WorldWideScience

Sample records for thermo-hydro mechanical characteristics

  1. Thermo-hydro-mechanical behavior of argillite

    International Nuclear Information System (INIS)

    Tran, Duy Thuong; Dormieux, Luc; Lemarchand, Eric; Skoczylas, Frederic

    2012-01-01

    Document available in extended abstract form only. Argillite is a very low permeability geo-material widely encountered: that is the reason why it is an excellent candidate for the storage of long-term nuclear waste depositories. This study focuses on argillites from Meuse-Haute-Marne (East of France) which forms a geological layer located approximately 400 m and 500 m depth. We know that this material is made up of a mixture of shale, quartz and calcite phases. The multi-scale definition of this material suggests the derivation of micro-mechanics reasonings in order to better account for the mechanisms occurring at the local (nano and micro-) scale and controlling the macroscopic mechanical behavior. In this work, up-scaling techniques are used in the context of thermo-hydro-mechanical couplings. The first step consists in clarifying the morphology of the microstructure at the relevant scales (particles arrangement, pore size distribution) and identifying the mechanisms that take place at those scales. These local informations provide the input data of micro-mechanics based models. Schematic picture of the microstructure where the argillite material behaves as a dual-porosity, with liquid in both micro-pores and interlayer space in between clay solid platelets, seems a reasonable starting point for this micro-mechanical modelling of clay. This allows us to link the physical phenomena (swelling clays) and the mechanical properties (elastic moduli, Poisson's ratio). At the pressure applied by the fluid on the solid platelets appears as the sum of the uniform pressure in the micro-pores and of a swelling overpressure depending on the distance between platelets and on the ion concentration in the micro-pores. The latter is proved to be responsible for a local elastic modulus of physical origin. This additional elastic component may strongly be influenced by both relative humidity and temperature. A first contribution of this study is to analysing this local elastic

  2. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (US) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs.

  3. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (USA) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs

  4. Thermo-hydro-mechanical modelling of buffer, synthesis report

    International Nuclear Information System (INIS)

    Toprak, E.; Mokni, N.; Olivella, S.; Pintado, X.

    2013-08-01

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE B RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel repository in

  5. Thermo-hydro-mechanical modelling of buffer, synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, E.; Mokni, N.; Olivella, S. [Universitat Politecnica de Catalunya, Barcelona (Spain); Pintado, X. [B and Tech Oy, Helsinki (Finland)

    2013-08-15

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE{sub B}RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel

  6. Thermo-hydro-mechanical behavior of fractured rock mass

    International Nuclear Information System (INIS)

    Coste, F.

    1997-12-01

    The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)

  7. Thermo-hydro-mechanical tests of buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  8. Thermo-hydro-mechanical tests of buffer material

    International Nuclear Information System (INIS)

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  9. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T

    2008-01-15

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  10. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Zandarin, M.T.; Olivella, S.; Gens', A.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  11. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Outline report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Shiozaki, Isao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  12. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Result report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe 60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  13. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  14. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    Mohajerani, M.

    2011-01-01

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), considered by ANDRA as a potential host rock in France.In this work, the compression - swelling behaviour of the COx Clay-stone was first investigated by carrying out a series of high-pressure oedometric tests. The results, interpreted in terms of coupling between damage and swelling, showed that the magnitude of swelling was linked to the density of the fissures created during compression. In a second step, the hydro-mechanical and thermo-hydro-mechanical behaviour of the saturated Clay-stone under a mean stress close to the in situ one were investigated by using two devices with short drainage path (10 mm), namely a isotropic cell and a newly designed hollow cylinder triaxial cell with local displacement measurements. These devices helped to solve two majors problems related to testing very low permeability materials: i) a satisfactory previous sample saturation (indicated by good Skempton values) and ii) satisfactory drainage conditions. Some typical constitutive parameters (Skempton and Biot's coefficients, drained and undrained compressibility coefficients) have been determined at ambient temperature through isotropic compression tests that also confirmed the transverse isotropy of the Clay-stone. The consistency of the obtained parameters has been checked in a saturated poro-elastic framework. Two aspects of the thermo-hydro-mechanical behaviour of the COx Clay-stone have then been investigated through different heating tests and through drained and undrained isotropic

  15. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    International Nuclear Information System (INIS)

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  16. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  17. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  18. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bary, B.; Carpentier, O. [CEA Saclay, DEN/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Ranc, G. [CEA VALRHO, DEN/DTEC/L2EC/LCEC, F-30207 Bagnols Sur Ceze, (France); Durand, S. [CEA Saclay, DEN/DM2S/SEMT/LM2S, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    This study focuses on the concrete behavior subjected to moderate temperatures, with a particular emphasis on the transient thermo-hydric stage. A simplified coupled thermo-hydro-mechanical model is developed with the assumption that the gaseous phase is composed uniquely of vapor. Estimations of the mechanical parameters, Biot coefficient and permeability as a function of damage and saturation degree are provided by applying effective-medium approximation schemes. The isotherm adsorption curves are supposed to depend upon both temperature and crack-induced porosity. The effects of damage and parameters linked to transfer (in particular the adsorption curves) on the concrete structure response in the transient phase of heating are then investigated and evaluated. To this aim, the model is applied to the simulation of concrete cylinders with height and diameter of 0.80 m subjected to heating rates of 0.1 and 10 degrees C/min up to 160 degrees C. The numerical results are analyzed, commented and compared with experimental ones in terms of water mass loss, temperatures and gas pressures evolutions. A numerical study indicates that some parameters have a greater influence on the results than others, and that certain coupling terms in the mass conservation equation of water may be neglected. (authors)

  19. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  20. Full-scale test on coupled thermo-hydro-mechanical processes in engineered barrier system

    International Nuclear Information System (INIS)

    Moro, Yoshiji; Fujita, Tomoo; Kanno, Takeshi; Kobayashi, Akira.

    1994-01-01

    On dynamic behavior within artificial barrier in ground layer disposal of high level radioactive wastes, some phenomena such as exotherm from the wastes, penetration of groundwater from surrounding base rock, swelling pressure formation of buffer material due to penetration of groundwater, ground pressure change of the surrounding base rock, and so forth are supposed to affect each other. It is one of important problems from a viewpoint of elucidation of near field environment in the property evaluation study to evaluate such thermo-hydro-mechanical coupled phenomena. As results of the investigation from such reason and its application to actual test in accompany with execution of heating and water inserting test in the Big-Ben (Big-Bentonite facility), the following informations were obtained: (1) In heating and water inserting test, data on temperature distribution, water content ratio distribution and swelling pressure of each portion for 5 months could be obtained. (2) water migration due to water slope was divided to migrations due to steam and liquid water, of which models were made according to Fick and Darcy laws, respectively. (3) As a simulation of water migration, water diffusion coefficient due to temperature slope could be expressed almost by a model with nonlinearity to temperature. (G.K.)

  1. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 2. Result report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Tanaka, Yumiko

    2003-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code. (1) We have developed coupling analysis system to manage coupling analysis and to control coupling process automatically for THAMES (thermo-hydro-mechanical analysis code), Dtransu (mass transport analysis code) and phreeqe60 (geochemical analysis code). (2) Some supporting module, which includes transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), was prepared as a functional expansion. And in order to treat multi-chemical elements, we have codified mass transport analysis code. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqe60 and hydraulic conductivity module were installed in the COUPLYS, sensitivity analysis was carried out to check basic operation. (4) In order to confirm the applicability of the developed THMC analysis code, we have carried out case analysis on 1-dimensional and 3-dimensional model which including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  2. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs

  3. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs.

  4. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media

    International Nuclear Information System (INIS)

    Canamon Valera, I.

    2006-11-01

    This doctoral research was conducted as part of a joint France-Spain co-tutelage PhD thesis in the framework of a bilateral agreement between two universities, the Institut National Polytechnique de Toulouse (INPT) and the Universidad Politecnica de Madrid (UPM). It concerns a problem of common interest at the national and international levels, namely, the disposal of radioactive waste in deep geological repositories. The present work is devoted, more precisely, to near-field hydrogeological aspects involving mass and heat transport phenomena. The first part of the work is devoted to a specific data interpretation problem (pressures, relative humidities, temperatures) in a multi-barrier experimental system at the scale of a few meters - the 'Mock-Up Test' of the FEBEX project, conducted in Spain. Over 500 time series are characterized in terms of spatial, temporal, and/or frequency/scale-based statistical analysis techniques. The time evolution and coupling of physical phenomena during the experiment are analyzed, and conclusions are drawn concerning the behavior and reliability of the sensors. The second part of the thesis develops in more detail the 3-Dimensional (3D) modeling of coupled Thermo-Hydro-Mechanical phenomena in a fractured porous rock, this time at the scale of a hundred meters, based on the data of the 'In-Situ Test' of the FEBEX project conducted at the Grimsel Test Site in the Swiss Alps. As a first step, a reconstruction of the 3D fracture network is obtained by Monte Carlo simulation, taking into account through optimization the geomorphological data collected around the FEBEX gallery. The heterogeneous distribution of traces observed on the cylindrical wall of the tunnel is fairly well reproduced in the simulated network. In a second step, we develop a method to estimate the equivalent permeability of a many-fractured block by extending the superposition method of Ababou et al. [1994] to the case where the permeability of the rock matrix is not

  5. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  6. Thermo-hydro-mechanical modelling of fractured rock masses application to radioactive wastes storage

    International Nuclear Information System (INIS)

    Vuillod, E.

    1995-01-01

    This work belongs to the Decovalex project (international cooperative project for the development of coupled models and their validation against experiments in nuclear waste isolation) of thermo-hydro-mechanical (THM) modeling of fractured rock massifs inside which high level radioactive waste disposal sites are simulated. The mathematical laws controlling the behaviour of the environment are resolved analytically in the case of a continuous environment (definition of an equivalent environment) and numerically if the environment is discontinuous (modeling of joints behaviour). The coupled THM models strongly influence the behaviour of a model. Modeling performed with the UDEC code shows the importance of HM couplings depending on whether the calculations are made in permanent or transient regime, and the influence of the loading path in the case of TM modeling. The geometry of fractures also influences the behaviour of the model. Studying the connexity of a fractures network allows to determine its degree of homogeneity. The comparison between two methods, continuous environment and discontinuous environment, has been carried out by determining the permeability tensor and the stress-deformation relations on fractured test-samples. It shows the differences in behaviour between an homogenized environment and a discrete environment. Finally two exercises of THM modeling of radioactive waste disposal sites illustrate the researches carried out. A far field model has permitted to compare the results obtained with calculation codes using different logics. The second model, a near field one, focusses more on the importance played by fracturing on the behaviour of the massif. The high density of the reference network has required some mathematical developments, in order to determine the representative equivalent volume (continuous approaches), and some mathematical analyses, to correctly simplify the environment (discontinuous approaches). These methods and analyses are

  7. Thermo-hydro-mechanical coupling in long-term sedimentary rock response

    Science.gov (United States)

    Makhnenko, R. Y.; Podladchikov, Y.

    2017-12-01

    Storage of nuclear waste or CO2 affects the state of stress and pore pressure in the subsurface and may induce large thermal gradients in the rock formations. In general, the associated coupled thermo-hydro-mechanical effect on long-term rock deformation and fluid flow have to be studied. Principles behind mathematical models for poroviscoelastic response are reviewed, and poroviscous model parameter, the bulk viscosity, is included in the constitutive equations. Time-dependent response (creep) of fluid-filled sedimentary rocks is experimentally quantified at isotropic stress states. Three poroelastic parameters are measured by drained, undrained, and unjacketed geomechanical tests for quartz-rich Berea sandstone, calcite-rich Apulian limestone, and clay-rich Jurassic shale. The bulk viscosity is calculated from the measurements of pore pressure growth under undrained conditions, which requires time scales 104 s. The bulk viscosity is reported to be on the order of 1015 Pa•s for the sandstone, limestone, and shale. It is found to be decreasing with the increase of pore pressure despite corresponding decrease in the effective stress. Additionally, increase of temperature (from 24 ºC to 40 ºC) enhances creep, where the most pronounced effect is reported for the shale with bulk viscosity decrease by a factor of 3. Viscous compaction of fluid-filled porous media allows a generation of a special type of fluid flow instability that leads to formation of high-porosity, high-permeability domains that are able to self-propagate upwards due to interplay between buoyancy and viscous resistance of the deforming porous matrix. This instability is known as "porosity wave" and its formation is possible under conditions applicable to deep CO2 storage in reservoirs and explains creation of high-porosity channels and chimneys. The reported experiments show that the formation of high-permeability pathways is most likely to occur in low-permeable clay-rich materials (caprock

  8. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  9. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Sugita, Yutaka; Fujita, Tomoo [Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Amemiya, Kiyoshi [Hazama Corp., Tokyo (Japan)

    1999-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  10. Study of the water retention and the consolidation of partially saturated soils in a thermo-hydro-mechanical framework

    International Nuclear Information System (INIS)

    Salager, Simon

    2007-01-01

    This work is concerned with the study of water retention and consolidation of unsaturated soils in a thermo-hydro-mechanical framework. It is organized into two parts which deal respectively with deformation and temperature effects on hydric behaviour, and suction and temperature effects on mechanical behaviour. In the first part, we point out the relevance of the characteristic surface concept for soils as opposed to the retention curve, which has limited modelling power in the case of deformable media. The characteristic surface concept is experimentally illustrated for the example of a clayey silty sand. Its modelling is based on a large sample of experimental investigations with about 240 measurements of the triplet void ratio, water content, suction. In addition, a thermo-hydric behaviour model is proposed in order to determine the characteristic surface and the retention curve for a given temperature. This model is validated for the case of two materials: a ceramic and a clayey silty sand through direct testing, and for other materials on the basis of an analysis of the literature. Finally, we present an application to the determination of the permeability of unsaturated soils taking into account deformation and temperature. In the second part, temperature and suction effects on the mechanical behaviour are studied through consolidation tests on 'Sion' silt. These tests are performed for different temperatures and suctions. For each test, swelling and compression indexes, as well as the pre-consolidation pressure are measured. The influence of temperature and suction on these essential parameters of mechanical behaviour is determined. Finally, we propose a theoretical model which account for pre-consolidation pressure as a function of temperature and suction. (author)

  11. Experiments on thermo-hydro-mechanical behaviour of Opalinus Clay at Mont Terri rock laboratory, Switzerland

    Directory of Open Access Journals (Sweden)

    Paul Bossart

    2017-06-01

    Full Text Available Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere. A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock – in our case the Opalinus Clay – and an engineered barrier system (EBS. The Swiss repository concept for spent fuel and vitrified high-level waste (HLW consists of waste canisters, which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material (GBM. We describe here a selection of five in-situ experiments where characteristic hydro-mechanical (HM and thermo-hydro-mechanical (THM processes have been observed. The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone (EDZ was monitored around a gallery in the Opalinus Clay (ED-B experiment. Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour. The same measurements were subsequently carried out in a heater test (HE-D where we were able to characterise the Opalinus Clay in terms of its THM behaviour. These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock. For a presentation of the Swiss concept for HLW storage, we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory: (1 the engineered barrier (EB experiment, (2 the in-situ heater test on key-THM processes and parameters (HE-E experiment, and (3 the full-scale emplacement (FE experiment. The first demonstration experiment has been dismantled, but the last two ones are on-going.

  12. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobayashi, A.

    1985-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository

  13. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-07-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  14. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    International Nuclear Information System (INIS)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-01-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  15. Numerical analysis of thermo-hydro-mechanical (THM) processes in the clay based material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuerui

    2016-10-06

    Clay formations are investigated worldwide as potential host rock for the deep geological disposal of high-level radioactive waste (HLW). Usually bentonite is preferred as the buffer and backfill material in the disposal system. In the disposal of HLW, heat emission is one of the most important issues as it can generate a series of complex thermo-hydro-mechanical (THM) processes in the surrounding materials and thus change the material properties. In the context of safety assessment, it is important to understand the thermally induced THM interactions and the associated change in material properties. In this work, the thermally induced coupled THM behaviours in the clay host rock and in the bentonite buffer as well as the corresponding coupling effects among the relevant material properties are numerically analysed. A coupled non-isothermal Richards flow mechanical model and a non-isothermal multiphase flow model were developed based on the scientific computer codes OpenGeoSys (OGS). Heat transfer in the porous media is governed by thermal conduction and advective flow of the pore fluids. Within the hydraulic processes, evaporation, vapour diffusion, and the unsaturated flow field are considered. Darcy's law is used to describe the advective flux of gas and liquid phases. The relative permeability of each phase is considered. The elastic deformation process is modelled by the generalized Hooke's law complemented with additional strain caused by swelling/shrinkage behaviour and by temperature change. In this study, special attention has been paid to the analysis of the thermally induced changes in material properties. The strong mechanical and hydraulic anisotropic properties of clay rock are described by a transversely isotropic mechanical model and by a transversely isotropic permeability tensor, respectively. The thermal anisotropy is described by adoption of the bedding-orientation-dependent thermal conductivity. The dependency of the thermal

  16. Numerical analysis of thermo-hydro-mechanical (THM) processes in the clay based material

    International Nuclear Information System (INIS)

    Wang, Xuerui

    2016-01-01

    Clay formations are investigated worldwide as potential host rock for the deep geological disposal of high-level radioactive waste (HLW). Usually bentonite is preferred as the buffer and backfill material in the disposal system. In the disposal of HLW, heat emission is one of the most important issues as it can generate a series of complex thermo-hydro-mechanical (THM) processes in the surrounding materials and thus change the material properties. In the context of safety assessment, it is important to understand the thermally induced THM interactions and the associated change in material properties. In this work, the thermally induced coupled THM behaviours in the clay host rock and in the bentonite buffer as well as the corresponding coupling effects among the relevant material properties are numerically analysed. A coupled non-isothermal Richards flow mechanical model and a non-isothermal multiphase flow model were developed based on the scientific computer codes OpenGeoSys (OGS). Heat transfer in the porous media is governed by thermal conduction and advective flow of the pore fluids. Within the hydraulic processes, evaporation, vapour diffusion, and the unsaturated flow field are considered. Darcy's law is used to describe the advective flux of gas and liquid phases. The relative permeability of each phase is considered. The elastic deformation process is modelled by the generalized Hooke's law complemented with additional strain caused by swelling/shrinkage behaviour and by temperature change. In this study, special attention has been paid to the analysis of the thermally induced changes in material properties. The strong mechanical and hydraulic anisotropic properties of clay rock are described by a transversely isotropic mechanical model and by a transversely isotropic permeability tensor, respectively. The thermal anisotropy is described by adoption of the bedding-orientation-dependent thermal conductivity. The dependency of the thermal

  17. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media

    DEFF Research Database (Denmark)

    Kolditz, O.; Bauer, S.; Bilke, L.

    In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM...

  18. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Kharkhour, H.

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  19. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  20. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    Science.gov (United States)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  1. Coupled thermo-hydro-mechanical processes around a bentonite buffer embedded in Opalinus Clay - Comparison between measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo; Munoz, Juan Jorge [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory consists of an engineered barrier system composed of compacted bentonite blocks around a heater. The bentonite barrier is embedded in Opalinus Clay. The aim of the project is improved understanding of thermo-hydro mechanically (THM) coupled processes. Calculations are performed by 2 Finite-Element programs, CODE-BRIGHT and MHERLIN, the former for the near-field modeling and the latter for the rock modeling. Numerical modeling is carried out during all phases of the project to give input for design tasks such as cooling and dismantling, and to finally produce verified models of the THM coupled engineered barrier system. Results of both programs are discussed in the light of the experimental findings. (authors)

  2. Summary report of research on evaluation of coupled thermo-hydro-mechanical behavior in the engineered barrier

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Yamashita, Ryo

    2002-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in to the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. In the above numerical code, swelling phenomenon is modeled as the function of water potential. However it dose no evaluate the experiment results enough. Then, we try to apply the new model. (author)

  3. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  4. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  5. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  6. Microstructure and Thermo-Hydro-Mechanical effects as an explanation for rate dependency during seismic slip

    Science.gov (United States)

    Stefanou, I.; Rattez, H.; Sulem, J.

    2017-12-01

    Rapid shear tests of granulated fault gouges show pronounced rate-dependency. For this reason rate-dependent constitutive laws are frequently used for describing fault friction.Here we propose a micromechanical, physics-based continuum approach by considering the characteristic size of the microstructure and the thermal- and pore-pressure-diffusion mechanisms that take place in the fault gouge during rapid shearing. It is shown that even for rate-independent materials, the apparent, macroscopic behavior of the system is rate-dependent. This is due to the competition of the characteristic lengths and time scales introduced indirectly by the microstructure and the thermal and hydraulic diffusivities.Both weakening and shear band thickness are rate dependent, despite the fact that the constitutive description of the material was considered rate-independent. Moreover the size of the microstructure, which here is identified with the grain size of the fault gouge (D50), plays an important role in the slope of the softening branch of the shear stress-strain response curve and consequently in the transition from aseismic to seismic slip.References Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. http://doi.org/10.1029/JB084iB05p02161 Scholz, C. H. (2002). The mechanics of earthquakes and faulting (Second). Cambridge. Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the Environment, 6, 4-21. http://doi.org/10.1016/j.gete.2015.12.004

  7. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 3. Result Report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao

    2004-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study. And some case analyses on THMC phenomena are carried out by this code. (1) Some supporting modules, which include the transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), were prepared as a functional expansion. And in order to add on the function of treat de-gases and gases diffusion, accumulation and dilution phenomena, the mass transport analysis code was modified. (2) We have modified reactive transport module to treat ionic exchange, surface reaction and kinetic reaction in the each barrier. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), degradation of buffer material such as Ca-type bentonite and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqc and the hydraulic conductivity module were installed in COUPLYS (Coupling Analysis), verification study was carried out to check basic function. And we have modified COUPLYS to control coupling process. (4) In order to confirm the applicability of the developed THMC analysis code (existing analysis code and COUPLYS), we have carried out case analyses on 1-dimensional and 3-dimensional model which are including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  8. Study of thermo-hydro-mechanical processes at a potential site of an ...

    Indian Academy of Sciences (India)

    2008-09-29

    Sep 29, 2008 ... In this paper, field investigation has been done near to Bhima basin of peninsular India. Detailed ... investigations and other state-of-the-art methods .... Table 1. Variation of physico-mechanical parameters with depth. Tensile. Angle of. UCS strength. Cohesive internal. Young's. Sample nos. Depth. (σc). (σt).

  9. Objective thermo-hydro-mechanical modelling of the damaged zone around a radioactive waste storage site

    International Nuclear Information System (INIS)

    Marinelli, Ferdinando

    2013-01-01

    We present two different approaches to describe the hydro-mechanical behaviour of geo-materials. In the first approach the porous media is studied through an equivalent continuum media where the interaction between the fluid and solid phases characterize the coupling behaviour at the macro-scale. We take into account this approach to model experimental tests performed over a hollow cylinder sample of clay rock (Boom Clay), considered for nuclear waste storage. The experimental results clearly show that the mechanical behaviour of the material is strongly anisotropic. For this reason we chose an elasto-plastic model based on Drucker-Prager criterion where the elastic part is characterized by cross anisotropy. The numerical results of boundary value problem clearly show localised strains around the inner hollow section. In order to regularize the numerical problem we consider a second gradient local continuum media with an enriched kinematic where an internal length can be introduced making the results mesh independent. The uniqueness study is carried out showing that changing the temporal discretization of the problem leads to different solutions. In the second approach we study the hydro-mechanical behaviour of a porous media that it is characterised by the microstructure of the material. The microstructure taken into account is composed by elastic grains, cohesive interfaces and a network of fluid channels. Using a periodic media a numerical homogenization (square finite element method) is considered to compute mass flux, stress and density of the mixture. In this way a pure numerical constitutive law is built from the microstructure of the media. This method has been implemented into a finite element code (Lagamine, Universite de Liege) to obtain results at the macro-scale. A validation of this implementation is performed for a pure mechanical boundary value problem and for a hydro-mechanical one. (author)

  10. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  11. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    Science.gov (United States)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122

  12. DECOVALEX I - Bench-Mark Test 3: Thermo-hydro-mechanical modelling

    International Nuclear Information System (INIS)

    Israelsson, J.

    1995-12-01

    The bench-mark test concerns the excavation of a tunnel, located 500 m below the ground surface, and the establishment of mechanical equilibrium and steady-state fluid flow. Following this, a thermal heating due to the nuclear waste, stored in a borehole below the tunnel, was simulated. The results are reported at (1) 30 days after tunnel excavation, (2) steady state, (3) one year after thermal loading, and (4) at the time of maximum temperature. The problem specification included the excavation and waste geometry, materials properties for intact rock and joints, location of more than 6500 joints observed in the 50 by 50 m area, and calculated hydraulic conductivities. However, due to the large number of joints and the lack of dominating orientations, it was decided to treat the problem as a continuum using the computer code FLAC. The problem was modeled using a vertical symmetry plane through the tunnel and the borehole. Flow equilibrium was obtained approx. 40 days after the opening of the tunnel. Since the hydraulic conductivity was set to be stress dependent, a noticeable difference in the horizontal and vertical conductivity and flow was observed. After 40 days, an oedometer-type consolidation of the model was observed. Approx. 4 years after the initiation of the heat source, a maximum temperature of 171 C was obtained. The stress-dependent hydraulic conductivity and the temperature-dependent dynamic viscosity caused minor changes to the flow pattern. The specified mechanical boundary conditions imply that the tunnel is part of a system of parallel tunnels. However, the fixed temperature at the top boundary maintains the temperature below the temperature anticipated for an equivalent repository. The combination of mechanical and hydraulic boundary conditions cause the model to behave like an oedometer test in which the consolidation rate goes asymptotically to zero. 17 refs, 55 figs, 22 tabs

  13. Theoretical and numerical study of thermo-hydro-mechanical damage in unsaturated porous media

    International Nuclear Information System (INIS)

    Arson, Ch.

    2009-09-01

    Nuclear waste disposals are designed in multi-phase porous media. A new damage model, formulated in independent state variables (net stress, suction and thermal stress), is proposed for such geo-materials. The damage variable is a second-order tensor, which principal values grow with tensile strains. The stress/strain relations are derived from a postulated expression of the free energy. The degraded rigidities are computed by applying the Principle of Equivalent Elastic Energy for each stress state variable. Cracking effects are taken into account in transfers by introducing internal length parameters in the expressions of moisture conductivities. The damage model has been implemented in Θ-Stock Finite Element code. The mechanical model has been validated by comparing numerical results to experimental data and theoretical predictions. The qualitative evolutions given by the model in the parametric studies performed on realistic complex configurations show good trends. (author)

  14. On a morphological approach of the meso-structure for the multi-scale analysis of the thermo-hydro-mechanical behaviour of cementitious materials

    International Nuclear Information System (INIS)

    Le, T.T.H.

    2011-01-01

    The investigation of the behavior of heated concrete is a major research topic which concerns the assessment of safety level of structures when exposed to high temperatures, for instance during a fire. For this purpose, several modeling approaches were developed within thermo-hydro-mechanical (THM) frameworks in order to take into account the involved physic-chemical and mechanical processes that affect stability of heated concrete. However, existing models often do note account explicitly for the heterogeneity of the material: concrete is composite material that may be schematized as an assembly of inclusions (aggregates) embedded in a cementitious matrix (cement paste). This latter may be described as a partially saturated open porous medium. The aggregates are characterized by their mineralogical nature together with their morphology and size distribution. The material heterogeneity bring an additional complexity: the need to take into account the microstructure in order to quantify the effect of matrix-inclusion thermal, hygral and mechanical incompatibilities on the THM behavior of concrete. This work is a first step in this direction. For this purpose, a three-dimensional (3D) multi-scale finite element model is developed. It allows affecting specific behaviors to matrix and inclusions. For the former, where mass transports occur within the connected porous network, a three-fluids approach (liquid water, vapor and dry air) is adopted and is coupled to a poro-mechanical damage based approach. For inclusions (aggregates) no hygral component arises a pure thermo-mechanical model is considered. The developed model is then used to investigate, either by 2D or 3D numerical simulations, effects of mineralogical nature, morphology and distribution of aggregates. Studied effects have mainly concerned the influence of these parameters on local fluctuations of simulated temperature, gas pressure and damage fields with regard to experimentally observed dispersion. The

  15. Effect of the heating rate on residual thermo-hydro-mechanical properties of a high-strength concrete in the context of nuclear waste storage

    International Nuclear Information System (INIS)

    Galle, C.; Pin, M.; Ranc, G.; Rodrigues, S.

