particularly describes in detail the trends of technologies involving the production of hydrogen by the electrolysis of water and by thermochemical processes. As for the recent trend of the metallic hydride technology, reports are made on the International Symposium on the Properties and Applications of Metal Hydrides (Toba, Japan, June 1982) and on Japan's research on the application of metallic hydrides. Concerning the trends in Europe of technologies relative to hydrogen, fuel cells, and wind energy, the results of the research group's on-site investigations are reported. (NEDO)

  4. Surveys and researches on trends of technologies related to hydrogen; Suiso ni kansuru gijutsu doko chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This report covers surveys of the latest technological trends in relation to the production, storage, and transportation of hydrogen as energy. Also included in the report are surveys of hydrogen, fuel cells, and wind energy centering about Europe. At the 4th World Hydrogen Energy Conference (Pasadena, U.S., June 1982), a number of essays were presented concerning the utilization of hydrogen, production of hydrogen, thermochemical processes, hybrid processes, photochemical processes, photo/thermochemical processes, other processes, fuel cells, metallic hydrides, etc. This report particularly describes in detail the trends of technologies involving the production of hydrogen by the electrolysis of water and by thermochemical processes. As for the recent trend of the metallic hydride technology, reports are made on the International Symposium on the Properties and Applications of Metal Hydrides (Toba, Japan, June 1982) and on Japan's research on the application of metallic hydrides. Concerning the trends in Europe of technologies relative to hydrogen, fuel cells, and wind energy, the results of the research group's on-site investigations are reported. (NEDO)

  5. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  6. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  7. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  8. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  9. Hydrogen, Fuel Cells & Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This plan details the goals, objectives, technical targets, tasks and schedule for EERE's contribution to the DOE Hydrogen Program. Similar detailed plans exist for the other DOE offices that make up the Hydrogen Program.

  10. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  11. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  12. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  13. Analysis of the hybrid copper oxide-copper sulfate cycle for the thermochemical splitting of water for hydrogen production

    International Nuclear Information System (INIS)

    Gonzales, Ross B.; Law, Victor J.; Prindle, John C.

    2009-01-01

    The hybrid copper oxide-copper sulfate water-splitting thermochemical cycle involves two principal steps: (1) hydrogen production from the electrolysis of water, SO 2 (g) and CuO(s) at room temperature and (2) the thermal decomposition of the CuSO 4 product to form oxygen and SO 2 , which is recycled to the first step. A four-reaction version of the cycle (known in the literature as Cycle H-5) was used as the basis of the present work. For several of the four reactions, a rotating batch reactor sequence is proposed in order to overcome equilibrium limitations. Pinch technology was used to optimize heat integration. Sensitivity analyses revealed it to be economically more attractive to use a 10 C approach to minimize heat loss (rather than 20 C). Using standard Aspen Plus features and the Peng-Robinson equation of state for separations involving oxygen and sulfur oxides, a proposed flowsheet for the cycle was generated to yield ''Level 3'' results. A cost analysis of the designed plant (producing 100 million kmol/yr hydrogen) indicates a total major equipment cost of approximately $45 million. This translates to a turnkey plant price (excluding the cost of the high-temperature heat source or electrolyzer internals) of approximately $360 million. Based on a $2.50/kg selling price for hydrogen, gross annual revenue could be on the order of $500 million, resulting in a reasonable payback period when all capital and operating costs are considered. Previous efficiency estimates using Level 1 and Level 2 methods gave the process efficiency in the neighborhood of 47-48%. The Level 3 efficiency computation was 24-25% depending on the approach temperature used for recuperation. If the low quality heat rejected by the process can be recovered and used elsewhere, the Level 3 analysis could be as high as 51-53%. (author)

  14. Achievement report for fiscal 1983 on Sunshine Program-entrusted research and development. Survey and research on patent information (Hydrogen energy); 1983 nendo tokkyo joho chosa kenkyu seika hokokusho. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    For the purpose of propelling forward the Sunshine Program smoothly and efficiently, a survey is conducted on inventions related to the contents of researches being conducted under the Sunshine Program. The survey covers hydrogen energy-related patents laid open in 1983. As the result of the survey, it is learned that, among the patents related to thermochemical or photochemical processes, those that relate to hydrogen production technologies using the photochemical process is found to be on the increase. There is a remarkable increase also in the number of patents related to metallic hydrides, as in the preceding year. As for their contents, many involve containers for hydrogenation heat utilization, but now novel hydrogen storage alloys are also evoking interest. As for the hydrogen fuel cell, there is an increase in the number of applications for the phosphoric acid fuel cell and molten carbonate fuel cell which are expected to be introduced into the power system. As for the hydrogen engine, the number of applications concerning alcohol-reformed gas engines is approximately three times larger than that of the preceding year. In relation with the hydrogen combustion system, many patents relate to catalytic combustion. This is probably because the technique has come to be recognized as a controlled burning method which has in itself a measure to inhibit NOx emissions. (NEDO)

  15. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  16. Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors

    Science.gov (United States)

    Sims, Joseph David

    The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility. In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen. In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates. These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for

  17. NRCan's hydrogen storage R and D program

    International Nuclear Information System (INIS)

    Scepanovic, V.

    2004-01-01

    'Full text:' Natural Resources Canada (NRCan) has been working in partnership with industry, other government departments and academia to expedite the development of hydrogen technologies. NRCan's Hydrogen and Fuel Cell R and D Program covers all aspects of hydrogen technologies: production, storage, utilization and codes and standards. Hydrogen storage is a key enabling technology for the advancement of fuel cell power systems in transportation, stationary, and portable applications. NRCan's storage program has been focused on developing storage materials and technologies for a range of applications with the emphasis on transportation. An overview of most recent hydrogen storage projects including pressurized hydrogen, liquid hydrogen and storage in hydrides and carbon-based materials will be given. (author)

  18. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  19. Achievement report for fiscal 1976 on Sunshine Program. Research on hydrogen production technology (Research on hydrogen production technology using thermochemical method); 1976 nendo suiso no seizo gijutsu no kenkyu seika hokokusho. Netsukagakuho ni yoru suiso seizo gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report covers part of the efforts to develop new hydrogen production technologies. Out of many processes involving Cu-halogen and alkali carbonate-iodine systems proposed as novel thermochemical processes, after they are compared with each other, a process of a sodium carbonate-iodine system with nickel in between is chosen. The chosen process is deemed to be the most excellent among the processes disclosed up to fiscal 1975. A feasibility study is conducted for the chosen process from the viewpoint of reaction rate, separation of reactive substances from each other, method for reaction manipulation, materials for device constitution, and thermal efficiency. As for the measurement of reaction rate for each unit reaction, basic reaction data are determined centering about the nickel iodide decomposition reaction and the sodium iodide carbonation reaction, and then reaction conditions which are roughly satisfying are obtained. A larger reaction unit is built in which the amounts of substances that come into reaction are approximately 10 times larger than those in the ones used in basic experiments. The progress of reactions is observed in the reaction unit, with the size enlarged in preparation for future construction of still larger reaction units. Methods for selectively isolating hydrogen out of gases ensuing from the decomposition are evaluated from the viewpoint of energy efficiency. In the selection of a reaction manipulation method, a single unit reaction process is advocated, and its thermal efficiency is estimated. (NEDO)

  20. Energy balance calculations and assessment of two thermochemical sulfur cycles

    International Nuclear Information System (INIS)

    Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.

    1978-01-01

    Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated

  1. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  2. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  3. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  4. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  5. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The FY 1988 Summary is the eleventh consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. A historical summary of the hydrogen budgets of these offices is given. The distribution by mission-related program element for FY 1988, and the non-mission-related activities are given. Total DOE funding in FY 1988 for mission-related hydrogen research was $5.2 million; DOE non-mission-related hydrogen research funding totaled $30.0 million. The individual program elements are described in the body of this report, and more specific program information is given in the Technology Summary Forms in Appendix A. 2 tabs

  6. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  7. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  8. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  9. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  11. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  12. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  13. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on peripheral technologies around hydrogen); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This report summarizes the fiscal 1975 research result on peripheral and seed technologies for hydrogen energy systems. Chapter 1 'Evaluation method for thermochemical techniques' reports critical study on qualitative evaluation method, estimation method for thermal efficiencies, and trial cost calculation example. Chapter 2 'Current state and problems of water electrolysis and hybrid technique composed of electrolysis and thermochemical technique' reports general survey on current water electrolysis and new technologies under development to clarify possible electrolytic voltage drop, from the practical viewpoint. Chapter 3 'Use of a high- temperature gas cooling reactor for hydrogen production' reports survey on the current and future reactors, and characteristics of such nuclear reactors, from the viewpoint that study on thermochemical technique is dependent on use of a high-temperature gas cooling reactor. Chapter 4 'Hydrogen transport and storage technology using organic compounds including oxygen' reports that acetone-isopropanol system is better for hydrogen storage. Chapter 5 'Water electrolysis using photo-semiconducting electrode' reports the additional survey. (NEDO)

  14. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  15. Hydrogen: an energy carrier of the future

    Energy Technology Data Exchange (ETDEWEB)

    Hamerak, K

    1977-02-01

    Some advantages and fields of application of hydrogen are outlined in the introduction. Hydrogen production by conventional water electrolysis, by the thermochemical iron-chlorine cycle process, and by a new water electrolysis method still in the laboratory stage are dealt with in which the electrolysis voltage is considerably reduced by the action of solar UV light on an anode consisting of p-conducting material.

  16. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  17. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  18. Degradation of materials under conditions of thermochemical cycles for hydrogen production - part III

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Guerout, F.

    2011-01-01

    A capsule method was employed to screen a number of materials for degradation under selected conditions of the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles. A summary of the results of an experimental investigation is given. The recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper chlorine hybrid cycle are presented and discussed with the associated rationale. Some remaining uncertainties are illustrated on the basis of the experimental evidence gathered. (author)

  19. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  20. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  1. Preliminary analyses on hydrogen diffusion through small break of thermo-chemical IS process hydrogen plant

    International Nuclear Information System (INIS)

    Somolova, Marketa; Terada, Atsuhiko; Takegami, Hiroaki; Iwatsuki, Jin

    2008-12-01

    Japan Atomic Energy Agency has been conducting a conceptual design study of nuclear hydrogen demonstration plant, that is, a thermal-chemical IS process hydrogen plant coupled with the High temperature Engineering Test Reactor (HTTR-IS), which will be planed to produce a large amount of hydrogen up to 1000m 3 /h. As part of the conceptual design work of the HTTR-IS system, preliminary analyses on small break of a hydrogen pipeline in the IS process hydrogen plant was carried out as a first step of the safety analyses. This report presents analytical results of hydrogen diffusion behaviors predicted with a CFD code, in which a diffusion model focused on the turbulent Schmidt number was incorporated. By modifying diffusion model, especially a constant accompanying the turbulent Schmidt number in the diffusion term, analytical results was made agreed well with the experimental results. (author)

  2. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  3. A pilot test plan of the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro

    2004-01-01

    Research and development (R and D) of hydrogen production systems using high-temperature gas-cooled reactors (HTGR) are being conducted by the Japan Atomic Research Institute (JAERI). To develop the systems, superior hydrogen production methods are essential. The thermochemical hydrogen production cycle, the IS (iodine-sulfur) process, is a prospective candidate, in which heat supplied by HTGR can be consumed for the thermal driving load. With this attractive feature, JAERI will conduct pilot-scale tests, aiming to establish technical bases for practical plant designs using HTGR. The hydrogen will be produced at a maximum rate of 30 m 3 /h, continuously using high-temperature helium gas supplied by a helium gas loop, with an electric heater of about 400 kW. The plant will employ an advanced hydroiodic acid-processing device for efficient hydrogen production, and the usefulness of the device was confirmed from mass and heat balance analysis. Through design works and the hydrogen production tests, valuable data for construction and operation will be acquired to evaluate detailed process performance for practical systems. After completing the pilot-scale tests, JAERI will move onto the next R and D step, which will be demonstrations of the IS process to which heat is supplied from a high-temperature engineering test reactor (HTTR)

  4. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  5. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  6. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  7. Collection of summaries of Sunshine Program achievement reports for fiscal 1982. Hydrogen energy; 1982 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-01

    The collection includes achievements of research relating to hydrogen energy. In the research on hydrogen production by electrolysis, electrolysis of water using an acid-type solid polymer electrolyte and electrolysis of water using an alkali-type solid polymer electrolyte are taken up. In the research on hydrogen production by thermochemical methods, studies are conducted on the iodine-based cycle, the bromine-based cycle, materials for devices for the iodine-based cycle, and the mixed cycle. Hydrogen production using high-temperature direct thermolysis and solar radiation is also studied. In the research on hydrogen transportation and storage, use of metallic hydrides in these processes are taken up. In the research on the application of hydrogen, techniques of hydrogen combustion and hydrogen-fueled engines are discussed. In the research on hydrogen safety measures, technologies for the prevention of hydrogen explosions and of hydrogen embrittlement of materials in use with hydrogen are studied. In addition, a study is conducted of a hydrogen energy total system, and research and development is carried out for a plant that produces hydrogen by high-temperature high-pressure electrolysis of water. (NEDO)

  8. Meeting Cathala-Letort named: the challenges of the processes engineering facing the hydrogen-energy; Journee Cathala-Letort intitulee: les defis du genie des procedes face a l'hydrogene-energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document provides the presentations proposed during the day Cathala-Letort on the challenges of the processes engineering facing the hydrogen-energy. In the context of the greenhouse effect increase and the fossil energies resources decrease, it brings information on researches on hydrogen technologies, carbon dioxide sequestration, hydrogen supply, production, storage and distribution and the thermo-chemical cycles. (A.L.B.)