    2003-01-01

    Concrete is likely to be used in massive structures for nuclear waste long-term storage facilities in France. In the framework of vitrified waste and spent fuel management, these structures could be submitted to high temperatures. In standard conditions, ambient temperature should not exceed 60 degC but in case of failure of a cooling system, concretes could be temporarily exposed to temperatures up to 250 degC. Depending on the temperature rise kinetics, concretes could be damaged to a greater or lesser extent. In this context, an experimental study on the effect of heating rate on concrete thermo-hydro-mechanical properties exposed to high temperatures (110 - 250 degC) was carried out at the French Atomic Energy Commission (CEA). Data analysis and interpretation provided enough arguments to conclude that, at local scale, the impact of heating rate on residual properties was real though relatively limited. (author)

  16. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of a saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobsayashi, A.

    1987-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of a porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. If the medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in the plane strain condition; that water in the ground does not change its phase; and that heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively, in the coupled model. Several types of problems are analyzed

  17. Multi-scale modeling of the thermo-hydro- mechanical behaviour of heterogeneous materials. Application to cement-based materials under severe loads

    International Nuclear Information System (INIS)

    Grondin, Frederic Alain

    2005-01-01

    The work of modeling presented here relates to the study of the thermo-hydro- mechanical behaviour of porous materials based on hydraulic binder such as concrete, High Performance Concrete or more generally cement-based materials. This work is based on the exploitation of the Digital Concrete model, of the finite element code Symphonie developed in the Scientific and Technical Centre for Building (CSTB), in coupling with the homogenization methods to obtain macroscopic behaviour laws drawn from the Micro-Macro relations. Scales of investigation, macroscopic and microscopic, has been exploited by simulation in order to allow the comprehension fine of the behaviour of cement-based materials according to thermal, hydrous and mechanical loads. It appears necessary to take into account various scales of modeling. In order to study the behaviour of the structure, we are brought to reduce the scale of investigation to study the material more particularly. The research tasks presented suggest a new approach for the identification of the multi-physic behaviour of materials by simulation. In complement of the purely experimental approach, based on observations on the sample with measurements of the apparent parameters on the macroscopic scale, this new approach allows to obtain the fine analysis of elementary mechanisms in acting within the material. These elementary mechanisms are at the origin of the evolution of the macroscopic parameters measured in experimental tests. In this work, coefficients of the thermo-hydro-mechanical behaviour law of porous materials and the equivalent hydraulic conductivity were obtained by a multi-scales approach. Applications has been carried out on the study of the damaged behaviour of cement-based materials, in the objective to determine the elasticity tensor and the permeability tensor of a High Performance Concrete at high temperatures under a mechanical load. Also, the study of the strain evolution of cement-based materials at low

  18. FEBEX Full-Scalle Engineered Barriers Experiment in Crystalline Host Rock Preoperational Thermo-Hydro-Mechanical (THM) Modelling of the Mock Up Test

    International Nuclear Information System (INIS)

    1998-01-01

    The object of this report is to present and discuss the results of a series of 1-D and 2-D coupled thermo-hydro-mechanical (THM) and 2-D coupled thermo-hydro-mechanical (THM) analyses modelling the FEBEX mock-up test. The analyses have been carried out during the preoperational storage of the test and attempt to incorporate all available information obtained from laboratory characterisation work. The aim is not only to offer the best estimate of test performance using current models and information but also to provide a basis for future model improvements. Both the theoretical framework adopted in the analysis and the computer code employed are briefly described. The set of parameters used in the computation is then presented with particular reference to the source from which they have been derived. Initial and boundary condition are also defined. The results of a 1-D radially symmetric analysis are used to examine the basic patterns of thermal, hydraulic and mechanical behaviour of the test. A set of sensitivity analyses has been carried out in order to check the effects that the variation of a number of important parameters has on test results. Only in this way it is possible to acquire a proper understanding of the internal structure of the problem and of the interactions between the various phenomena occurring in the buffer. A better reproduction of the geometry of the test is achieved by means of a 2-D mesh representing and axisymmetric longitudinal section. Due to two-dimensional effects, the analyses carried out using this geometry exhibit some differences when compared with the results of the 1-D case, but the basic test behaviour is very similar. The test was started with an initial flooding stage with the purpose of closing the gaps between bentonite blocks. A limited number of compilations using recently developed joint elements have been performed to assess approximately the effect of this initial step on subsequent test behaviour. The analyses reported

  19. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 08-96-01. Measurement data related to excavation of the test pit

    International Nuclear Information System (INIS)

    Fujita, T.; Chijimatsu, M.; Sugita, Y.; Ishikawa, H.

    1997-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment ' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical models and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. Furthermore, pit convergence was measured. This note shows the results of mechanical tests and measurement data during the excavation of test pit. (author)

  20. Long-term stability of the near-field about high-level radioactive waste repository in thermo-hydro-mechanical coupling action condition

    International Nuclear Information System (INIS)

    Liu Yuemiao; Wang Ju; Ke Dan; Cai Meifeng

    2008-01-01

    It is a long-term process for the high-level radioactive waste repository, from opening, construction to end of its service. The long-term stability of the near-field is the key issue for the design of HLW repository because the opening and heat generated from the HLW. Through a nationwide investigation, Beishan area, a Gobi desert in Gansu province, is considered as a suitable candidate and GMZ bentonite deposit which located in Xinghe County, Inner Mongolia has been proposed for the supplier of buffer/backfill material for HLW geological repository in China. According to the R and D guide of high-level radioactive waste disposal in China, the 3D model of HLW repository with high-level radioactive waste, canister and buffer/backfill material is established using FLAC3D. To take into account in situ stress, geothermal gradient, groundwater, thermal relief of HLW and swelling pressure of buffer/backfill material, the evolution of temperature, stress and displacement of HLW repository under thermo-mechanical coupling, hydro-mechanical coupling and thermo-hydro-mechanical coupling conditions was analyzed respectively. The long-term stability of HLW repository in Beishan area was studied. (authors)

  1. Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone

    Directory of Open Access Journals (Sweden)

    G. Armand

    2017-06-01

    Full Text Available In the context of radioactive waste disposal, an underground research laboratory (URL is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste disposal facility within a geological formation. The Meuse/Haute-Marne URL is a site-specific facility planned to study the feasibility of a radioactive waste disposal in the Callovo-Oxfordian (COx claystone. The thermo-hydro-mechanical (THM behaviour of the host rock is significant for the design of the underground nuclear waste disposal facility and for its long-term safety. The French National Radioactive Waste Management Agency (Andra has begun a research programme aiming to demonstrate the relevancy of the French high-level waste (HLW concept. This paper presents the programme implemented from small-scale (small diameter boreholes to full-scale demonstration experiments to study the THM effects of the thermal transient on the COx claystone and the strategy implemented in this new programme to demonstrate and optimise current disposal facility components for HLW. It shows that the French high-level waste concept is feasible and working in the COx claystone. It also exhibits that, as for other plastic clay or claystone, heating-induced pore pressure increases and that the THM behaviour is anisotropic.

  2. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capacity, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The pre consolidation pressure of the Grimsel samples has decreased due to the microstructural changes associated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  3. Long term thermo-hydro-mechanical interaction behavior study of the saturated, discontinuous granitic rock mass around the radwaste repository using a steady state flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Bae, Dae Suk; Kang, Chul Hyung; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The objective of the present study is to understand the long term (500 years) thermo-hydro-mechanical interaction behavior of the 500 m depth underground radwaste repository in the saturated, discontinuous granitic rock mass using a steady state flow algorithm. The numerical model includes a saturated granitic rock mass with joints around the repository and a 45 .deg. C fault passing through the tunnel roof-wall intersection, and a canister with PWR spent fuels surrounded by the compacted bentonite and mixed-bentonite. Barton-Bandis joint constitutive model from the UDEC code is used for the joints. For the hydraulic analysis, a steady state flow algorithm is used for the groundwater flow through the rock joints. For the thermal analysis, heat transfer is modeled as isotropic conduction and heat decays exponentially with time. The results show that the variations of the hydraulic aperture, hydraulic conductivity, normal stress, normal displacements, and shear displacements of the joints are high in the vicinity of the repository and stay fairly constant on the region away from the repository. 14 refs., 15 figs., 11 tabs. (Author)

  4. Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, J.

    1999-12-01

    The wetting process in deposition holes designed according to the KBS-3-concept has been simulated with finite element calculations of the thermo-hydro-mechanical processes in the buffer, backfill and surrounding rock. The buffer material has been modelled according to the preliminary material models developed for swelling clay. The properties of the rock have been varied in order to investigate the influence of the rock properties and the hydraulic conditions on the wetting processes. In the modelling of the test holes the permeability of the rock matrix, the water supply from the backfill, the water pressure in the surrounding rock, the permeability of the disturbed zone around the deposition hole, the water retention properties of the rock, and the transmissivity of two fractures intersecting the deposition hole have been varied. The calculations indicate that the wetting takes about 5 years if the water pressure in the rock is high and if the permeability of the rock is so high that the properties of the bentonite determine the wetting rate. However, it may take considerably more than 30 years if the rock is very tight and the water pressure in the rock is low. The calculations also show that the influence of the rock structure is rather large except for the influence of the transmissivity T of the fractures, which turned out to be insignificant for the values used in the calculations

  5. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capaciaty, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The preconsolidation pressure of the Grimsel samples has decreased due to the microstructural changes asswociated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  6. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage; Modelisation des couplages thermo-hydro-mecaniques et de l'endommagement des roches viscoplastiques dans le contexte du stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Kharkhour, H

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  7. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  8. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. I. Laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Rothfuchs, Tilmann; Wieczorek, Klaus

    2013-06-15

    All over the world, clay formations are being investigated as host medium for geologic disposal of radioactive waste because of their favourable properties, such as very low hydraulic conductivity against fluid transport, good sorption capacity for retardation of radionuclides, and high potential of self-sealing of fractures. The construction of a repository, the disposal of heat-emitting high-level radioactive waste (HLW), the backfilling and sealing of the remaining voids, however, will inevitably induce mechanical (M), hydraulic (H), thermal (T) and chemical (C) disturbances to the host formation and the engineered barrier system (EBS) over very long periods of time during the operation and post-closure phases of the repository. The responses and resulting property changes of the clay host rock and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repository.

  9. FEBEX Full-Scalle Engineered barriers experiment in crystalline host rock Preoperational thermo-hydro-mechanical (THM) modelling of the in situ test

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains the results of a set of 1-D and 2-D coupled thermo-hydro-mechanical (THM) analyses carried out during the preoperational stage simulating the in situ FEBEX test. The analyses incorporate available information concerning rock and bentonite properties as well as the final test layout and conditions. The main goals are: -To provide the best estimate of test performance given current models and information - To define a basis for future model improvements. The theoretical bases of the analyses and the computer code used are reviewed. Special reference is made to the process of parameter estimation that tries to incorporate available information on material behaviour obtained in the characterisation work carried out both in the laboratory and in the field. Data obtained in the characterisation stage is also used to define initial and boundary conditions. The results of the 1-D THM Base Case analysis are used to gain a good understanding of expected test behaviour concerning thermal, hydraulic and mechanical problems. A quite extensive programme of sensitivity analyses is also reported in which the effect of a number of parameters and boundary conditions are examined. The results of the sensitivity analyses place an appropriate context the information obtained from the Base Case showing, for instance, that rock desaturation and degree of buffer hydration depend on some critical parameters in a complex way. Two-dimensional effects are discussed on the basis of the results of 2-D axisymmetric THM analysis performed using a longitudinal section that provides a better representation of real test geometry. Quantitative but not qualitative differences are found with respect to the 1-D results. Finally, a 2-D THM cross section analysis has been performed under plane strain conditions. No specific 2-D effects are observed in this case as quasi-axisymmetric conditions have been prescribed. The models employed in the analyses included in this report have not

  10. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  11. Coupled thermo-hydro-mechanical analysis for the conceptual repository of high-level radioactive waste in China

    International Nuclear Information System (INIS)

    Lin, Y.M.; Wang, J.; Ke, D.; Cai, M.F.

    2010-01-01

    In order to safely dispose of the high-level radioactive waste (HLW), RD guide of HLW disposal was published in February 2006 in China. The spent fuel from nuclear power plants will be reprocessed first, followed by verification and final disposal. A conceptual repository 3D configuration comprises a single vertical borehole in a continuous and homogeneous hard rock, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery using FLAC3D. To take into account in situ stress, geothermal gradient and groundwater of Beishan area, thermal relief of HLW and swelling pressure of buffer/backfill material made by GMZ01 bentonite, the TM, HM and THM evolution of the whole configuration is simulated over a period of 100 years. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable. The repository has long-term stability in fully THM coupling action condition. (authors)

  12. Numerical study of the EDZ by a thermo-hydro-mechanical damage model dedicated to unsaturated geo-materials

    International Nuclear Information System (INIS)

    Arson, Chloe; Gatmiri, Behrouz

    2010-01-01

    Document available in extended abstract form only. The design of deep nuclear waste repositories requires the modelling of the effects of thermal loadings in the Excavation Damaged Zone (EDZ). The containers are to be stored in bentonite buffers surrounded by a geological massif. These two barriers are multi-phase porous media, in which coupled mechanical, capillary and thermal phenomena occur. The aim of this study is to develop a new damage model dedicated to non-isothermal unsaturated porous media, the 'THHMD' model. Contrary to almost all of the existing damage models dedicated to non dry media, it is formulated in independent stress state variables (net stress, suction and thermal stress). The damage variable is a second-order tensor, which gives a good approximation for the representation of anisotropic cracking in three dimensions. The behaviour laws stem from the combination of phenomenological and micromechanical principles. The total strain tensor is split into three components, each of which being conjugated to a stress state variable. The Helmholtz free energy is written as the sum of damaged elastic energies and residual-strain-potentials. The concept of effective stress, frequently used in Continuum Damaged Mechanics, is extended to the three stress state variables, by using the operator of Cordebois and Sidoroff. The damaged rigidities are computed by application of the Principle of Equivalent Elastic Energy (PEEE). The non-elastic strain components depend on the increment of damage, which is determined by an associative flow rule. Fracturing is also modelled in the transfer equations. The Representative Elementary Volume (REV) is assumed to be damaged by a microcrack network, among which liquid water and vapour flows are homogenized. A damaged intrinsic conductivity, which plays the role of an internal length parameter, is introduced. The influence of damage on air and heat flows is taken into account by means of porosity, which is also

  13. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    Villar, M. V.; Gomez-Espina, R.

    2009-01-01

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  14. Evaluation of coupled thermo-hydro-mechanical phenomena in the near field for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Fujita, Tomoo; Sugita, Yutaka; Taniguchi, Wataru

    2000-01-01

    , fracture survey, hydraulic test and the measurement of inflow rate into the test pit, which was excavated at the floor of the experiment drift, were conducted. In Chapter 4, hydraulic analyses were conducted using the rock properties obtained by the hydraulic test described in Chapter 3. Analyses were performed by tow kinds of methods; continuum approach and discrete approach. In Chapter 5, the results of in-situ coupled thermo-hydro-mechanical experiment at Kamaishi mine was described. The test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. After the excavation of test pit, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. In Chapter 6, development of coupled T-H-M model and the validation analyses of model were described. As validation, the analysis of BIG-BEN experiment at Tokai Works in JNC and the analysis of in-situ experiment at Kamaishi mine etc. were performed. In Chapter 7, the coupled T-H-M processes in the near field were simulated with fully coupled model. The material of buffer is bentonite-sand mixture and dry density is 1.6 g/cm 3 . From the results, the following results were obtained; re-saturation time of buffer is strongly dependent on the water pressure in the rock mass. However, it is not dependent on the permeability of rock mass if the intrinsic permeability of rock mass is in the 10 -13 - 10 -18 m 2 range. In the case that the intrinsic permeability of rock mass is approximately 10 -15 m 2 , the initial water content in the buffer does not exert influence on the re-saturation time of buffer. Two dimensional coupled T-H-M analysis in consideration of water drawdown due to the excavation of drift is carried our. As a

  15. Evaluation of coupled thermo-hydro-mechanical phenomena in the near field for geological disposal of high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Fujita, Tomoo; Sugita, Yutaka; Taniguchi, Wataru [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Tokai, Ibaraki (Japan)

    2000-01-01

    , fracture survey, hydraulic test and the measurement of inflow rate into the test pit, which was excavated at the floor of the experiment drift, were conducted. In Chapter 4, hydraulic analyses were conducted using the rock properties obtained by the hydraulic test described in Chapter 3. Analyses were performed by tow kinds of methods; continuum approach and discrete approach. In Chapter 5, the results of in-situ coupled thermo-hydro-mechanical experiment at Kamaishi mine was described. The test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. After the excavation of test pit, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. In Chapter 6, development of coupled T-H-M model and the validation analyses of model were described. As validation, the analysis of BIG-BEN experiment at Tokai Works in JNC and the analysis of in-situ experiment at Kamaishi mine etc. were performed. In Chapter 7, the coupled T-H-M processes in the near field were simulated with fully coupled model. The material of buffer is bentonite-sand mixture and dry density is 1.6 g/cm{sup 3}. From the results, the following results were obtained; re-saturation time of buffer is strongly dependent on the water pressure in the rock mass. However, it is not dependent on the permeability of rock mass if the intrinsic permeability of rock mass is in the 10{sup -13} - 10{sup -18} m{sup 2} range. In the case that the intrinsic permeability of rock mass is approximately 10{sup -15} m{sup 2}, the initial water content in the buffer does not exert influence on the re-saturation time of buffer. Two dimensional coupled T-H-M analysis in consideration of water drawdown due to the excavation

  16. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  17. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. II. In-situ-investigations and interpretative modelling. May 2007 to May 2013

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Komischke, Michael; Wieczorek, Klaus

    2014-06-15

    Deep disposal of heat-emitting high-level radioactive waste (HLW) in clay formations will inevitably induce thermo-hydro-mechanical-chemical disturbances to the host rock and engineered barriers over very long periods of time. The responses and resulting property changes of the natural and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repositories. In accordance with the R and D programme defined by the German Federal Ministry of Economics and Technology (BMWi), GRS has intensively performed site-independent research work on argillaceous rocks during the last decade. Most of the investigations have been carried out on the Callovo-Oxfordian argillite and the Opalinus clay by par-ticipation in international research projects conducted at the underground research laboratories at Bure in France (MHM-URL) and Mont-Terri in Switzerland (MT-URL). The THM-TON project, which was funded by BMWi under contract number 02E10377, in-vestigated the THM behaviours of the clay host rock and clay-based backfill/sealing materials with laboratory tests, in situ experiments and numerical modelling.

  18. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis

    Science.gov (United States)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean

    2018-06-01

    A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed to explore the influence of frictional heating and thermal pore fluid pressurization on the strain localization phenomenon. A general framework is presented to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM couplings and predict the onset of instability. The presence of internal lengths in Cosserat continua enables to estimate the thickness of the localization zone. This is done by performing a linear stability analysis of the system and looking for the selected wavelength corresponding to the instability mode with fastest finite growth coefficient. These concepts are applied to the study of fault zones under fast shearing. For doing so, we consider a model of a sheared saturated infinite granular layer. The influence of THM couplings on the bifurcation state and the shear band width is investigated. Taking representative parameters for a centroidal fault gouge, the evolution of the thickness of the localized zone under continuous shear is studied. Furthermore, the effect of grain crushing inside the shear band is explored by varying the internal length of the constitutive law.

  19. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media; Analyse et modelisation des phenomenes couples thermo-hydromecaniques en milieux fractures 3D

    Energy Technology Data Exchange (ETDEWEB)

    Canamon Valera, I

    2006-11-15

    This doctoral research was conducted as part of a joint France-Spain co-tutelage PhD thesis in the framework of a bilateral agreement between two universities, the Institut National Polytechnique de Toulouse (INPT) and the Universidad Politecnica de Madrid (UPM). It concerns a problem of common interest at the national and international levels, namely, the disposal of radioactive waste in deep geological repositories. The present work is devoted, more precisely, to near-field hydrogeological aspects involving mass and heat transport phenomena. The first part of the work is devoted to a specific data interpretation problem (pressures, relative humidities, temperatures) in a multi-barrier experimental system at the scale of a few meters - the 'Mock-Up Test' of the FEBEX project, conducted in Spain. Over 500 time series are characterized in terms of spatial, temporal, and/or frequency/scale-based statistical analysis techniques. The time evolution and coupling of physical phenomena during the experiment are analyzed, and conclusions are drawn concerning the behavior and reliability of the sensors. The second part of the thesis develops in more detail the 3-Dimensional (3D) modeling of coupled Thermo-Hydro-Mechanical phenomena in a fractured porous rock, this time at the scale of a hundred meters, based on the data of the 'In-Situ Test' of the FEBEX project conducted at the Grimsel Test Site in the Swiss Alps. As a first step, a reconstruction of the 3D fracture network is obtained by Monte Carlo simulation, taking into account through optimization the geomorphological data collected around the FEBEX gallery. The heterogeneous distribution of traces observed on the cylindrical wall of the tunnel is fairly well reproduced in the simulated network. In a second step, we develop a method to estimate the equivalent permeability of a many-fractured block by extending the superposition method of Ababou et al. [1994] to the case where the permeability of

  20. Heater test in the Opalinus Clay of the Mont Terri URL. Gas release and water redistribution - Contribution to heater experiment (HE); Rock and bentonite thermo-hydro-mechanical (THM) processes in the nearfield

    International Nuclear Information System (INIS)

    Jockwer, N.; Wieczorek, K.

    2006-06-01

    Beside salt and granite, clay formations are investigated as potential host rocks for disposing radioactive waste. In Switzerland in the canton Jura close to the city of St. Ursanne, an underground laboratory was built in the vicinity of the reconnaissance gallery of a motorway tunnel. Since 1995, a consortium of 12 international organisations is running this laboratory for investigating the suitability of the Opalinus clay formation with regard to disposal of radioactive waste. In 1999, the Heater Experiment B (HE-B) was started for investigating the coupled thermo-hydro-mechanical (THM) processes of the Opalinus clay in interaction with the bentonite buffer. The principal contractors of this project were the Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), the Empresa Nacional de Residuos Radiactivos S. A. (ENRESA), the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, and the National Cooperative for the Disposal of Radioactive Waste (NAGRA). GRS participated in that experiment for determining the subjects of gas generation, gas release, water content, and water redistribution in the Opalinus clay during heating. This was achieved by analysing gas and water samples from the test field before, during, and after the heating period and by performing geoelectric tomography measurements in the heated region. The in-situ measurements were supported by an additional laboratory programme. This report deals with the work of GRS performed in this project during the years 1999 to 2005. All the results obtained in the frame of the project are presented. Additional laboratory measurements conducted by the Pore Water Laboratory at CIEMAT in Madrid are also presented. The participation of GRS was funded by German Ministry of Economics and Labour (BMWA) under the contract No. 02 E 9602 and by the Commission of the European Communities under the contract No. FIKW.CT-2001-00132. (orig.)

  1. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis

    Science.gov (United States)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas

    2018-06-01

    In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.

  2. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  3. OpenGeoSys: An Open-Source Initiative for Numerical Simulation of Thermo-Hydro-Mechanical/Chemical (THM/C) Processes in Porous Media

    Science.gov (United States)

    Watanabe, N.; Bilke, L.; Fischer, T.; Kalbacher, T.; Nagel, T.; Naumov, D.; Rink, K.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.

  4. Mont Terri Project - Heater experiment : rock and bentonite thermo-hydro-mechanical (THM) processes in the near field of a thermal source for development of deep underground high level radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, I.; Alheid, H.-J.; Kaufhold, St.; Naumann, M.; Pletsch, Th.; Plischke, I.; Schnier, H.; Schuster, K.; Sprado, K. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Meyer, T.; Miehe, R.; Wieczorek, K. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Mayor, J.C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J.; Rey, M. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Alonso, E.; Lloret, A.; Munoz, J.J. [Centre Internacional de Metodos Numerics en Ingenyeria (CIMNE), Barcelona (Spain); Weber, H. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Ploetze, M. [Eidgenoessische Technische Hochschule Zuerich, Institut fuer Geotechnik, Zuerich (Switzerland); Klubertanz, G. [Colenco Power Engineering Ltd, Baden (Switzerland); Ammon, Ch. [Rothpletz Lienhard und Cie AG, Aarau (Switzerland); Graf, A.; Nussbaum, Ch.; Zingg, A. [Goetechnical Institute Ltd, Saint-Ursanne (Switzerland); Bossart, P. [Federal Office of Topography (swisstopo), Wabern (Switzerland); Buehler, Ch.; Kech, M.; Trick, Th. [Solexperts AG, Moenchaltorf (Switzerland); Emmerich, K. [ITC-WGT, Karlsruhe (Germany); Fernandez, A. M. [Ciemat, Madrid (Spain)

    2007-07-01

    The long-term safety of underground permanent repositories for radioactive waste relies on a combination of several engineered and geological barriers. The interactions between a host rock formation of the type 'Opalinus Clay' and an engineered barrier of the type 'bentonite buffer' are observed in the Heater Experiment (HE) during a hydration and a heating phase. The objective of the experiment is an improved understanding of the coupled thermo-hydro-mechanical (THM) processes in a host rock-buffer system achieved by experimental observations as well as numerical modelling. The basic objectives are in detail: a) Long-term monitoring in the vicinity of the heater during hydration and heating; especially observation and study of coupled THM processes in the near field, i.e. continuous measurements of temperatures, pore pressures, displacements, electric conductivity, and analysis of the gases and water released into the rock by effect of heating; b) Determination of the properties of barrier and host rock done mainly by laboratory and in situ experiments, i.e. general mechanical and mineralogical properties, mechanical state in-situ, and changes induced by the experiment; c) Study of the interaction between host rock and bentonite buffer as well as validation and refinement of existing tools for modelling THM processes; d) Study of the behaviour and reliability of instrumentation and measuring techniques, i.e. inspection of sensors after dismantling the experimental setting. To achieve the objectives, the experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled THM processes. Finally, the experiment was dismantled to provide laboratory specimens of post-heating buffer and host rock material. The continuous monitoring of the experiment by a multitude of sensors (for temperature, pore pressure, total pressure, relative

  5. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  6. 裂隙岩体水-冰相变及低温温度场-渗流场-应力场耦合研究%WATER-ICE PHASE TRANSITION AND THERMO-HYDRO-MECHANICAL COUPLING AT LOW TEMPERATURE IN FRACTURED ROCK

    Institute of Scientific and Technical Information of China (English)

    刘泉声; 康永水; 刘滨; 朱元广

    2011-01-01

    The problem of freezing-thawing damage of rock mass involves thermo-hydro-mechanic al(THM) coupling at low temperature. Based on the phase transition theory and the energy conservation principle, the expression of frozen ratio is derived. Using the dual-porosity medium theory, the governing equations of THM coupling of freezing rock are obtained according to the law of mass conservation, the law of energy conservation and the principle of static equilibrium. Finally, considering the influence of freezing process on permeability, an example of fractured tunnel is given to reveal the distribution of temperature field, stress field and pore pressure under THM coupling condition by using the method of equivalent thermal expansion coefficient.%岩体冻融损伤涉及低温环境下温度场、渗流场和应力场的耦合问题.基于水-冰相变理论和能量守恒原理,得出冻结率表达式.运用双重孔隙介质模型理论,根据质量守恒定律、能量守恒定律及静力平衡原理,得出冻结条件下裂隙岩体的温度场-渗流场-应力场(THM)耦合控制方程.最后,通过1个含裂隙隧道低温THM耦合算例,将围岩当作岩块与裂隙介质组成的系统,采用等效热膨胀系数法对夹冰(含水)裂隙的冻胀效应进行模拟,并考虑冻结过程对岩体渗透系数的影响,研究低温THM耦合条件下的温度场、应力场及孔隙压力等的分布规律.

  7. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  8. Rôles de la température et de la composition sur le couplage thermo-hydro-mécanique des bétons

    OpenAIRE

    Brue , Flore

    2009-01-01

    The French project of the storage of nuclear wastes, which is managed by the Andra, needs some experimental data on the durability of the concrete. Loadings which are taken into account are the desaturation/resaturation processes, the heat load and the mechanical evolution. Hence this study focuses on the coupling thermo-hydro-mechanical on concretes of the research program of Andra, made with CEM I and CEM V/A cement type. The water saturation degree and shrinkages of materials, which are su...

  9. Thermo-hydro-mechanics of fractured rock mass in nuclear waste studies. The measurement of electrical conductivity during the thermo-hydro-mechanical experiment

    International Nuclear Information System (INIS)

    Mursu, J.; Peltoniemi, M.

    1996-12-01

    The report reviews and summarizes the present state-of-the-art knowledge about electrical conductivity measurements of rock samples in high-temperature, high-pressure conditions. The special requirements for these measurements have been studied in terms of sample preparation, instrumentation, and experimental procedures. Possibilities to utilize a MTS System 815 testing unit, currently available at the Helsinki University of Technology, for these measurements have been studied. (17 refs.)