  9. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  10. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  11. Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Aghahosseini, S; Dincer, I; Naterer, G F [University of Ontario, Oshawa, ON (Canada). Institute of Technology

    2011-02-15

    This paper develops and analyzes an integrated process model of an Integrated Gasification Combined Cycle (IGCC) and a thermochemical copper-chlorine (Cu-Cl) cycle for trigeneration of hydrogen, steam and electricity. The process model is developed with Aspen HYSYS software. By using oxygen instead of air for the gasification process, where oxygen is provided by the integrated Cu-Cl cycle, it is found that the hydrogen content of produced syngas increases by about 20%, due to improvement of the gasification combustion efficiency and reduction of syngas NOx emissions. Moreover, about 60% of external heat required for the integrated Cu-Cl cycle can be provided by the IGCC plant, with minor modifications of the steam cycle, and a slight decrease of IGCC overall efficiency. Integration of gasification and thermochemical hydrogen production can provide significant improvements in the overall hydrogen, steam and electricity output, when compared against the processes each operating separately and independently of each other.

  12. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  13. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy

  14. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  15. The development of the Hydrogen Economic Evaluation Program (HEEP)

    International Nuclear Information System (INIS)

    Khamis, I.

    2010-01-01

    The International Atomic Energy Agency (IAEA) is developing software to perform economic analysis related to hydrogen production. The software is expected to analyse the economics of the four most promising processes for hydrogen production. These processes are: high and low temperature electrolysis, thermochemical processes including the S-I process, conventional electrolysis and steam reforming. The IAEA HEEP software is expected to be used for comparative studies between nuclear and fossil energy sources. Therefore, typical conventional methods are also to be included in HEEP to enable comparison with nuclear hydrogen production. The HEEP models will be based on some economic and technical data, and on cost modelling. Modelling will include various aspects of hydrogen economy including storage, transport and distribution with options to eliminate or include specific details as required by the users. Development of HEEP is based on the IAEA's successful programme during the development of DEEP. This IAEA DEEP software has been distributed free of charge to more than 500 scientists/engineers and researchers from 50 countries interested in cost estimation of desalination plants using nuclear/fossil energy sources. DEEP is not a design code. A number of member states engaged in nuclear desalination activities in their countries have used DEEP for conducting feasibility studies for establishing large nuclear desalination projects based on different nuclear reactors types and desalination processes. HEEP is expected to be similar to the IAEA software DEEP which is being used to perform economic analysis and feasibility studies related to nuclear desalination in the IAEA and other member states. It is expected that HEEP will have similar architecture to DEEP but with the possibility of easy update and future expansion. Various major processes and technologies are to be incorporated in the HEEP programme as the basis for modelling the performance and cost

  16. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  17. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku; Sato, Seichi; Ohashi, Hiroshi.

    1997-03-01

    Two kinds of cesium uranates, Cs 2 UO 4 and Cs 2 U 2 O 7 , which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U 3 O 8 and Cs 2 CO 3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs 2 UO 4 and Cs 2 U 2 O 7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs 2 UO 4 and Cs 2 U 2 O 7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  18. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  19. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  20. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    The power generation efficiency of nuclear plants is mainly determined by the permissible temperatures and pressures of the nuclear reactor fuel and coolants. These parameters are limited by materials properties and corrosion rates and their effect on nuclear reactor safety. The advanced materials for the next generation of CANDU reactors, which employ steam as a coolant and heat carrier, permit the increased steam parameters (outlet temperature up to 625 degree C and pressure of about 25 MPa). Supercritical water-cooled (SCW) nuclear power plants are expected to increase the power generation efficiency from 35 to 45%. Supercritical water-cooled nuclear reactors can be linked to thermochemical water splitting cycles for hydrogen production. An increased steam temperature from the nuclear reactor makes it also possible to utilize its energy in thermochemical water splitting cycles. These cycles are considered by many as one of the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require a heat supply at the temperatures over 550-600 degree C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump which increases the temperature the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. A high temperature chemical heat pump which employs the reversible catalytic methane conversion reaction is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with a SCW nuclear plant on one side and thermochemical water splitting cycle on the other, increases the temperature level of the 'nuclear' heat and, thus, the intensity of

  1. Hydrogen production by water dissociation from a nuclear reactor; Production d'hydrogene par dissociation de l'eau a partir d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This memento presents the production of hydrogen by water decomposition, the energy needed for the electrolysis, the thermochemical cycles for a decomposition at low temperature and the possible nuclear reactors associated. (A.L.B.)

  2. Study on structural design technique of silicon carbide applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Takegami, Hiroaki; Terada, Atsuhiko; Inagaki, Yoshiyuki; Ishikura, Syuichi

    2011-03-01

    The IS process is the hydrogen production method which used the thermochemical reaction cycle of sulfuric acid and iodyne. Therefore, the design to endure the high temperature and moreover corrode-able environment is required to the equipment. Specifically, the sulfuric acid decomposer which is one of the main equipment of the IS process is the equipment to heat with hot helium and for the sulfuric acid of 90 wt% to evaporate. Moreover, it is the important equipment to supply the SO 3 decomposer which is the following process, resolving the part of sulfuric acid vapor into SO 3 with. The heat exchanger that sulfuric acid evaporates must be made pressure-resistant structure because it has the high-pressure helium of 4 MPa and the material that the high temperature and the corrosion environment of equal to or more than 700degC can be endured must be used. As the material, it is selected from the corrosion experiment and so on when SiC which is carbonization silicone ceramics is the most excellent material. However, even if it damages the ceramic block which is a heat exchanger because it becomes the structure which is stored in pressure-resistant metallic container, fluid such as sulfuric acid becomes the structure which doesn't leak out outside. However, the structure design technique to have been unified when using ceramics as the structure part isn't serviced as the standard. This report is the one which was studied about the structural design technique to have taken the material strength characteristic of the ceramics into consideration, refer to existing structural design standard. (author)

  3. Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives

    International Nuclear Information System (INIS)

    Werkoff, Francois; Avril, Sophie; Mansilla, Christine; Sigurvinsson, Jon

    2006-01-01

    Hydrogen production, using nuclear power is considered from a technic-economic (TE) point of view. Three different processes are examined: Alkaline electrolysis, High-temperature steam electrolysis (HTE) and the thermochemical Sulphur-Iodine (S/I) cycle. The three processes differ, in the sense that the first one is operational and both last ones are still at demonstration stages. For them, it is at present only possible to identify key points and limits of competitiveness. The cost of producing hydrogen by alkaline electrolysis is analysed. Three major contributions to the production costs are examined: the electricity consumption, the operation and maintenance expenditures and the depreciation capital expenditures. A technic-economic evaluation of hydrogen production by HTE coupled to a high-temperature reactor (HTR) is presented. Key points appear to be the electrolyser and the high temperature heat exchangers. The S/I thermochemical cycle is based on the decomposition and the re-composition of H 2 SO 4 and HI acids. The energy consumption and the recovery of iodine are key points of the S/I cycle. With the hypothesis that the hydrogen energy will progressively replace the fossil fuels, we give a first estimate of the numbers of nuclear reactors (EPR or HTR) that would be needed for a massive nuclear hydrogen production. (authors)

  4. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  5. Assessment of a closed thermochemical energy storage using energy and exergy methods

    International Nuclear Information System (INIS)

    Abedin, Ali Haji; Rosen, Marc A.

    2012-01-01

    Highlights: ► Thermodynamics assessments are reported for a general closed thermochemical thermal energy storage system. ► Energy and exergy efficiencies of various processes in a closed thermochemical TES are evaluated and compared. ► Understanding is enhanced of thermochemical TES technologies and their potential implementations. ► Exergy analysis is observed to be useful when applied to thermochemical TES, with or in place of energy analysis. - Abstract: Thermal energy storage (TES) is an important technology for achieving more efficient and environmentally benign energy systems. Thermochemical TES is a type of TES with the potential for high energy density and is only recently being considered intensively. To improve understanding of thermochemical TES systems and their implementation, energy and exergy analyses are beneficial. Here, thermodynamics assessments are presented for a general closed thermochemical TES system, including assessments and comparisons of the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Locations and causes of thermodynamic losses in thermochemical TES systems are being specified using exergy analysis. The analytical methodology applied in this study identifies that energy and exergy efficiencies differ for thermochemical TESs, e.g. the energy efficiency for a case study is approximately 50% while the exergy efficiency is about 10%. Although the focus is to evaluate thermodynamic efficiencies, other design parameters such as cost, and environmental impact also need to be examined in assessing thermochemical storage. The efficiencies for thermochemical TES provided here should be helpful for designing these energy systems and enhancing their future prospects.

  6. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen production technology using thermochemical process (Research on cycles of Fe systems etc.); 1974-1980 nendo suiso energy seika hokokusho. Netsu kagakuho ni yoru suiso seizo gijutsu no kenkyu (tetsukei cycle nado no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Collected in this report are the results of efforts of the Government Industrial Research Institute, Osaka, in the 7-year period that began in fiscal 1974. The Institute, after looking for basic reactions in thermochemical cycles which are promising, has come to propose a new cycle in which iron and bromine are the reactants. In the research, the Fe-Br reaction is divided into a hydrogen generating loop and an oxygen generating loop, both to be developed into devices. Problems in developing them into a cycle are isolated, and solved. In the hydrogen generating loop, the use of a molten salt is contrived for the prevention of reduction in the reactivity of the Fe{sub 3}O{sub 4} to be generated, and now it is expected that the problem will be solved. No problem is detected in the oxygen generating loop. The process is now accepted as a superb one. As for the materials for the Fe-Br-based cycle apparatus, important tasks have to be undertaken since existing materials cannot be used as is. Besides, thermal efficiency etc. are estimated for a new As-Br-based hybrid cycle and the Fe-Br-based cycle. (NEDO)

  7. Proceedings of the 2000 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-11-01

    The 2000 US Department of Energy (DOE) Hydrogen Program Review was sponsored by the Office of Power Delivery Systems, Office of Power Technologies, US Department of Energy. The proceedings from this meeting serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 2000. The growth of fuel cell technology will provide a basis for the establishment of the hydrogen option into both transportation and electricity supply markets.

  8. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  9. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  10. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  11. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  12. Assessment of thermochemical hydrogen production. Project 8994 mid-contract progress report, July 1--November 1, 1977. [Iron chloride and copper sulfate cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Schreiber, J.D.

    1977-12-01

    We have completed the base-case (first-cut) flowsheet analysis for two thermochemical water-splitting cycles that have been under study at the Institute of Gas Technology: a four-step iron chloride cycle (denoted B-1) and a four-step copper sulfate cycle (denoted H-5). In the case of Cycle B-1, an energy balance has located the worst problem areas in the cycle, and flowsheet modifications have begun. Calculations of equilibrium effects due to the hydrolysis of ferrous chloride at pressures high enough to interface with projected hydrogen transmission systems will, apparently, necessitate higher temperature process heat input for this step. Higher pressure operation of some critical separation processes yields more favorable heat balances. For Cycle H-5, the unmodified (base-case) flowsheet indicates that reaction product separations will be relatively simple with respect to Cycle B-1. Work of Schuetz and others dealing with the electrolysis and thermodynamics of HBr/H/sub 2/O/SO/sub 2/ systems is being extensively reviewed. Work plans for this part of the contract are currently being reviewed.

  13. An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor

    International Nuclear Information System (INIS)

    Harvego, E.A.; Reza, S.M.M.; Richards, M.; Shenoy, A.

    2006-01-01

    The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A and M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR. This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900-1000 deg. C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900-1000 deg. C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and

  14. Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production

    International Nuclear Information System (INIS)

    Fu, Guangshi; He, Yong; Zhang, Yanwei; Zhu, Yanqun; Wang, Zhihua; Cen, Kefa

    2016-01-01

    Highlights: • The relation between Ni content and Ni particle dispersion were disclosed. • The effect of Ni content on the catalytic activity of Ni/AC catalyst was revealed. • The optimal content of Ni for Ni/AC catalysts in HI decomposition was found. - Abstract: This work reports the Ni content effect on the Ni/AC catalytic performance in the HI decomposition reaction of the sulfur–iodine (SI) thermochemical cycle for hydrogen production and the Ni/AC catalyst durability in a long-term test. Accordingly, five catalysts with the Ni content ranging from 5% to 15% were prepared by an incipient-wetness impregnation method. The activity of all catalysts was examined under the temperature range of 573–773 K. The catalytic performance evaluation suggests that Ni content plays a significant role in the Ni dispersion, Ni particle size, and eventually the catalytic activity in HI decomposition. 12% is the optimal Ni content for Ni/AC catalysts in HI decomposition which is balanced between poor dispersion of Ni particles and increasing active center. The results of 24 h durability test, which incorporated with BET and TEM investigations of the 12%Ni/AC catalyst before and after the reaction, indicate that establishing a better Ni particle dispersion pattern and improving the stability of Ni particles on the support should be considered in the future.

  15. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  16. Thermochemical evaluation and preparation of cesium uranates

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Seichi; Ohashi, Hiroshi

    1997-03-01

    Two kinds of cesium uranates, Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U{sub 3}O{sub 8} and Cs{sub 2}CO{sub 3} for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  17. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  18. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Dasuki, A.S.; Rahman, M.; Nuriman; Sudarto

    1997-01-01

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  19. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  20. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  1. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  2. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)

    1997-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  3. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  4. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  5. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  6. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  7. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  8. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  9. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  10. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625 o C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single-reheat option

  11. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  12. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  13. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  14. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  15. 2009 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-10-01

    This report summarizes comments from the Peer Review Panel at the 2009 DOE Hydrogen Program Annual Merit Review, held on May 18-22, 2009, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; education; safety, codes, and standards; technology validation; systems analysis; and manufacturing R&D.

  16. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  17. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    International Nuclear Information System (INIS)

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  18. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  19. System and process for producing fuel with a methane thermochemical cycle

    Science.gov (United States)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  20. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  1. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  2. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  3. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  4. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  5. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  6. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  7. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  8. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    Ronchi, C.; Turrini, F.

    1990-01-01

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  9. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor with H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.