  10. Technical feasibility of a Dutch radioactive waste repository in Boom Clay : Thermo-hydro-mechanical behaviour

    NARCIS (Netherlands)

    Vardon, P.J.; Buragohain, Poly; Hicks, M.A.; Hart, J; Fokker, PA; Graham, C

    2017-01-01

    OPERA-PU-TUD321c
    Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, re- search, education and electricity production. This generates radioactive waste. In the Neth- erlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor

  11. Thermo-hydro-mechanical characterisation and modelling of MX-80 granular bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Seiphoori, A.

    2014-07-01

    The library of the Swiss Federal Institute of Technology EPFL does not publish an abstract for this thesis. Accordingly, no abstract can be made available by INIS. However, the EPFL library will send the full text of the thesis, free of charge, to anybody asking for it. Please use the indicated DOI to contact the library.

  12. Thermo-hydro-mechanical characterisation and modelling of MX-80 granular bentonite

    International Nuclear Information System (INIS)

    Seiphoori, A.

    2014-01-01

    The library of the Swiss Federal Institute of Technology EPFL does not publish an abstract for this thesis. Accordingly, no abstract can be made available by INIS. However, the EPFL library will send the full text of the thesis, free of charge, to anybody asking for it. Please use the indicated DOI to contact the library

  13. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  14. Thermo-hydro-chemical performance assessment of CO2 storage in saline aquifer

    International Nuclear Information System (INIS)

    Le Gallo, Y.; Trenty, L.; Michel, A.

    2007-01-01

    Research and development methodologies for the storage of CO 2 in geological formation are in developing over the last 10 years. In this context, numerical simulators are the practical tools to understand the physical processes involved by acid gas injection and evaluate the long term stability of the storage. CO 2 storage models can be seen as a mix between two types of models: a reservoir model coupling multiphase flow in porous media with local phase equilibrium and a hydrogeochemical model coupling transport in aqueous phase with local chemical equilibrium and kinetic reaction laws. A 3D-multiphase model, COORES, was built to assess the influence of different driving forces both hydrodynamic and geomechanics as well as geochemical on the CO 2 plume behavior during injection and storage (1000 years). Different coupling strategies were used to model these phenomena: - pressure, temperature and diffusion are solved implicitly for better numerical stability; - geochemical reactions involve heterogeneous kinetically-controlled reactions between the host rock and the CO 2 -rich aqueous phase which imply an implicit coupling with fluid flow; From the assumed initial mineral composition (6 minerals), aqueous species (10 chemical elements and 37 aqueous species), the geochemical alteration of the host rocks (sand and shale) is directly linked with the CO 2 plume evolution. A performance assessment using an experimental design approach is used to quantify the different driving forces and parameter influences. In the case of CO 2 injection in a saline quartz rich aquifer used to illustrate the model capabilities, the geochemical changes of the host rock have a small influence on the CO 2 distribution at the end of storage life (here 1000 years) compared to the other hydrodynamic mechanisms: free CO 2 (gas or supercritical), or trapped (capillary and in-solution). (authors)

  15. Role of temperature and composition on the thermal-hydro-mechanical coupling of concretes

    International Nuclear Information System (INIS)

    Brue, Flore

    2009-01-01

    The French project of the storage of nuclear wastes, which is managed by the Andra, needs some experimental data on the durability of the concrete. Loadings which are taken into account are the desaturation/re-saturation processes, the heat load and the mechanical evolution. Hence this study focuses on the coupling thermo-hydro-mechanical on concretes of the research program of Andra, made with CEM I and CEM V/A cement type. The water saturation degree and shrinkages of materials, which are subjected to desiccation or re-saturation, are dependent on the imposed thermal and hydrous conditions and on their microstructural characteristics. Moreover the study of the mechanical evolution is gone further at 20 C in function of the water saturation degree. Different short-term tests highlight a hydrous damage, which determine the mechanical behaviour. The long-term study of desiccation creep shows the coupling between the durability, the mechanical evolution and the desiccation. (author)

  16. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  17. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour

    International Nuclear Information System (INIS)

    Galle, C.

    2011-07-01

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H 2 ) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  18. Thermo-hydro-mechanical characterization of the Spanish reference clay material for engineered barrier for granite and clay HLW repository: laboratory and small mock up testing

    International Nuclear Information System (INIS)

    Villar, M.V.

    1995-01-01

    This report refers to the work carried out by Technic Geologic Division of CIEMAT (CIEMAT.DT.TG) coordinated by SCK/CEN (Belgium), participating besides UPC-DIT and University of Wales on the framework of CEC Contract F12W-CT91-0102 (DOEO). It presents the results obtained. The total results on the project will be published by CE in the EUR series. The role of CIEMAT in this project was to carry out tests in which the conditions of the clay barrier in the repository were simulated. The interaction of heat coming from the wastes and of water coming from the geological medium has been reproduced on compacted clay blocks. For the performance of tests on high density compacted clay blocks (Task 2.1) and for the cementation and chemical-mineralogical transformation studies two different cells were designed and constructed in stainless steel: a thermohydraulic cell and an alteration cell. The experiments performed in these cells have provided us with a better knowledge of the heat source, hydration system and sensors, as well as interesting data on heat and water diffusion. A revision of the experiments performed on the thermohydraulic cell was presented at the ''International Workshop on Thermomechanics of Clays and Clay Barriers'' held in Bergamo in October'93 (Villar et al. 1993)

  19. Spallation-mechanism and characteristics

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Wojciechowski, A.

    1996-01-01

    Mechanism of spallation is revealed experimentally. Spallation is a complicated nuclear reaction initiated by fast hadron in which three stages may be distinguished: a) the first stage in which the target nucleus is locally damaged, it lasts ∼10 -24 +10 -22 s; b) the slow stage which lasts ∼10 -22 +10 -17 s after the collision started, the damaged and excited nucleus uses to emit the black track leaving particles; c) the final stage in which residual target nucleus uses to split into two or more fragments. Quantitative characteristics of each of the stages are presented. 35 refs

  20. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour; Contribution a l'etude du comportement des materiaux cimentaires et argileux en vue de leur utilisation dans le contexte du stockage geologique profond: aspect transport, durabilite et comportement thermo-hydro-mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Galle, C.

    2011-07-15

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H{sub 2}) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  1. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  2. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  3. Mechanical Characteristics of Some Deepwater Floater

    DEFF Research Database (Denmark)

    Chen, Zhen-Zhe; Tarp-Johansen, Niels Jacob; Jensen, Jørgen Juncher

    2006-01-01

    This paper presents an initial study of the mechanical characteristics of some deepwater floater designs for offshore wind turbines. Three different concepts (NREL TLP, Dutch Trifloater, and Japanese SPAR) are summarized, based on data from the available studies. A 5 MW Horizontal Axis Wind Turbine...

  4. Study of the hydro-mechanical behaviour of expanded graphite gaskets; Etude du comportement et de l`etancheite de joints en graphite expnase

    Energy Technology Data Exchange (ETDEWEB)

    Patron, E. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    The poro-mechanical behaviour models developed by O. Coussy permit to consider various phenomena observed experimentally: thermo-hydro-mechanical couplings, plasticity, etc. The aim of this study is to implement the simplest poro-mechanical model (i.e. the isotropic linear poro-elastic model) to model the gasket hydro-mechanical behaviour. First, isotropic poro-elastic characteristics of expanded graphite have been estimated from these tests conducted at Departement Mecanique et Technologie des Composants (MTC) and data from literature. Then, analytical solutions of the tightness tests developed at the MTC Department have been carried out. These calculations provide a first estimation of porosity variations during a tightness tests with metal/metal contact or in elastic recovery, and during a `hot thermal transient`. Thickness controlled numerical calculations have proved the analytical calculations relevance. With regard to simulation of tests with metal/metal contact or `hot thermal transient`, stress controlled numerical calculations have pointed out: - a greater vertical displacement on the inner side of the graphite ring and - a z dependence of the radial displacement and thus a porous differential variation between the upper and lower faces of the ring. (author). 21 refs.

  5. Mechanical structures with enhanced layout characteristics

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2016-10-01

    Full Text Available The authors propose solutions for constructing mechanical structures for electronic equipment in terms of plug-in units and subracks, allowing to increase the layout characteristics of electronic modules, sections and desktop devices and increase their functional capacity without changing the architecture of standard mechanical structures. The paper shows effectiveness of the developed solutions. There is a problem of restraining of mass redundancy of mechanical structures for electronic equipment in relation to the weight of the electronic components. On the other hand, the weight is an indicator of structural strength, providing of which is not less important problem. These problems can be solved in different ways, the main of which are the following: a development of new mechanical structures for electronic equipment taking into account the development of the electronic components; b improving layout characteristics of mechanical structures for electronic equipment without significant changes in their architecture. The aim of the study was to research mechanical structures of the first level (plug-in units and modules of the second level of subracks to improve layout characteristics, and to develop methods for the use of connections for surface mounting and for the use of printed circuit boards of smaller dimensions without changing the architecture of the mechanical structures in order to improve layout characteristics. The research allowed the authors to develop the following solutions: 1. The design of plug-in units in which instead of one printed circuit board (PCB may be two, three or more PCBs of smaller dimensions to compensate a decrease in PCB fill factor in time and to increase the functional capacity of electronic modules. 2. Construction of block designs with a bilateral arrangement of plug-in units and the organization of the electrical connections by way of backplanes with electrical connectors for surface mounting, which allows

  6. Beachrock occurrence, characteristics, formation mechanisms and impacts

    Science.gov (United States)

    Vousdoukas, M. I.; Velegrakis, A. F.; Plomaritis, T. A.

    2007-11-01

    Beachrocks are hard coastal sedimentary formations consisting of various beach sediments, lithified through the precipitation of carbonate cements. The objectives of this contribution are to (a) collate and review information on the reported occurrences, characteristics and formation mechanisms of beachrocks and (b) consider their impacts on the coastal zone. The analysis of the available information has shown that (a) beachrock formation is a global and diachronic phenomenon and (b) the great majority of beachrocks are found in tropical/subtropical and low temperate latitude, microtidal coasts. The cementing agents of beachrocks are composed predominantly of the metastable carbonate phases High Magnesian Calcite (HMC) and Aragonite (Ar), appearing in a diverse crystalline morphology. It has been suggested that cement precipitation in the coastal environment is controlled by: (i) the physicochemical conditions; (ii) the presence of organic compounds and microbes; (iii) the magnitude and distribution of the wave energy along the coast; and (iv) the textural characteristics of the constituent sediments. Various theories have been proposed to explain beachrock formation itself, linking the phenomenon to either physicochemical or biological processes. These theories, however, do not seem to be of universal validity and acceptance, as each is able to explain only some of the reported occurrences. The presence of beachrocks appears to affect beach morphodynamics by: (i) 'locking' the beach profile; (ii) modifying the nearshore hydrodynamics; (iii) changing the porous character of the beach and, thus, its response to wave forcing; and (iv) differential bed erosion at the margins of the beachrock outcrops that can alter significantly the long- and, particularly, the cross-shore sediment transport. Therefore, although relict submerged beachrock outcrops may provide some coastal protection by reducing the wave energy impinging onto the coastline, modern beachrocks may

  7. Improvement of the Material's Mechanical Characteristics using ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... to Hardening Process Control (HPC) in order to improvement of the material's ... particular circumstances of the models characteristics used and the exact definition ..... In the case of simulation and testing in Matlab of the HFC.

  8. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  9. PHYSICAL AND MECHANICAL CHARACTERISTICS OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2017-12-01

    Full Text Available The article presents partial results of laboratory research into physical and mechanical characteristics of materials most commonly used as walling units in masonry structures of historic and heritage buildings. Core boreholes and specimens for the laboratory research of selected characteristics were sampled from accessible places of historic buildings, which had not been restored or reconstructed. The results of the research brought new knowledge about the unreliability (variance of the properties of historical, mainly natural building materials, and, at the same time, pointed out the need for further research and extension of knowledge necessary for the assessment of residual physical and mechanical characteristics of historic masonry structures.

  10. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  11. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  12. The mechanical characteristics of polymer concrete using polyester ...

    African Journals Online (AJOL)

    Polymer concretes depending on the type of used polymer have good mechanical characteristics like high compressive strength and strain- stress proper behavior and increase lifetime and strength against concrete environmental factors. Therefore, they can be used for strengthening and retrofitting reinforced concrete ...

  13. Relationship between mechanical characteristics and thermal shock stability of refractories

    International Nuclear Information System (INIS)

    Volkov-Husovic, T.; Raic, K.

    2003-01-01

    Thermal stability of the refractory material with the content of 60 % Al 2 O 3 was investigated. Water quench test (JUS.B.D8.319) was applied as experimental method for thermal stability testing. Damage of porous materials is commonly related to a modification of strength that is mostly a reduction. This is linked with characteristics related to pore space. Mechanical characteristics are considered such as compressive strength, dynamic modulus of elasticity and resistance parameters resulting from resonance frequency measurements, as well as ultrasonic velocity. (Original)

  14. Partial discharge characteristics and mechanism in voids at impulse voltages

    International Nuclear Information System (INIS)

    Zhao, X F; Guo, Z F; Wang, Y Y; Li, J H; Li, Y M; Yao, X

    2011-01-01

    Partial discharge (PD) characteristics and mechanism in artificial cavities in an epoxy plate have been investigated for different void dimensions and impulse voltage waveforms. A differential measurement system was developed in order to detect PD current pulses effectively. Experimental results showed that the 50% probability PD inception voltage (PDIV 50 ) increases initially as the cavity diameter decreases at constant depth for double exponential impulses as well as oscillating impulses, but after aging, it becomes independent of the cavity diameter. Moreover, some distinctive characteristics of PD (e.g. main discharge and reverse discharge during the rise and fall phases of the applied voltage) were also investigated. The differences of the PD propagation and the mechanism between double exponential impulses and oscillating impulse were discussed

  15. Mechanical characteristics of connection for GFRP plates using tapping screws

    Science.gov (United States)

    Inoue, Yuya; Duong, Nguyen Ngoc; Satake, Chito; Matsumoto, Yukihiro

    2017-10-01

    FRP material has good characteristics such as light-weight, high-strength and high-corrosion resistance. Light-weight structure possesses some advantages over the rational constructing procedure such as self-building structures. In recent years, mechanical characteristics of FRP joints using bolts and/or rivet are investigated in detail, and they are used in many FRP structures. However, the bolts lack bearing strength compared with material strength and the joint needs the prepared bolt hole. In this paper, an alternative joint system for FRP structures using tapping screw is proposed and mechanical characteristics are investigated through experiment. Tapping screw has some advantages; easy-to-use, light-weight and high bearing strength. Then, the results of double-lapped tensile shear tests having one, four and eight tapping screws along longitudinal direction are shown. Moreover, it is shown that longitudinal stress distribution is approximately corresponding to the theoretical stress distribution of double-lapped adhesively bonded joints. Based on these, it is proposed that joint strength can be estimated by using the present calculation method.

  16. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  17. Mechanisms and characteristics of silicon combustion in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mukasian, A.S.; Martynenko, V.M.; Merzhanov, A.G.; Borovinskaia, I.P.; Blinov, M.IU.

    1986-10-01

    An experimental study is made of the principal characteristics of combustion in the system silicon-nitrogen associated with phase transitions of the first kind (silicon melting and silicon nitride dissociation). Concepts of the combustion mechanism are developed on the basis of elementary models of combustion of the second kind and filtering combustion theory. In particular, it is shown that, in the pressure range studied (10-20 MPa), filtering does not limit the combustion process. Details of the experimental procedure and results are presented. 22 references.

  18. Hydrogen uptake characteristics of mechanically alloyed Ti-V-Ni

    International Nuclear Information System (INIS)

    Cauceglia, Dorian; Hampton, Michael D.; Lomness, Janice K.; Slattery, Darlene K.; Resan, Mirna

    2006-01-01

    It has been well established that hydrogen will react directly and reversibly with a large number of metals and alloys to form metallic hydrides. Extensive research has been done over the years to improve properties of these hydrogen purification and recovery media and in developing new compounds for this purpose. In the present study, the hydrogen uptake characteristics of mechanically alloyed titanium-vanadium-nickel have been studied. Thermal and composition data were obtained for the Ti-V-Ni system prepared by mechanical alloying at a ball-to-powder mass ratio of 10:1. It was found that this material would absorb up to approximately 1.0 wt% hydrogen at near ambient temperature and ambient pressure of hydrogen

  19. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  20. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    Science.gov (United States)

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.

  1. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  2. Swelling characteristics of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-12-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of swelling amount and stress at boundary built up under restraint condition with water uptake. The following results are identified. (1) The swelling stress of buffer material at saturated condition tends to be independent of effects of pore water pressure and synthetic sea water, and to decrease with increasing temperature. The swelling stress can be explained by the effective dry density. (2) The strain due to swelling estimated from the results of the swelling amount of buffer material is proportional to swelling stress. (3) The swelling stress and strain under unsaturated condition increase with water uptake. (author)

  3. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  4. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  5. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    Science.gov (United States)

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. How the RRR neutronic characteristics impact on the mechanical design

    International Nuclear Information System (INIS)

    Villarino, E.; Coquibus, K.

    2005-01-01

    This paper describes how the neutronic characteristics of a very demanding research reactor facility impact on the mechanical design of the reactor core. The Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organization is described making emphasis in the mechanical solutions to improve the core performance. The compact core is located inside a chimney, surrounded by heavy water contained in the Reflector Vessel. The whole assembly is at the bottom of the Reactor Pool, which is full of de-mineralized light water acting as coolant and moderator and biological shielding. The core is an array of sixteen plate-type Fuel Assemblies (FAs) and five absorber plates, which are called Control Plates (CP). The coolant is light water, which flows upwards. The final design of the core layout and control guide boxes was adopted to minimize the flux and PPF perturbation during the normal operation. The four lateral control plates are used mainly to shutdown the reactor and to compensate large reactivity transients. The central and cruciform regulating plate is used to compensate the reactivity change during the cycle operation. The regulating plate does minimize perturbation on PPF and irradiation fluxes. The design of the reflector tank fulfills all the flux requirements for the irradiation facilities and also the flux perturbation between irradiation facilities. (authors)

  7. SYSTEM ANALYSIS OF INTERRELATIONS BETWEEN SPECTRAL CHARACTERISTICS OF THE STEEL MICROSTRUCTURE PICTURE AND ITS MECHANICAL CHARACTERISTICS IN METALLURGICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2009-01-01

    Full Text Available It is shown that spectral characteristics of functions of closeness of the pearlite inter-plate distances, determined by image of the rolled wire samples microstructures, correlate with its mechanical characteristics and also with characteristics of wire, produced of it.

  8. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials

    National Research Council Canada - National Science Library

    Freeman, Arthur J; Kontsevoi, Oleg Y; Gornostyrev, Yuri N; Medvedeva, Nadezhda I

    2008-01-01

    To fulfill the great potential of intermetallic alloys for high temperature structural applications, it is essential to understand the mechanisms controlling their mechanical behavior on the microscopic level...

  9. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    Science.gov (United States)

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  10. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    International Nuclear Information System (INIS)

    Villar, M. V.

    2005-01-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60 0 C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  11. MX-80 Bentonite. thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2005-07-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60oC. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs.

  12. Methodic of practical study teaching on subject 'Characteristic mechanical oscillations'

    International Nuclear Information System (INIS)

    Tenchurina, A.R.

    2006-01-01

    In this article the methodic of the undertaking the practical lesson for subject 'the own mechanical vibrations' is considered and offered the algorithm of the problem decision the finding of the vibration period for the different mechanical systems. (author)

  13. Mechanical characteristics of fully mechanized top-coal caving face and surrounding rock stress shell

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang [Anhui University of Science and Technology, Huainan (China)

    2005-06-15

    The distribution of surrounding rock stress in fully mechanized top-coal caving (FMTC) face was fully researched by large-scale and non-linear three-dimensional numerical simulation and equivalent laboratory. The results show that, there is the structure that is made of macroscopical stress shell composed of high stress binds in overlying strata of FMTC face. Stress shell, which bears and pass load of overlying strata, is primary supporting body. The stress in skewback of stress shell forms abutment pressure of surrounding rock in vicinity of working face. Bond-beam structure lies in reducing zone under stress shell. It only bear partial burden of strata under stress shell. The uppermost mechanical characteristic of FMTC face is lying in the low stress area under stress shell. It is the essential cause of strata behaviors of FMTC face relaxation. On the basis of analyzing stress shell, the mechanical essence that top coal performs a function of bedding is demonstrated. 4 refs., 7 figs.

  14. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  15. Determination of the mechanical characteristics of nanomaterials under tension and compression

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.

    2018-04-01

    In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.

  16. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements......The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  17. Learning Crisis Unit through Post-Crisis: Characteristics and Mechanisms

    Science.gov (United States)

    Chebbi, Hela; Pündrich, Aline Pereira

    2015-01-01

    Purpose: This paper aims to identify the characteristics that a crisis unit should have to achieve effective learning after crisis. Literature has identified many relations between learning organizations and crisis; yet, there is a dearth of research on specific studies about crisis units and their post-crisis learning features. Thus, this paper…

  18. Mechanical Properties and Corrosion Characteristics of Thermally Aged Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R B; Crook, P

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that reduce its mechanical toughness and corrosion resistance. The objective of this work was to age Alloy 22 at temperatures between 482 C and 760 C for times between 0.25 h and 6,000 h and to study the mechanical and corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. Mechanical and corrosion testing was carried out using ASTM standards. Results show-that the higher the aging temperature and the longer the aging time, the lower the impact toughness of the aged material and the lower its corrosion resistance. However, extrapolating both mechanical and corrosion laboratory data predicts that Alloy 22 will remain corrosion resistant and mechanically robust for the projected lifetime of the waste container

  19. Mechanics Evolution Characteristics Analysis of Pressure-arch in Fully-mechanized Mining Field

    Directory of Open Access Journals (Sweden)

    S.R. Wang

    2014-09-01

    Full Text Available Based on a practical engineering, the three-dimension computational model was built using FLAC3D under the fullymechanized mining condition. Considering four variation factors, such as the distance of mining advancing, the strength of the surrounding rock, the speed of mining advancing and the dip angle of the coal seam, the mechanics evolution characteristics of the pressure-arch were analyzed. The result showed that for the horizontal seam, the geometric shape of the pressure-arch varied from flat arch to round arch gradually and the height and thickness of the pressure-arch also increased; the maximum principal stress in the skewback also increased with the working face advancing. With the strength of the surrounding rock from soft to hard, the arch thickness reduced, and the arch loading decreased. To improve the mining speed can do some contributions to the stability of the pressure-arch in the mining field. With the increase of dip angle of the seam, the pressure-arch displayed an asymmetric shape, the vault was tilted and moved to the upward direction. At the same time, the thickness of the pressure-arch increased, and the stress concentration in the skewback tended to be further intensified.

  20. Mechanical Characteristics of Chemically Degraded Surface Layers of Wood

    Czech Academy of Sciences Publication Activity Database

    Frankl, Jiří; Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Bryscejn, Jan

    2012-01-01

    Roč. 2, č. 11 (2012), s. 694-700 ISSN 2159-5275 R&D Projects: GA ČR(CZ) GPP105/11/P628 Institutional support: RVO:68378297 Keywords : wood * corrosion * defibering * mechanical properties Subject RIV: JN - Civil Engineering http://www.davidpublishing.com

  1. Non-conformal contact mechanical characteristic analysis on spherical components

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-zhi, G.; Bin, H.; Zheng-ming, G.; Feng-mei, Y.; Jin, Q [The 2. Artillery Engineering Univ., Xi' an (China)

    2017-03-15

    Non-conformal spherical-contact mechanical problems is a three-dimensional coordination or similar to the coordination spherical contact. Due to the complexity of the problem of spherical-contact and difficulties of solving higher-order partial differential equations, problems of three-dimensional coordination or similar to the coordination spherical-contact is still no exact analytical method for solving. It is based on three-dimensional taper model is proposed a model based on the contour surface of the spherical contact and concluded of the formula of the contact pressure and constructed of finite element model by contact pressure distribution under the non-conformal spherical. The results shows spherical contact model can reflect non-conformal spherical-contacting mechanical problems more than taper-contacting model, and apply for the actual project.

  2. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  3. Studying structurally-mechanical characteristics suppositories with amlodipine

    Directory of Open Access Journals (Sweden)

    Fadi Al Zedan

    2013-02-01

    Full Text Available Rheological behaviour suppositories with amlodipine on lypofiles to a basis are studied and character of temperature effect on their structurally-mechanical properties is positioned. It is revealed that the temperature of carrying out of technological operations of homogenization and overflow suppositories 50-55ºС is optimum, providing necessary fluidity suppositories masses at hypodispersion in it reacting and aids.

  4. Grips for testing of electrical characteristics of a specimen under a mechanical load

    Science.gov (United States)

    Briggs, Timothy; Loyola, Bryan

    2018-04-24

    Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.

  5. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing.

    Science.gov (United States)

    Le Foll, Christelle; Irani, Boman G; Magnan, Christophe; Dunn-Meynell, Ambrose A; Levin, Barry E

    2009-09-01

    We assessed the mechanisms by which specialized hypothalamic ventromedial nucleus (VMN) neurons utilize both glucose and long-chain fatty acids as signaling molecules to alter their activity as a potential means of regulating energy homeostasis. Fura-2 calcium (Ca(2+)) and membrane potential dye imaging, together with pharmacological agents, were used to assess the mechanisms by which oleic acid (OA) alters the activity of dissociated VMN neurons from 3- to 4-wk-old rats. OA excited up to 43% and inhibited up to 29% of all VMN neurons independently of glucose concentrations. In those neurons excited by both 2.5 mM glucose and OA, OA had a concentration-dependent effective excitatory concentration (EC(50)) of 13.1 nM. Neurons inhibited by both 2.5 mM glucose and OA had an effective inhibitory concentration (IC(50)) of 93 nM. At 0.5 mM glucose, OA had markedly different effects on these same neurons. Inhibition of carnitine palmitoyltransferase, reactive oxygen species formation, long-chain acetyl-CoA synthetase and ATP-sensitive K(+) channel activity or activation of uncoupling protein 2 (UCP2) accounted for only approximately 20% of OA's excitatory effects and approximately 40% of its inhibitory effects. Inhibition of CD36, a fatty acid transporter that can alter cell function independently of intracellular fatty acid metabolism, reduced the effects of OA by up to 45%. Thus OA affects VMN neuronal activity through multiple pathways. In glucosensing neurons, its effects are glucose dependent. This glucose-OA interaction provides a potential mechanism whereby such "metabolic sensing" neurons can respond to differences in the metabolic states associated with fasting and feeding.

  6. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of an electric traction motor and serves as the basis for design. The most common variants of constructive implementation of a traction electric drive are analyzed, and a scheme is chosen for further design. Lagrange’s equation for electric mechanical system with one degree of freedom is written in generalized coordinates. In order to determine the generalized forces, elementary operation of all moments influencing on a moving car has been calculated. The resulting equation of motion of the electric vehicle corresponding to the design scheme, as well as the expressions for calculation of characteristic points of static mechanical characteristics of traction motor (i.e. the maximum and minimum time, minimum power are obtained. In order to determine the nominal values of the angular velocity and the power of electric traction motor, a method based on ensuring the movement of the vehicle in the standard cycle has been developed. The method makes it possible to calculate characteristic points of the mechanical characteristic with the lowest possible power rating. The algorithm for calculation of mechanical characteristics of the motor is presented. The method was applied to calculate static mechanical characteristic of an electric traction motor for a small urban electric truck.

  7. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  8. Formation mechanisms and characteristics of transition patterns in oblique detonations

    Science.gov (United States)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  9. Tackle mechanisms and match characteristics in women's elite football tournaments.

    Science.gov (United States)

    Tscholl, P; O'Riordan, D; Fuller, C W; Dvorak, J; Junge, A

    2007-08-01

    Several tools have been used for assessing risk situations and for gathering tackle information from international football matches for men but not for women. To analyse activities in women's football and to identify the characteristics and risk potentials of tackles. Retrospective video analysis. Video recordings of 24 representative matches from six women's top-level tournaments were analysed for tackle parameters and their risk potential. 3531 tackles were recorded. Tackles in which the tackling player came from the side and stayed on her feet accounted for nearly half of all challenges for the ball in which body contact occurred. 2.7% of all tackles were classified as risk situations, with sliding-in tackles from behind and the side having the highest risk potential. Match referees sanctioned sliding-in tackles more often than other tackles (20% v 17%, respectively). Tackle parameters did not change in the duration of a match; however, there was an increase in the number of injury risk situations and foul plays towards the end of each half. Match properties provide valuable information for a better understanding of injury situations in football. Staying on feet and jumping vertically tackle actions leading to injury were sanctioned significantly more times by the referee than those not leading to injury (pgame are not adequate or match referees in women's football are not able to distinguish between sliding-in tackles leading to and those not leading to injury.

  10. Damage sensing and mechanical characteristics of CFRP strengthened steel plate

    Science.gov (United States)

    Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro

    2017-10-01

    In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.

  11. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  12. Effect of Discrete Fracture Network Characteristics on the Sustainability of Heat Production in Enhanced Geothermal Reservoirs

    Science.gov (United States)

    Riahi, A.; Damjanac, B.

    2013-12-01

    injection into the reservoir during stimulation phase was simulated using a fully coupled hydro-mechanical model. The heat production phase was simulated using a coupled thermo-hydro-mechanical model. In these simulations, both advective heat transfer by fluid flow and the conductive heat transfer within the rock blocks were modeled. The effect of temperature change on stresses and fracture aperture, and thus flow rates was considered. The response of formations with different DFN characteristics are analyzed by evaluating the production rate, produced power, and total energy extracted from the system over a period of five years. By simulating a full cycle of stimulation and production, the numerical modeling approach represents a realistic estimate of evolving permeability and evaluates how stimulation can be beneficial to the production phase. It is believed that these numerical sensitivity studies can provide valuable insight in evaluation of the potential of success of an EGS project, and can be used to better design the operational parameters in order to optimize heat production. Keywords: Numerical modeling, rock mechanics, discrete fracture network, stimulation, engineered geothermal reservoirs, heat production

  13. Mechanical characteristic evaluation of the mid grid spring in PWR fuel assembly

    International Nuclear Information System (INIS)

    Eum, K. B.; Lee, S. H.; Jeon, S. Y.; Kweon, Y. B.; Jeon, K. R.

    2001-01-01

    The spring load-deflection characteristic tests were performed for Westinghouse type 17x17 and 14x14 fuel assembly mid grids to evaluate the mechanical characteristics of the springs. Six kinds of prototype mid grids manufactured by KNFC were tested and two kinds of test methods were used: block test and in-grid test. The test results showed that all tested mid grid springs satisfied the criteria required at the beginning of fuel assembly life. In addition, the variation of spring characteristics resulting from the difference in the mechanical properties of spring material and spring shapes was investigated. And the validity of the test methods was discussed

  14. An experimental study on damping characteristics of mechanical snubber for nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1983-01-01

    The objectives of this study are 1) to clarify the damping characteristics and the dynamic stiffness of mechanical snubber, 2) to take the damping characteristics of mechanical snubber into the damping evaluation method obtained in SDREP. Therefore, following vibration tests were conducted. 1) Component test: As a first step, mechanical snubbers were excited with sinusoidal wave, and damping ratio and dynamic stiffness were measured at several loading levels. 2) Piping model test: Second, a 8'' diameter x 16 m length 3-dimensional piping model simulating the supporting conditions of actual piping systems was tested. Damping ratio and made shapes of piping model with mechanical snubbers were measured at several supporting conditions and response levels. From the results of these tests, the damping characteristics and the dynamic stiffness of mechanical snubber can be summarized as follows: 1) The damping effect of mechanical snubber is as strong as that of oil snubber. 2) Mechanical snubber contributes effectively to the damping of piping system, and it is indicated that the damping characteristics of mechanical snubber is applicable to the damping evaluation method obtained in SDREP. (orig./HP)

  15. Design and characteristics of the drive mechanism for movable limiters of JT-60, (1)

    International Nuclear Information System (INIS)

    Takashima, Tetsuo; Morishita, Osamu; Yamamoto, Masahiro; Shimizu, Masatsugu; Ohta, Mitsuru

    1976-10-01

    Two fast-acting movable rail limiters will be installed in a large Tokamak JT-60 being designed in JAERI. The movable limiter consists of a drive mechanism, a vacuum seal, a bearing, and a molybdenum rail limiter. Design of the drive mechanism for the movable limiter and experimental results on the driving characteristics in full scale are described. (auth.)

  16. Mechanical and Tribological Characteristics of the AMC, Prepared by P/M Route along with Thermo-Mechanical Treatment

    Science.gov (United States)

    Mohapatra, Sambit Kumar; Maity, Kalipada; Bhuyan, Subrat Kumar; Prasad Satpathy, Mantra

    2018-03-01

    Thermo mechanical treatments have the ameliorated impacts on the mechanical and tribological properties of powder metallurgy components. In this investigation an aluminium matrix composite (AMC) {Al (92) + Mg (5) + Gr (1) + Ti (2)} has been prepared by following powder metallurgy technique, with double axial compaction and ulterior sintering. Secondary thermo-mechanical treatment i.e. hot extrusion through mathematical contoured cosine profiled die was considered. The die causes minimum velocity relative differences across the extrusion exit cross-section, which provides smooth material flow. Comparative result analysis for the mechanical and tribological characteristics of the specimen before and after extrusion was concentrated. Extrusion engenders significant amount of improvements of the properties those are attributed to excellent bond strength and uniform density distribution due to high compressive stress. Oxidative and delaminated wear mechanisms were found predominating type. To furnish the suitable explanation scanning electron microscopies have been performed for the wear surfaces.

  17. Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network

    International Nuclear Information System (INIS)

    Erkaya, Selcuk

    2012-01-01

    Clearance is inevitable in the joints of mechanisms due primarily to the design, manufacturing and assembly processes or a wear effect. Excessive value of joint clearance plays a crucial role and has a significant effect on the kinematic and dynamic performances of the mechanism. In this study, effects of joint clearances on bearing vibrations of mechanism are investigated. An experimental test rig is set up, and a planar slider-crank mechanism having two imperfect joints with radial clearance is used as a model mechanism. Three accelerometers are positioned at different points to measure the bearing vibrations during the mechanism motion. For the different running speeds and clearance sizes, this work provides a neural model to predict and estimate the bearing vibrations of the mechanical systems having imperfect joints. The results show that radial basis function (RBF) neural network has a superior performance for predicting and estimating the vibration characteristics of the mechanical system

  18. Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Mostaert, Anika S; Jarvis, Suzanne P [Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2 (Ireland)

    2007-01-31

    While biological systems are notorious for their complexity, nature sometimes displays mechanisms that are elegant in their simplicity. We have recently identified such a mechanism at work to enhance the mechanical properties of certain natural adhesives. The mechanism is simple because it utilizes a non-specific protein folding and subsequent aggregation process, now thought to be generic for any polypeptide under appropriate conditions. This non-specific folding forms proteinaceous crossed {beta}-sheet amyloid fibrils, which are usually associated with neurodegenerative diseases. Here we show evidence for the beneficial mechanical characteristics of these fibrils discovered in natural adhesives. We suggest that amyloid protein quaternary structures should be considered as a possible generic mechanism for mechanical strength in a range of natural adhesives and other natural materials due to their many beneficial mechanical features and apparent ease of self-assembly.

  19. Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives

    International Nuclear Information System (INIS)

    Mostaert, Anika S; Jarvis, Suzanne P

    2007-01-01

    While biological systems are notorious for their complexity, nature sometimes displays mechanisms that are elegant in their simplicity. We have recently identified such a mechanism at work to enhance the mechanical properties of certain natural adhesives. The mechanism is simple because it utilizes a non-specific protein folding and subsequent aggregation process, now thought to be generic for any polypeptide under appropriate conditions. This non-specific folding forms proteinaceous crossed β-sheet amyloid fibrils, which are usually associated with neurodegenerative diseases. Here we show evidence for the beneficial mechanical characteristics of these fibrils discovered in natural adhesives. We suggest that amyloid protein quaternary structures should be considered as a possible generic mechanism for mechanical strength in a range of natural adhesives and other natural materials due to their many beneficial mechanical features and apparent ease of self-assembly

  20. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.

    Science.gov (United States)

    Ayub, Tehmina; Khan, Sadaqat Ullah; Memon, Fareed Ahmed

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  1. The study on the mechanical characteristics of concrete of nuclear reactor containment structure

    International Nuclear Information System (INIS)

    Jung, W. S.; Kwon, K. J.; Cho, M. S.; Song, Y. C.

    2000-01-01

    Reactor containment structure of nuclear power plant designed by prestressed concrete causes time-dependent prestress loss due to the mechanical characteristics of concrete. Prestress loss strongly affects to the safety factor of structure under the circumstances of designing, construction and inspection. Thus, this study is to investigate the mechanical characteristics of reactor containment concrete structure of Yonggwang No. 5 and 6. In this study, the compressive strength, modulus of elasticity, poisson's ratio and creep test followed by ASTM code are performed to investigate the mechanical characteristics of concrete made by V type cement. Additionally, since creep causes more time-dependent prestress loss than the other, the measurement value from the creep test is compared with the results from the creep prediction equations by KSCE, JSCE, Hansen, ACI and CEB-FIP model for the effective application. Hereafter, the results of this study may enable to assist the calculation effective stress considering time-dependent prestress loss of the prestressed concrete structures

  2. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics.

    Science.gov (United States)

    Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae

    2014-03-01

    The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.

  3. Characteristics and New Measurement Method of NCSFs of Individual Color Mechanisms of Human Vision

    International Nuclear Information System (INIS)

    Jing-Jing, Ge; Zhao-Qi, Wang; Yan, Wang; Kan-Xing, Zhao

    2010-01-01

    We propose a new method for determining neural contrast sensitivity functions (NCSFs) of isolated color mechanisms based on the measurements of wave-front aberrations and isoluminant color contrast sensitivity functions (CSFs). Compared with the traditional method, this technique avoids the coherent noise and speckle noise, which are brought by the interference of laser beams, and has great flexibility for the measurements of NCSF of different color mechanisms. Our experiments indicate that the mean NCSF and CSF of the red mechanism are higher than those of the green mechanism, respectively, while those of the blue mechanism are the lowest. However the relative heights of the peak of NCSF and CSF between red and green mechanisms vary in subjects. There are some individuals whose peak values of NCSF and/or CSF of green mechanism are higher than that of the red mechanism. The NCSFs and CSFs of isolated color mechanisms all exhibit the similar characteristics and variation tendency. With the statistical average, the NCSFs of the red, green and blue mechanisms are higher than the corresponding CSFs in the whole spatial frequency. Compared with the corresponding CSFs curves, the peaks of the NCSFs of isolated color mechanisms shift toward higher spatial frequencies, especially for that of blue mechanism which has a largest shift of 3.9c/deg

  4. Resisting force characteristics of a mechanical snubber and its restraint effect on beam deformation

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro

    1987-01-01

    A mechanical snubber is used to restrain piping systems in nuclear power plants during an earthquake. It has nonlinearities in both load (or exciting amplitude) and frequency response, so it will be very difficult to analyze the resisting force characteristics of the mechanical snubber theoretically. In this report, the equation of motion of the mechanical snubber is derived and digital simulations of snubber dynamic characteristics over a frequency range are carried out using the Continuous System Simulation Language (CSSL). Also, the restraint effect of the mechanical snubber applied to a simple beam is discussed both numerically and experimentally. The beam is replaced by a lumped mass system and CSSL is used to perform the digital simulations. (author)

  5. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation/condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  6. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation/condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  7. Statistical evaluation of low cycle loading curves parameters for structural materials by mechanical characteristics

    International Nuclear Information System (INIS)

    Daunys, Mykolas; Sniuolis, Raimondas

    2006-01-01

    About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970-2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper

  8. FORMING OF MECHANICAL CHARACTERISTICS OF THE SLUGS OF TITANIC ALLOY BT23 AT THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available Тhе changings of the initial plate structure of alloy BT23 at running of high-temperature thermal treatment of large-sized slugs with heating up to 650- 950 eC and cooling on air and in water and their influence on forming of complex of mechanical characteristics are examined.

  9. Floating clamping mechanism of PT fuel injector and its dynamic characteristics analysis

    Science.gov (United States)

    Wang, Xinqing; Liang, Sheng; Xia, Tian; Wang, Dong; Qian, Shuhua

    2012-05-01

    PT fuel injector is one of the most important parts of modern diesel engine. To satisfy the requirements of the rapid and accurate test of PT fuel injector, the self-adaptive floating clamping mechanism was developed and used in the relevant bench. Its dynamic characteristics directly influence the test efficiency and accuracy. However, due to its special structure and complex oil pressure signal, related documents for evaluating dynamic characteristics of this mechanism are lack and some dynamic characteristics of this mechanism can't be extracted and recognized effectively by traditional methods. Aiming at the problem above-mentioned, a new method based on Hilbert-Huang transform (HHT) is presented. Firstly, combining with the actual working process, the dynamic liquid pressure signal of the mechanism is acquired. By analyzing the pressure fluctuation during the whole working process in time domain, oil leakage and hydraulic shock in the clamping chamber are discovered. Secondly, owing to the nonlinearity and nonstationarity of pressure signal, empirical mode decomposition is used, and the signal is decomposed and reconstructed into forced vibration, free vibration and noise. By analyzing forced vibration in the time domain, machining error and installation error of cam are revealed. Finally, free vibration component is analyzed in time-frequency domain with HHT, the traits of free vibration in the time-frequency domain are revealed. Compared with traditional methods, Hilbert spectrum has higher time-frequency resolutions and higher credibility. The improved mechanism based on the above analyses can guarantee the test accuracy of injector injection. This new method based on the analyses of the pressure signal and combined with HHT can provide scientific basis for evaluation, design improvement of the mechanism, and give references for dynamic characteristics analysis of the hydraulic system in the interrelated fields.

  10. Spot testing on mechanical characteristics of surrounding rock in gates of fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang; Yang Ke; Chang Ju-cai [Anhui University of Science and Technology, Anhui (China). Department of Resource Exploration and Management Engineering

    2006-07-01

    The distribution patterns of mechanical characteristics for surrounding rock in the gateways of fully mechanized top-coal caving (FMTC) face were put forward by analyzing deep displacement, surface displacement, stress distribution and supports loading. The results show that the surrounding rock of the gateways lies in abutment pressure decrease zone near the working face, so that the support load decreases. But the deformations of supports and surrounding rock are very acute. The deformation of surrounding rock appears mainly in abutment pressure influence zone. Reasonable roadway supporting should control the deformation of surrounding rock in intense stage of mining influence. Supporting design ideas of tailentry and head entry should be changed from loading control to deformation control. 8 refs., 10 figs., 1 tab.

  11. Experimental study on performance characteristics of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Zhou Jie; Liu Chunyu; Yang Zhida; Wang Ge

    2014-01-01

    An experimental study on the performance characteristics of the servo-piston hydraulic control rod driving mechanism is carried out, the dynamic processes of the driving mechanism are obtained through the experiments in different working conditions. Combined with the structure characteristics of the driving mechanism, the change rule between the characteristics parameters and the working condition is analyzed. The results indicate that the traction of the servo-tube decreases quickly at first, then slowly and finally trends to be a constant with the working pressure increasing, the tractions are the largest in the startup and deboost phases. The under pressure of the drive cylinder rises slowly and the upper pressure decreases rapidly at the beginning of the rise, the variation trend is opposite in the falling stage. There exists quick and clear flow change processes in the startup and deboost phases, the flow mutation value reduces and the mutation time changes a little with the working pressure increasing. The driving mechanism runs stable and has high sensitivity precision, the load does not vibrate at all when working conditions has small disturbance, a steady transform can be realized among every condition. (authors)

  12. The Comparison of Defense Mechanism Styles and Personality Characteristics in Addicts and Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Mohsen Ahmadi

    2012-11-01

    Full Text Available Aim: The purpose of this study was to comprise of psychological defense mechanism styles and personality characteristics in addicts and healthy individuals. Method: In this causal-comparative study, 70 addicts person (with an average age of 37.29±9.81and the age range 23 to 58 years were selected via accessible sampling method of clinics and Hamadan’s addicted self-representing center during the Autumn of 2011, The number of 70 relatives of these people that demographic variables were matched as possible with the comparison group were selected. Both groups were asked to respond to the defense mechanism style and Eysenk personality Questionnaires. Results: The result of this study showed that the scores mean of addicts were higher than healthy people on immature defense mechanism style, neourotism, and neurotic and extraversion personality characteristics and lower than in mature defense style variables. Conclusion: Based on the result of this study there was a significant difference between addict individuals and healthy people in defense mechanism and personality characteristics.

  13. Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Han, Min Su; Woo, Yong Bin [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2013-05-15

    In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

  14. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    Science.gov (United States)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  15. Construction and characteristics of questionnaire for the assessment of defense mechanisms: MOD

    Directory of Open Access Journals (Sweden)

    Džamonja-Ignjatović Tamara

    2014-01-01

    Full Text Available Defense mechanisms are psychological constructs of key importance for the assessment of personality and planning therapeutic process. Their assessment is mainly based on interview, observation and projective techniques. Questionnaires, as the self-assessment techniques, apparently are not suitable method for unconscious processes such as defense mechanisms. The paper presents the results of construction of the questionnaire for the assessment of defense mechanisms, abbreviated called MOD (Mechanisms of Defense, which represents an attempt to clarify conceptualization and operationalization of these constructs through a variety of behavioral and emotional manifestations, personal attitudes and beliefs, patterns of interpersonal relationships and feedback from environment. Research objectives included testing of metric characteristics and the factor structure of the questionnaire, as well as its validity for differentiating subjects from clinical and non-clinical populations. The questionnaire has 110 items assessed at the 5-point Likert scale for evaluation of 20 defense mechanisms. The sample consisted of 194 subjects of both sexes, of which 136 students of psychology and social work and 58 nonpsychotic patients from clinical populations. The results showed that the reliability of the scale varies from high to unsatisfactory (Cronbach alpha .82- .35, although for most subscales is around .65-.70. The most of defense mechanisms has one factor structure, whereas from about a third of the subscales two principal components were isolated. Analysis of the structure of mature defense mechanisms clearly derived out four factors corresponding to the presumed mechanisms of defense, while for the groups of neurotic and immature mechanisms were not obtained pure solutions. The questionnaire successfully differentiate clinical from non-clinical sample, based on higher scores on mature and lower scores on immature mechanisms, while the groups did not differ

  16. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  17. Aging characteristic and mechanical properties of TiC/2618 composite

    Institute of Scientific and Technical Information of China (English)

    龙春光; 张厚安; 庞佑霞; 刘厚才

    2001-01-01

    TiC/2618 composite was prepared by XD method . The constituent and microstructure of the composite have been investigated by X-ray diffraction and TEM technique. The aging characteristics and mechanical properties at high and room temperatures were studied. The results show that: 1 ) it is possible to prepare multiple alloy matrix TiC/2618composite by XD method; 2) the TiC particles in TiC/2618 composite have the characteristics of fine size, clean appearance and a good bond with the matrix; 3) the aging law of the TiC/2618 composite has been changed by the addition of TiC particles. Two-peak value phenomenon has been observed when it was aged at 190 ℃; 4) TiC/2618 composite has better mechanical properties than those of the matrix both at room and high temperatures.

  18. Investigation of corrosion resistance of alloys with high mechanical characteristics in some environments of food industry

    International Nuclear Information System (INIS)

    Tremoureux, Yves

    1978-01-01

    This research thesis aimed at improving knowledge in the field of stress-free corrosion of alloys with high mechanical characteristics in aqueous environments, at highlighting some necessary aspects of their behaviour during cleaning or disinfection, and at selecting alloys which possess a good stress-free corrosion resistance in view of a later investigation of their stress corrosion resistance. After a presentation of the metallurgical characteristics of high mechanical strength alloys and the report of a bibliographical study on corrosion resistance of these alloys, the author presents and discusses the results obtained in the study of a possible migration of metallic ions in a milk product which is submitted to a centrifugation, and of the corrosion resistance of selected alloys with respect to the different media they will be in contact with during ultra-centrifugation. The following alloys have been used in this research: Marval 18, Marphynox, Marval X12, 17-4PH steel, Inconel 718 [fr

  19. Pluvial, urban flood mechanisms and characteristics - Assessment based on insurance claims

    Science.gov (United States)

    Sörensen, Johanna; Mobini, Shifteh

    2017-12-01

    Pluvial flooding is a problem in many cities and for city planning purpose the mechanisms behind pluvial flooding are of interest. Previous studies seldom use insurance claim data to analyse city scale characteristics that lead to flooding. In the present study, two long time series (∼20 years) of flood claims from property owners have been collected and analysed in detail to investigate the mechanisms and characteristics leading to urban flooding. The flood claim data come from the municipal water utility company and property owners with insurance that covers property loss from overland flooding, groundwater intrusion through basement walls and flooding from the drainage system. These data are used as a proxy for flood severity for several events in the Swedish city of Malmö. It is discussed which rainfall characteristics give most flooding and why some rainfall events do not lead to severe flooding, how city scale topography and sewerage system type influence spatial distribution of flood claims, and which impact high sea level has on flooding in Malmö. Three severe flood events are described in detail and compared with a number of smaller flood events. It was found that the main mechanisms and characteristics of flood extent and its spatial distribution in Malmö are intensity and spatial distribution of rainfall, distance to the main sewer system as well as overland flow paths, and type of drainage system, while high sea level has little impact on the flood extent. Finally, measures that could be taken to lower the flood risk in Malmö, and other cities with similar characteristics, are discussed.

  20. Psychological factors, sociodemographic characteristics, and coping mechanisms associated with the self-stigma of problem gambling

    OpenAIRE

    Hing, Nerilee; Russell, Alex M. T.

    2017-01-01

    Background and aims Few studies have examined the stigma of problem gambling and little is known about those who internalize this prejudice as damaging self-stigma. This paper aimed to identify psychological factors, sociodemographic characteristics, and coping mechanisms associated with the self-stigma of problem gambling. Methods An online survey was conducted on 177 Australian adults with a current gambling problem to measure self-stigma, self-esteem, social anxiety, self-consciousness, ps...

  1. NEW METHODS AND FACILITIES OF MAGNETIC CONTROL OF THE MECHANICAL CHARACTERISTICS OF ARTICLES

    Directory of Open Access Journals (Sweden)

    V. F. Matjuk

    2004-01-01

    Full Text Available There are given the results of development in the State scientific university ''Institute of applied physics of the National Academy of Sciences of Belarus” of the facilities for magnetic control of the steels mechanical characteristics - coercimeter KIPF-1, impulse magnetic analyzers IMA- 4M, IMA-5B, impulse magnetic installations IMPOK-IB and facilities of their metrological support. The information about the scale of , using IS given.

  2. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  3. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  4. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    Science.gov (United States)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  5. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  6. Mechanical characteristics of self-expandable metallic stents: in vitro study with three types of stress

    International Nuclear Information System (INIS)

    Lee, Byung Hee; Kim, Kie Hwan; Chin, Soo Yil

    1998-01-01

    To obtain objective and comparable data for mechanical characteristics of self-expandable metallic stents widely used in the treatment of biliary obstruction. The stents tested were the 6 and 8 mm-band Hanaro spiral stent, Gianturco-Rosch Z stent, Wallstent, Ultraflex stent, and Memotherm stent. Each was subjected to three types of load:point, area, and circular. We analyzed their mechanical characteristics (resistance force, expansile force, and elasticity) according to these three types of stress. With regard to point loads, the Memotherm stent showed the highest resistance force and expansile force. The 8 mm-band Hanaro stent showed the lowest resistance force and the Gianturco-Rosch Z stent and Ultraflex stent showed lower expansile force. With regard to area loads, the Ultraflex stent showed the highest resistance force. The 6 mm-band Hanaro stent, Gianturco-Rosch Z stent, and Ultraflex stent showed higher expansile force. The 8 mm-band Hanaro stent showed the lowest value in both resistance force and expansile force. For circular loads, the Memotherm stent showed the highest resistance force and the Ultraflex stent and Wallstent showed lower value. Under all types of stress, the Hanaro stent and Memotherm stent were completely elastic, and the Ultraflex stent and Wallstent showed a wide gap between resistance force and expansile force. In clinical practice, awareness of the mechanical characteristics of each stent might help in choosing the one which is most suitable, according to type of biliary obstruction. =20

  7. Mechanical characteristics of self-expandable metallic stents: in vitro study with three types of stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Hee; Kim, Kie Hwan; Chin, Soo Yil [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-09-01

    To obtain objective and comparable data for mechanical characteristics of self-expandable metallic stents widely used in the treatment of biliary obstruction. The stents tested were the 6 and 8 mm-band Hanaro spiral stent, Gianturco-Rosch Z stent, Wallstent, Ultraflex stent, and Memotherm stent. Each was subjected to three types of load:point, area, and circular. We analyzed their mechanical characteristics (resistance force, expansile force, and elasticity) according to these three types of stress. With regard to point loads, the Memotherm stent showed the highest resistance force and expansile force. The 8 mm-band Hanaro stent showed the lowest resistance force and the Gianturco-Rosch Z stent and Ultraflex stent showed lower expansile force. With regard to area loads, the Ultraflex stent showed the highest resistance force. The 6 mm-band Hanaro stent, Gianturco-Rosch Z stent, and Ultraflex stent showed higher expansile force. The 8 mm-band Hanaro stent showed the lowest value in both resistance force and expansile force. For circular loads, the Memotherm stent showed the highest resistance force and the Ultraflex stent and Wallstent showed lower value. Under all types of stress, the Hanaro stent and Memotherm stent were completely elastic, and the Ultraflex stent and Wallstent showed a wide gap between resistance force and expansile force. In clinical practice, awareness of the mechanical characteristics of each stent might help in choosing the one which is most suitable, according to type of biliary obstruction. =20.

  8. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  9. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  10. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    International Nuclear Information System (INIS)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-01

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  11. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  12. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks

    Directory of Open Access Journals (Sweden)

    M. Cacace

    2017-09-01

    Full Text Available Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres and temporal scales (from minutes to hundreds of years.

  13. Hydraulic mechanism and time-dependent characteristics of loose gully deposits failure induced by rainfall

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2015-12-01

    Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.

  14. Multiscale characteristics of mechanical and mineralogical heterogeneity using nanoindentation and Maps Mineralogy in Mancos Shale

    Science.gov (United States)

    Yoon, H.; Mook, W. M.; Dewers, T. A.

    2017-12-01

    Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by

  15. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    Science.gov (United States)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.

  16. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles

    Energy Technology Data Exchange (ETDEWEB)

    Tuo, Wanyong [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); School of Civil & Architectural Engineering, Anyang Institute of Technology, Anyang 455000 (China); Chen, Jinxiang, E-mail: chenjpaper@yahoo.co.jp [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wu, Zhishen; Xie, Juan [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wang, Yong [Nantong Vocational University, Nantong, Jiangsu 226007 (China)

    2016-08-01

    Based on a tensile experiment and observations by scanning electron microscopy (SEM), this study demonstrated the characteristics of the tensile mechanical properties of the fresh and dry forewings of two types of beetles. The results revealed obvious differences in the tensile fracture morphologies and characteristics of the tensile mechanical properties of fresh and dry forewings of Cybister tripunctatus Olivier and Allomyrina dichotoma. For fresh forewings of these two types of beetles, a viscous, flow-like, polymer matrix plastic deformation was observed on the fracture surfaces, with soft morphologies and many fibers being pulled out, whereas on the dry forewings, the tensile fracture surfaces were straightforward, and there were no features resembling those found on the fresh forewings. The fresh forewings exhibited a greater fracture strain than the dry forewings, which was caused by the relative slippage of hydroxyl inter-chain bonds due to the presence of water in the fibers and proteins in the fresh forewings. Our study is the first to demonstrate the phenomenon of sudden stress drops caused by the fracturing of the lower skin because the lower skin fractured before the forewings of A. dichotoma reached their ultimate tensile strength. We also investigated the reasons underlying this phenomenon. This research provides a much better understanding of the mechanical properties of beetle forewings and facilitates the correct selection of study objects for biomimetic materials and development of the corresponding applications. - Highlights: • There is a phenomenon of sudden stress drop on the tensile stress-train curve of forewing. • The causes of the differences of mechanical properties of fresh and dry forewings are explained. • The hypothesis raised in a previous review paper is verified. • This study brings better ideas into correct understanding of the mechanical properties that the biomimetic object exhibits.