  10. The Australian Hydrogen and Fuel Cells Education Program

    International Nuclear Information System (INIS)

    Luigi Bonadio

    2006-01-01

    The next generation of engineers and scientists will face great technical, economic and political challenges to satisfy increasing demands for a secure, reliable and affordable global energy system that maintains and enhances current standards of living. The Australian Hydrogen and Fuel Cells Education Program aims to bolster the quality and relevance of primary and secondary school teaching in emerging areas of science, technology and environmental/sustainability studies using hydrogen, in its capacity as a versatile energy carrier, as the educational basis for teacher and student learning. Critical advances in specific areas of hydrogen production, distribution, storage and end-use technologies arise when students are engaged to develop and apply a broad range of disciplinary and interdisciplinary knowledge and practical skills. A comprehensive hydrogen and fuel cell technology teaching module will be developed to complement existing fuels and energy curricula across Australian schools. The pilot program will be delivered via the collaboration of nine trial schools, a broad range of technical and pedagogy experts and representatives of professional bodies and industry. The program features essential and extensive teacher consultation, a professional learning and development course, industry site visits and a dedicated research and evaluation study. This initiative aims to bolster teacher literacy and student participation in the design, construction and operation of various hydrogen and fuel cell devices and extended activities. Students will reflect on and formally present their learning experiences via several dedicated fora including an awards ceremony where outstanding performance of leading schools, teachers and student groups within the cluster will be acknowledged. (authors)

  11. The Australian Hydrogen and Fuel Cells Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Luigi Bonadio [Senior Consultant Luigi Bonadio and Associates (Australia)

    2006-07-01

    The next generation of engineers and scientists will face great technical, economic and political challenges to satisfy increasing demands for a secure, reliable and affordable global energy system that maintains and enhances current standards of living. The Australian Hydrogen and Fuel Cells Education Program aims to bolster the quality and relevance of primary and secondary school teaching in emerging areas of science, technology and environmental/sustainability studies using hydrogen, in its capacity as a versatile energy carrier, as the educational basis for teacher and student learning. Critical advances in specific areas of hydrogen production, distribution, storage and end-use technologies arise when students are engaged to develop and apply a broad range of disciplinary and interdisciplinary knowledge and practical skills. A comprehensive hydrogen and fuel cell technology teaching module will be developed to complement existing fuels and energy curricula across Australian schools. The pilot program will be delivered via the collaboration of nine trial schools, a broad range of technical and pedagogy experts and representatives of professional bodies and industry. The program features essential and extensive teacher consultation, a professional learning and development course, industry site visits and a dedicated research and evaluation study. This initiative aims to bolster teacher literacy and student participation in the design, construction and operation of various hydrogen and fuel cell devices and extended activities. Students will reflect on and formally present their learning experiences via several dedicated fora including an awards ceremony where outstanding performance of leading schools, teachers and student groups within the cluster will be acknowledged. (authors)

  12. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  13. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  14. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  15. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  16. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  17. Thermochemical performance analysis of solar driven CO_2 methane reforming

    International Nuclear Information System (INIS)

    Fuqiang, Wang; Jianyu, Tan; Huijian, Jin; Yu, Leng

    2015-01-01

    Increasing CO_2 emission problems create urgent challenges for alleviating global warming, and the capture of CO_2 has become an essential field of scientific research. In this study, a finite volume method (FVM) coupled with thermochemical kinetics was developed to analyze the solar driven CO_2 methane reforming process in a metallic foam reactor. The local thermal non-equilibrium (LTNE) model coupled with radiative heat transfer was developed to provide more temperature information. A joint inversion method based on chemical process software and the FVM coupled with thermochemical kinetics was developed to obtain the thermochemical reaction parameters and guarantee the calculation accuracy. The detailed thermal and thermochemical performance in the metal foam reactor was analyzed. In addition, the effects of heat flux distribution and porosity on the solar driven CO_2 methane reforming process were analyzed. The numerical results can serve as theoretical guidance for the solar driven CO_2 methane reforming application. - Highlights: • Solar driven CO_2 methane reforming process in metal foam reactor is analyzed. • FVM with chemical reactions was developed to analyze solar CO_2 methane reforming. • A joint inversion method was developed to obtain thermochemical reaction parameters. • Results can be a guidance for the solar driven CO_2 methane reforming application.

  18. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  19. Proceedings of the 1994 DOE/NREL Hydrogen Program Review, April 18--21, 1994, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program, conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 published in June 1992, establishes program priorities and guidance for allocating funding. The core program, currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage, and systems research. At an annual program review, each research project is evaluated by a panel of technical experts for technical quality, progress, and programmatic benefit. This Proceedings of the April 1994 Hydrogen Program Review compiles all research projects supported by the Hydrogen Program during FY 1994. For those people interested in the status of hydrogen technologies, we hope that the Proceedings will serve as a useful technical reference. Individual reports are processed separately.

  20. Studies on closed-cycle processes for hydrogen production, 3

    International Nuclear Information System (INIS)

    Sato, Shoichi; Ikezoe, Yasumasa; Shimizu, Saburo; Nakajima, Hayato; Kobayashi, Toshiaki

    1978-10-01

    Studies made in fiscal 1977 on the thermochemical and radiation chemical processes for hydrogen production are reported. In the thermochemical process, cerium (III) carbonate was used as an intermediate, and a workable process was found, which consisted of eight reaction steps. In other feasible processes, carbon dioxide was made to react with iron (II) chloride or iodide at high temperature to form carbon monoxide, and three or four reaction steps ensued. Also, an improved process of the sulfur cycle was studied. In this process, nickel salts were separated by solvent extraction. Estimated thermal efficiency (HHV) of the process was 30 - 40%, assuming 70 - 80% heat recovery. In the radiation chemical process, carbon dioxide was added with propane or nitrogen dioxide and radiolyzed: reaction mechanisms are discussed. (author)

  1. DOE Hydrogen Program: 2010 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2010 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held June 7-11, 2010 in Washington, D.C.

  2. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  3. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  4. Decomposition analysis of cupric chloride hydrolysis in the Cu-Cl cycle of hydrogen production

    International Nuclear Information System (INIS)

    Daggupati, V.N.; Naterer, G.F.; Gabriel, K.S.; Gravelsins, R.; Wang, Z.

    2009-01-01

    This paper examines cupric chloride solid conversion during hydrolysis in a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production. The hydrolysis reaction is a challenging step, in terms of the excess steam requirement and the decomposition of cupric chloride (CuCl 2 ) into cuprous chloride (CuCl) and chlorine (Cl 2 ). The hydrolysis and decomposition reactions are analyzed with respect to the chemical equilibrium constant. The effects of operating parameters are examined, including the temperature, pressure, excess steam and equilibrium conversion. A maximization of yield and selectivity are very important. Rate constants for the simultaneous reaction steps are determined using a uniform reaction model. A shrinking core model is used to determine the rate coefficients and predict the solid conversion time, with diffusional and reaction control. These new results are useful for scale-up of the engineering equipment in the thermochemical Cu-Cl cycle for hydrogen production. (author)

  5. Hydrogen production by nuclear heat

    International Nuclear Information System (INIS)

    Crosbie, Leanne M.; Chapin, Douglas

    2003-01-01

    A major shift in the way the world obtains energy is on the horizon. For a new energy carrier to enter the market, several objectives must be met. New energy carriers must meet increasing production needs, reduce global pollution emissions, be distributed for availability worldwide, be produced and used safely, and be economically sustainable during all phases of the carrier lifecycle. Many believe that hydrogen will overtake electricity as the preferred energy carrier. Hydrogen can be burned cleanly and may be used to produce electricity via fuel cells. Its use could drastically reduce global CO 2 emissions. However, as an energy carrier, hydrogen is produced with input energy from other sources. Conventional hydrogen production methods are costly and most produce carbon dioxide, therefore, negating many of the benefits of using hydrogen. With growing concerns about global pollution, alternatives to fossil-based hydrogen production are being developed around the world. Nuclear energy offers unique benefits for near-term and economically viable production of hydrogen. Three candidate technologies, all nuclear-based, are examined. These include: advanced electrolysis of water, steam reforming of methane, and the sulfur-iodine thermochemical water-splitting cycle. The underlying technology of each process, advantages and disadvantages, current status, and production cost estimates are given. (author)

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  7. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  8. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  9. Safety Assessments for the IS Process in a Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo; Cho, Nam Chul; Jae, Moo Sung

    2006-01-01

    The thermochemical water decomposition cycle is one of the methods for the hydrogen production process from water. The successful continuous operation of the IS-process was demonstrated and this process is one of the thermochemical processes, which is the closest to be industrialized. Currently, Korea has also started a research about the IS process and the construction of the IS process system is planned. In this study, for risk analysis of the IS process, initiating events of the IS process are identified by using the Master Logic Diagram (MLD) which is the method for initiating the event identification. Also, 6 events were identified among 9 initiating events above and performed quantification of events using event tree analysis

  10. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su [SK energy Institution of Technology, Daejeon (Korea, Republic of)] (and others)

    2006-02-15

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

  11. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    International Nuclear Information System (INIS)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su

    2006-02-01

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range

  12. OPTIMIZED WTE CONVERSION OF MUNICIPAL SOLID WASTE IN SHANGHAI APPLYING THERMOCHEMICAL TECHNOLOGIES

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  13. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  14. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  15. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead

  16. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  17. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  18. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  19. Thermochemical cycles for the production of hydrogen

    Science.gov (United States)

    Steinberg, M.; Dang, V.D.

    Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.

  20. The Modular Helium Reactor for Hydrogen Production

    International Nuclear Information System (INIS)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-01-01

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR

  1. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  2. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  3. HYSOLAR an overview on the German-Saudi Arabian program on solar hydrogen

    International Nuclear Information System (INIS)

    Steeb, H.; Seeger, W.

    1993-01-01

    The first phase of HYSOLAR, which ended in 1991, was focusing mainly on investigation, test and improvement of hydrogen production technologies. This paper shortly reviews the most important results: a 2 kW test and research facility in Jeddah; fundamental research in the fields of photo-electrochemistry, advanced alkaline electrolysis and alkaline fuel cells; system studies and decentralized hydrogen utilization; program for education. An outlook into the second phase program, where more emphasis is laid on hydrogen utilization technologies, is also included. 1 tab., 93 refs

  4. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  5. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production

    International Nuclear Information System (INIS)

    Hong, Hui; Liu, Qibin; Jin, Hongguang

    2012-01-01

    Highlights: ► A 15 kW solar chemical receiver/reactor for hydrogen production was developed. ► The solar thermochemical efficiency of the receiver/reactor was in the range of 20–28%. ► Hydrogen production exceeding 80% was achieved. ► The research results extend the application of mid-temperature solar thermal energy. -- Abstract: In this paper, we report the operational performance and energy conversion efficiency of a developed 15 kW solar chemical receiver/reactor for hydrogen production. A concentrated solar heat of around 200–300 °C was utilized to provide process heat to drive methanol steam reforming. A modified 15 kW direct-irradiation solar reactor coupled with a linear receiver positioned along the focal line of a one-axis parabolic trough concentrator was used. The experiments were conducted from 200 to 300 °C under a mean solar flux of 300–800 W/m 2 and a reactant feeding rate of 6 kg/h. Reactants were continuously fed, and the attained conversion rate of methanol was more than 70% at 700 W/m 2 . The typical solar thermochemical efficiency of solar thermal energy converted into chemical energy was in the 20–28% range. The overall energy efficiency of input solar power conversion into chemical energy reached up to 17% and may be further increased by improving solar field efficiency. Hydrogen production exceeding 80% was achieved. In addition, preliminary economic evaluation was performed, and methods for further improvement were proposed. This paper proves that solar hydrogen production is feasible by combining solar thermal energy with alternative fuel at around 200–300 °C, which is much lower than the temperature of other solar thermochemical processes. This may offer an economic approach to solar fuel production and extend the application of mid-temperature solar thermal energy.

  6. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Overview of U.S. programs for hydrogen from renewables

    International Nuclear Information System (INIS)

    Lewis, M.

    2007-01-01

    This paper discusses US program for hydrogen from renewable energy sources. Renewable energy sources include biomass, wind, solar, hydropower, geothermal and ocean waves. Although nuclear power is not considered renewable, a case can be made that it is, but requires recycling of spent fuel. The paper also discusses hydrogen production, storage and delivery. It discusses fuel cells, safety codes and standards and system analysis

  8. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  9. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  10. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  11. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  12. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  13. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  14. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  15. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  16. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. G.

    2005-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  17. DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2006-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  18. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  19. The evolution of hydrogen and iodine by the decomposition of ammonium iodide and hydrogen iodide

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1977-01-01

    As a fundamental study on thermochemical production of hydrogen from water, the evolution of hydrogen and iodine from ammonium iodide and hydrogen iodide was investigated. Hydrogen was evolved by the reaction of nickel with ammonium iodide or with hydrogen iodide, and the resulting nickel(II) iodide was decomposed thermally at 600 -- 700 0 C to form nickel. First, the iodination of powdered nickel with ammonium iodide was studied by heating their powder mixture. The maximum yield of hydrogen was obtained at a temperature near 430 0 C. The iodination of powdered nickel with gaseous ammonium iodide or with dry hydrogen iodide gas was also investigated. In this case, coating of nickel particles with a layer of resulting nickel(II) iodide prevented further conversion of nickel and lowered the reaction rate. Such a retardation effect was appreciably lessened by use of carrier. When nickel was supported on such a carrier as ''isolite'', the nickel was converted into nickel(II) iodide easily. In a reaction temperature from 400 to 500 0 C, the rate of reaction between nickel and hydrogen iodide increased slightly with the elevation of the reaction temperature. In the case of ammonium iodide, the reaction rate was higher than that for hydrogen iodide and decreased apparently with the elevation of the reaction temperature, because ammonium iodide decomposed to ammonia and hydrogen iodide. Tests using a fixed bed reactor charged with 8 -- 10 mesh ''isolite''-nickel (30 wt%) were also carried out. The maximum yield of hydrogen was about 80% for ammonium iodide at 430 0 C of reaction temperature and 60% for hydrogen iodide at 500 0 C. (auth.)

  20. DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2007-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  1. Proceedings of the 1995 U.S. DOE hydrogen program review. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 1995 US DOE Hydrogen Program Review was held April 18-21, 1995 in Coral Gables, FL. Volume II of the Proceedings contains 8 papers presented under the subject of hydrogen storage and 17 papers presented on hydrogen production. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  3. Thermochemical data acquisition: technical progress report, 1 January - 30 June 1990

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Newland, M.S.; Ogden, J.S.; Potter, P.E.