  17. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Miao Yi [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Jiang, Xiaohong, E-mail: jxh0668@sina.com [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Piliptsou, D.G., E-mail: pdg_@mail.ru [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Zhuang, Yuzhao; Rogachev, A.V.; Rudenkov, A.S. [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Balmakou, A. [Faculty of Material Science and Technology, Slovak University of Technology, Trnava 91724 (Slovakia)

    2016-08-30

    Highlights: • Influence of the chromium interlayer on the structure and mechanical properties of a-C:Cr films. • Residual stress and wear of a-C:Cr and Cr/a-C varies due to their phase and surface morphology. • Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics. - Abstract: To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  18. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

    International Nuclear Information System (INIS)

    Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo

    2013-01-01

    As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Research on base rock mechanic characteristics of caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Isei, Takehiro; Katsuyama, Kunihisa; Seto, Masahiro; Ogata, Yuji; Utagawa, Manabu

    1997-01-01

    It has been considered that underground space is mechanically stable as compared with on the ground, and superior for storing radioactive waste for long period. However, in order to utilize underground space for the place of radioactive waste disposal, its long term stability such as the aseismatic ability of base rocks must be ensured, and for this purpose, it is necessary to grasp the mechanical characteristics of the base rocks around caverns, and to advance the technology for measuring and evaluating minute deformation and earth pressure change. In this research, the study on the fracture mechanics characteristics of base rocks and the development of the technology for measuring long terms stress change of base rocks were carried out. In this research, what degree the memory of past stress is maintained by rocks was presumed by measuring AE and strain when stress was applied to rock test pieces. The rocks tested were tuff, sandstone and granite. The experimental method and the experimental results of the prestress by AE method and DRA are reported. (K.I.)

  20. The mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes:a preliminary study

    International Nuclear Information System (INIS)

    Dong Sheng; Yuan Zheng; Wu Shengwei; Li Wenxin

    2011-01-01

    Objective: To discuss the mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes. Methods: The mechanics property of carbon nanotubes-polyurethane composite membranes with different carbon nanotubes contents were tested by universal material testing machine. The surface of the membranes was observed by electron microscope when the stent was bent 90 degree. And its cytotoxicity was tested by cultivating study with 7721 cell. The metallic stent that was covered with carbon nanotubes-polyurethane composite membrane by using dip-coating method was inserted in rabbit esophagus in order to evaluate its biocompatibility in vivo. Results: Composite membranes tensile strength (MPa) and elongation at break (%) were 4.62/900, 6.05/730, 8.26/704 and 5.7/450 when the carbon nanotubes contents were 0%, 0.1%, 0.3% and 0.5%, respectively. If the stent was bent at 90 degree, its surface was still smooth without any fractures when it was scanned by electron microscope.Composite membranes had critical cytotoxicity when its carbon nanotubes content was up to 0.5% and 1.0%. No fissure nor degradation of composite membranes occurred at 30 days after composite membrane covered metallic stent was inserted in rabbit esophagus. Conclusion: When moderate carbon nanotubes are added into polyurethane composite membrane, the mechanics and biocompatibility characteristics of the polyurethane composite membrane can be much improved. (authors)

  1. Statistical mechanical characteristics of slip-ring induction motors when direct current braking

    Energy Technology Data Exchange (ETDEWEB)

    Kedzior, W; Muchorowski, J; Pienkowski, K

    1980-09-01

    This paper evaluates methods of braking high capacity belt conveyors used in brown coal surface mines in Poland. Complications associated with belt conveyor braking, particularly when a conveyor moves down a slope, are analyzed. A method of calculating mechanical characteristics of wound-rotor induction motors during direct current braking taking into account saturation of magnetic circuit is presented. Characteristics of the SZUr motor with 630 kW power, used in brown coal mining, are also given. Analyses show that motor operation can be efficiently braked in two ways: 1. by changing additional resistance in rotor circuit (e.g. using thyristor controller); 2. by changing intensity of electric current supplied to stator winding (e.g. using a rectifier). (3 refs.) (In Polish)

  2. Effect of suction on the mechanical characteristics of uniformly compacted rammed earth

    Science.gov (United States)

    El Hajjar, A.; Chauhan, P.; Prime, N.; Plé, O.

    2018-04-01

    Rammed earth, in the current environmental situation, is an alternative construction technique which can help in reducing energy and raw material consumption owing to its “sustainable” characteristics. To fully understand its behavior and properties, recent scientific investigations consider it as a compacted unsaturated material with suction as its one of the main sources of strength. Eathern constructions face, over their lifetime, variations in the suction state which have a significant impact on their mechanical characteristics. In the present contribution, unconfined compression tests are performed, with and without unload-reload cycles, on homogeneously compacted samples subjected to various suction conditions. This study shows that both the unconfined compressive strength and Young modulus reduce with the reduction of suction states. Suction also seems to influence the amount of plastic strains and damage phenomenon. Indeed, the soils analyzed are slightly active and shows both plasticity behavior and damage phenomenon.

  3. Modifications of mechanical characteristics and iron corrosion by ionic implantation on surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.

    1980-01-01

    Tin ionic implantation on pure iron surface at moderate doses (5x10 15 to 5x10 16 ) Sn + Cu -2 ) has proven to be very efficient in improving the metal characteristics to oxidation and abrasion at high temperature. The abrasion volumetric coefficient K v , is reduced from up to 100 times, and the oxidation tax constant is reduced from up to 10 times. The physical mechanisms responsible for these phenomena are studied using different techniques of surface analysis; as Rutherford backscattering of alpha particles, Moessbauer spectroscopy of conversion electrons and sweeping electronic microscopy. (A.C.A.S.) [pt

  4. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS)

    International Nuclear Information System (INIS)

    Kim, Jong-Uk; Park, Chong-Ook; Park, Myung-Il; Kim, Sun-Hwan; Lee, Jung-Bok

    2002-01-01

    Plasma ignition method has been applied in various fields particularly to the rocket propulsion, pyrotechnics, explosives, and to the automotive air-bag system. Ignition method for those applications should be safe and also operate reliably in hostile environments such as; electromagnetic noise, drift voltage, electrostatic background and so on. In the present Letter, a semiconductor bridge (SCB) plasma ignition device was fabricated and its plasma characteristics including the propagation speed of the plasma, plasma size, and plasma temperature were investigated with the aid of the visualization of micro scale plasma (i.e., ≤350 μm), which generated from a micro-electro-mechanical poly-silicon semiconductor bridge (SCB)

  5. The mechanical properties and hydration characteristics of cement pastes containing added-calcium coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Dongxu Li; Xuyan Song [Nanjing University of Technology, Nanjing (China). College of Material Science and Engineering

    2008-04-15

    The mechanical properties of several kinds of coal gangue calcined with limestone were researched so as to find the optimum way of calcinations with limestone. The microstructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and the method of mercury in trusion poremeasurement. When the proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, the activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristics such as hydration, hydration products and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  6. The formation mechanisms and optical characteristics of GaSb quantum rings

    International Nuclear Information System (INIS)

    Lin, Wei-Hsun; Pao, Chun-Wei; Wang, Kai-Wei; Liao, Yu-An; Lin, Shih-Yen

    2013-01-01

    The growth mechanisms and optical characteristics of GaSb quantum rings (QRs) are investigated. Although As-for-Sb exchange is the mechanism responsible for the dot-to-ring transition, significant height difference between GaSb quantum dots (QDs) and QRs in a dot/ring mixture sample suggests that the dot-to-ring transition is not a spontaneous procedure. Instead, it is a rapid transition procedure as long as it initiates. A model is established to explain this phenomenon. Larger ring inner diameters and heights of the sample with longer post Sb soaking time suggest that As-for-Sb exchange takes places in both vertical and lateral directions. The decreasing ring densities, enlarged ring inner/outer diameters and eventually flat GaSb surfaces observed with increasing growth temperatures are resulted from enhanced adatom migration and As-for-Sb exchange with increasing growth temperatures

  7. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    Science.gov (United States)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  8. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  9. Dependence of hydrogen storage characteristics of mechanically milled carbon materials on their host structures

    International Nuclear Information System (INIS)

    Shindo, K.; Kondo, T.; Sakurai, Y.

    2004-01-01

    We investigated whether the hydrogen storage characteristics of carbon materials prepared by mechanical milling in an H 2 atmosphere were dependent on their host structures. We used natural graphite (NG) and activated carbon fibers (ACF) and compared them with activated carbon (AC) powders. The XRD patterns of NG and ACF milled for over 20 h and SEM images of these samples milled for 80 h were almost the same as those of AC. The hydrogen storage capacities of NG and ACF estimated by the inert gas fusion-thermal conductivity method increased with the mechanical milling time up to 10 h and showed little milling time dependence thereafter. The capacities of NG and ACF reached about 3.0 wt.% and were similar to that of AC. However, it should be noted that the hydrogen storage mechanism of NG and ACF mechanically milled in an H 2 atmosphere might be different because the changes in their specific surface areas with milling time were opposite. Thermal desorption mass spectroscopy (TDS) revealed that the desorption spectra of the hydrogen molecules (mass number=2) of NG and ACF milled for 10 h in the same way as AC contained two peaks at about 500 and 800 deg. C. The desorption activation energies of hydrogenated NG and ACF at these peaks calculated from a Kissinger plot were almost with the same as those of hydrogenated AC. This suggests that the state of the hydrogen trapped in the structural defects in NG introduced by the mechanical milling may be almost the same as that of AC. In addition, we assumed the possibility that the state of the hydrogen in ACF hydrogenated by mechanical milling could be almost the same as that in hydrogenated AC. We considered that the nanocarbon materials hydrogenated under our milling conditions had very similar physical shapes and hydrogen storage capacities, independent of their host structures

  10. Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2018-01-01

    Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.

  11. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids : Symposia

    CERN Document Server

    Sedov, L

    1968-01-01

    At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig­ inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre­ versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re­ sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...

  12. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  13. Comparative study on the physico-mechanical characteristics for five types of wood flooring

    Directory of Open Access Journals (Sweden)

    Gabriela CĂLĂTAN

    2014-12-01

    Full Text Available During the period 1600-1700, the first works with parquet elements at Versailles Palace were performed, but the high cost has made that the wooden floor to be an exclusivist product for a long time. Currently, in the last 30 years, the most innovations in flooring industry were aimed to improve the technological process, the easing of work, to reduce the losses of raw materials and to reduce the production costs. The experimental research conducted worldwide has shown that the wood processing technology, up to the flooring finite element, plays an important role in achieving a superior quality and durability and that the finishing systems have to be applied depending on the conditions of the area of use. This paper is a comparative study regarding the physico-mechanical characteristics for five types of wood flooring manufactured and marketed in Romania. In the experimental research, there were analyzed: the behavior of the floor assemblies under linearly distributed and concentrated loads, the thermal insulation characteristics and the slip resistance. The experimental results have shown that these characteristics are influenced by the wood species, the type of product (massive one or subjected to stratification technological processing, the thickness of lamellar flooring elements, and the chosen finishing method (varnishing, oiling.

  14. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    Science.gov (United States)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  15. Rapid analytical assessment of the mechanical perturbations induced by non-isothermal injection into a subsurface formation.

    Science.gov (United States)

    De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta

    2016-04-01

    Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.

  16. Psychological factors, sociodemographic characteristics, and coping mechanisms associated with the self-stigma of problem gambling.

    Science.gov (United States)

    Hing, Nerilee; Russell, Alex M T

    2017-09-01

    Background and aims Few studies have examined the stigma of problem gambling and little is known about those who internalize this prejudice as damaging self-stigma. This paper aimed to identify psychological factors, sociodemographic characteristics, and coping mechanisms associated with the self-stigma of problem gambling. Methods An online survey was conducted on 177 Australian adults with a current gambling problem to measure self-stigma, self-esteem, social anxiety, self-consciousness, psychological distress, symptom severity, most problematic gambling form, stigma coping mechanisms, and sociodemographic characteristics. Results All variables significantly correlated with self-stigma were considered for inclusion in a regression model. A multivariate linear regression indicated that higher levels of self-stigma were associated with: being female, being older, lower self-esteem, higher problem gambling severity score, and greater use of secrecy (standardized coefficients: 0.16, 0.14, -0.33, 0.23, and 0.15, respectively). Strongest predictors in the model were self-esteem, followed by symptom severity score. Together, predictors in the model accounted for 38.9% of the variance in self-stigma. Discussion and conclusions These results suggest that the self-stigma of problem gambling may be driven by similar mechanisms as the self-stigma of other mental health disorders, and impact similarly on self-esteem and coping. Thus, self-stigma reduction initiatives used for other mental health conditions may be effective for problem gambling. In contrast, however, the self-stigma of problem gambling increased with female gender and older age, which are associated with gaming machine problems. This group should, therefore, be a target population for efforts to reduce or better cope with the self-stigma of problem gambling.

  17. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  18. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  19. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  20. Post-Injection Induced Seismicity in EGS: Triggering Mechanisms and Mitigation.

    Science.gov (United States)

    De Simone, S.; Carrera, J.; Vilarrasa, V.

    2017-12-01

    Induced microseismicity is a controversial issue related to Enhanced Geothermal Systems (EGS) and in general with fluid injection into deep geological formations. The occurring of felt earthquakes after stopping injection especially generates concern, because the correlation between injection and seismic activity is unclear. The aim of this work is to advance in the understanding of the processes that may induce or trigger co- and post-injection seismicity. To this end we investigate the thermo-hydro-mechanical coupling by means of numerical simulations of hydraulic stimulation of deep geothermal systems. We find that preferential flow through conductive fractures or fault zones provokes pressure and temperature perturbations that result in not only heterogeneous variation of the stress field, but also highly anisotropic variations of the local stress tensor. Anisotropic variations tend to stabilize some fractures, but destabilize others. Moreover, activation of shear slip causes a significant variation of the stress field that enlarges the range of critical fracture orientations. We find that post-injection seismicity may occur on non-critically oriented faults that were originally stable. During injection, such faults become destabilized by thermal and shear slip stress changes, but remain static by the superposition of the stabilizing effect of pressure forces. However, these fractures become unstable and fail when the pressure forcing dissipates shortly after injection stops abruptly, which suggests that a slow reduction in injection rate may mitigate post-injection seismicity.

  1. Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Ana Vieira

    2017-12-01

    Full Text Available Increasing use of the ground as a thermal reservoir is expected in the near future. Shallow geothermal energy (SGE systems have proved to be sustainable alternative solutions for buildings and infrastructure conditioning in many areas across the globe in the past decades. Recently novel solutions, including energy geostructures, where SGE systems are coupled with foundation heat exchangers, have also been developed. The performance of these systems is dependent on a series of factors, among which the thermal properties of the soil play a major role. The purpose of this paper is to present, in an integrated manner, the main methods and procedures to assess ground thermal properties for SGE systems and to carry out a critical review of the methods. In particular, laboratory testing through either steady-state or transient methods are discussed and a new synthesis comparing results for different techniques is presented. In situ testing including all variations of the thermal response test is presented in detail, including a first comparison between new and traditional approaches. The issue of different scales between laboratory and in situ measurements is then analysed in detail. Finally, the thermo-hydro-mechanical behaviour of soil is introduced and discussed. These coupled processes are important for confirming the structural integrity of energy geostructures, but routine methods for parameter determination are still lacking.

  2. An Overview of Promising Grades of Tool Materials Based on the Analysis of their Physical-Mechanical Characteristics

    Science.gov (United States)

    Kudryashov, E. A.; Smirnov, I. M.; Grishin, D. V.; Khizhnyak, N. A.

    2018-06-01

    The work is aimed at selecting a promising grade of a tool material, whose physical-mechanical characteristics would allow using it for processing the surfaces of discontinuous parts in the presence of shock loads. An analysis of the physical-mechanical characteristics of most common tool materials is performed and the data on a possible provision of the metal-working processes with promising composite grades are presented.

  3. Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe

    International Nuclear Information System (INIS)

    Cui, Xiaoyu; Zhu, Yue; Li, Zhihua; Shun, Shende

    2014-01-01

    Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs

  4. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  5. Determination of the mechanical characteristics of irradiated metals from the results of microhardness tests

    International Nuclear Information System (INIS)

    Hofman, A.

    1999-01-01

    To predict the possibilities of using structural materials in nuclear and thermonuclear reactors, it is important to have data on changes of the mechanical characteristics and irradiation obtained from full-scale or simulation tests. Materials are irradiated in nuclear reactors with fast neutrons, the sources of high-energy neutrons with an energy of 14 MeV and the accelerators of charged particles. The restricted volumes for irradiation of these specimens in the systems and also the need to test large numbers of specimens under the same conditions make it necessary to reduce the size of irradiated specimens. To solve this problem, work is being carried out to develop various methods of testing miniature specimens, including tension extrusion of disc-shaped micro-specimens, microhardness, and the Charpy Method. In examination of the irradiation hardening of the materials, the main advantage of the microhardness method is that it makes it possible to examine small specimens. In single microhardness tests, only a small area of the irradiated specimens is examined. This makes it possible to increase the radiation dose and carry out subsequent tests of microhardness on the same specimens. The aim of this work was to determine the possibilities of using the microhardness measurement method for evaluating the mechanical characteristics of metallic materials. The comparison of the data, obtained in microhardness tests and in tensile loading specimens of 0Kh18N10Tsteel, irradiated with neutrons, shows the efficiency of the microhardness method as a tool for investigating the irradiation hardening of reactor materials

  6. Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition

    Directory of Open Access Journals (Sweden)

    LIU Jian

    2017-10-01

    Full Text Available Surfacing deposition forming method was adopted to carry out remanufacturing experiment of FV520B precipitation hardening stainless steel. Then the mechanical property characteristic of the remanufacturing layer was tested and studied, contrasted with the corresponding property of substrate. The results show that the remanufacturing layer, formed with MAG surfacing of FV520B precipitation hardening stainless steel has mechanical characteristic with high strength and hardness, the tensile strength reaches 1195MPa, exceeds 1092MPa of substrate, yield strength is 776MPa and average hardness is 336HV, is close to the corresponding property of substrate which is 859MPa and 353HV respectively; however, the elongation and impact toughness of the remanufacturing layer is merely 8.92% and 61J/cm2 respectively, it has a large gap with the corresponding property 19.72% and 144J/cm2 respectively of substrate. Fracture and microstructure analysis on specimens shows that the microstructure of remanufacturing layer is fast cooling non-equilibrium crystallized lath martensite, and carbide precipitated strengthening phase such as NbC, MoC, M23C6,etc, which is the reason that remanufacturing layer has high strength and high hardness. But as lack of aging treatment and Cu strengthening phase, and the weak interface between contaminating brittle phase or large size spherical particles and substrate will deteriorate the deformability and induce stress concentration and cracking when the material is load-carrying, and is the main reason of the remanufacturing layer having lower static tensile elongation and impact toughness.

  7. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip

    International Nuclear Information System (INIS)

    Chung, Koo-Hyun; Lee, Yong-Ha; Kim, Dae-Eun

    2005-01-01

    The wear of an atomic force microscope (AFM) tip is one of the crucial issues in AFM as well as in other probe-based applications. In this work, wear tests under extremely low normal load using an AFM were conducted. Also, in order to understand the nature of silicon tip wear, the wear characteristics of crystal silicon and amorphous silicon oxide layer were investigated by a high-resolution transmission electron microscope (HRTEM). It was found that fracture of the tip readily occurred due to impact during the approach process. Experimental results showed that the impact should be below 0.1 nN s to avoid significant fracture of the tip. Also, it was observed that wear of the amorphous layer, formed at the end of the tip, occurred at the initial stage of the silicon tip damage process. Based on Archard's wear law, the wear coefficient of the amorphous layer was in the range of 0.009-0.014. As for the wear characteristics of the silicon tip, it was shown that wear occurred gradually under light normal load and the wear rate decreased with increase in the sliding distance. As for the wear mechanism of the silicon tip, oxidation wear was identified to be the most significant. It was shown that the degree of oxidation was higher under high normal load and in a nitrogen environment, oxidation of the silicon tip was reduced

  8. Selected physico-mechanical characteristics of cryogenic and ambient ground turmeric

    Science.gov (United States)

    Barnwal, Pradyuman; Mohite, Ashish M.; Singh, Krishna K.; Kumar, Pankaj

    2014-03-01

    In this communication, selected physicomechanical characteristics of ground turmeric (cv. Prabha) were investigated for cryogenic and ambient grinding conditions of turmeric at different moisture contents (4, 6, 8 and 10% w.b.). A cryogenic grinder (Model: 100 UPZ, Hosokawa Alpine, Germany) and a micro pulverizer (hammer mill) were used for cryogenic and ambient grinding, respectively. The ground turmeric was graded in three grades viz. Gr-I, Gr-II and Gr-III with a sieve shaker using BSS Nos. 40, 85 and pan, respectively. Tap densities for cryogenic and ambient ground turmeric decreased from 678.7 (Gr-I) to 546.7 kgm-3 (Gr-III) and from 642.3 (Gr-I) to 468.6 kgm-3 (Gr-III), respectively, with the moisture increase. The angle of repose for cryogenic and ambient ground turmeric increased linearly from 26.85 (Gr-I) to 34.0° (Gr-III) and from 23.10 (Gr-I) to 28.06° (Gr-III), respectively with the increase in moisture content. The static coefficient of friction was the highest on plywood surface followed by mild steel sheet and galvanized iron sheet. The cryoground samples were found better in colour. Thermal conductivity of cryo-ground samples was higher than that of ambient ground samples. These physico-mechanical characteristics of cryogenic and ambient ground turmeric will be helpful for packaging, handling, and storage.

  9. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  10. Cure kinetics and mechanical interfacial characteristics of zeolite/DGEBA composites

    International Nuclear Information System (INIS)

    Park, Soo Jin; Kim, Young Mi; Shin, Jae Sup

    2003-01-01

    In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-Diamino Diphenyl Methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). Cure kinetics of the composites were examined in the context of Differential Scanning Calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor(K IC ) and critical strain energy release rate(G IC ). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, Si 2p /A1 2p composition ratios of the treated zeolite were increased, which could be attributed to the weakening of A1-O bond in framework. Cure activation energy(E a ) of 15-BZ composites was decreased, whereas K IC and G IC were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite

  11. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  12. Mathematical model and characteristic analysis of hybrid photovoltaic/piezoelectric actuation mechanism

    Science.gov (United States)

    Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan

    2016-12-01

    Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.

  13. Effect of addition of semi refined carrageenan on mechanical characteristics of gum arabic edible film

    Science.gov (United States)

    Setyorini, D.; Nurcahyani, P. R.

    2016-04-01

    Currently the seaweed is processed flour and Semi Refined Carraagenan (SRC). However, total production is small, but both of these products have a high value and are used in a wide variety of products such as cosmetics, processed foods, medicines, and edible film. The aim of this study were (1) to determine the effect of SRC on mechanical characteristics of edible film, (2) to determine the best edible film which added by SRC with different concentration. The edible film added by SRC flour which divided into three concentrations of SRC. There are 1.5%; 3%; and 4.5% of SRC, then added 3% glycerol and 0.6% arabic gum. The mechanical properties of the film measured by a universal testing machine Orientec Co. Ltd., while the water vapor permeability measured by the gravimetric method dessicant modified. The experimental design used was completely randomized design with a further test of Duncan. The result show SRC concentration differences affect the elongation breaking point and tensile strength. But not significant effect on the thickness, yield strength and the modulus of elasticity. The best edible film is edible film with the addition of SRC 4.5%.

  14. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  15. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    Science.gov (United States)

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  16. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Sarkari Khorrami, Mahmoud; Mostafaei, Mohammad Ali; Pouraliakbar, Hesam, E-mail: hpouraliakbar@alum.sharif.edu; Kokabi, Amir Hossein

    2014-07-01

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m{sup −3} to 79 J m{sup −3}, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal.

  17. PHYSICAL-MECHANICAL CHARACTERISTICS OF CEMENT-BONDED KENAF BAST FIBRES COMPOSITE BOARDS WITH DIFFERENT DENSITIES

    Directory of Open Access Journals (Sweden)

    B. AHMED AMEL

    2017-08-01

    Full Text Available This study was carried out to explore the potential of kenaf bast fibres (KBFs for production of cement-bonded kenaf composite boards (CBKCBs. More than 70% of the KBFs were of size >3.35 mm and length of 31±0.4 mm, therefore, they were used for CBKCBs production. The CBKCBs with the dimensions of 450 × 450 × 12 mm were produced using cement (C: KBF with proportion of (2:1 and different board densities (BD namely 1100, 1300 and 1500 kg/m3. The CBKCBs were first cured in a tank saturated with moisture for 7days, and then kept at room temperature for 21 days. Mechanical and physical properties of the CBKCBs were characterized with regards to their modulus of rupture (MOR, modulus of elasticity (MOE, internal bond (IB, water absorption (WA, and thickness swelling (TS. Results of the tested CBKCBs revealed that the MOR increased while the MOE decreased due to uniform distribution of KBFs. It was found that loading of KBFs has a negative influence on the internal bond (IB of the CBKCBs; the IB was reduced as KBFs tend to balling and making unmixed aggregates with the cement. These results showed that the CBKCB is a promising construction material that could potentially be used in different structural applications due to their good mechanical characteristics.

  18. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  19. Piecewise nonlinear dynamic characteristics study of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao; Wang Feng

    2011-01-01

    Piecewise nonlinear dynamics of the control rod mechanism (CRDM), one of the critical components in PWR nuclear power plants, are studied for its lifting process in this paper. Firstly, equations of the electric circuit and the magnetic circuit are set up. Then based on the dynamic lifting process analysis of CRDM, its motion procedure is divided into three stages, and the coupled magnetic-electric-mechanical equation for each stage is derived. By combining the analytical solution method and the numerical simulation method, the piecewise nonlinear governing equations are solved. Finally, parameters which can illustrate the dynamic characteristics of CRDM, such as the magnetic force, the coil current, the armature displacement, the armature velocity and the acceleration are obtained and corresponding curves with the time are drawn and analyzed. The analysis results are confirmed by the test which proves the validity of our method. Work in this paper can be used for design and analysis as well as the site fault diagnosis of CRDM. (author)

  20. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  1. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)

    2016-06-06

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  2. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    International Nuclear Information System (INIS)

    Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2016-01-01

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  3. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease.

    Science.gov (United States)

    Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E

    2017-06-01

    Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.

  4. Microstructural and mechanical characteristics of W–2Ti and W–1TiC processed by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, E28911 Leganés (Spain); Savoini, B. [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, E28911 Leganés (Spain); Tejado, E. [Departamento de Ciencia de Materiales, E.T.S. I. de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E28040 Madrid (Spain); Centro Nacional de Investigaciones Metalúrgicas (C.S.I.C), Av. Gregorio del Amo, 8, E2840 Madrid (Spain); Monge, M.A. [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, E28911 Leganés (Spain); Pastor, J.Y. [Departamento de Ciencia de Materiales, E.T.S. I. de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E28040 Madrid (Spain); Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, E28911 Leganés (Spain)

    2014-12-15

    W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti.

  5. Microstructural and mechanical characteristics of W–2Ti and W–1TiC processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Muñoz, A.; Savoini, B.; Tejado, E.; Monge, M.A.; Pastor, J.Y.; Pareja, R.

    2014-01-01

    W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti

  6. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  7. Study of Acoustic Emission and Mechanical Characteristics of Coal Samples under Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Huamin Li

    2015-01-01

    Full Text Available To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

  8. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    Science.gov (United States)

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  10. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    Science.gov (United States)

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  11. Time variations in the mechanical characteristics of local crustal segments according to seismic observations

    Science.gov (United States)

    Kocharyan, G. G.; Gamburtseva, N. G.; Sanina, I. A.; Danilova, T. V.; Nesterkina, M. A.; Gorbunova, E. M.; Ivanchenko, G. N.

    2011-04-01

    The results of the seismic observations made with two different experimental setups are presented. In the first case, the signals produced by underground nuclear explosions at the Semipalatinsk Test Site were measured on a linear profile, which allowed one to definitely outline the areas where the mechanical properties of rocks experienced considerable time variations. In the second case, the waves excited by the open-pit mine blasts recorded at a small-aperture seismic array at the Mikhnevo Geophysical Station (Institute of Geosphere Dynamics, Russian Academy of Sciences) on the East European Platform favored the estimation of variations in the integral characteristics of the seismic path. Measurements in aseismic regions characterized by diverse geological structure and different tectonic conditions revealed similar effects of the strong dependency of seismic parameters on the time of explosions. Here, the variations experienced by the maximum amplitudes of oscillations and irrelevant to seasonal changes or local conditions reached a factor of two. The generic periods of these variations including the distinct annual rhythm are probably the fragments of a lower-frequency process. The obtained results suggest that these variations are due to changes in the stressstrain state of active fault zones, which, in turn, can be associated with the macroscale motion of large blocks triggered by tidal strains, tectonic forces and, possibly, variations in the rate of the Earth's rotation.