    1990-07-01

    Thermochemical data are being determined for a number of compounds of fission products and reactor materials. The compounds selected for this experimental study were chosen where thermodynamic data did not exist or were inadequate, based on the assessment and recommendations of a specialists' meeting. The vaporisation behaviour of indium telluride, indium (III) iodide, caesium molybdate, cadmium iodide and a caesium-cadmium-iodine ternary salt have been studied by mass spectrometry and matrix isolation-infrared spectroscopy. The resulting vapour species have been identified, and thermodynamic quantities have been calculated for the following molecules: In 2 Te, In 2 I 6 , InI 3 , InI and Cs 2 MoO 4 . The vaporisation behaviour of Ag-In-Cd control rod alloy has been studied by simultaneous differential thermal analysis and thermogravimetry; observations are consistent with theoretical predictions for the non-ideal Ag-In system. Critical assessment of the cadmium-hydrogen-iodine-oxygen system have also begun. (author)

  4. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  5. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  6. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  7. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  8. Prospects for pipeline delivery of hydrogen as a fuel and as a chemical feedstock

    Science.gov (United States)

    Gregory, D. P.; Biederman, N. P.; Darrow, K. G., Jr.; Konopka, A. J.; Wurm, J.

    1976-01-01

    The possibility of using hydrogen for storing and carrying energy obtained from nonfossil sources such as nuclear and solar energy is examined. According to the method proposed, these nonfossil raw energy sources will be used to obtain hydrogen from water by three basically distinct routes: (1) electrical generation followed by electrolysis; (2) thermochemical decomposition; and (3) direct neutron or ultraviolet irradiation of hydrogen bearing molecules. The hydrogen obtained will be transmitted in long-distance pipelines, and distributed to all energy-consuming sectors. As a fuel gas, hydrogen has many qualities similar to natural gas and with only minor modifications, it can be transmitted and distributed in the same equipment, and can be burned in the same appliances as natural gas. Hydrogen can also be used as a clean fuel (water is the only combustion product) for automobiles, fleet vehicles, and aircraft.

  9. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  10. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  11. Fundamentals of the NEA Thermochemical Database and its influence over national nuclear programs on the performance assessment of deep geological repositories.

    Science.gov (United States)

    Ragoussi, Maria-Eleni; Costa, Davide

    2017-03-14

    For the last 30 years, the NEA Thermochemical Database (TDB) Project (www.oecd-nea.org/dbtdb/) has been developing a chemical thermodynamic database for elements relevant to the safety of radioactive waste repositories, providing data that are vital to support the geochemical modeling of such systems. The recommended data are selected on the basis of strict review procedures and are characterized by their consistency. The results of these efforts are freely available, and have become an international point of reference in the field. As a result, a number of important national initiatives with regard to waste management programs have used the NEA TDB as their basis, both in terms of recommended data and guidelines. In this article we describe the fundamentals and achievements of the project together with the characteristics of some databases developed in national nuclear waste disposal programs that have been influenced by the NEA TDB. We also give some insights on how this work could be seen as an approach to be used in broader areas of environmental interest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle

    International Nuclear Information System (INIS)

    Ventas, R.; Vereda, C.; Lecuona, A.; Venegas, M.

    2012-01-01

    Highlights: ► Experimental study of a thermochemical compressor for absorption/compression cycle. ► Spray adiabatic absorber using NH 3 –LiNO 3 solution working fluid. ► It is able to operate between 57 and 110 °C varying concentration between 0.46 and 0.59. ► The increase of absorber pressure decreases the circulation ratio. ► The numerical model performed agrees with the experimental results. -- Abstract: An experimental study of a thermochemical compressor with ammonia–lithium nitrate solution as working fluid has been carried out. This compressor incorporates a single-pass adiabatic absorber and all the heat exchangers are of the plate type: absorber subcooler, generator and solution heat exchanger. The thermochemical compressor has been studied as part of a single-effect absorption chiller hybridized with an in-series low-pressure compression booster. The adiabatic absorber uses fog jet injectors. The generator hot water temperatures for the external driving flow are in the range of 57–110 °C and the absorber pressures range between 429 and 945 kPa. Experimental results are compared with a numerical model showing a high agreement. The performance of the thermochemical compressor, evaluated through the circulation ratio, improves for higher absorber pressures, indicating the potential of pressure boosting. For the same circulation ratio, the driving hot water inlet temperature decreases with the rise of the absorber pressure. The thermochemical compressor, based on an adiabatic absorber, can produce refrigerant with very low driving temperatures, between 57 and 70 °C, what is interesting for solar cooling applications and very low temperature residual heat recovery. Efficiencies and cooling power are offered when this hybrid thermochemical compressor is implemented in a chiller, showing the effect of different operating parameters.

  13. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  15. Research on hydrogen by Gaz de France

    International Nuclear Information System (INIS)

    Donat, G.; Lecoanet, A.; Roncato, J.-P.

    1978-01-01

    With the increasing energy needs of mankind and the earth's necessarily limited resources of fuel, the time will come when the demand for hydrocarbons will exceed the world production capacity. This situation will subsequently get even worse because of the depletion of recoverable reserves. Massive recourse to nuclear and solar energy thus appears indispensable, and the use of hydrogen as a vector for such energies has been under consideration for several years, especially in France where petroleum resources are very limited. Gaz de France has been doing research on the mass production of hydrogen by the decomposition of water and has just come to rather pessimistic conclusions as to the competitiveness of thermochemical processes in comparison with electrolytic methods. However, the electrolysis of water offers interesting prospects providing its efficiency and economics can be improved. Furthermore research on the storage and transportation of hydrogen has already enabled some conclusions to be drawn in these fields where gaseous vectors have very encouraging possibilities [fr

  16. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  17. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  18. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  19. Production cost comparisons of hydrogen from fossil and nuclear fuel and water decomposition

    Science.gov (United States)

    Ekman, K. R.

    1981-01-01

    The comparative costs entailed in producing hydrogen by major technologies that rely on petroleum, natural gas, coal, thermochemical cycles, and electrolysis are examined. Techniques were developed for comparing these processes by formulating the process data and economic assessments on a uniform and consistent basis. These data were normalized to permit a meaningful comparative analysis of product costs of these processes.

  20. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  1. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  2. Special issue about the ENERGIE interdisciplinary program of the CNRS

    International Nuclear Information System (INIS)

    Lallemand, M.; Stitou, D.; Lallemand, A.; Destruel, P.; Seguy, I.; Bock, H.; Nierengarten, J.F.; Alonso, C.; Estibals, B.; Menanteau, Ph.; David, S.; Clement, A.H.

    2006-01-01

    The French national center of scientific research (CNRS) has started in 2001 a huge interdisciplinary program about the development of new energy sources (solar, biomass, wind energy, geothermal energy, future nuclear systems), the mastery of energy vectors (electricity, heat, hydrogen), and the development of clean and ecological processes (combustion, fuel cells, dwellings, industrial processes etc..). The program has involved about a thousand of researchers and has led to the realization of 65 projects. This newsletter presents the results of a selection of these integrated research projects: development of thermochemical processes for solar cooling and refrigeration, two-phase refrigerants for a lower environmental impact, organic semiconductors for photovoltaic conversion, TECHPOL - an observatory for new energy technologies, scenarios for future nuclear reactors (enriched uranium cycle, regeneration, uranium cycle, thorium cycle), waves energy conversion systems. (J.S.)

  3. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  4. High performance ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2010-02-15

    A high performance ceramic carbon electrode (CCE) was fabricated by the sol-gel method to study the CuCl electrolysis in Cu-Cl thermochemical cycle. The electrochemical behavior and stability of the CCE was investigated by polarization experiments at different concentrations of CuCl/HCl system. The CCE displayed excellent anodic performance and vastly outperformed the bare carbon fiber paper (CFP) even at high concentrations of CuCl (0.5 M) and HCl (6 M), which is explained in terms of increased active area and enhanced anion transport properties. Further enhancement of activity was achieved by coating the CCE layer onto both sides of the CFP substrate. (author)

  5. Assessment of MHR-based hydrogen energy systems

    International Nuclear Information System (INIS)

    Richards, Matthew; Shenoy, Arkal; Schultz, Kenneth; Brown, Lloyd; Besenbruch, Gottfried; Handa, Norihiko; Das, Jadu

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850degC to 950degC can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. The SI process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents and low-temperature heat as the only waste product. Electricity can also be used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high-temperature capability, advanced of development relative to other high-temperature reactor concepts, and passive-safety features, the Modular Helium Reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate concepts for coupling the MHR to the SI process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  6. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  7. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2005-01-01

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO 2 emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO 2 emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important

  8. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  9. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  10. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  11. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    Science.gov (United States)

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  12. Hydrogen Programs of Asian Countries

    International Nuclear Information System (INIS)

    Ken-ichiro OTA

    2006-01-01

    The global sustainability is a key word of the future energy system for human beings. It should be friendly to the earth and also to human beings. Considering the limit of resources, the materials recycling would be very important. Considering the second law of thermodynamics, the entropy production through any processes would be the final problems for the sustainable growth. We have to think how to dispose the increasing entropy outside earth in the clean energy system. At present, the global carbon cycle is changing by the emission of CO 2 with the large consumption of fossil fuels. The global environment including human society should stand on harmonizing with the earth, where the global recycles of materials are important. Thinking about the global recycles of carbon and water quantitatively, the existence of water is 27,000 times larger than that of carbon. The transportation of water is 3,160 times faster than that of carbon. These figures show that the hydrogen from water is a superior energy carrier, compared to the carbon. The environmental impact factor was defined as the ratio of annual quantity of materials produced by energy consumption of mankind to a natural movement on earth. The influence of human activities on the global environment can be evaluated quantitatively by this environmental impact factor. The environmental impact factor of water on the earth, 0.0001, is more than two orders of magnitude less than that of carbon, 0.036. This means the hydrogen/water cycle is superior to the carbon cycle as material circulation for energy system of mankind. The energy consumption will increase tremendously in Asian countries due to their population increase and economic growth. We need a clean energy system for the sustainable growth. The hydrogen energy system is the most suitable energy system. In this paper the recent hydrogen energy programs of Japan, China and Korea will be introduced. (authors)

  13. Hydrogen Programs of Asian Countries

    International Nuclear Information System (INIS)

    Ken-ichiro Ota

    2006-01-01

    The global sustainability is a key word of the future energy system for human beings. It should be friendly to the earth and also to human beings. Considering the limit of resources, the materials recycling would be very important. Considering the second law of thermodynamics, the entropy production through any processes would be the final problems for the sustainable growth. We have to think how to dispose the increasing entropy outside earth in the clean energy system. At present, the global carbon cycle is changing by the emission of CO 2 with the large consumption of fossil fuels. The global environment including human society should stand on harmonizing with the earth, where the global recycles of materials are important. Thinking about the global recycles of carbon and water quantitatively, the existence of water is 27,000 times larger than that of carbon. The transportation of water is 3,160 times faster than that of carbon. These figures show that the hydrogen from water is a superior energy carrier, compared to the carbon. The environmental impact factor was defined as the ratio of annual quantity of materials produced by energy consumption of mankind to a natural movement on earth. The influence of human activities on the global environment can be evaluated quantitatively by this environmental impact factor. The environmental impact factor of water on the earth, 0.0001, is more than two orders of magnitude less than that of carbon, 0.036. This means the hydrogen/water cycle is superior to the carbon cycle as material circulation for energy system of mankind. The energy consumption will increase tremendously in Asian countries due to their population increase and economic growth. We need a clean energy system for the sustainable growth. The hydrogen energy system is the most suitable energy system. In this paper the recent hydrogen energy programs of Japan, China and Korea will be introduced. (author)

  14. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  15. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  16. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  17. A new concept of hydrogen production system for sodium cooled FBR

    International Nuclear Information System (INIS)

    Nakagiri, Toshio; Aoto, Kazumi; Hoshiya, Taiji

    2004-01-01

    A new thermo-chemical and electrolytic hybrid hydrogen production process (thermo-chemical and electrolytic Hybrid Hydrogen process in Lower Temperature range: HHLT) is newly proposed by the Japan Nuclear Cycle Development Institute (JNC) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeding Reactor (FBR). The HHLT process is based on the sulfuric acid (H 2 SO 4 ) synthesis and decomposition processes developed earlier (Westinghouse process), and sulfur trioxide (SO 3 ) decomposition process of HHLT is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce operating temperature 200degC-300degC lower than Westinghouse process. Decomposition processes of SO 3 were confirmed with the cell voltage lower than 0.5 V at 500degC-600degC using 8mol yttria stabilized zirconia (8molYSZ) solid electrolyte and platinum electrode. Therefore, total voltage required for HHLT is expected to be lower than 1.0 V, because the voltage required for sulfuric acid synthesis is about 0.5V. Thermal efficiency of HHLT based on chemical reactions was roughly estimated to be within the range of 35% to 55% under the influence of H 2 SO 4 concentration and heat recovery. These results show the possibility of development of a new hydrogen production process which needs low splitting voltage and has high efficiency at around 500degC, utilizing the heat generation of sodium cooled FBR. SO 3 splitting with the voltage lower than 0.5V was confirmed at about 500degC experimentally, and ideal thermal efficiency of the cycle based on chemical reactions was evaluated. Furthermore, test apparatus to substantiate whole process of HHLT was manufactured. (author)

  18. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  19. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  20. Clean energy and hydrogen for oil sands development with CANDU SCWR nuclear reactors and Cu-Cl cycles

    International Nuclear Information System (INIS)

    Wang, Z.L.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the unique capabilities and advantages of SCWR technology for cleaner oil sands development are discussed from two perspectives: lower temperature steam generation by supercritical water for steam assisted gravity drainage (SAGD), and hydrogen production for oil sands upgrading by coupling SCWR with the thermochemical copper-chlorine (Cu-Cl) cycle. The heat requirements for bitumen extraction from the oil sands and the hydrogen requirements for bitumen upgrading are evaluated. A conceptual layout of SCWR coupled with oil sands development is presented. The reduction of CO 2 emissions due to the use of SCWR and thermo chemical hydrogen production cycle is also analyzed. (author)

  1. Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant

    International Nuclear Information System (INIS)

    Chang H. Oh; Eung Soo Kim; Steven Sherman

    2008-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood

  2. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  3. Hydrogen generation using the modular helium reactor

    International Nuclear Information System (INIS)

    Richards, M.; Shenoy, A.