  12. Basic Characteristics of Hemimorphite and Its Transformation Mechanism with Na2CO3

    Directory of Open Access Journals (Sweden)

    Qihong Wang

    2018-04-01

    Full Text Available The crystal of hemimorphite is a non-conductor. The Si–O bond in the crystal is strong, whereas the Zn–O bond is weak. These properties lead to the easy breakage of the Zn–O bond in the crushing process of hemimorphite. Thus, the interaction between minerals and polar water molecules is strong, and natural floatability of ores is poor. This study systematically investigated the characteristics of hemimorphite and its action mechanism with Na2CO3. Results of SEM-EDS showed that the surface of hemimorphite dissolved after interacting with Na2CO3, and the contents of Si and O decreased, whereas Zn and C increased. XPS analysis showed that the carbonate group was detected. The interaction between CO32− and hemimorphite was calculated using the first principles calculation based on density functional theory. The results indicate that an O atom in CO32− interacted with Zn2+ from the (100 plane of hemimorphite. The interaction between Zn and O atoms was not strong, and the Zn atoms were not completely displaced, which was proven by density of state analysis and the EDS and XPS results. The Mulliken population showed that the O–Zn bond was the atomic bonding of CO32− with Zn2+ and exhibited properties of ionic bonds. Thus, hemimorphite transformed to smithsonite-like mineral (ZnCO3 when acting with CO32−.

  13. An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

    Directory of Open Access Journals (Sweden)

    Xinjing Li

    2016-10-01

    Full Text Available Over-high maturity is one of the most vital characteristics of marine organic-rich shale reservoirs from the Lower Paleozoic in the south part of China. The organic matter (OM in shale gas reservoirs almost went through the entire thermal evolution. During this wide span, a great amount of hydrocarbon was available and numerous pores were observed within the OM including kerogen and solid bitumen/pyrobitumen. These nanopores in solid bitumen/pyrobitumen can be identified using SEM. The imaging can be dissected and understood better based on the sequence of diagenesis and hydrocarbon charge with the shape of OM and pores. In terms of the maturity process showed by the various typical cases, the main effects of the relationship between the reservoir porosity and organic carbon abundance are interpreted as follows: the change and mechanism of reservoirs properties due to thermal evolution are explored, such as gas carbon isotope from partial to complete rollover zone, wettability alteration from water-wet to oil-wet and then water-wet pore surface again, electrical resistivity reversal from the increasing to decreasing stage, and nonlinearity fluctuation of rock elasticity anisotropy. These indicate a possible evolution pathway for shale gas reservoirs from the Lower Paleozoic in the southern China, as well as the general transformation processes between different shale reservoirs in thermal stages.

  14. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  15. A research on the mechanical property, work efficiency and structural characteristics of heavyweight concrete

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Ooue, Minoru; Noda, Shizuo; Suzuki, Keiichi; Ishii, Takakazu; Nakazawa, Kouichi; Mitsugi, Shiro.

    1991-01-01

    Generally thickness is increased in walls and slabs to improve the shielding ability of normal concrete in the buildings in nuclear power plants. On the other hand, the decrease of thickness of members and the decrease of building size can be expected by the adoption of heavy weight concrete. But there are little principal members such as shear walls using heavy weight concrete. Therefore, the data related to the mechanical properties and the construction method are not sufficient. This study was carried out to examine the properties and the structural characteristics of heavy weight concrete, and to establish the construction method. The selection of aggregate, the properties of aggregate and the properties of heavy weight concrete are reported. Pumping test was carried out with two kinds of the mixing proportion, and its procedure and the results are shown. The heavy weight concrete was placed as wall specimens, and its procedure and the results are described. The static loading test on shear wall specimens was carried out, and its procedure and the results are reported. Magnetite and hematite ores adopted as the aggregate caused no problem. (K.I.)

  16. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  17. Microstructural Characteristics and Mechanical Properties of 2205/AZ31B Laminates Fabricated by Explosive Welding

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available A bimetal composite of 2205 duplex stainless steel and AZ31B magnesium alloy was cladded successfully through the method of explosive welding. The microstructural characteristics and mechanical properties of 2205/AZ31B bimetal composite are discussed. The interface of 2205/AZ31B bimetallic composite was a less regular wavy morphology with locally melted pockets. Adiabatic shear bands occurred only in the AZ31B side near explosive welding interface. The microstructure observed with EBSD showed a strong refinement near the interface zones. Line scan confirmed that the interface had a short element diffusion zone which would contribute to the metallurgical bonding between 2205 duplex stainless steel and AZ31B magnesium alloy. The value of micro-hardness near the bonding interface of composite plate increased because of work hardening and grain refinement. The tensile shear strength of bonding interface of 2205/AZ31B composite was 105.63 MPa. Tensile strength of 2205/AZ31B composite material was higher than the base AZ31B. There were two abrupt drops in stress in the stress–strain curves of the 2205/AZ31B composite materials.

  18. Experimental study on mechanism and shape characteristics of suspended flexible dam

    Science.gov (United States)

    Wang, Jian-zhong; Fan, Hong-xia; Zhu, Li-jun

    2014-12-01

    Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.

  19. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  20. The influence of the mechanical properties on fuel rod support characteristics – A case study of dual cooled fuel

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Kim, Hyung Kyu; Ko, Sung Ho

    2014-01-01

    Highlights: • Spring characterization test and analysis were performed to obtain characteristic curves of modified H-type spring. • Using an actual mechanical property is needed to correctly predict the spring characteristics. • The characteristics during unloading should be used for a spacer grid support design. - Abstract: This paper concerns a finite element analysis for a spacer grid support (spring and dimple) design. An accurate prediction of the support characteristics (contact force vs. deflection) is the most crucial in the design by analysis. It is found that the mechanical properties are the key parameter to simulate the characteristics as close as the experimental results after using three different sets of mechanical property data including the actual tensile test results of the present material for a spacer grid of a dual cooled fuel. Besides, the validity of using the characteristics during unloading process is also discussed incorporating a possible overshoot of the support. The coincidence between the present finite element prediction and experimental results is quite good: less than 3.09% at most

  1. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  2. The Mechanical and Fracturing of Rockburst in Tunnel and Its Acoustic Emission Characteristics

    Directory of Open Access Journals (Sweden)

    Xiangxin Liu

    2018-01-01

    Full Text Available The phenomenon of acoustic emission (AE is associated with rock failure and rock fracturing. In order to investigate the influence of tectonic stress on rockburst in tunnel, a biaxial loading experiment system was used in this study. The excavation operation is undertaken at the center of samples to monitor the tunnel forming process in situ, and the different horizontal stresses can be studied by using the AE monitoring technique. The dynamical fracturing process of the tunnel model was summarized, and the timing parameters of AE signals in rockburst stages were obtained. The curves of AE energy and cumulative AE energy with time show a “step-like” rising trend before the occurrence of rockburst. The evolution of macro- and mesocracks is captured, and the mechanical conditions for a “V-shaped” rockburst pit are derived. As the horizontal stress increases, the effect of excavation unloading becomes more pronounced, and the damage caused by the rockburst intensifies. In the early stage of rockburst evolution, the fracturing type follows a model of tensile-shear mix model. A positive relationship between the ratio of shear fracturing type and the horizontal stress can be noted when the rock is about to burst, and the high intensity and the high energy released of from the rock-fracturing event have become evident. Thus, the results indicate that one should focus on monitoring both sides of the surrounding rock of the tunnel so as to extract the characteristics of the process of tunnel in tunnel. The applications of biaxial loading system and during an excavation operation provide a useful tool to simulate the rock burst in tunnel at an engineering site.

  3. Crystallographic, microstructure and mechanical characteristics of dynamically processed IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.D., E-mail: ads.hpu@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Sharma, A.K. [Terminal Ballistics Research Laboratory, Chandigarh 160030 (India); Thakur, N. [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2014-06-01

    Highlights: • Measurement of detonation velocity and compaction of powder are achieved together. • A plastic explosive detonation results into dense compacts without grain-growth. • We have studied crystallographic, micromechanical and microstructural features. • The results show no segregation within the compacts. • Density (98%), microhardness (470 ± 3)H{sub v}, microstrain (0.3%), UTS (806 MPa) are obtained. - Abstract: Dynamic consolidation of IN718 superalloy powder without grain-growth and negligible density gradient is accomplished through explosively generated shock wave loading. The compaction of powder and measurement of detonation velocity are achieved successfully in a single-shot experiment by employing instrumented detonics. A plastic explosive having a detonation velocity of the order of 7.1 km/s in a direct proximity with superalloy powder is used for the consolidation process. The compacted specimens are examined for structural, microstructure and mechanical characteristics. X-ray diffraction (XRD) study suggests intact crystalline structure of the compacts. A small micro-strain (0.26%) is observed by using Williamson–Hall method. Wavelength dispersive spectroscopy indicates no segregation within the shock processed superalloy compacted specimens. The monoliths investigated for fractography by using field emission scanning electron microscopy (FE-SEM) show original dendritic structure accompanied by re-solidified molten regions across the interparticle boundaries. Depth-sensing indentations (at 1.96 N) on compacted specimens show excellent micro-hardness of the order of (470 ± 3)H{sub v}. Tensile and compressive strengths of the superalloy monolith are observed to be 806 and 822 MPa, respectively.

  4. Quality characteristics of mechanically deboned chicken meat irradiated with different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Roque, Claudio Vitor; Fukuma, Henrique Takuji; Gomes, Heliana de Azevedo [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)]. E-mails: polibrito@yahoo.com.br; cvroque@cnen.gov.br; htfukuma@cnen.gov.br; hgomes@cnen.gov.br; Cipolli, Katia Maria Vieira Avelar Bittencourt [Sao Paulo Agribusiness Technology Agency (APTA), Monte Alegre do Sul, SP (Brazil). Polo Regional do Leste Paulista]. E-mail: katiacipolli@aptaregional.sp.gov.br; Pereira, Jose Luiz [Campinas State University UNICAMP, Campinas, SP (Brazil). Dept. of Food Sciences]. E-mail: pereira@fea.unicamp.br

    2007-07-01

    Mechanically Deboned Chicken Meat (MDCM) is a low cost raw material used in the production of emulsified prepared food, but presents a favorable medium for development of microorganisms. Several studies were carried out with irradiation of edible goods in order to establish a dose that would be capable of decreasing levels of microorganisms without altering the sensorial and nutritional characteristics of the food. Frozen samples of MDCM with skin were irradiated with doses of 0.0 kGy, 3.0 kGy-4.04 kGy.h{sup -1}, and 3.0- 0.32 kGy.h{sup -1}. Individual lots of irradiated and control samples were evaluated during the 11 day refrigeration period for the following parameters: total count of psychotropic bacteria, substances reactive to Thiobarbituric Acid, sensorial evaluation (irradiated odor, oxidized odor, pink and brown colors). The average values in this period were 4.28 log (CFU.g{sup -1}), 2.32 log (CFU.g{sup -1}), and 1.68 log (CFU.g{sup -1}) for control samples, low and high dose rate, respectively. TBARS average values for control samples, low and high dose rate were 0.38 mg.Mal.kg{sup -1}, 2.89 mg.Mal.kg{sup -1}, and 3.64 mg.Mal.kg{sup -}'1, respectively. A difference between irradiated samples and the control sample was observed. The 3.0 kGy-4.04 kGy.h{sup -1} dose rate was verified as the best condition for MDCM processing through the evaluation of all the variables in the conditions of the present study. (author)

  5. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  6. Learner Characteristic Based Learning Effort Curve Mode: The Core Mechanism on Developing Personalized Adaptive E-Learning Platform

    Science.gov (United States)

    Hsu, Pi-Shan

    2012-01-01

    This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…

  7. An experimental bioactive dental ceramic for metal-ceramic restorations: Textural characteristics and investigation of the mechanical properties.

    Science.gov (United States)

    Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M

    2017-02-01

    The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Research of thermal dynamic characteristics for variable load single screw refrigeration compressor with different capacity control mechanism

    International Nuclear Information System (INIS)

    Wang, Zengli; Wang, Zhenbo; Wang, Jun; Jiang, Wenchun; Feng, Quanke

    2017-01-01

    Highlights: • Theoretical models of SSRC under part-load condition have been established. • The experiment of SSRC performance under part-load condition was conducted. • Thermal dynamic characteristic of SSRC under part-load condition was gained. • Economy and reliability of SSRC under part-load condition was analyzed. - Abstract: In the single screw refrigeration compressor (SSRC), the capacity control mechanism is normally employed to meet the actual required cooling capacity under different load conditions. In this paper, theoretical calculation models describing the working process of the SSRC with the single slide valve capacity control mechanism (SVCCM) and SSRC with the frequency conversion regulating mechanism (FCRM) are established to research the thermal dynamic characteristics for variable load SSRC under part-load conditions. Experimental investigation on a SSRC under part-load conditions is also carried out to verify the theoretical calculation models. By using these validated models, the thermodynamic performances and dynamic characteristics of the SSRC with different capacity control mechanism under part-load conditions have been analyzed and compared. Through the comparison, the economical efficiency and reliability of the SSRC with different capacity control mechanism were obtained. All of these works can provide the basis for the later optimization design for the variable load single screw refrigeration compressor.

  9. The Effects of Job Characteristics on Marital Quality: Specifying Linking Mechanisms.

    Science.gov (United States)

    Hughes, Diane; And Others

    1992-01-01

    Evaluated conceptual model hypothesizing that two dimensions of work-family interference, structural role difficulties and negative mood spillover, intervene in direct relationship between discrete characteristics of work and marital quality. Findings from 334 male and female white-collar workers indicated that job characteristics predicted…

  10. Working principle and structure characteristics analysis of the reactivity control drive mechanism

    International Nuclear Information System (INIS)

    Zhao Tianyu; Huang Zhiyong; Chen Feng; He Xuedong

    2010-01-01

    The startup, power regulation and safety shutdown of the nuclear reactor are operated by the reactivity control devices. Reactivity control drive mechanism is a key mechanical transmission component, which directly control the location of the neutron absorber in the core. Its working condition is complex, and its service life should be long., which requires high reliability. PWR as well as newly developed different type of reactors have different control devices drive mechanism. This paper mainly do analysis and comparison about the working environment, mechanical transmission principle, structure, performance, service life and other aspects of PWR, HTR control devices drive mechanism. In addition, this paper is also based on the working principles of reactive control devices drive mechanism, also consider the trends of its design and test verification by the international countries, and discussed the method and feasibility of improving and perfecting the structure and function of drive mechanism. (authors)

  11. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  12. Ionizing radiation effect on physico-mechanical characteristics of thermoplastic polymer materials

    International Nuclear Information System (INIS)

    Stankevich, V.M.; Pleskachevsky, Yu.M.; Smirnov, V.V.

    2001-01-01

    Investigation results in the field of ionizing radiation effect on structure and physico-mechanical properties of novel polymer materials are presented. The materials under study are various grades of PETP, PA-6 and polyethylene concentrate of technical carbon (PECC) commercially produced and extensively used in Belarus and abroad. It has been proved using EPR, thermomechanical and gel analyses that a combined effect of ionizing radiation within 0 to 10 MGy of absorbed dose range under different concentrations of mineral fillers (TiO 2 , kaolin, carbon black, graphite) and intensive cross-linking processes in amorphous phase are able to considerably improve strength characteristics of the studied polymers and their compositions. Most informative parameter was found to be breaking strength at rapture (σ r ) which enables to estimate the character of ionizing effect on the targets. At 0.01-0.05 MGy absorbed dose the highest σ r was shown as compared to initial PETP by the following materials: PN grade - 9 times, D - two and a half. When absorbed dose of PETP reached 0.2 MGy, σ r of PN surpassed the initial material 7.8 times, that of D - by 30% and E - by 1,5%. This is the evidence of elevated resistance of named materials to ionizing radiation in contrast to non-filled PETP 215. Growth of σ r in PA-6 has been noticed at absorbed dose above 2 MGy in response to maximum gel-formation values. Abrupt reduction of the studied parameters of PP upon irradiation is attributed to its destruction. Domination of cross-linking processes has been observed in PEVP and PECC which reduces macromolecular mobility and elasticity of the material as a whole but promotes polymer strengthening. Drop of PEVP impact strength can be related to its embrittlement. Presence of the filler (carbon black) in PECC at the initial stage of exposure resulted in improvement of studied parameters. Their further impairment is the result of limited mobility of macromolecules owing to cross-linking in

  13. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    Science.gov (United States)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  14. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    Science.gov (United States)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  15. FINAL TAILINGS OF METAL-WORKING PRODUCTION. Part 3. PHYSICO-MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2011-01-01

    Full Text Available The indices of adhesion and friability of metal-containing tailings, their water absorbency and wettability and also abrasive characteristics of tailings with the purpose of prevention of contacting surfaces wear are studied.

  16. Fundamental Studies on the Mechanical Behavior and Fracture Characteristics of Metal-Ceramic Interfaces

    National Research Council Canada - National Science Library

    Mukai, K

    1995-01-01

    .... There is need for a fundamental level of understanding of the strength characteristics and the origin of failure of the interface since it is the means by which load is transferred from the matrix to reinforcement...

  17. Dependence of mechanical characteristics from composition and structure and optimization of mechanical fracture energy of polymer composite material based on high-molecular rubbers

    Directory of Open Access Journals (Sweden)

    E. Nurullaev

    2017-07-01

    Full Text Available By means of numerical experiment the authors investigate dependence of conventional rupturing stress and mechanical fracture energy at uniaxial tension from fractional composition of dispersed filler, plasticizer volume fraction in polymer binder, effective density of transverse bonds, applied to development of covering for different purposes and with advanced service life in temperature range from 223 to 323 K. They compare mechanical characteristics of polymer composite materials (PCMs based on high- and low-molecular rubbers. It was shown that rupturing stress of high-molecular rubber-based PCM is of a higher magnitude than the stress of low-molecular rubber-based one at almost invariable rupturing deformation. Numerical simulation by variation of composition parameters and molecular structure enables evaluation of its maximum fracture energy which is 1000 times higher than mechanical fracture energy of similar composites based on low-molecular rubbers.

  18. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Zhang, Xianfeng, E-mail: lynx@mail.njust.edu.cn; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-11-05

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior.

  19. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    International Nuclear Information System (INIS)

    Xiong, Wei; Zhang, Xianfeng; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-01-01

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior

  20. Different mechanisms to explain the reversed effects of mental health on work characteristics

    NARCIS (Netherlands)

    Lange, A.H. de; Taris, T.W.; Kompier, M.A.J.; Houtman, I.L.D.; Bongers, P.M.

    2005-01-01

    Objectives: The number of longitudinal studies reporting evidence for reversed effects of strain on work is growing, but evidence regarding the mechanisms underlying such effects is scarce. In this study, earlier longitudinal findings were reviewed, and the following four mechanisms for reversed

  1. Characteristic Evaluation of a Shrouded Propeller Mechanism for a Magnetic Actuated Microrobot

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2015-09-01

    Full Text Available Medical microrobots have been widely used in clinical applications, particularly the spiral type locomotion mechanism, which was recently considered one of the main self-propelling mechanisms for the next medical microrobot to perform tasks such as capsule endoscopy and drug delivery. However, limits in clinical applications still exist. The spiral action of the microrobot while being used for diagnosis may lead to pain or even damage to the intestinal wall due to the exposed mechanisms. Therefore, a new locomotive mechanism, named the shrouded propeller mechanism, was proposed to achieve a high level of medical safety as well as effective propulsive performance in our study. The shrouded propeller mechanism consists of a bare spiral propeller and a non-rotating nozzle. To obtain a high effective propulsive performance, two types of screw grooves with different shapes including the cylindrical screw groove and the rectangular screw groove with different parameters were analyzed using the shrouded model. Two types of magnetic actuated microrobots with different driving modes, the electromagnetic (three-pole rotor actuated microrobot and the permanent magnet (O-ring type magnet actuated microrobot were designed to evaluate the performance of the electromagnetic actuation system. Based on experimental results, the propulsive force of the proposed magnetic actuated microrobot with a shrouded propeller was larger than the magnetic actuated microrobot with a bare spiral propeller under the same parameters. Additionally, the shrouded propeller mechanism as an actuator can be used for other medical microrobots for flexible locomotion.

  2. Effect of incorporation of nutraceutical capsule waste of safflower oil in the mechanical characteristics of corn starch films

    Directory of Open Access Journals (Sweden)

    Camila de CAMPO

    2016-01-01

    Full Text Available Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4 were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.

  3. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  4. [Hygienic characteristics of work conditions at large Hydroelectric Power Plants with mechanization and automatization].

    Science.gov (United States)

    Iakimova, L D

    1997-01-01

    The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.

  5. [Characteristics of experimental occlusal interference-induced masticatory mechanical hyperalgesia of rats].

    Science.gov (United States)

    Li, Xuejiao; Cao, Ye; Xie, Qiufei

    2014-10-01

    To investigate the relationship between the existence of occlusal interference and masticatory muscle hyperalgesia by exploring the stimulus-response relationship between the duration of occlusal interference and masticatory muscle mechanical withdrawal threshold. Occlusal interference with 0.4 mm-thick crowns on rat molars was removed under anaesthesia at 2, 3, 4, 5, and 6 d after wear, and masticatory muscle mechanical withdrawal threshold was tested at 1, 3, 5, 7, 10, 14, 21 and 28 d. Decreased mechanical withdrawal thresholds were detected in temporal muscles and masseter muscles on both sides following occlusal interference (P 0.05). No significant differences were detected between the contralateral side with the ipsilateral side (P occlusal interference at 5 d, and the existence of the occlusal interference is positively correlated with the duration of the mechanical hyperalgesia.

  6. On the influence of mechanical and magnetic characteristics on the field quality of superconducting magnets

    International Nuclear Information System (INIS)

    Abramov, A.G.; Ershov, S.Yu.; Daikovsky, A.G.; Ryabov, A.D.; Tkachenko, N.P.

    1992-01-01

    The paper presents a numerical analysis of the effect of mechanical processes in a superconducting magnet, beginning with the coil assembly fabrication and ending with energizing it. The purpose of our work was to find the correlations between the harmonics and mechanical behaviour of the design and hence, to detect possible defects in the production technology and show the possible ways of solving the problems. The effects related to the saturation of the magnetic shield are analysed as well. (Author)

  7. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  8. Influence of Microstructure and Composition Changes on Mechanical Characteristics of Aluminium Alloy After Heating and Cooling Treatment

    International Nuclear Information System (INIS)

    Sigit; Nuraini, E; Martoyo

    1998-01-01

    Influences of microstructure and chemical composition changes on mechanical characteristics of AIMg2 which were heated at 85-500 0 C and cooled with sands, water or air have been studied. Microstructure observation was carried out using optical microscope, while chemical composition determination by atomic absorption spectrophotometry (AAS). AIMg2 which has been heated at the relatively low temperature i. e, 200 0 C during 6 hours and cooled using sands showed a small change microstructure, but those will be clearly observed on the treatment at 300 0 C. The microstructure change is in agreement with the change of mechanical characteristic, I. e., the decreasing of tensile strength and hardness and increasing of elongation. After the temperature of treatment is higher than 300 0 C, the decreasing of the tensile strength was relatively constant, while the hardness increased. The microstructure of AIMg2 resulted from the heat treatment at temperature of 500 0 C was different with that of 300 0 C. Heat treatment at 500 0 C following by cooling in the sands, water or air respectively gave similar microstructure. Those also caused the change of alloying element content which was in agreement with decreasing of mechanical characteristics

  9. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  10. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    Science.gov (United States)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  11. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-03-30

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  12. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    International Nuclear Information System (INIS)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-01-01

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  13. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Directory of Open Access Journals (Sweden)

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  14. Mechanical and structural characteristics in high temperature of stainless steel welded joint

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Carvalho Mota, A.F. de

    1980-01-01

    The mechanical behavior at 600 0 C of weldments made of type 304 stainless as base metal and niobium containing type 347 stainless as weld metal has been investigated. This was done through tensile and creep tests. Heat treatments at 600 0 C and up to 6000 hours permited a simultaneous follow up of the mechanical and microstructural changes. It was observed that the exposure at 600 0 C under load contributes, from the begining, to the strengthening of the weld. This is due to the acceleration of the second phase precipitation hardening. (Author) [pt

  15. Characteristic Features of the Exotic Superconductors: Evidence for a Common Pairing Mechanism

    International Nuclear Information System (INIS)

    Brandow, B.

    1999-01-01

    We report on a comprehensive examination of the exotic superconductors (the materials so-labelled by Uemura and co-workers), to determine as far as possible the true systematics among their many anomalous features. In the crystal-chemistry aspects as well as in the electronic properties, we find features which appear to be universal for these materials, and also features which are clearly not universal but which are common enough to be considered typical for these materials. A number of implications are presented. It appears that all of these materials are sharing some ''new'' pairing mechanism, usually in addition to the conventional phonon mechanism

  16. A method for determination of complete mechanical characteristics of heterogeneous-structured materials

    Directory of Open Access Journals (Sweden)

    M. Maj

    2009-07-01

    Full Text Available The article outlines the possibilities to evaluate by a modified low-cycle fatigue test the quality of materials characterised by different structures and the resulting mechanical properties. The method was described by computer program (MLCF, adjusted to the operating parameters of a versatile testing machine.

  17. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru

    2014-01-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2

  18. Mechanical and microstructural characteristics of an Al-Li-Cu-Zr alloy during superplastic deformation

    International Nuclear Information System (INIS)

    Ren, B.

    1991-01-01

    If the above alloys are heavily cold- or warm-worked prior to superplastic deformation, they are resistant to static recrystallization but dynamically recrystallize with a clear strain dependence, and are superplastic deformable at relative high strain rates in the approximate range of 10 -3 to 10 -1 s -1 . The microstructural source of superplasticity has been the subject of less-detailed study than the more classical fully recrystallized materials. In this study, an effort was made to provide a somewhat greater insight into the mechanical behavior during the dynamic recrystallization of an Al-Li-Cu-Zr alloy, and to relate the mechanical behavior to the microstructure and its evolution. As part of the study, internal stresses were measured by the strain dip test, and effective stresses and their development were determined over a range of temperatures and strain rates. mechanisms for the superplastic flow and the internal-stress development during the initial stage of deformation were suggested. A variable-strain-rate model was developed based on the understanding of the mechanical behavior of this material

  19. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics

    DEFF Research Database (Denmark)

    Jørgensen, C.B.; Kiørboe, Thomas; Møhlenberg, F.

    1984-01-01

    feeding characterized by processing of water at low pressures (.ltoreq. 1 mm H2O). Mechanisms of water processing and particle retention in brachiopods and bivalves are compared. Laminar flow of through-currents and surface-currents in brachiopods is consistent with the hypothesis of capture of suspended...

  20. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions.

    Science.gov (United States)

    Sun, Fengzhen; Nordli, Henriette R; Pukstad, Brita; Kristofer Gamstedt, E; Chinga-Carrasco, Gary

    2017-05-01

    Wood nanocellulose has been proposed for wound dressing applications partly based on its capability to form translucent films with good liquid absorption capabilities. Such properties are adequate for non-healing and chronic wounds where adequate management of exudates is a requirement. In addition, the translucency will allow to follow the wound development without the necessity to remove the dressing from the wound. Understanding the mechanical properties of nanocellulose films and dressings are also most important for tailoring optimizing wound dressing structures with adequate strength, conformability, porosity and exudate management. Mechanical properties are usually assessed in standard conditions (50% relative humidity, RH), which is not relevant in a wound management situation. In this study we have assessed the mechanical properties of three nanocellulose grades varying in the degree of nanofibrillation. The effect of nanofibrillation and of polyethylene glycol (PEG) addition, on the tensile strength, elongation and elastic modulus were assessed after 24h in water and in phosphate-buffered saline (PBS). The results reveal the behavior of the nanocellulose dressings after wetting and shed light into the development of mechanical properties in environments, which are relevant from a wound management point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    Science.gov (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  2. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    Science.gov (United States)

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mechanical and hydraulic behaviour of compacting crushed salt backfill at low porosities. Project REPOPERM. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter; Czaikowski, Oliver; Wieczorek, Klaus; Zhang, Chun-Liang; Moog, Helge; Friedenberg, Larissa [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Stuehrenberg, Dieter; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Jobmann, Michael; Mueller, Christian; Schirmer, Sonja [DBE Technology GmbH (DBE TEC), Peine (Germany)

    2017-02-15

    The compaction behavior of crushed salt has been extensively investigated by means of experimental as well as theoretical work. The readiness of numerical tools for the application to modeling the complex coupled thermo-hydro-mechanical processes in the crushed salt backfilled in a repository in salt rock has also been demonstrated. Compaction tests were performed under repository-relevant conditions. These tests were supplemented by laboratory work aiming at specific aspects of compaction. The following list covers the topics of these investigations as well as the main results. - Revisiting the determination of the porosity in relevant, past experiments (BGR). - Influence of the grain size distribution on compaction (BGR). - Triaxial compaction test with dry material at low porosities (BGR). - Investigation of the influence of humidity on compaction covers several subtopics. - Permeability associated with low porosity includes two subtopics. - Constitutive equations for two -phase flow (GRS). - Microstructural Investigations (DBE TEC). Parallel to the experimental work attention focussed on several aspects of the basics for modelling the compaction of crushed salt. This work covers checking the validity of the established numerical tools as well as exploring new methods. Topics and main results are listed here: - Development/definition and comparison of constitutive models (BGR). - Benchmark calculations (BGR and GRS). - Capability of scaling-rules for capillary pressure from the oil industry (GRS). - Application of discrete element codes to compacting crushed salt (DBE TEC). Finally, repository-relevant scenarios are discussed as a basis for a realistic but generic numerical model of brine inflow in to a converging back filled drift under a thermal gradient (GRS). This exercise demonstrates the feasibility of modelling crushed salt compaction as a fully coupled thermohydraulic-mechanical process including two-phase flow effects.