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg.C to 950 deg.C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyser to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed. The use of fixed orifices to control the flow distribution is a promising design solution for increasing the coolant outlet temperature without increasing peak fuel temperatures significantly

  4. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  5. Thermochemical treatment of the pay zone in the well RK-3

    Energy Technology Data Exchange (ETDEWEB)

    Labudovic, V

    1970-02-01

    The elements are given for the calculation of the thermochemical treatment of the Well RK-3. From the diagram, the Mg and HCl reaction velocity vs. pressure and the temperature vs. the quantity of the reacted CaCO/sub 3/ can be read out. These are important elements for the calculation of a thermochemical treatment. A comparison of calculated and measured temperatures and the factors influencing the heat conductivity of the formation rock is given. The heating range at formation depths is calculated. The relation quantity of warm acid vs. injection pressure also is given.

  6. Hydrolysis of CuCl{sub 2} in the Cu-Cl thermochemical cycle for hydrogen production: Experimental studies using a spray reactor with an ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandon, Magali S.; Lewis, Michele A. [Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Alvarez, Francisco; Shafirovich, Evgeny [The University of Texas at El Paso, Mechanical Engineering Department, 500 W. University Ave., El Paso, TX 79968 (United States)

    2010-03-15

    The Cu-Cl thermochemical cycle is being developed as a hydrogen production method. Prior proof-of-concept experimental work has shown that the chemistry is viable while preliminary modeling has shown that the efficiency and cost of hydrogen production have the potential to meet DOE's targets. However, the mechanisms of CuCl{sub 2} hydrolysis, an important step in the Cu-Cl cycle, are not fully understood. Although the stoichiometry of the hydrolysis reaction, 2CuCl{sub 2} + H{sub 2}O <-> Cu{sub 2}OCl{sub 2} + 2HCl, indicates a necessary steam-to-CuCl{sub 2} molar ratio of 0.5, a ratio as high as 23 has been typically required to obtain near 100% conversion of the CuCl{sub 2} to the desired products at atmospheric pressure. It is highly desirable to conduct this reaction with less excess steam to improve the process efficiency. Per Le Chatelier's Principle and according to the available equilibrium-based model, the needed amount of steam can be decreased by conducting the hydrolysis reaction at a reduced pressure. In the present work, the experimental setup was modified to allow CuCl{sub 2} hydrolysis in the pressure range of 0.4-1 atm. Chemical and XRD analyses of the product compositions revealed the optimal steam-to-CuCl{sub 2} molar ratio to be 20-23 at 1 atm pressure. The experiments at 0.4 atm and 0.7 atm showed that it is possible to lower the steam-to-CuCl{sub 2} molar ratio to 15, while still obtaining good yields of the desired products. An important effect of running the reaction at reduced pressure is the significant decrease of CuCl concentration in the solid products, which was not predicted by prior modeling. Possible explanations based on kinetics and residence times are suggested. (author)

  7. Development of HyPEP, A Hydrogen Production Plant Efficiency Calculation Program

    International Nuclear Information System (INIS)

    Lee, Young Jin; Park, Ji Won; Lee, Won Jae; Shin, Young Joon; Kim, Jong Ho; Hong, Sung Deok; Lee, Seung Wook; Hwang, Moon Kyu

    2007-12-01

    Development of HyPEP program for assessing the steady-state hydrogen production efficiency of the nuclear hydrogen production facilities was carried out. The main developmental aims of the HyPEP program are the extensive application of the GUI for enhanced user friendliness and the fast numerical solution scheme. These features are suitable for such calculations as the optimisation calculations. HyPEP was developed with the object-oriented programming techniques. The components of the facility was modelled as objects in a hierarchical structure where the inheritance property of the object oriented program were extensively applied. The Delphi program language which is based on the Object Pascal was used for the HyPEP development. The conservation equations for the thermal hydraulic flow network were setup and the numerical solution scheme was developed and implemented into HyPEP beta version. HyPEP beta version has been developed with working GUI and the numerical solution scheme implementation. Due to the premature end of this project the fully working version of HyPEP was not produced

  8. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  9. Nagra thermochemical data base. II. Supplement data 05/92

    International Nuclear Information System (INIS)

    Pearson, F.J.; Berner, U.; Hummel, W.

    1992-05-01

    Chemical thermodynamic data for aqueous species, minerals, and gases are required by Nagra for geochemical modelling. The Nagra thermochemical data base contains core and supplemental data. Core data for well-characterised entities were individually carefully selected and given by Pearson and Berner (1991). Supplemental data are for less common entities and for elements principally of safety assessment concern. They were selected in groups from other data bases for geochemical modelling and did not receive individual scrutiny. This report gives tables with the Nagra thermochemical data as of 5/92. It includes the core data described in the earlier report with supplemental data for the elements aluminium, silicon, iron, and manganese, the actinides thorium, uranium, neptunium, plutonium, and americium, and elements found as fission or activation products in nuclear waste, including nickel, zirconium, niobium, molybdenum, technetium, palladium, tin, selenium and iodine. Aqueous complexes of four representative organic anions are also included. The sources of these supplemental data are described in the text. Other compilations of data were examined during the selection on the supplemental data. These included the data bases used at the Paul Scherrer Institut with the geochemical programs MINEQL as of 3/91, PHREEQE as of 4/91, and the HATCHES 3.0 data base. This report also gives tables comparing selected data in these three data bases with values from the Nagra data base. This data base has not yet been tested for a full range of nuclear waste management applications, although such work is in progress. It should thus be regarded as a reference fixed point for quality assurance purpose and not critically reviewed standard. (author) tabs., refs

  10. A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass.

    Science.gov (United States)

    Choi, DongWon; Chipman, David C; Bents, Scott C; Brown, Robert C

    2010-02-01

    A techno-economic analysis was conducted to investigate the feasibility of a gasification-based hybrid biorefinery producing both hydrogen gas and polyhydroxyalkanoates (PHA), biodegradable polymer materials that can be an attractive substitute for conventional petrochemical plastics. The biorefinery considered used switchgrass as a feedstock and converted that raw material through thermochemical methods into syngas, a gaseous mixture composed mainly of hydrogen and carbon monoxide. The syngas was then fermented using Rhodospirillum rubrum, a purple non-sulfur bacterium, to produce PHA and to enrich hydrogen in the syngas. Total daily production of the biorefinery was assumed to be 12 Mg of PHA and 50 Mg of hydrogen gas. Grassroots capital for the biorefinery was estimated to be $55 million, with annual operating costs at $6.7 million. With a market value of $2.00/kg assumed for the hydrogen, the cost of producing PHA was determined to be $1.65/kg.

  11. Energetic optimization of a solar thermochemical energy storage system subject to real constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    An approach to the optimization of a solar energy conversion system which involves treating the system as a series of subsystems, each having a single cost determining variable, is proposed. The application to an ammonia-based thermochemical system with direct work output is discussed and possible subsystems are identified. The subsystem consisting of the exothermic reactor has been studied in detail. For this subsystem, the ratio of available catalyst volume to thermal power level is held constant whilst the exergetic efficiency is maximized. Results are presented from a determination of optimized reaction paths using dynamic programming techniques. (author)

  12. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  13. FY 1974 report on the results of the Sunshine Project. Study of the hydrogen production technology (Study of the hydrogen production technology by thermochemical method); 1974 nendo suiso no seizo gijutsu no kenkyu seika hokokusho. Netsukagakuho ni yoru suiso seizo gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    For the purpose of developing a new hydrogen production technology, a feasibility study was made of the copper-halogen system and alkali carbonate-iodine system processes presented as a new thermochemical process from viewpoints of the progress of reaction, side reaction, reaction yield, thermal efficiency, etc. The study went forward smoothly, has achieved the target in the early stage, and has been finished. In the study of optimal conditions of the process, the progress of each unit reaction was experimentally confirmed. By measuring the reaction yield, optimal reaction conditions for expediting the reaction were found out. As a result, it was found that the proposed processes proposed both advance rather easily, and was thought that those are worthy of making further engineering study. In the study of improvement and optimization of the process, since some altered processes are considered for the processes presented, an investigational study was made on a method to calculate thermal efficiency which is one of the standards for the process evaluation, and thermal efficiencies in various processes were trially calculated, based on the calculating method. As a result, it was thought that this process is equal to other processes. (NEDO)

  14. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  15. Analysis and optimization of a tubular SOFC, using nuclear hydrogen as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Daniel G.; Parra, Lazaro R.G.; Fernandez, Carlos R.G., E-mail: dgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana (Cuba). Dept. de Ingenieria Nuclear; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    One of the main areas of hydrogen uses as an energy carrier is in fuel cells of high standards as solid oxide fuel cells (SOFC). The SOFCs are fuel cells operate at high temperatures making them ideal for use in large power systems, suitable for distributed generation of electricity. Optimization and analysis of these electrochemical devices is an area of great current study. The computational fluid dynamics software (CFD) have unique advantages for analyzing the influence of design parameters on the efficiency of fuel cells. This paper presents a SOFC design cell which employ as fuel hydrogen produced by thermochemical water splitting cycle (I-S). There will be done the optimization of the main parameters thermodynamic and electrochemical cell operating to achieve top performance. Also will be estimate the cell efficiency and a production-consumption hydrogen system. (author)

  16. Analysis and optimization of a tubular SOFC, using nuclear hydrogen as fuel

    International Nuclear Information System (INIS)

    Rodriguez, Daniel G.; Parra, Lazaro R.G.; Fernandez, Carlos R.G.; Lira, Carlos A.B.O.

    2013-01-01

    One of the main areas of hydrogen uses as an energy carrier is in fuel cells of high standards as solid oxide fuel cells (SOFC). The SOFCs are fuel cells operate at high temperatures making them ideal for use in large power systems, suitable for distributed generation of electricity. Optimization and analysis of these electrochemical devices is an area of great current study. The computational fluid dynamics software (CFD) have unique advantages for analyzing the influence of design parameters on the efficiency of fuel cells. This paper presents a SOFC design cell which employ as fuel hydrogen produced by thermochemical water splitting cycle (I-S). There will be done the optimization of the main parameters thermodynamic and electrochemical cell operating to achieve top performance. Also will be estimate the cell efficiency and a production-consumption hydrogen system. (author)

  17. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses

    International Nuclear Information System (INIS)

    Michalsky, Ronald; Parman, Bryon J.; Amanor-Boadu, Vincent; Pfromm, Peter H.

    2012-01-01

    Ammonia is an important input into agriculture and is used widely as base chemical for the chemical industry. It has recently been proposed as a sustainable transportation fuel and convenient one-way hydrogen carrier. Employing typical meteorological data for Palmdale, CA, solar energy is considered here as an inexpensive and renewable energy alternative in the synthesis of NH 3 at ambient pressure and without natural gas. Thermodynamic process analysis shows that a molybdenum-based solar thermochemical NH 3 production cycle, conducted at or below 1500 K, combined with solar thermochemical H 2 production from water may operate at a net-efficiency ranging from 23 to 30% (lower heating value of NH 3 relative to the total energy input). Net present value optimization indicates ecologically and economically sustainable NH 3 synthesis at above about 160 tons NH 3 per day, dependent primarily on heliostat costs (varied between 90 and 164 dollars/m 2 ), NH 3 yields (ranging from 13.9 mol% to stoichiometric conversion of fixed and reduced nitrogen to NH 3 ), and the NH 3 sales price. Economically feasible production at an optimum plant capacity near 900 tons NH 3 per day is shown at relative conservative technical assumptions and at a reasonable NH 3 sales price of about 534 ± 28 dollars per ton NH 3 . -- Highlights: ► Conceptual reactant and process improvements of solar-driven NH 3 synthesis at 1 bar. ► Thermodynamic underpinnings of a Molybdenum reactant. ► Process analysis determining energy and materials requirements and the net-efficiency. ► Net present value analysis accounting for yield, investment, and sales price variations.

  18. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    /thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit

  19. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  20. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste.

    Science.gov (United States)

    Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K

    2017-11-01

    This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  2. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  3. The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison

    Directory of Open Access Journals (Sweden)

    Jesse Sky Daystar

    2015-07-01

    Full Text Available The financial and environmental performance of the National Renewable Energy Lab’s (NREL thermochemical and biochemical biofuel conversion processes are examined herein with pine, eucalyptus, unmanaged hardwood, switchgrass, and sweet sorghum. The environmental impacts of the process scenarios were determined by quantifying greenhouse gas (GHG emissions and TRACI impacts. Integrated financial and environmental performance metrics were introduced and used to examine the biofuel production scenarios. The thermochemical and biochemical conversion processes produced the highest financial performance and lowest environmental impacts when paired with pine and sweet sorghum, respectively. The high ash content of switchgrass and high lignin content of loblolly pine lowered conversion yields, resulting in the highest environmental impacts and lowest financial performance for the thermochemical and biochemical conversion processes, respectively. Biofuel produced using the thermochemical conversion process resulted in lower TRACI single score impacts and somewhat lower GHG emissions per megajoule (MJ of fuel than using the biochemical conversion pathway. The cost of carbon mitigation resulting from biofuel production and corresponding government subsidies was determined to be higher than the expected market carbon price. In some scenarios, the cost of carbon mitigation was several times higher than the market carbon price, indicating that there may be other more cost-effective methods of reducing carbon emissions.