  4. Mechanical and hydraulic behaviour of compacting crushed salt backfill at low porosities. Project REPOPERM. Phase 2

    International Nuclear Information System (INIS)

    Kroehn, Klaus-Peter; Czaikowski, Oliver; Wieczorek, Klaus; Zhang, Chun-Liang; Moog, Helge; Friedenberg, Larissa; Stuehrenberg, Dieter; Heemann, Ulrich; Jobmann, Michael; Mueller, Christian; Schirmer, Sonja

    2017-02-01

    The compaction behavior of crushed salt has been extensively investigated by means of experimental as well as theoretical work. The readiness of numerical tools for the application to modeling the complex coupled thermo-hydro-mechanical processes in the crushed salt backfilled in a repository in salt rock has also been demonstrated. Compaction tests were performed under repository-relevant conditions. These tests were supplemented by laboratory work aiming at specific aspects of compaction. The following list covers the topics of these investigations as well as the main results. - Revisiting the determination of the porosity in relevant, past experiments (BGR). - Influence of the grain size distribution on compaction (BGR). - Triaxial compaction test with dry material at low porosities (BGR). - Investigation of the influence of humidity on compaction covers several subtopics. - Permeability associated with low porosity includes two subtopics. - Constitutive equations for two -phase flow (GRS). - Microstructural Investigations (DBE TEC). Parallel to the experimental work attention focussed on several aspects of the basics for modelling the compaction of crushed salt. This work covers checking the validity of the established numerical tools as well as exploring new methods. Topics and main results are listed here: - Development/definition and comparison of constitutive models (BGR). - Benchmark calculations (BGR and GRS). - Capability of scaling-rules for capillary pressure from the oil industry (GRS). - Application of discrete element codes to compacting crushed salt (DBE TEC). Finally, repository-relevant scenarios are discussed as a basis for a realistic but generic numerical model of brine inflow in to a converging back filled drift under a thermal gradient (GRS). This exercise demonstrates the feasibility of modelling crushed salt compaction as a fully coupled thermohydraulic-mechanical process including two-phase flow effects.

  5. Evolution of mechanical characteristics and permeability of clayey materials under the influence of thermal loadings

    International Nuclear Information System (INIS)

    Boucly-Norotte, V.

    1991-01-01

    This research thesis reports the study of the effects on a long term of temperature variations on the volume and texture of clayey soils, notably with respect to their initial petro-physical and petro-graphical characteristics, and to their consolidation state. From an experimental point of view, this research is based on the monitoring of the volume strain and of the permeability of samples placed in an oedometric cell and submitted to thermal loadings within the 20 C - 110 C range. A thorough texture investigation (mercury-based porosimetry, observation by scanning electronic microscopy, and so on) before and after testing allows the evolution of material texture to be assessed [fr

  6. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  7. Compositional, structural and mechanical characteristics of nc-TiC/a-C:H nanocomposite films

    International Nuclear Information System (INIS)

    Wang Yaohui; Zhang Xu; Wu Xianying; Zhang Huixing; Zhang Xiaoji

    2008-01-01

    Nanocomposite nc-TiC/a-C:H films, with an unusual combination of superhardness, high elastic modulus and high elastic recovery, are prepared by filtered cathodic vacuum arc technique using the C 2 H 2 gas as the precursor. The effects of filter coil current on compositional, structural and mechanical properties of the nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. XPS and Raman analyses show that composition and nanostructure of the nc-TiC/a-C:H films can be changed by varying the filter coil current. By selecting the proper value of filter coil current, 2.5 A, one can remarkably enhance the mechanical properties of films such as superhardness (43.6 GPa). The superhardness can be ascribed to the phase variation and the nanostructure.

  8. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  9. The Differences of Coping Mechanism in Extrovert and Introvert Personality Characteristics

    OpenAIRE

    RAHMAWATI, RAHMAWATI; AGUS ARIE AFFANDIE, AGUS ARIE AFFANDIE; AULA ISNAINIME, AULA ISNAINIME

    2013-01-01

    Students have a lot of work in their daily life , the challenges and demands that must be executed . Lack of understanding of the above makes student anxiety , stress , and even withdraw dependent . This study aimed to differences in coping mechanisms with extrovert and introvert personality traits in the Academy of Health Rajekwesi Bojonegoro . This type of research using comparative designs , The Sample was student of health nursing Academy Rajekwesi Bojonegoro , its amount 79 respon...

  10. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    International Nuclear Information System (INIS)

    Jyegal, Jang

    2015-01-01

    Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices

  11. Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-09-01

    Full Text Available This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM, which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs. In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D and three-dimension (3-D finite element method (FEM simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.

  12. A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methods

    International Nuclear Information System (INIS)

    Kim, B.H.; Ling, D.Y.; Kim, J.S.

    1976-01-01

    A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca. 20 0 C to 320 0 C and a frequency range of KHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking however, melting and liquidizing temperatures attain rapid increase at the imitation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation. (author)

  13. Characteristic of bioplastic’s physical and mechanical (Study on Tapioca Concentration and Composition Mixture of Plasticizer

    Directory of Open Access Journals (Sweden)

    Bambang Admadi Harsojuwono

    2016-03-01

    Full Text Available This study aims to (1 the effect of the concentration of starch and  ratio mixture of plasticizer to the physical and mechanical characteristics of bioplastics (2 determine the concentration of starch and plasticizer RATIO mixture  that results in physical and mechanical characteristics of bio plastics best. The experiment was conducted using a factorial randomized block design. The first factor is the concentration of tapioca consisting of 3 levels 4%, 5% and 6% (w / w. The second factor is the   mixture plasticizer ratio  of glycerol and sorbitol   consisting of 5 levels ie (100: 0%, (95: 5%, (90:10%, (85:15%, (80:20% b / b. Each combination of treatments classified into 2 time  processing bio plastics, so there are 30 experimental units. Variables observed water content, elongation at break, tensile strength and Young's modulus . The data obtained were analyzed of variant and  test of Duncan's. The results showed that the concentration of tapioca and  mixture plasticizer had no effect on water content but significant effect on the elongation at break, tensile strength and Young's modulus. The concentration of starch 6% with a ratio of mixture of plasticizers glycerol: sorbitol ( 100: 0 produces the best characteristics of bioplastics with water content of 3.98%, elongation at break of 18.75%, the tensile strength of 930 MPa and a Young's modulus of 50 MPa.

  14. On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe

    Directory of Open Access Journals (Sweden)

    Hirotaka Sugiura

    2015-06-01

    Full Text Available We propose a method to characterize the mechanical properties of cells using a robot-integrated microfluidic chip (robochip and microscopy. The microfluidic chip is designed to apply the specified deformations to a single detached cell using an on-chip actuator probe. The reaction force is simultaneously measured using an on-chip force sensor composed of a hollow folded beam and probe structure. In order to measure the cellular characteristics in further detail, a sub-pixel level of resolution of probe position is required. Therefore, we utilize the phase detection of moiré fringe. Using this method, the experimental resolution of the probe position reaches 42 nm. This is approximately ten times smaller than the optical wavelength, which is the limit of sharp imaging with a microscope. Calibration of the force sensor is also important in accurately measuring cellular reaction forces. We calibrated the spring constant from the frequency response, by the proposed sensing method of the probe position. As a representative of mechanical characteristics, we measured the elastic modulus of Madin-Darby Cannie Kidney (MDCK cells. In spite of the rigid spring constant, the resolution and sensitivity were twice that achieved in our previous study. Unique cellular characteristics can be elucidated by the improvements in sensing resolution and accuracy.

  15. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2012-02-26

    Epoxy hybrid-nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission electron microscopy (TEM). The influences of RCF/HNTs dispersion on the mechanical properties and thermal properties of these composites have been characterized in terms of flexural strength, flexural modulus, fracture toughness, impact toughness, impact strength, and thermogravimetric analysis. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased because of the addition of HNTs into the epoxy matrix. Flexural strength, flexural modulus, fracture toughness, and impact toughness increased by 20.8, 72.8, 56.5, and 25.0%, respectively, at 1 wt% HNTs load. The presence of RCF dramatically enhanced flexural strength, fracture toughness, impact strength, and impact toughness of the composites by 160%, 350%, 444%, and 263%, respectively. However, adding HNTs to RCF/epoxy showed only slight enhancements in flexural strength and fracture toughness. The inclusion of 5 wt% HNTs into RCF/epoxy ecocomposites increased the impact toughness by 27.6%. The presence of either HNTs or RCF accelerated the thermal degradation of neat epoxy. However, at high temperature, samples reinforced with RCF and HNTs displayed better thermal stability with increased char residue than neat resin. © 2012 Society of Plastics Engineers.

  16. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    Science.gov (United States)

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  18. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  19. Physico-mechanical characteristics of commercially available bulk-fill composites.

    Science.gov (United States)

    Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane

    2014-08-01

    Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.090.8). Softening in ethanol revealed differences in polymer network density between material types. The reduction of time and improvement of convenience associated with bulk-fill materials is a clear advantage of this particular material class. However, a compromise with mechanical properties compared with more conventional commercially-available nano-hybrid materials was demonstrated by the present work. Given the lower mechanical properties of most bulk-fill materials

  20. Non-linear elastic behaviour of carbon fibres of different structural and mechanical characteristic

    Directory of Open Access Journals (Sweden)

    ISIDOR M. DJORDJEVIC

    2007-05-01

    Full Text Available Five types of polyacrylonitrile, PAN, based carbon fibres, differing in modulus, breaking strain and in crystallite orientation, have been studied. Non-Hookean behaviour was investigated by computing the tangent tensile and compression moduli as a function of strain, from the axial stress–strain response obtained in standard tensile, compression, as well as in modified flexural tests of unidirectional carbon/ epoxy composites. The dependences of the tensile modulus on tensile strain of the carbon fibres were extracted from data obtained in single-filament tensile tests. Analytical expressions for the tensile modulus–tensile strain and compression modulus–compression strain dependences in the performed test were deduced. The structural characterization of the carbon fibres was performed by X-ray diffraction on bundle of parallel fibres. The interlayer spacing d002 and the apparent lateral dimension of the crystallites Lc were deduced by processing the 002 diffraction profiles. The established modulus–strain dependences were correlated with the fibre characteristics (breaking strain and mean modulus values, as well as with the characteristic of the 002 diffraction profile and the d002 and Lc values.

  1. On the mechanism of the Deimos effect on characteristics of the Mars magnetosphere

    International Nuclear Information System (INIS)

    Bogdanov, A.V.

    1978-01-01

    Presented are the data pointing out the possible strong interaction of solar wind with the Mars satellite of Deimos. Investigation results of ion characteristics of solar wind obtained with the help of automatic interplanetary ''Mars-5'' station have shown, that at the distance of about 20 thousand km behind the Deimos, considerable distortion of ion spectra and ion density decreasing for more than an order of magnitude are detected. To explain the effect detected, it is very likely to suppose that intensive gas release from the Deimos surface takes place, as the Deimos dimensions are essentially smaller than the Larmour radius of thermal ions. The Deimos interaction with the solar wind produces an essential effect on characteristics of the Mars magnetosphere and on those of the shock wave. It is pointed out that in the moment of the Deimos passing before the Mars the dimensions of the Mars magnetosphere have been increased the shock wave being distant. It may be explained as the confirmation of the existence of a region with lowered ion density behind the Deimos

  2. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    Science.gov (United States)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  3. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    Directory of Open Access Journals (Sweden)

    Chia-Chi Yang

    Full Text Available Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  4. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    Science.gov (United States)

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  5. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    International Nuclear Information System (INIS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Luan, Suzhen; Jia, Renxu; Hu, Ziyang; Zhu, Yuejin

    2017-01-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance–voltage and current–voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites. (paper)

  6. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  7. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    Science.gov (United States)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  8. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  9. An Analysis of the Mechanical Characteristics and Constitutive Relation of Cemented Mercury Slag

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2017-01-01

    Full Text Available This study focuses on mercury slag in the Tongren area of Guizhou Province, China. Computed tomography (CT is used with uniaxial and triaxial compression tests to examine the mechanical changes in cemented mercury slag and its formation. The CT results for the uniaxial compression test reveal the overall failure process of the mercury slag structure. Based on the coarse-grained soil triaxial test, a modified Duncan-Chang model is compared with the actual monitoring results and is found to be suitable for the analysis of the slag constitutive model.

  10. Effects of the addition of mechanically deboned poultry meat and collagen fibers on quality characteristics of frankfurter-type sausages.

    Science.gov (United States)

    Pereira, Anirene Galvão Tavares; Ramos, Eduardo Mendes; Teixeira, Jacyara Thaís; Cardoso, Giselle Pereira; Ramos, Alcinéia de Lemos Souza; Fontes, Paulo Rogério

    2011-12-01

    The effects of mechanically deboned poultry meat (MDPM) and levels of collagen fibers on comminuted, cooked sausage quality characteristics were investigated using the central composite rotatable design of response surface methodology (RSM). Use of collagen fiber as an additive affected the sausage characteristics, but the effect depended on the amount of the MDPM used. While MDPM additions resulted in higher cooking loss and darker and redder frankfurters, the addition of collagen fibers improved cooking yields and contributed to the lightness of the final product. Higher collagen fiber content was also accompanied by a significant increase in frankfurter hardness regardless of the MDPM content. Use of collagen fibers countered the negative effects of MDPM on sausage quality attributes, especially on cooking yields and final product color. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2009-11-01

    Full Text Available In this paper, we present a novel micromachined hot-film flow sensor system realized by a technique using a film depositing processes and incorporating a standard printed circuit. Sensor electrodes and electronic circuits are preprinted on a flexible substrate of polyimide (PI, i.e., a flexible printed circuit board (FPCB. The sensing element, which is made of Cr/Ni/Pt with a temperature coefficient of resistance around 2,000 ppm/K, is fabricated on the FPCB by either magnetron sputtering technology or pulsed laser deposition (PLD. The sensor can be packed efficiently at high-density and integrated with signal processing circuits without additional pads. A simple fabrication process using mature technique and materials selection guarantees that the time and costs are greatly reduced. Both steady-state and transient characteristics of the sensors are experimentally tested, and the results presented to validate the effectiveness of the sensors.

  12. AC loss characteristics of Bi2223/Ag sheathed tape wires subjected to mechanical strains and stresses

    International Nuclear Information System (INIS)

    Tsukamoto, Osami; Li, Z

    2007-01-01

    The influence of uniaxial tensile stress-strain on the AC loss characteristics of multifilamentary Bi2223/Ag sheathed tape wires was investigated. The uniaxial tensile stress-strain was applied to the sample wire in liquid nitrogen at atmospheric pressure, and the AC losses (transport, magnetization and total losses) were measured by an electric method. Two kinds of wire, oxide-dispersion strengthened Ag-alloy sheathed and Ag-alloy sheathed wires, were tested. The stress-strain curves of the tested wires were divided in three regions, i.e. elastic deformation, continuous plastic deformation and serrated-like plastic deformation regions, though the ranges of those regions were different for different kinds of wire. In the elastic and continuous plastic regions, the stress-strain curve was smooth and continuous, and in the serrated-like plastic region, the curve was rough. In the serrated-like plastic region, the wires kept elongating, while increase of the tensile stress was suspended. Dependences of the critical currents on the stress-strain were generally as follows. While decreases of the wire critical currents were in the range of less than 4% of the original values of the no-stress condition, the critical currents of the wires were reversible, that is, the critical currents recovered the original values at zero stress when the stress were released, regardless of whether the wires were in the elastic or continuous plastic region. In the continuous plastic region, the critical currents decreased up to 10%-15% of the original values and the critical currents were irreversible when the degradations of the critical currents exceeded about 4%. In the serrated-like plastic regions, the critical currents were more severely degraded. The AC loss characteristics of the wires are different in those regions. In the elastic and continuous plastic regions, the absolute values of AC losses were dependent on the stress-strain. However, the dependences of those normalized

  13. A study on electromagnetic and mechanical characteristics of the field coil in HTS motor

    International Nuclear Information System (INIS)

    Kim, S.B.; Kadota, T.; Joo, J.H.; Sano, H.; Murase, S.; Lee, S.H.; Hong, J.P.; Kim, H.M.; Kwon, Y.K.; Jo, Y.S.

    2010-01-01

    High temperature superconducting (HTS) motors electromagnetically consist of a rotator wound with HTS wires and an armature with conventional copper wires like Litz wire. The HTS rotor windings, as field coils, consist of a straight part and an end-ring part. Because a major rotation torque is induced by an interaction between magnetic fields and current-carrying conductors in the straight part, most of mechanical stresses in the motor occur at the straight part. An end-ring is placed in the edge of the straight part and used to connect to each adjacent straight-part coils. The magnetic fields by coil currents concentrate on the end-ring part, therefore, it is expected that the critical current of the entire coil, straight and end-ring, can be determined by the magnitude of the field in the end-ring. This paper deals with the overall J c degradation in the end-ring part by self-field generated from the coil. In addition to electromagnetic analyses, we have performed a numerical analysis in order to evaluate mechanical stresses in the straight part of field coil by armature reaction on steady-state operation. The analytical results will be presented in this paper.

  14. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  15. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  16. The Effect of the Rotor Static Eccentricity on the Electro-Mechanical Coupled Characteristics of the Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Wu Zaixin

    2016-01-01

    Full Text Available High-speed motorized spindle is a multi-variable, non-linear and strong coupling system. The rotor static eccentricity is inevitable because of machining or assembling error. The rotor static eccentricities have an important effect on the electromechanical coupled characteristics of the motorized spindle. In this paper, the electromechanical coupled mathematical model of the motorized spindle was set up. The mathematical model includes mechanical and electrical equation. The mechanical and electrical equation is built up by the variational principle. Furthermore, the inductance parameters without the rotor static eccentricity and the inductance parameters with rotor static eccentricity have been calculated by the winding function method and the high speed motorized spindle was simulated. The result show that the rotor static eccentricity can delay the starting process of the motorized spindle, and at steady state, the rotor circuit currents are still large because of the rotor static eccentricity.

  17. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of carbonaceous biosorbents was prepared by pyrolyzing pine needles,a model biomass,at various temperatures (100-700℃) under an oxygen-limited condition for 6h. The elemental composi-tions and the specific surface areas (BET-N2) of the biosorbents were analyzed. Sorption properties of 4-nitrotoluene to the biosorbents and their mechanisms were investigated,and then correlated with the structures of the biosorbents. The result shows that with the increase of the pyrolytic temperature,the aromaticity of the carbonaceous biosorbents increases dramatically and the polarity (the (N+O)/C atomic ratio) decreases sharply. Correspondingly,conformations of the organic matter in the biosor-bents transform gradually from a "soft-state" to a "hard-state" and the specific surface areas of the resultant biosorbents extend rapidly. The sorption isotherms fit well with the Freundlich equation. The regression parameters (i.e.,N and lgKf) are linearly related to the aromaticity indices (the H/C atomic ratio). Contributions of adsorption and partition to total sorption of the carbonaceous biosorbents are quantified. The adsorption of the carbonaceous biosorbents increases quickly with the increase of the pyrolytic temperature. The saturated adsorption amounts (Qmax) increase linearly with the increase of the specific surface areas (SA) of the biosorbents. For the carbonaceous biosorbents with hard-state carbon,the calculated normalized-Qmax values by SA are comparable to the theoretical estimation (2.45 μmol/m2). In comparison,for the carbonaceous sorbents with soft-state carbon,the calculated nor-malized-Qmax values by SA are much higher than the theoretical estimation. The partition coefficients (Kom) increase with the decrease of the polarity of the biosorbents,reaching a maximum,and then de-crease sharply with further decreasing the polarity,suggesting that partition mechanism be dominated by the compatibility and accessibility of the sorbent medium with organic

  18. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    CHEN BaoLiang; ZHOU DanDan; ZHU LiZhong; SHEN XueYou

    2008-01-01

    A series of carbonaceous biosorbents was prepared by pyrolyzing pine needles, a model biomass, at various temperatures (100-700℃) under an oxygen-limited condition for 6 h. The elemental composi-tions and the specific surface areas (BET-N2) of the biosorbents were analyzed. Sorption properties of 4-nitrotoluene to the biosorbents and their mechanisms were investigated, and then correlated with the structures of the biosorbents. The result shows that with the increase of the pyrolytic temperature, the sromaticity of the carbonaceous biosorbents increases dramatically and the polarity (the (N+O)/C atomic ratio) decreases sharply. Correspondingly, conformations of the organic matter in the biosor-bents transform gradually from a "soft-state" to a "hard-state" and the specific surface areas of the resultant biosorbents extend rapidly. The sorption isotherms fit well with the Freundlich equation. The regression parameters (I.e., N and IgKf) are linearly related to the aromaticity indices (the H/C atomic ratio). Contributions of adsorption and partition to total sorption of the carbonaceous biosorbents are quantified. The adsorption of the carbonaceous biosorbents increases quickly with the increase of the pyrolytic temperature. The saturated adsorption amounts (Qmax) increase linearly with the increase of the specific surface areas (SA) of the biosorbents. For the carbonaceous biosorbents with hard-state carbon, the calculated normalized-Qmax values by SA are comparable to the theoretical estimation (2.45 μmol/m2). In comparison, for the carbonaceous sorbents with soft-state carbon, the calculated nor-malized-Qmax values by SA are much higher than the theoretical estimation. The partition coefficients (Kom) increase with the decrease of the polarity of the biosorbents, reaching a maximum, and then de-crease sharply with further decreasing the polarity, suggesting that partition mechanism be dominated by the compatibility and accessibility of the sorbent medium with

  19. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62

  20. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    Science.gov (United States)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain

  1. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu Xianjun [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Chen Shaohui [Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Xie Zonghan [School of Engineering, Edith Cowen University, Joondalup, WA 6027 (Australia); Jiang Jianqing [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Annealing time on microstructure and mechanical properties of cold-drawn steel wires were studied. Black-Right-Pointing-Pointer Exothermic peak in cold-drawn wire was resulting from the spheroidization of lamellar cementite. Black-Right-Pointing-Pointer Spheroidization of lamellar cementite is the main effect for torsion property of wires after annealing. - Abstract: Spheroidization of lamellar cementite often occurs in cold-drawn pearlitic steel wires during galvanizing treatment, leading to the degradation of mechanical properties. Therefore, it is important to understand effects of galvanization process on microstructure and mechanical properties of cold-drawn wires. In this paper, cold-drawn steel wires were fabricated by cold drawing pearlitic steel rods from 13 mm to 6.9 mm in diameter. Thermal annealing at 450 Degree-Sign C was used to simulate galvanizing treatment of steel wires. Tensile strength, elongation and torsion laps of steel rods and wires with, and without, annealing treatment were determined. Microstructure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, differential scanning calorimetry (DSC) was used to probe the spheroidization temperature of cementite. Experimental results showed that tensile strength of wires increased from 1780 MPa to 1940 MPa for annealing <5 min, and then decreased. Tensile strength became constant for annealing >10 min. Elongation of wires decreased for annealing <2.5 min, and then recovered slightly. It approached a constant value for annealing >5 min. Tensile strength and elongation of wires were both influenced by the strain age hardening and static recovery processes. Notably, torsion laps of wires hardly changed when annealing time was less than 2.5 min, and then decreased rapidly. Its value became constant when the hold time is greater than 10 min. Lamellar cementite began to spheroidize at annealing >2.5 min

  2. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics.

    Science.gov (United States)

    Kulkarni, Aditi; Rothrock, James; Thompson, Jeffery

    2018-01-14

    To test the impact of exposure to artificial gastric acid combined with toothbrush abrasion on the properties of dental ceramics. Earlier research has indicated that immersion in artificial gastric acid has caused increased surface roughness of dental ceramics; however, the combined effects of acid immersion and toothbrush abrasion and the impact of increased surface roughness on mechanical strength and optical properties have not been studied. Three commercially available ceramics were chosen for this study: feldspathic porcelain, lithium disilicate glass-ceramic, and monolithic zirconium oxide. The specimens (10 × 1 mm discs) were cut, thermally treated as required, and polished. Each material was divided into four groups (n = 8 per group): control (no exposure), acid only, brush only, acid + brush. The specimens were immersed in artificial gastric acid (50 ml of 0.2% [w/v] sodium chloride in 0.7% [v/v] hydrochloric acid mixed with 0.16 g of pepsin powder, pH = 2) for 2 minutes and rinsed with deionized water for 2 minutes. The procedure was repeated 6 times/day × 9 days, and specimens were stored in deionized water at 37°C. Toothbrush abrasion was performed using an ISO/ADA design brushing machine for 100 cycles/day × 9 days. The acid + brush group received both treatments. Specimens were examined under SEM and an optical microscope for morphological changes. Color and translucency were measured using spectrophotometer CIELAB coordinates (L*, a*, b*). Surface gloss was measured using a gloss meter. Surface roughness was measured using a stylus profilometer. Biaxial flexural strength was measured using a mechanical testing machine. The data were analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p gloss, and surface roughness for porcelain and e.max specimens. No statistically significant changes were found for any properties of zirconia specimens. The acid treatment affected the surface roughness, color, and gloss of porcelain and e

  3. Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire

    Science.gov (United States)

    Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng

    2016-01-01

    Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.

  4. The Pain System in Oesophageal Disorders: Mechanisms, Clinical Characteristics, and Treatment

    Directory of Open Access Journals (Sweden)

    Christian Lottrup

    2011-01-01

    Full Text Available Pain is common in gastroenterology. This review aims at giving an overview of pain mechanisms, clinical features, and treatment options in oesophageal disorders. The oesophagus has sensory receptors specific for different stimuli. Painful stimuli are encoded by nociceptors and communicated via afferent nerves to the central nervous system. The pain stimulus is further processed and modulated in specific pain centres in the brain, which may undergo plastic alterations. Hence, tissue inflammation and long-term exposure to pain can cause sensitisation and hypersensitivity. Oesophageal sensitivity can be evaluated ,for example, with the oesophageal multimodal probe. Treatment should target the cause of the patient's symptoms. In gastro-oesophageal reflux diseases, proton pump inhibitors are the primary treatment option, surgery being reserved for patients with severe disease resistant to drug therapy. Functional oesophageal disorders are treated with analgesics, antidepressants, and psychological therapy. Lifestyle changes are another option with less documentation.

  5. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  6. Mechanical and durability characteristics of externally GFRP reinforced unsaturated polyester polymer concrete

    Science.gov (United States)

    Bouguessir, H.; Harkati, E.; Rokbi, M.; Priniotakis, G.; Vassiliadis, S.

    2017-10-01

    The last decades of the XXe century cognized a huge extent of composite materials uses to almost all everyday life’s applications, replacing the conventional materials, due to their outstanding properties especially highest strength-to-weight ratio and the ability to be designed to satisfy specific performance requirements. To get the most out of these wonder materials, a new concept, combining polymer concrete and composite laminates, is currently used in Algeria. This research work has the aim to investigate applicability of this concept in civil engineering through tensile and bending tests. On the other hand, the influence of various chemicals (Sodium hydroxide, Potassium Hydroxide and Calcium Carbonates) on our material and its tensile properties retention over long-time exposure was examined. The mechanical properties obtained indicate the convenience of this material for use in civil engineering thanks to its very good tensile and flexural performances in addition to its sufficient residual strength after theoretically 56 years.

  7. Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column

    Science.gov (United States)

    Wang, Debin; Fan, Guoxi

    2017-11-01

    The purpose of this paper is to study the effect of torsional effect and loading rate on the flexural capacity of RC members. Based on the fiber model of finite element software ABAQUS, a model has been established with the consideration of the strain rate sensitivity of steel and concrete. The model is used to reflect the influence of the rotational component of ground motion by applying the initial angular displacement. The mechanical properties of RC columns under monotonic loads are simulated. The simulation results show that there has been a decrease in the carrying capacity and initial stiffness of RC columns for high initial torsion angle. With the increase of initial torsion angle, the influence of loading rate on RC columns gradually increases.