  4. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  5. Inhibition of hydrogen oxidation by HBr and Br2

    DEFF Research Database (Denmark)

    Dixon-Lewis, Graham; Marshall, Paul; Ruscic, Branko

    2012-01-01

    O. Ab initio calculations were used to obtain rate coefficients for selected reactions of HBr and HOBr, and the hydrogen/bromine/oxygen reaction mechanism was updated. The resulting model was validated against selected experimental data from the literature and used to analyze the effect of HBr and Br2......The high-temperature bromine chemistry was updated and the inhibition mechanisms involving HBr and Br2 were re-examined. The thermochemistry of the bromine species was obtained using the Active Thermochemical Tables (ATcT) approach, resulting in improved data for, among others, Br, HBr, HOBr and Br...... on laminar, premixed hydrogen flames. Our work shows that hydrogen bromide and molecular bromine act differently as inhibitors in flames. For HBr, the reaction HBr+H⇌H2+Br (R2) is rapidly equilibrated, depleting HBr in favor of atomic Br, which is the major bromine species throughout the reaction zone...

  6. Thermodynamic limits on the performance of a solar thermochemical energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    General expressions for the exergetic and work recovery efficiencies of thermochemical storage systems have been developed by assuming that the reaction process is the only source irreversibility within the closed-loop system. These have been used to plot contours of constant efficiency for the ammonia-based thermochemical system. The effect of spontaneous separation of mixtures due to the preferential condensation of ammonia has been examined analytically and graphically. The analysis presented represents a necessary prerequisite for the optimization of system efficiencies by reactor design. (author)

  7. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer

  8. Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Smith; Stephen Creager

    2012-09-13

    Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

  9. Towards the renewal of the NEA Thermochemical Database

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Costa, Davide; Bossant, Manuel

    2015-01-01

    The Thermochemical Database (TDB) Project was created three decades ago as a joint undertaking of the NEA Radioactive Waste Management Committee and the NEA Data Bank. The project involves the collection of high-quality and traceable thermochemical data for a set of elements (mainly minor actinides and fission products) relevant to geophysical modelling of deep geological repositories. Funding comes from 15 participating organisations, primarily national nuclear waste authorities and research institutions. The quantities that are stored in the TDB database are: the standard molar Gibbs energy and enthalpy of formation, the standard molar entropy and, when available, the heat capacity at constant pressure, together with their uncertainty intervals. Reaction data are also provided: equilibrium constant of reaction, molar Gibbs energy of reaction, molar enthalpy of reaction and molar entropy of reaction. Data assessment is carried out by teams of expert reviewers through an in-depth analysis of the available scientific literature, following strict guidelines defined by the NEA to ensure the accuracy and self-consistency of the adopted datasets. Thermochemical data that has been evaluated and selected over the years have been published in the 13 volumes of the Chemical Thermodynamics series. They are also stored in a database that is updated each time the study of a new element is completed. The TDB selected data are made available to external third parties through the NEA web site where data extracted from the database can be displayed and downloaded as plain text files. Following recent recommendations of the Task Force on the Future Programme of the NEA Data Bank to enhance scientific expertise and user services, a renewal of the software managing the TDB database is being undertaken. The software currently used was designed 20 years ago and is becoming obsolete. Redesigning the application will provide an opportunity to correct current shortcomings and to develop

  10. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  11. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  12. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  13. Thermochemical study of MoS2 oxidation

    International Nuclear Information System (INIS)

    Filimonov, D.S.; Topor, N.D.; Kesler, Ya.A.

    1990-01-01

    Thermochemical studies of oxidation processes of metallic molybdenum, sulfur, molybdenum disulfide under different conditions in microcalorimeter are conducted. Values of thermal effects which are used to calculate standard formation enthalpy of MoS 2 and which correlate well are obtained. Δ f H 0 (MoS 2 ,298.15 K) recommended value constitutes (-223.0±16.7) kJ/mol

  14. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  15. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  16. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  17. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan

    2014-01-01

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  18. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  19. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The NAGRA/PSI thermochemical database: new developments

    International Nuclear Information System (INIS)

    Hummel, W.; Berner, U.; Thoenen, T.; Pearson, F.J.Jr.

    2000-01-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  1. The NAGRA/PSI thermochemical database: new developments

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W.; Berner, U.; Thoenen, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Pearson, F.J.Jr. [Ground-Water Geochemistry, New Bern, NC (United States)

    2000-07-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  2. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...

  3. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  4. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  5. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  6. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  7. Study of the chemisorption and hydrogenation of propylene on platinum by temperature-programed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, S.; Nakamura, M.; Yoshioka, N.

    1978-01-01

    Temperature-programed desorption (TPD) chromotograms of propylene adsorbed on platinum black in the absence or presence of hydrogen preadsorbed, admitted simultaneously, or admitted later, all showed four peaks at about 260/sup 0/ (A), 380/sup 0/ (B), 570/sup 0/ (C), and higher than 720/sup 0/K (D). Peaks A and B were identified as mixtures of propylene and propane, and peaks C and D were methane formed by thermal decomposition of the chemisorbed propylene during desorption. When nitrogen rather than helium was used as the carrier gas for the TPD, only delta-hydrogen was observed; this suggested that propylene was more strongly adsorbed on the platinum than hydrogen. Studies of the reactivities with propylene of the various types of chemisorbed hydrogen previously detected by TPD showed that propylene reacted with ..gamma..-hydrogen present on the surface in the form of hydrogen atoms chemisorbed on top of platinum atoms and with ..beta..-hydrogen, molecular hydrogen chemisorbed in a bridged form, but did not react with delta-hydrogen. Tables and graph.

  8. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  9. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 18th world hydrogen energy conference 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  11. 18th world hydrogen energy conference 2010. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  12. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  13. A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J. N., E-mail: jnchung@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (United States)

    2014-01-02

    Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are (1) to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest, and municipal waste to clean energy (pure hydrogen fuel), and (2) to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming). The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO{sub 2} sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  14. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  17. CRYOCOL a computer program to calculate the cryogenic distillation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1993-02-01

    This report describes the computer model and mathematical method coded into the AECL Research computer program CRYOCOL. The purpose of CRYOCOL is to calculate the separation of hydrogen isotopes by cryogenic distillation. (Author)

  18. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  19. U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satypal, S.

    2011-09-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

  20. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  1. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  2. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  3. Solar thermochemical processing system and method

    Science.gov (United States)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar; Leith, Steven D.; Palo, Daniel R.; Dagle, Robert A.

    2018-04-24

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  4. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  5. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  6. The hydrogen and the fuel cells in the world. Programs and evolutions

    International Nuclear Information System (INIS)

    Lucchese, P.

    2008-01-01

    HyPac is a french platform on the hydrogen and fuel cells, created in 2008. The author presents the opportunity of such a platform facing the world research programs and other existing platforms. (A.L.B.)

  7. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  8. Thermochemical equilibrium in a kernel of a UN TRISO coated fuel particle

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Lim, H. S.; Cho, M. S.; Lee, W. J.

    2012-01-01

    A coated fuel particle (CFP) with a uranium mononitride (UN) kernel has been recently considered as an advanced fuel option, such as in fully ceramic micro encapsulated (FCM) replacement fuel for light water reactors (LWRs). In FCM fuel, a large number of tri isotropic coated fuel particles (TRISOs) are embedded in a silicon carbide (SiC) matrix. Thermochemical equilibrium calculations can predict the chemical behaviors of a kernel in a TRISO of FCM fuel during irradiation. They give information on the kind and quantity of gases generated in a kernel during irradiation. This study treats the quantitative analysis of thermochemical equilibrium in a UN TRISO of FCM LWR fuel using HSC software

  9. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  10. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  11. Cea assessment of the sulphur-iodine cycle for hydrogen production

    International Nuclear Information System (INIS)

    Caries, Ph.; Vitart, X.; Yvon, P.

    2010-01-01

    The sulphur-iodine cycle is a promising process for hydrogen production using nuclear heat: - it is a purely thermochemical cycle, implying that hydrogen production will scale with volume rather than surface; - it only involves fluids, thus avoiding the often difficult handling of solids; - its heat requirements are well matched to the temperatures available from a Generation IV very/high temperature reactor. These characteristics seem very attractive for high efficiency and low cost massive hydrogen production. On the other hand, the efficiency of the cycle may suffer from the large over-stoichiometries of water and iodine and the very important heat exchanges it involves; furthermore, due to lack of adequate thermodynamic models, its efficiency is difficult to assess with confidence. Besides, the large quantities of chemicals that need to be handled, and the corrosiveness of these chemicals, are factors not to be overlooked in terms of investment and operation costs. In order to assess the actual potential of the sulphur-iodine cycle for massive hydrogen production at a competitive cost, CEA has been conducting an important programme on this cycle, ranging from thermodynamic measurements to hydrogen production cost evaluation, with flow sheet optimisation, component sizing and investment cost estimation as intermediate steps. The paper will present the method used, the status of both efficiency and production cost estimations, and discuss perspectives for improvement. (authors)

  12. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  13. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  14. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  15. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research and development of hydrogen manufacturing technologies using the thermo-chemical method; 1978 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-05-31

    This paper describes a summary design of an iodine cycle experimenting equipment as one of the achievements in fiscal 1978 on research of hydrogen manufacturing technologies using the thermo-chemical method. The object of the equipment is a reaction to derive Mg(IO{sub 3}){sub 2} and MgI{sub 2} from MgO being the first reaction of the cycle, and iodine. The by-product (Q-phase) is produced according to composition of the aqueous reaction solution. The occurring reaction and composition of the produced materials vary depending on which contact system the reactor type uses, countercurrent flow or concurrent flow. Discussions were given on both types. Hydrogen generation rate of 1 Nm{sup 3}/hr was assumed as the equipment size to derive material balance and heat balance. Furthermore, types considered applicable were selected from different types of the solid-liquid reaction equipment, and summary design and calculation were performed. Process simulation provided a prospect of achieving thermal efficiency that can compete with the electrolytic process. As a study on materials for a magnesium iodate pyrolytic equipment as the second reaction, corrosion tests were carried out in a gas mixture composed of iodine, oxygen and steam. Using 26 kinds of metallic materials as the objects, the tests were executed at 100 and 300 degrees C for 100 hours. Long-term durability tests were also performed on materials judged to have good corrosion resistance. (NEDO)

  16. Novel separation process of gaseous mixture of SO2 and O2 with ionic liquid for hydrogen production in thermochemical sulfur-iodine water splitting cycle

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Gong, Gyeong Taek; Yoo, Kye Sang; Kim, Honggon; Lee, Byoung Gwon; Ahn, Byoung Sung; Jung, Kwang Deog; Lee, Ki Yong; Song, Kwang Ho

    2007-01-01

    Sulfur-Iodine cycle is the most promising thermochemical cycle for water splitting to produce hydrogen which can replace the fossil fuels in the future. As a sub-cycle in the thermochemical Sulfur-Iodine water splitting cycle, sulfuric acid (H 2 SO 4 ) decomposes into oxygen (O 2 ) and sulfur dioxide (SO 2 ) which should be separated for the recycle of SO 2 into the sulfuric acid generation reaction (Bunsen Reaction). In this study, absorption and desorption process of SO 2 by ionic liquid which is useful for the recycle of SO 2 into sulfuric acid generation reaction after sulfuric acid decomposition in the thermochemical Sulfur-Iodine cycle is investigated. At first, the operability as an absorbent for the SO 2 absorption and desorption at high temperature without the volatilization of absorbents which is not suitable for the recycle of absorbent-free SO 2 after the absorption process. The temperature range of operability is determined by TGA and DTA analysis. Most of ionic liquids investigated are applicable at high temperature desorption without volatility around 300 deg. C except [BMIm] Cl, and [BMIm] OAc which show the decomposition of ionic liquids. To evaluate the capability of SO 2 absorption, each ionic liquid is located in the absorption tube and gaseous SO 2 is bubbled into the ionic liquid. During the bubbling, the weight of the system is measured and converted into the absorbed SO 2 amount at each temperature controlled by the heater. Saturated amounts of absorbed SO 2 by ionic liquids at 50 deg. C are presented. The effect of anions for the SO 2 absorption capability is shown in the order of Cl, OAc, MeSO 3 , BF 4 , MeSO 4 , PF 6 , and HSO 4 when they are combined with [BMIm] cation. [BMIm]Cl has the largest amount of SO 2 absorbed which can be the most promising absorbent; however, from the point of operability at high temperature which includes desorption process, [BMIm]Cl is vulnerable to high temperature around 250 deg. C based on the TGA

  17. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    The presentation addressed the progress the Hydrogen Village Program has made in its first 24 months of existence and will provide an understanding of the development of new markets for emerging Hydrogen and Fuel Cell technologies based on first hand, real world experience. The Hydrogen Village (H2V) is an End User driven, Market Development Program designed to accelerate the sustainable commercialization of hydrogen and fuel cell technologies through awareness, education and early deployments throughout the greater Toronto area (GTA). The program is a collaborative public-private partnership of some 35 companies from a broad cross section of industry administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. The intent of the H2V is to develop markets for Hydrogen and Fuel Cell technologies that benefit the local and global community. The following aspects of market development are specifically targeted: 1) Deployments: of near market technologies in all aspects of community life (stationary and mobile). All applications must be placed within the community and contact peoples in their day-to-day activity. End user involvement is critical to ensure that the applications chosen have a commercial justification and contribute to the complementary growth of the market. 2) Development: of a coordinated hydrogen delivery and equipment service infrastructure. The infrastructure will develop following the principles of conservation and sustainability. 3) Human and societal factors: - Public and Corporate policy, public education, Codes/ Standards/ Regulations - Opportunity for real world implementation and feedback on developing codes and standards - Build awareness among regulatory groups, public, and the media. The GTA Hydrogen Village is already well under way with strategically located projects covering a wide range of hydrogen and fuel cell applications including: Residential heat and power generation using solid oxide

  18. A process for the thermochemical poduction of H2

    International Nuclear Information System (INIS)

    Norman, J.H.; Russell, J.L. Jr.; Porter, J.T. II; McCorkl, K.H.; Roemer, T.S.; Sharp, Robert.

    1976-01-01

    A process is described for the thermochemical production of H 2 from water. HI 3 and H 2 SO 4 are prepared by chemical reaction between I 2 , SO 2 and H 2 O. Then HI 3 is heated and decomposed into H 2 and I 2 . The heat is produced by a nuclear reactor [fr

  19. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  20. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  1. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  2. Preliminary safety analysis of the HTTR-IS nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Tachibana, Yukio; Sakaba, Nariaki

    2010-06-01

    Japan Atomic Energy Agency is planning to demonstrate hydrogen production by thermochemical water-splitting IS process utilizing heat from the high-temperature gas-cooled reactor HTTR (HTTR-IS system). The previous study identified that the HTTR modification due to the coupling of hydrogen production plant requires an additional safety review since the scenario and quantitative values of the evaluation items would be altered from the original HTTR safety review. Hence, preliminary safety analyses are conducted by using the system analysis code. Calculation results showed that evaluation items such as a coolant pressure, temperatures of heat transfer tubes at the pressure boundary, etc., did not exceed allowable values. Also, the peak fuel temperature did not exceed allowable value and therefore the reactor core was not damaged and cooled sufficiently. This report compiles calculation conditions, event scenarios and the calculation results of the preliminary safety analysis. (author)

  3. Preparation and thermochemical stability of uranium-zirconium-carbonitrides

    International Nuclear Information System (INIS)

    Kouhsen, C.

    1975-08-01

    This investigation deals with the preparation and the thermochemical stability of uranium-zirconium-carbonitrides as well as with the mechanism of (U,Zr) (C,N)-preparation by carbothermic reduction of uranium-zirconium-oxide. Single-phase (U,Zr) (C,N)-solid solutions with U:Zr-propertions of 3:1, 1:1, and 1:3 were prepared from oxide powder. The thermochemical stability of the (U,Zr) (C,N)-solid solutions against carbon was measured for varying Zr- and N-contents and for several temperatures; the results indicate an increase of the uranium carbide stability potential by the formation of (U,Zr) (C,N)-solid solutions. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 were calculated and the correlation between the M(C,N)-lattice constant and the N-content was evaluated. Through an intensive investigation of the reaction mechanism, several different reaction paths were found; for each of them the characteristical diffusion of matter was explained by means of the microsections. It was shown that the Zr-concentration of the oxide reactant and the heating rate during the carbothermic reduction influence the species of the reaction product, especially the homogeneity of the (U,Zr) (C,N)-solid solution. (orig.) [de

  4. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  5. Systems analysis on the condition of market penetration for hydrogen technologies using linear programming model

    International Nuclear Information System (INIS)

    Kato, K.; Ihara, S.

    1993-01-01

    Hydrogen is expected to be an important energy carrier, especially in the frame of global warming problem solution. The purpose of this study is to examine the condition of market penetration of hydrogen technologies in reducing CO 2 emissions. A multi-time-period linear programming model (MARKAL, Market Allocation)) is used to explore technology options and cost for meeting the energy demands while reducing CO 2 emissions from energy systems. The results show that hydrogen technologies become economical when CO 2 emissions are stringently constrained. 9 figs., 2 refs

  6. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    Science.gov (United States)

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  7. Cascading pressure reactor and method for solar-thermochemical reactions

    Science.gov (United States)

    Ermanoski, Ivan

    2017-11-14

    Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.

  8. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  9. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    International Nuclear Information System (INIS)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01

    Highlights: • Well to pump environmental assessment of two thermochemical processing pathways. • NER of 1.23 and GHG emissions of −11.4 g CO 2-eq (MJ) −1 for HTL pathway. • HTL represents promising conversion pathway based on use of wet biomass. • NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ) −1 for pyrolysis pathway. • Pyrolysis pathway: drying microalgae feedstock dominates environmental impact. - Abstract: Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of −11.4 g CO 2-eq (MJ renewable diesel) −1 . Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ renewable diesel) −1 . The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying

  10. DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-16

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  11. DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-11-01

    The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2016, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  12. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Science.gov (United States)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  13. On the thermo-chemical origin of the stratified region at the top of the Earth's core

    Science.gov (United States)

    Nakagawa, Takashi

    2018-03-01

    I developed a combined model of the thermal and chemical evolution of the Earth's core and investigated its influence on a thermochemically stable region beneath the core-mantle boundary (CMB). The chemical effects of the growing stable region are caused by the equilibrium chemical reaction between silicate and the metallic core. The thermal effects can be characterized by the growth of the sub-isentropic shell, which may have a rapid growth rate compared to that of the chemically stable region. When the present-day CMB heat flow was varied, the origin of the stable region changed from chemical to thermochemical to purely thermal because the rapid growth of the sub-isentropic shell can replace the chemically stable region. Physically reasonable values of the present-day CMB heat flow that can maintain the geodynamo action over 4 billion years should be between 8 and 11 TW. To constrain the thickness of the thermochemically stable region beneath the CMB, the chemical diffusivity is important and should be ∼O(10-8) m2/s to obtain a thickness of the thermochemically stable region beneath the CMB consistent with that inferred from geomagnetic secular variations (140 km). However, the strength of the stable region found in this study is too high to be consistent with the constraint on the stability of the stable region inferred from geomagnetic secular variations.

  14. Task 19 - Sampling, Analysis, and Vitrification Study for Thermochem's Steam Reformer Treatment Technology

    International Nuclear Information System (INIS)

    Lillemoen, C.M.; McCollor, D.P.; Qi Sun

    1998-01-01

    The overall objective of the project is to provide support to Thermochem, Inc., in the demonstration of the steam reformer treatment technology to treat LLMW. Within this program, specific objectives include the following: (1) Analyze cerium, chlorine, and fluorine concentrations in samples from the pilot-scale steam reformer tests to determine partitioning of these elements, mass balances, and changes in concentration with time. (2) Perform experimental characterization of temperature--viscosity profiles to aid in determining vitrification viability for long-term stabilization. Additionally, calculations of viscosity will be performed for several blend combinations to complement the experimentally determined values. (3) Conduct leachability tests on the vitrified slags to aid in determining if product leachability falls within EPA guidelines and to assess the suitability of the vitrified material for long-term disposal

  15. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  16. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  17. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  18. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  19. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  20. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  1. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  2. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an

  3. Thermochemical nonequilibrium analysis of O2+Ar based on state-resolved kinetics

    International Nuclear Information System (INIS)

    Kim, Jae Gang; Boyd, Iain D.

    2015-01-01

    Highlights: • Thermochemical nonequilibrium studies for three lowest lying electronic states of O 2 . • The complete sets of the rovibrational state-to-state transition rates of O 2 +Ar. • Rovibrational relaxations and coupled chemical reactions of O 2 . • Nonequilibrium reaction rates of O 2 derived from the quasi-steady state assumption. - Abstract: The thermochemical nonequilibrium of the three lowest lying electronic states of molecular oxygen, O 2 (X 3 Σ g - ,a 1 Δ g ,b 1 Σ g + ), through interactions with argon is studied in the present work. The multi-body potential energy surfaces of O 2 +Ar are evaluated from the semi-classical RKR potential of O 2 in each electronic state. The rovibrational states and energies of each electronic state are calculated by the quantum mechanical method based on the present inter-nuclear potential of O 2 . Then, the complete sets of the rovibrational state-to-state transition rate coefficients of O 2 +Ar are calculated by the quasi-classical trajectory method including the quasi-bound states. The system of master equations constructed by the present state-to-state transition rate coefficients are solved to analyze the thermochemical nonequilibrium of O 2 +Ar in various heat bath conditions. From these studies, it is concluded that the vibrational relaxation and coupled chemical reactions of each electronic state needs to be treated as a separate nonequilibrium process, and rotational nonequilibrium needs to be considered at translational temperatures above 10,000 K

  4. NHI economic analysis of candidate nuclear hydrogen processes

    International Nuclear Information System (INIS)

    Allen, D.; Pickard, P.; Patterson, M.; Sink, C.

    2010-01-01

    The DOE Nuclear Hydrogen Initiative (NHI) is investigating candidate technologies for large scale hydrogen production using high temperature gas-cooled reactors (HTGR) in concert with the Next Generation Nuclear Plant (NGNP) programme. The candidate processes include high temperature thermochemical and high temperature electrolytic processes which are being investigated in a sequence of experimental and analytic studies to establish the most promising and cost effective means of hydrogen production with nuclear energy. Although these advanced processes are in an early development stage, it is important that the projected economic potential of these processes be evaluated to assist in the prioritisation of research activities, and ultimately in the selection of the most promising processes for demonstration and deployment. The projected cost of hydrogen produced is the most comprehensive metric in comparing candidate processes. Since these advanced processes are in the early stages of development and much of the technology is still unproven, the estimated production costs are also significantly uncertain. The programme approach has been to estimate the cost of hydrogen production from each process periodically, based on the best available data at that time, with the intent of increasing fidelity and reducing uncertainty as the research programme and system definition studies progress. These updated cost estimates establish comparative costs at that stage of development but are also used as inputs to the evaluation of research priorities, and identify the key cost and risk (uncertainty) drivers for each process. The economic methodology used to assess the candidate processes are based on the H2A ground rules and modelling tool (discounted cash flow) developed by the DOE Office of Energy Efficiency and Renewable Energy (EERE). The figure of merit output from the calculation is the necessary selling price for hydrogen in dollars per kilogram that satisfies the cost

  5. HyPEP-FY 07 Annual Report: A Hydrogen Production Plant Efficiency Calculation Program

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2007-09-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept the VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. In the HyPEP project we are investigating and characterizing these two reference systems with respect to production, operability, and safety performance criteria. Under production, plant configuration and working fluids are being studied for their effect on efficiency. Under operability, control strategies are being developed with the goal of maintaining equipment within operating limits while meeting changes in demand. Safety studies are to investigate plant response for equipment failures. Specific objectives in FY07 were (1) to develop HyPEP Beta and verification and validation (V&V) plan, (2) to perform steady state system integration, (3) to perform parametric studies with various working fluids and power conversion unit (PCU) configurations, (4) the study of design options such as pressure, temperature, etc. (5) to develop a control strategy and (6) to perform transient analyses for plant upsets, control strategy, etc for hydrogen plant with PCU. This report describes the progress made in FY07 in each of the above areas. (1) The HyPEP code numeric scheme and Graphic User Interface have been tested and refined since the release of the alpha version a year ago. (2) The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated. (3) Efficiency calculations were performed for a variety of working fluids for

  6. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoff Dutton; Abigail Bristow; Matthew Page; Charlotte Kelly; Jim Watson; Alison Tetteh [CCLRC Rutherford Appleton Laboratory, Didcot (United Kingdom). Energy Research Unit (ERU)

    2005-01-15

    The potential contribution and viability of the hydrogen energy economy towards reducing UK carbon dioxide emissions in the time horizon to 2050 has been assessed using a quantitative model of the UK energy system in the context of a set of diverse socio-economic scenarios. It is argued that different sets of prevailing circumstances are likely to result in very different opportunities for hydrogen and hence very different transition pathways and ultimate penetration levels. The decision on whether to strategically encourage a transition to the hydrogen economy and the ultimate environmental benefits of such a transformation will depend on the outcome of a number of important political and social decisions. These include the acceptability of large scale carbon dioxide sequestration (hydrogen derived from fossil fuels), decisions about land-use (hydrogen from biomass), a possible doubling (or more) of the current electricity production capacity with a high penetration of renewable electricity (hydrogen from electrolysis of water), and/or the public acceptability of a large scale nuclear renaissance (hydrogen from electrolysis of water or from thermo-chemical cycles). Any rapid transition to a fully developed hydrogen economy would require a contribution from at least some and possibly all of these sources. Such a transition could result in a marked decrease in carbon dioxide emissions over the long term, but might even result in increased emissions within the shorter term (due to the initial use of hydrogen derived from fossil fuels without carbon dioxide sequestration or from the bulk grid electricity supply resulting in increased load factors and lifetimes of old fossil-fired power plant to meet the increased overall demand). 47 refs., 45 figs., 19 tabs., 3 apps.

  7. Development and simulation of a hydrogen production plant on a solar power tower; Entwicklung und Simulation einer Wasserstofferzeugungsanlage auf einem Solarturm

    Energy Technology Data Exchange (ETDEWEB)

    Saeck, Jan-Peter

    2012-08-29

    The purpose of the present project was to develop and qualify a test plant for thermochemical hydrogen production on a solar power tower and to create and validate a systems and control model as well as an operating strategy for this purpose. [German] Ziel der Arbeit war, eine Testanlage zur thermochemischen Wasserstofferzeugung auf einem Solarturmsystem zu entwickeln und zu qualifizieren, sowie ein System- und Regelungsmodell und eine Betriebsstrategie dafuer zu erstellen und zu validieren.

  8. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  9. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  10. Revisiting dibenzothiophene thermochemical data: Experimental and computational studies

    International Nuclear Information System (INIS)

    Freitas, Vera L.S.; Gomes, Jose R.B.; Ribeiro da Silva, Maria D.M.C.

    2009-01-01

    Thermochemical data of dibenzothiophene were studied in the present work by experimental techniques and computational calculations. The standard (p 0 =0.1MPa) molar enthalpy of formation, at T = 298.15 K, in the gaseous phase, was determined from the enthalpy of combustion and sublimation, obtained by rotating bomb calorimetry in oxygen, and by Calvet microcalorimetry, respectively. This value was compared with estimated data from G3(MP2)//B3LYP computations and also with the other results available in the literature.

  11. Proceedings of the 1995 U.S. DOE hydrogen program review, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document containes reports from the proceedings of the 1995 U.S. DOE hydrogen program review. Reports are organized under the topics of systems analysis, utilization, storage, and production. This volume, Volume I, contains the reports concerned with systems analysis and utilization. Individual reports were processed separately for the DOE data bases.

  12. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  13. Thermochemical Erosion Modeling of the 25-MM M242/M791 Gun System

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1997-01-01

    The MACE gun barrel thermochemical erosion modeling code addresses wall degradations due to transformations, chemical reactions, and cracking coupled with pure mechanical erosion for the 25-mm M242/M791 gun system...

  14. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  15. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  16. FY 1974 report on the results of the Sunshine Project. R and D of the hydrogen production technology by the thermochemical method; 1974 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    In relation to the R and D of the hydrogen production technology by the thermochemical method, the paper summed up the results of the research conducted in FY 1974. The items for study are as follows. (1) Basic model making for process simulator. (2) Type of facility on the assumption of pilot plant size, and rough selection of equipment structural materials. (3) Extraction of engineering study subjects and working-out of study plans. In (1), the basic model of simulator was established, case studies of various Fe-Cl cycles were made, and a calculation method for the balance of the whole process was established. In (2), it was concluded that in the normal pressure reaction experiment, the oxygen emits extremely little in amount in Mark 9 No. 2 reaction, and therefore, it is very doubtful whether the closed cycle will be completed using this reaction. It was also found out that No. 3 reaction is low in reaction completion degree and it is the problem in point of thermal economy. Accordingly, possibilities of reaction were reviewed, and 6 cycles were found as Fe-Cl cycle. For these reaction cycles, a process flow sheet was made. Comparative studies among processes were conducted, and the cycle structural elementary reaction in Fe-Cl process was specified. (NEDO)

  17. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  18. Safety assessment for the IS process in a hydrogen production facility

    International Nuclear Information System (INIS)

    Cho, Nam Chul

    2005-08-01

    A substitute energy development have been required due to the dry up of the fossil fuel and an environmental problem. Consequently, among substitute energy to be discussed, producing hydrogen from water which does not release carbon is a very promising technology. Also, Iodine-Sulfur(IS) thermochemical water decomposition is one of the promising process which is used to produce hydrogen efficiently using the high temperature gas-cooled reactor(HTGR) as an energy source that is possible to supply heat over 1000 .deg. C. In this study, to make a safety assessment of the hydrogen production using the IS process, an initiating events analysis and an accident scenario modeling considering the relief system were carried out. A method for initiating event identification used the Master Logic Diagram(MLD) that is logical and deductive. As a result, 9 initiating events that cause a leakage of the chemical material were identified. 6 accident scenario based on the initiating event are identified and quantified to the event trees. The frequency of the chemical material leakage produced by IS process is estimated relatively high to the value of 1.22x10 -4 /y. Therefore, it requires more effort on safety of the hydrogen production which can be considered as a part of the nuclear system and safety management research to increase social acceptability. Moreover, these methods will be helpful to the safety assessment of the hydrogen production system of the IS process in general

  19. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  20. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  1. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  2. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  3. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  4. FY 1974 report on the results of the Sunshine Project. Comprehensive study of hydrogen use subsystem and study on the periphery technology (Study on the periphery technology of hydrogen); 1974 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This is aimed at making an investigational study on the periphery technology and sprouting technology of the hydrogen energy system. In Volume 1, 'Technology of hydrogen production,' as to the hydrogen production, the paper summed up the expected technical subjects on the electrolysis method and thermochemical method. The paper further included the survey of the direct pyrolysis method and the hydrogen production method using solar energy. Concerning the latter, in Volume 2, the light electrode reaction was theoretically developed, and samples of various hybrid methods were concretely studied. In relation to subjects on hydrogen and materials, in Volume 3, the results were described of the investigation into the hydrogen behavior in metal which is the most basic field of the subjects. About the storage method which is important as periphery technology, the study was made of the methods which can be expected but liquefied hydrogen and metal hydride which are now under research and development. In the last volume, as a part of the work to review the hydrogen energy system from a wider viewpoint, the basic study was additionally made in comparison with the system using coal. (NEDO)

  5. FY 1974 report on the results of the Sunshine Project. Comprehensive study of hydrogen use subsystem and study on the periphery technology (Study on the periphery technology of hydrogen); 1974 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This is aimed at making an investigational study on the periphery technology and sprouting technology of the hydrogen energy system. In Volume 1, 'Technology of hydrogen production,' as to the hydrogen production, the paper summed up the expected technical subjects on the electrolysis method and thermochemical method. The paper further included the survey of the direct pyrolysis method and the hydrogen production method using solar energy. Concerning the latter, in Volume 2, the light electrode reaction was theoretically developed, and samples of various hybrid methods were concretely studied. In relation to subjects on hydrogen and materials, in Volume 3, the results were described of the investigation into the hydrogen behavior in metal which is the most basic field of the subjects. About the storage method which is important as periphery technology, the study was made of the methods which can be expected but liquefied hydrogen and metal hydride which are now under research and development. In the last volume, as a part of the work to review the hydrogen energy system from a wider viewpoint, the basic study was additionally made in comparison with the system using coal. (NEDO)

  6. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  7. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The o...

  8. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  9. Hydrogen: The Fuel that Drill Bits Cannot Reach

    International Nuclear Information System (INIS)

    Miller, Alistair I.; Duffey, Romney B.

    2006-01-01

    As realization grows of the damaging cumulative effects of CO 2 on our biosphere, the prospect of substituting hydrogen for oil-based fuels attracts growing attention. Japan provides a leading example of remedial action with the expectation of five million fuel-cell-powered vehicles in operation by 2020. But where will the fuel for these and the rest of a 'Hydrogen Age' come from? The hydrogen market used to be straightforward: small-scale or high-purity markets were supplied relatively expensively by electrolysis; the other 95% was supplied much more cheaply by reforming hydrocarbons -- mostly using steam-methane reforming (SMR) and low-cost natural gas. The recent rise in the price of hydrocarbons -- natural gas as well as oil -- plus the need to sequester CO 2 has disrupted this scenario. It seems likely that this is a permanent shift driven by growing demand for limited low-cost sources of fluid hydrocarbons. So the traditional SMR route to hydrogen will be in competition with reforming of heavier hydrocarbons (particularly coal and residual oils) as well as with electrolysis based on electricity produced from low-CO 2 -emitting sources. By 2025, new high-temperature thermochemical or thermo-electrolytic sources based on high-temperature nuclear reactors could be in contention. This paper assesses the economics of all these potential sources of hydrogen and their price sensitivities. It also considers their environmental footprints. Is hydrogen from 'clean coal' or other lower value hydrocarbons cost-effective if it is also CO 2 -free? Is intermittent low-temperature electrolysis based on nuclear- and wind-produced electricity (NuWind C ) the best way or does the hydrogen future belong to thermochemistry or thermo-electrolytic sources? How can one produce hydrogen to upgrade Canada's vast oil sands resources without the detraction of a large CO 2 processing penalty? Fortunately for our planet, switching to hydrogen is no more than a technical challenge with a

  10. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  11. Inorganic membranes for hydrogen production and purification: a critical review and perspective.

    Science.gov (United States)

    Lu, G Q; Diniz da Costa, J C; Duke, M; Giessler, S; Socolow, R; Williams, R H; Kreutz, T

    2007-10-15

    Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.

  12. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  13. Overview of Cea studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, provide the impetus for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the coming decades. In order to contribute to the reduction of greenhouse gas emissions, the massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal, etc.) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 -free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, as can high temperature thermo-chemical water dissociation processes in the longer term. Starting from current research in the field of fuel cells and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen, continuing previous research and covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to create new opportunities of international collaboration and networking. (authors)

  14. Overview of CEA studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.; Serre-Combe, P.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, prepare the ground for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the next decades. In order to contribute to the reduction of greenhouse gas emissions, a massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal...) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, and also through high temperature thermochemical water dissociation processes in the longer term. Starting from current research in the field of fuel cans and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen also covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to open new opportunities of international collaborations and networking. (authors)

  15. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  16. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  17. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Czech Academy of Sciences Publication Activity Database

    Simkó, I.; Furtenbacher, T.; Hrubý, Jan; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Gamache, R. R.; Szidarovszky, T.; Dénes, N.; Császár, A. G.

    2017-01-01

    Roč. 46, č. 2 (2017), č. článku 023104. ISSN 0047-2689 R&D Projects: GA ČR GA16-02647S Institutional support: RVO:61388998 Keywords : heavy water * ideal-gas thermochemical functions * partition function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 4.204, year: 2016

  18. South Africa's opportunity to maximise the role of nuclear power in a global hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Greyvenstein, R. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: renee.greyvenstein@pbmr.co.za; Correia, M. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: michael.correia@pbmr.co.za; Kriel, W. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: willem.kriel@pbmr.us

    2008-11-15

    Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO{sub 2} emissions. Hydrogen can be cleanly produced from water (without CO{sub 2} pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 deg. C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.

  19. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  20. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  1. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  2. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  3. Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Singh, A.K.; Watanabe, N.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also determine reaction kinetics. To advance this technology beyond the laboratory stage requires a thorough theoretical understanding of the multiphysics phenomena and their quantification on a scale relevant to engineering analyses. Here, the theoretical derivation of a macroscopic model for multicomponent compressible gas flow through a porous solid is presented along with its finite element implementation where solid–gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius–Duhem inequality. Special emphasis is placed on the interphase coupling via mass, momentum and energy interaction terms and their effects are partially illustrated using numerical examples. Novel features of the implementation of the described model are verified via comparisons to analytical solutions. The specification, validation and application of the full model to a calcium hydroxide/calcium oxide based thermochemical storage system are the subject of part 2 of this study. - Highlights: • Rigorous application of the Theory of Porous Media and the 2nd law of thermodynamics. • Thermodynamically consistent model for thermochemical heat storage systems. • Multicomponent gas; modified Fick's and Darcy's law; thermal non-equilibrium; solid–gas reactions. • Clear distinction between source and production terms. • Open source finite element implementation and benchmarks

  4. Perspectives for the french R and D program for high and very high temperature reactors - HTR2008-58172

    International Nuclear Information System (INIS)

    Yvon, P.; Hittner, D.; Delbecq, J. M.

    2008-01-01

    components in representative helium test loops. The potential of this type of reactor for higher performances in terms of fuel bum-up and temperature (VHTR objective) has been explored, in particular for application to hydrogen production. The major research axes on hydrogen production technologies include the development and optimization of high temperature electrolysis and thermo-chemical water splitting processes such as sulphur/iodine or hybrid sulphur. Alternative thermo-chemical hydrogen generation processes operating at lower temperatures are also investigated. This paper addresses the R and D work performed since 2001 and the future work anticipated until 2012, where decisions about a demonstrator could be made at a European level within the Sustainable Nuclear Energy Technological Platform (SNE-TP). This program is strongly connected to the EURATOM Framework Programmes as well as to GIF. (authors)

  5. Hydrogen fuelled buses: Italian ENEA research program

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.

    1993-01-01

    Current hydrogen automotive fuels research studies being conducted by ENEA (Italian Agency for New Technology, Energy and the Environment) are being targeted towards the development of hydrogen fueled vans and buses for use in highly polluted urban environments where the innovative vehicles' air pollution abatement characteristics would justify their high operating costs as compared with those of conventional automotive alternatives. The demonstration vehicle being used in the experimental studies and performance tests is a two liter minibus with a spark ignition engine power rated at 55 kW with gasoline operation and 45 kW with hydrogen. Detailed design notes are given regarding the retrofitting of the minibus chassis to house the aluminium gas storage tanks and the adaptation of the engine to operate with compressed hydrogen. Attention is given to efforts being made to resolve combustion control and fueling problems. Focus is on the progress being made in the development of an efficient and safe electronically controlled fuel injection system

  6. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  7. To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2007-01-01

    Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper

  8. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  9. Achievement report for fiscal 1976 on Sunshine Program. Research and development of hydrogen production technology using thermochemical method; 1976 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    The research and development centers on the details of the Fe-Cu-Cl-based cycle. The items studied in this connection are (1) the development of a process simulator, (2) an experimental study of the Fe-Cu-Cl-based cycle, and (3) the recapitulation of the Fe-Cl-based cycle. The outcome of the comparison of Fe-Cl-based cycles widely conducted in the past enables a conclusion that the Fe-Cu-Cl-based cycle is at present is the most practical, technologically as well as in the way of thermal efficiency. The achievement on the first reaction (hydrolysis of ferrous chloride) of fiscal 1975, and then what is reported in literature on the fifth reaction (reverse Deacon process), are incorporated into the experiment of fiscal 1976, and this completes the acquisition of basic data necessary to develop the Fe-Cu-Cl-based cycle into an application process. Using optimum conditions chosen out of these basic data, a flowchart is compiled and the details of the process are calculated. As the result, a thermal efficiency of 30-33% is obtained, and the figures are deemed to indicate that the thermochemical method is sufficiently superior to the electrolytic method. (NEDO)

  10. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  12. Proceedings of the 1997 U.S. DOE Hydrogen Program Review, May 21-23, 1997, Herndon, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1997-10-01

    The research and development supported by the DOE Hydrogen Program focuses on near-term transitional strategies involving fossil fuels, and on the exploration of long-term, high-risk, renewable and sustainable concepts.

  13. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen

  14. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  15. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  16. A gas dynamic and thermochemical model of steam/sodium microleak phenomena

    International Nuclear Information System (INIS)

    Perkins, R.; Airey, R.; Daniels, L.C.

    1985-06-01

    Conflicting findings have been reported by 3 UK laboratories for the blockage or rapid escalation of steam/sodium microleaks. In an earlier paper it was shown that this discrepancy could be resolved through the influence on the steam flow of the geometry of the leak paths; the geometry being dependent upon the method of manufacture. The application of gas dynamics and thermochemical methods could account for the rapid escalation of some leaks in terms of the presence of shock waves in the gas flow within the leak path. In this paper the gas dynamic and thermochemical theories are re-stated and a series of leak experiments conducted to test the validity of the theory is described. The theory predicts that for some leaks of variable area of cross-section the blockage/escalation behaviour is determined by small changes in the sodium-side pressure; this effect was found and is discussed as a validation of the theory. Other aspects of leak phenomena are discussed and conclusions are drawn with emphasis on implications for further programmes of leak study and for leaks in LMFBR steam generators in service. (author)

  17. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the

  18. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  19. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  20. The hydrogen and the fuel cells in the world. Programs and evolutions; L'hydrogene et les piles a combustibles dans le monde. Programmes et evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Lucchese, P. [CEA Saclay, Dir. des Nouvelles Technologies de l' Energie CEA, 91 - Gif-sur-Yvette (France)

    2008-07-01

    HyPac is a french platform on the hydrogen and fuel cells, created in 2008. The author presents the opportunity of such a platform facing the world research programs and other existing platforms. (A.L.B.)