  8. Characteristics of physical loads endured by military officers of mechanized troops during field maneuvres

    Directory of Open Access Journals (Sweden)

    I.L. Shlyamar

    2015-09-01

    Full Text Available Purpose: observation over influence of physical loads on military officers in process of acquiring and mastering of military applied skills during field maneuvers. Material: in experiment 120 military officers of 20-25 years old age with equal physical fitness participated. Results: it was determined that in period of field maneuvers the greatest load was endured by military officers in attack exercises and on the march. The least physical loads were in period of organization and fulfillment of combat shooting. It was also established that main part of motor actions was fulfilled in aerobic mode. Military officers’ functioning in field maneuvers was accompanied by heart beats rate of 120-150 b.p.m. and 60-90 b.p.m. during long time. Conclusions: We offered to practice physical training of mechanized units’ military officers in modes, close to field ones.

  9. Metallurgical characteristics and fracture mechanical properties of unirradiated Kori-1 RPV weld: Linde 80, WF-233

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Lee, B. S.; Oh, Y. J.; Chi, S. H.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Oh, J. M.

    2000-07-01

    The fracture toughness transition properties of the low upper shelf weld, Linde 80 WF-233, of Kori-1 RPV were evaluated by the master curve method, which is designated by ASTM E 1921, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. The reference temperature, T o =-83 deg C, was determined by PCVN specimens at -90 deg C. This value is similar to that of other high copper welds. The initial RT NDT was conservatively estimated as -26 deg F from the current fracture toughness results. From the studies on the chemistry and microstructure, the fracture mechanical properties of WF-233 weld is convincingly not worse than WF-70 and 72W welds

  10. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  11. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  12. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints

    Science.gov (United States)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing

    2017-08-01

    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  13. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  14. Drainage characteristics of the 3F MicroStent using a novel film occlusion anchoring mechanism.

    Science.gov (United States)

    Lange, Dirk; Hoag, Nathan A; Poh, Beow Kiong; Chew, Ben H

    2011-06-01

    To determine whether the overall ureteral flow through an obstructed ureter using the 3F MicroStent™ that uses a novel film occlusion anchoring mechanism is comparable to the flow using a conventional 3F and 4.7F Double-J stent. An in vitro silicone ureter model and an ex vivo porcine urinary model (kidney and ureter) were used to measure the overall flow through obstructed and unobstructed ureters with either a 3F Double-J stent (Cook), 3F MicroStent (PercSys), or 4.7F Double-J stent (Cook). Mean flow rates were compared with descriptive statistics. Mean flow rates through the obstructed silicone ureter (12-mm stone) for the 3F MicroStent, 3F Double-J stent, and 4.7F Double-J stent were 326.7±13.3  mL/min, 283.3±19.2  mL/min, and 356.7±14.1  mL/min, respectively. In the obstructed ex vivo porcine ureter model, the flow as a percentage of free flow was 60%, 53%, and 50 %, respectively. In both ureteral models, flow rates of the 3F MicroStent and 4.7F Double-J stents were not statistically different. The 3F MicroStent demonstrated drainage equivalent to a 4.7F Double-J stent, in both in vitro silicone and ex vivo porcine obstructed urinary models. We have demonstrated the crucial first step that this 3F stent, using a novel film occlusion anchoring mechanism, has equivalent, if not slightly improved, drainage rates when compared with its larger counterpart.

  15. The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.

    1998-01-01

    A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: SR ∝ FS n d -p exp(-Q/RT), where SR is the strain rate, FS is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n about 3 and p about 1, and n about 2 and p about 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of about 550 kJ/mol. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n=2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n=3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n=2 and n=3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ

  16. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    Science.gov (United States)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  18. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Yang, J.; He, X.; Yang, J.; Tian, T. [Hebei University of Engineering, Handan (China)

    2006-12-15

    The characteristics and treatment of mine water with high concentration or iron and manganese were studied with mine water produced in Jiukuang and Siwan belonging to Hebi Coal Industry Group Co., Ltd. Analysis shows that the mine water is abundant in dissolved oxygen and has high TDS and high turbidity so the mine water does not need aeration. The effect of removal of iron and manganese by coagulation-sedimentation and the influence of filter material and influent water flow rate on effluent quality were investigated. It is shown that the removal rate of iron can reach 90% while removal of manganese can only reach about 20%. The concentration of iron and manganese in the effluent is lower than 0.1 mg/L with filter material of manganese sand which was immersed in KMnO{sub 4} solution at a filtration rate of 7 - 9 m/h. The results show that the layer of activated compound substance membrane formed on the surface of the manganese sand plays an important role in the removal of manganese. 7 refs., 2 figs., 3 tabs.

  19. Quality Characteristics of Marinated Chicken Breast as Influenced by the Methods of Mechanical Processing

    Science.gov (United States)

    Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei

    2015-01-01

    The aim of this study was to investigate the effects of various marination processes on the quality characteristics of chicken breast prepared with chicken feet gelatin and wheat fiber. The chicken feet gelatin was swollen with hydrochloric solution (0.1 N HCl, pH 1.31±0.02) and dehydrated by freeze-drying. The composition (w/w) of the marinade was water (10%), soy sauce (12%), phosphate (0.3%), wheat fiber (1.5%), and chicken feet gelatin (1.5%). Three samples of chicken breast were manufactured with Tumbler (only tumbler), Tenderizer (tenderizer and tumbler), and Injector (injector and tumbler). The water content of the Injector sample was significantly higher than those of the Tumbler and Tenderizer samples (pchicken breasts increased and the redness decreased. The tumbling and cooking yield of the Injector sample were significantly higher than those of the Tumbler and Tenderizer samples (pchicken breast, considering the types of final products. PMID:26761806

  20. Current Transport Mechanisms and Capacitance Characteristic in the InN/InP Schottky Structures

    Directory of Open Access Journals (Sweden)

    K. AMEUR

    2014-05-01

    Full Text Available In this work, electrical characterization of the current-voltage and capacitance- voltage curves for the Metal/InN/InP Schottky structures are investigated. We have studied electrically thin InN films realized by the nitridation of InP (100 substrates using a Glow Discharge Source (GDS in ultra high vacuum. The I (V curves have exhibited anomalous two-step (kink forward bias behaviour; a suitable fit was only obtained by using a model of two discrete diodes in parallel. Thus, we have calculated, using I(V and C(V curves of Hg/InN/InP Schottky structures, the ideality factor n, the saturation current Is, the barrier height jB, the series resistance Rs, the doping concentration Nd and the diffusion voltage Vd. We have also presented the band diagram of this heterojunction which indicates the presence of a channel formed by holes at the interface InN/InP which explain by the presence of two-dimensional electron gas (2-DEG and this was noticed in the presentation of characteristics C(V.

  1. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  2. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  3. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems

    Science.gov (United States)

    Gerya, Taras V.; Yuen, David A.

    2007-08-01

    We have extended our previous 2D method [Gerya, T.V., Yuen, D.A., 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Interiors 140, 295-320], which is a combination of conservative finite-differences with marker-in-cell techniques to include the effects of visco-elasto-plastic rheology, self-gravitation and a self-consistently derived evolving curvilinear planetary surface. This code is called I2ELVIS and can solve a new class of computationally challenging problems in geodynamics, such as shear localization with large strains, crustal intrusion emplacement of magmas, bending of realistic visco-elasto-plastic plates and core-formation by vigorous shell tectonics activities related to a global Rayleigh-Taylor instability of a metal layer formed around silicate-rich lower density (primordial) core during planetary accretion. We discuss in detail the computational strategy required the rheological constraints to be satisfied at each time step and spatial location. We show analytical benchmarks and examples drawn from comparing between numerical and analogue experiments in structural geology, subducting slab bending with a visco-elasto-plastic rheology and equilibrium spherical configurations from self-gravitation. We have also tested possibilities of future applications by addressing 3D geometries based on multigrid method and including inertial effects in the momentum equation with tracers in order to simulate meteoritic impact events and eventually earthquake instabilities.

  4. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    Science.gov (United States)

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  5. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Yu Shao

    2018-06-01

    Full Text Available A surface plasmon resonance (SPR sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA is demonstrated for relative humidity (RH sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  6. Formation Mechanism and Characteristics Research of Ball Lightning Based on Vortex Model

    International Nuclear Information System (INIS)

    Li Zicheng; Yang Guohua

    2011-01-01

    The strange characteristics of ball lightning are considered as a question hard to explain. In order to solve the problem, in this paper a complete model of plasma vortex is presented for the ball lightning. By ideal MHD equations, through imposing disturbance to plasma column, the possibility of sausage and kink instability of the lightning channel is analyzed from the perspective the minimum potential energy. The conclusion is that the kink instability (m = 1) is most prone to occur. And when instability occurs, because of the difference of the magnetic field in the twisted area, the magnetic pressure makes the trend further and therefore forming the plasma vortex that may eventually turn into ball lightning if the energy of the vortex is large enough. The existence of the vortex makes ball lightning have a short period of time stability. By the proposed model, the ball lightning features that are hard to understand in the past are explained. In this paper, the reason for bead lightning is also explained from the perspective of the sausage instability. (physics of gases, plasmas, and electric discharges)

  7. Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.X.; Chang, J.C.; Yang, K. [Anhui University of Science and Technology, Huainan (China)

    2009-01-15

    A key issue in underground mining is to understand and master the evolving patterns of stress induced by mining, and to control and utilize the action of rock pressure. Numerical and physical modeling tests have been carried out to investigate the distribution patterns of stress in the rock surrounding a fully mechanized top-coal caving (FMTC) face. The results showed that a macro-stress shell composed of high stress exists in the rock surrounding an FMTC face. The stress of the shell is higher than its internal and external stress and the stresses at its skewback producing abutment pressure for the surrounding rock. The stress shell lies in the virgin coal and rock mass in the vicinity of the face and its sagging zone. The stress shell, which bears and transfers the loads of overlying strata, acts as the primary supporting system of forces, and is the corpus of characterizing three-dimensional and macro-rock pressure distribution of mining face. Its external and internal shape changes with the variations in the working face structure as the face advances. Within the low-stress zone inside the stress shell, another structure, i.e. voussoir beam, which only bears parts of the load from the lower-lying strata, will produce periodic pressures on the face instead of great dynamic pressure even if the beam ruptures and loses stability. The results show that the FMTC face is situated within the lower-stress zone, which is protected by the stress shell of the overlying surrounding rock. We give an explanation of lower occurrence of rock pressure on FMTC faces, and reveal the mechanical nature of the top coal of an FMTC face acting as a 'cushion'. The strata behaviors of the face and its neighboring gates are under control of the stress shell. Drastic rock pressure in mine may occur when the balance of the stress shell is destruction or the forces system of the stress shell transfers. Crown Copyright

  8. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    Science.gov (United States)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight

  9. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing

    International Nuclear Information System (INIS)

    Dong Xiaoling; Ma, Lena Q.; Li Yuncong

    2011-01-01

    Highlights: → Biochar from sugar beet tailing effectively removed Cr(VI) from solution. → Most of the Cr on the biochar was Cr(III). → Cr(VI) removal was via electrostatic attraction to biochar. → Reduction of Cr(VI) to Cr(III) ion and complexation between Cr(III) ion and biochar function groups were also important. → The maximum sorption capacity of biochar for Cr(VI) was123 mg/g. - Abstract: Removal of Cr(VI) from aqueous solutions using biochar from sugar beet tailing (SBT) was investigated as a function of pH, contact time, and biochar mass via batch experiments. The surface characteristics of SBT biochar before and after Cr(VI) sorption was investigated with scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Desorption and X-ray photoelectron spectroscopy studies showed that most of the Cr bound to SBT biochar was Cr(III). These results indicated that the electrostatic attraction of Cr(VI) to positively charged biochar surface, reduction of Cr(VI) to Cr(III) ion, and complexation between Cr(III) ion and SBT's function groups were probably responsible for Cr(VI) removal by SBT biochar. An initial solution with a pH of 2.0 was most favorable for Cr(VI) removal. The sorption process can be described by the pseudo-second order equation and Langmuir isotherm. The maximum sorption capacity for Cr(VI) was 123 mg/g under an acidic medium, which was comparable to other low-cost sorbents.

  10. Mechanical characteristics of plastic base Ports and impact on flushing efficacy.

    Science.gov (United States)

    Guiffant, Gérard; Flaud, Patrice; Royon, Laurent; Burnet, Espérie; Merckx, Jacques

    2017-01-01

    Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM), and mixed (titanium base with a POM shell). Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel) and a plastic base would lead to the stronger material (steel) altering the more malleable material (plastic). To investigate whether needle impacts can alter a plastic base's surface, thus potentially reducing flushing efficacy. A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port's base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL ® was performed to investigate potential surface irregularities and their impact on fluid flow. Each needle impact created a hole (mean depth, 0.12 mm) with a small bump beside it (mean height, 0.02 mm) the Reynolds number Re k ≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Multiple needle impacts created an irregular surface on the Port's base, which decreased flushing efficacy. Clinical investigation is needed to determine whether plastic base Ports are associated with an increased risk of Port infection and occlusion compared to titanium base Ports.

  11. Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Kang-Yeon; Choi, Gwon-Woo; Kim, Yong-Jae; Choi, Youn-Ok; Kim, Nam-Oh

    2012-01-01

    Indium-tin-oxide (ITO) thin films have attracted intensive interest because of their unique properties of good conductivity, high optical transmittance over the visible region and easy patterning ability. ITO thin films have found many applications in anti-static coatings, thermal heaters, solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), electroluminescent devices, sensors and organic light-emitting diodes (OLEDs). ITO thin films are generally fabricated by using various methods, such as spraying, chemical vapor deposition (CVD), evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive sputtering. In this research, ITO films were grown on glass substrates by using a radio-frequency (RF) magnetron sputtering method. In order to achieve a high transmittance and a low resistivity, we examined the various film deposition conditions, such as substrate temperature, working pressure, annealing temperature, and deposition time. Next, in order to improve the surface quality of the ITO thin films, we performed a chemical mechanical polishing (CMP) with different process parameters and compared the electrical and the optical properties of the polished ITO thin films. The best CMP conditions with a high removal rate, low nonuniformity, low resistivity and high transmittance were as follows: platen speed, head speed, polishing time, and slurry flow rate of 30 rpm, 30 rpm, 60 sec, and 60 ml/min, respectively.

  12. Detection mechanism and characteristics of ZnO-based N2O sensors operating with photons

    Science.gov (United States)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.

    2013-11-01

    N2O sensors made with ZnO-based ZnCdO films were grown on Pyrex substrates by using the RF co-sputtering method. The structure of the N2O sensor was electrode/sensor/glass/illuminant. The mechanism of the photo-assisted oxidation and reduction process on the surface of the N2O sensors was investigated using light from a UV lamp and violet light emitting diode (LED). For photon exposure wavelengths of 365 and 405 nm, the sensitivity of the ZnO-based ZnCdO sensors was measured. From these measurements, the values of the sensitivity of the sensors with x = 0, 0.01, and 0.05 were found to be S = 1.44, 1.39, and 1.33 under LED light with a wavelength of 405 nm, respectively. These sensitivities were compared to those of SnO2 and WO3 materials measured at operating temperatures of 300-600 °C. Also, under exposure with UV light, the response times were observed to be 130 to 270 sec. These response times were slightly slower than that for the traditional method of thermal heating. However, they indicate that the described photon exposure method for N2O detection can replace the conventional heating mode. Consequently, we demonstrated that portable N2O sensors for room-temperature operation could be fabricated without thermal heating.

  13. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  14. Microstructure and mechanical characteristics of laser coating-texturing alloying dimples

    International Nuclear Information System (INIS)

    Wan Daping; Chen Bingkui; Shao Yimin; Wang Shilong; Hu Dejin

    2008-01-01

    A novel laser coating-texturing (LCT) technique was proposed to achieve appropriate surface topographies and frictional behaviour. The LCT process was realized by applying laser pulses at very high repetition rate to produce innumerable micro-craters with required shape profile on the surface of the workpiece. Moreover, surface alloying of the dimples was carried out by melting submicron WC-TiC-Co alloy powder on the substrates. Morphology and microstructures of the texturing layers were characterised using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Mechanical properties of the textured samples were evaluated by abrasive resistance tests and microhardness measurement. Experimental results show that good fusion bonding between the texturing layers and the substrate has been formed, and the texturing layers are mainly composed of dense and hard fine-grained structures. The abrasive wear resistance of the laser coating-textured surface was 10 times higher than that of the substrates. The average surface microhardness values were as high as 830 HV.

  15. Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.

    2013-12-01

    Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.

  16. Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism

    Science.gov (United States)

    Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang

    2013-09-01

    The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.

  17. VDE characteristics during disruption process and its underlying acceleration mechanism in the ITER-EDA tokamak

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Nishio, Satoshi; Yoshino, Ryuji; Kessel, C.E.; Jardin, S.C.

    1996-01-01

    The dynamic behavior of vertical displacement events (VDEs) during a disruption and acceleration mechanisms that govern VDEs in the ITER-EDA tokamak are investigated using the Tokamak Simulation Code. A sudden plasma pressure drop (β p collapse) does not accelerate VDEs for the ITER tokamak. The geometry of the ITER resistive shell is shown to be suitable for preventing a β p collapse-induced VDE, because the magnetic field decay n-index after the β p collapse does not considerably degrade. On the other hand, it is shown that the plasma current quench (I p quench) following the energy quench can accelerate VDEs due to the vertical imbalance of the attractive force arising from the up-down asymmetric shell. The vertical location of the neutral point where the I p quench-induced VDE almost disappears is found to lie at ∼22 cm below the plasma magnetic axis of the nominal equilibrium (Z = 1.44 m). An upward and moderate I p quench-induced VDE can be expected for the nominal configuration in the ITER-EDA tokamak. It is shown that the ITER tokamak has an advantage of avoiding the fatal damage of the complicated structures of the bottom-divertor. (author)

  18. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei, E-mail: wei.guo-2@manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Dong, Shiyun [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Guo, Wei; Francis, John A.; Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom)

    2015-02-11

    SA508 steels are typically used in civil nuclear reactors for critical components such as the reactor pressure vessel. Nuclear components are commonly joined using arc welding processes, but with design lives for prospective new build projects exceeding 60 years, new welding technologies are being sought. In this exploratory study, for the first time, autogenous laser welding was carried out on 6 mm thick SA508 Cl.3 steel sheets using a 16 kW fiber laser system operating at a power of 4 kW. The microstructure and mechanical properties (including microhardness, tensile strength, elongation, and Charpy impact toughness) were characterized and the microstructures were compared with those produced through arc welding. A three-dimensional transient model based on a moving volumetric heat source model was also developed to simulate the laser welding thermal cycles in order to estimate the cooling rates included by the process. Preliminary results suggest that the laser welding process can produce welds that are free of macroscopic defects, while the strength and toughness of the laser welded joint in this study matched the values that were obtained for the parent material in the as-welded condition.

  19. PROTECTIVE COATINGS OF FIBER BRAGG GRATING FOR MINIMIZING OF MECHANICAL IMPACT ON ITS WAVELENGTH CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    A. S. Munko

    2015-03-01

    Full Text Available The paper deals with the scheme for the study of the Bragg wavelength shift dependence on the applied tensile force. Samples of fiber Bragg gratings with different coatings have been studied: the restored acrylate coating, the heatshrinkable fusion splice protection sleeve without metal rod, the heat-shrinkable fusion splice protection sleeve with a metal rod, the metal capillary, polyvinylchloride tube. For different coatings of diffractive structure, dependences of wavelength shift for the Bragg grating resonance have been obtained on the tensile strength applied to the ends of an optical fiber. It was determined that the studied FBG coatings give the possibility to reduce the mechanical impact on the Bragg wavelength shift for 1.1-15 times as compared to an uncoated waveguide. The most effective version of coated fiber Bragg grating is the heatshrinkable fusion splice protection sleeve with a metal rod. When the force (equal to 6 N is applied to the 100 mm optical fiber area with the inscribed diffractive structure, the Bragg wavelength shift is 7.5 nm for the unprotected sample and 0.5 nm for the one coated with the heat-shrinkable fusion splice protection sleeve.

  20. Study on Friction and Wear Characteristics of Aluminum Alloy Hydraulic Valve Body and Its Antiwear Mechanism

    Directory of Open Access Journals (Sweden)

    Rong Li

    2017-03-01

    Full Text Available In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results displayed that: (1 The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than corresponding oil leakage of the iron body; (2 The actual oil leakage of different materials consisted of two parts: the foundation leakage that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3 The aluminum alloyed valve could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

  1. Experimental and Numerical Investigations on the Mechanical Characteristics of Carbon Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Salem Bashmal

    2017-09-01

    Full Text Available Carbon fiber-based materials possess excellent mechanical properties and show linear piezoresistive behavior, which make them good candidate materials for strain measurements. They have the potential to be used as sensors for various applications such as damage detection, stress analysis and monitoring of manufacturing processes and quality. In this paper, carbon fiber sensors are prepared to perform reliable strain measurements. Both experimental and computational studies were carried out on commercially available carbon fibers in order to understand the response of the carbon fiber sensors due to changes in the axial strain. Effects of parameters such as diameter, length, and epoxy-hardener ratio are discussed. The developed numerical model was calibrated using laboratory-based experimental data. The results of the current study show that sensors with shorter lengths have relatively better sensitivity. This is due to the fact short fibers have low initial resistance, which will increase the change of resistance over initial resistance. Carbon fibers with low number of filaments exhibit linear behavior while nonlinear behavior due to transverse resistance is significant in fibers with large number of filaments. This study will allow researchers to predict the behavior of the carbon fiber sensor in real life and it will serve as a basis for designing carbon fiber sensors to be used in different applications.

  2. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  3. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism

    Science.gov (United States)

    He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang

    2017-12-01

    The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.

  4. Characteristics and mechanism of explosive reactions of Purex solvents with Nitric Acid at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Radiation Application Development Association, Tokai, Ibaraki (Japan); Takada, Junichi; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Ida, Masaaki [JGC PLANTECH CO., LTD (Japan); Nakagiri, Naotaka [JGC Corp., Tokyo (Japan); Nishio, Gunji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-03-01

    This investigation was undertaken to make clear the energetic properties and mechanism of explosive decomposition of Purex solvent systems (TBP/n-Dodecane/HNO{sub 3}) by Nitric Acid at elevated temperatures using a calorimetric technique (DSC, ARC) and a chromatographic technique (GC, GC/MS). The measurement of exothermic events of solvent-HNO{sub 3} reactions using DSC with a stainless steel sealed cell showed distinct two peaks with maxima at around 170 and 320degC, respectively. The peak at around 170degC was mainly attributed to the reactions of dealkylation products (n-butyl nitrate) of TBP and the solvent with nitric acid, and the peak at around 320degC was attributed to the exothermic decomposition of nitrated dodecanes formed in the foregoing exothermic reaction of dodecane with nitric acid. By using the data obtained in ARC experiments, activation energies of 123.2 and 152.5 kJ/mol were determined for the exothermic reaction of TBP with nitric acid and for the exothermic pyrolysis of n-butyl nitrate, respectively. Some possible pathways were considered for the explosive decomposition of TBP by nitric acid at elevated temperatures. (author)

  5. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    Science.gov (United States)

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    Science.gov (United States)

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (frequency

  7. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    Science.gov (United States)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  8. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Directory of Open Access Journals (Sweden)

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  9. Mechanical characteristics of plastic base Ports and impact on flushing efficacy

    Directory of Open Access Journals (Sweden)

    Guiffant G

    2017-01-01

    Full Text Available Gérard Guiffant,1 Patrice Flaud,1 Laurent Royon,1 Espérie Burnet,2 Jacques Merckx1–3 1University Paris Diderot, Biofluidic Group, UMR CNRS, 2Pulmonary Department and Adult Cystic Fibrosis Centre, Cochin Hospital, 3University Teaching Hospital, Necker-Enfants Malades, Paris, France Background: Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM, and mixed (titanium base with a POM shell. Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel and a plastic base would lead to the stronger material (steel altering the more malleable material (plastic. Objectives: To investigate whether needle impacts can alter a plastic base’s surface, thus potentially reducing flushing efficacy. Study design and methods: A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port’s base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL® was performed to investigate potential surface irregularities and their impact on fluid flow. Results: Each needle impact created a hole (mean depth, 0.12 mm with a small bump beside it (mean height, 0.02 mm the Reynolds number Rek≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. Discussion: In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Conclusions: Multiple needle impacts created an irregular surface on the Port’s base, which decreased flushing efficacy

  10. The Characteristics of Seismogenic Zones in SW Taiwan: Implications from Studying Mechanisms of Microearthquakes

    Science.gov (United States)

    Wen, Strong; Chang, Yi-Zen; Yeh, Yu-Lien; Wen, Yi-Ying

    2017-04-01

    parameters can serve as a detail physical status (such as fluid migration, fault geometry and the pressure of the leading edge of the rupturing) to investigate the characteristics of seismongenic structures more precisely. In addition, the obtained regional stress field in this study also used to assure and to exam the tectonic models proposed for SW Taiwan previously, which will help to properly assess seismic hazard analysis for major engineering construction projects in the urban area.

  11. Comparison of Venous Return Characteristics with Right Ventricular Mechanics During Cephalic Fluid Shift

    Science.gov (United States)

    Elliott, Morgan; Martin, David

    2015-01-01

    For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail

  12. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    Science.gov (United States)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  13. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  14. Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins

    Science.gov (United States)

    Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-05-01

    Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.

  15. Fracture mechanics characteristics and associated safety margins for integrity assessment; Bruchmechanische Kennwerte und zugeordnete Sicherheitsfaktoren bei Integritaetsanalysen

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Schuler, X.; Stumpfrock, L.; Silcher, H. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2008-07-01

    Within the integrity assessment of components and structural members of plants safety margins have to be applied, whose magnitude depend on several factors. Important factors influencing the magnitude of the safety margins are as for instance: Material behaviour (ductile / brittle behaviour), the event to be considered (local deformation / fracture), possible consequences of failure (human health, environmental damage, economic consequences) and many others. One important factor also is the fact, how precisely and reliably the appropriate material characteristics can be determined and how precisely and reliably the components behaviour can be predicted and assessed by means of this material characteristic. In contemporary safety assessment procedures by means of fracture mechanics evaluation tools (e.g. [1]) a concept of partial safety margins is proposed for application. The basic idea with this procedure is that only those sources of uncertainty have to be considered, which are relevant or may be relevant for the structure to be considered. For this purpose each source of possible uncertainty has to be quantified individually, finally only those singular safety margins are superimposed to a total safety margin which are relevant. The more the uncertainties have to be taken into account, the total safety margin to be applied, consequently will be larger. If some sources of uncertainty can be eliminated totally or can be minimized (for instance by a more reliable calculational procedure of the component loading or by more precise material characteristics), the total safety margin can be reduced. In this contribution the different procedures for the definition of safety margins within the integrity assessment by means of fracture mechanics procedures will be discussed. (orig.)

  16. Structural characteristics and collapse mechanism of the late Cretaceous Geumseongsan Caldera, SE Korea

    Science.gov (United States)

    Lee, S.; Cheon, Y.; Lee, Y.; Son, M.

    2017-12-01

    The Geumseongsan caldera provides an opportunity to understand the structural evolution of volcanic collapse and the role of paleostress. We focus on structural elements of the exhumed caldera floor to interpret the collapse mechanism. The caldera shows an NNW-trending elliptical shape (8×12 km). Basaltic and rhyolitic rocks are situated in the central high of the caldera, while pre-volcanic sedimentary rocks in the perimetric lowland of the volcanic rocks. Stratal attitudes change sharply from the outside to the inside of caldera bounded with a sub-vertical ring fault. The outside strata show a homocline toward SE about 15°, whereas the inside is divided into four structural domains (NE-, NW-, SE-, and SW-domains) based on the changing attitudes. The strata in NW- and SE-domains dip toward SE and NW, respectively, making an overall synclinal fold. While NE- and SW-domains comprise re-oriented, folded strata, which generally have NE- and SW-trending axes plunging toward the center. In addition, extensional and contractional structures occur distinctively in NW- and SE-domains and in NE- and SW-domains, respectively, indicating an axisymmetric deformation around NE-SW axis. The results indicate that higher horizontal mass movement toward the center occurred in NW- and SE-domains than in NE- and SW-domains while vertical mass movement was more active in the latter. This axisymmetric deformation could be produced by regional stress during the volcanic activity, which affected the collapse pattern of caldera floor. The regional stress field during the late Cretaceous is known as NW-SE horizontal maximum and NE-SW horizontal minimum stresses due to the oblique subduction of proto-Pacific Plate underneath Eurasian Plate. NNW-trending elliptical shape of the caldera is interpreted to have formed under the influence of this stresses, like a tension gash. The NW-SE maximum stress possibly acted to resist vertical displacement along the marginal fault of NW- and SE

  17. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    Science.gov (United States)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  18. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characteristic and Competency Measurement Instrument Development for Maintenance Staff of Mechanical Expertise with SECI Method: A Case of Manufacturing Company

    Science.gov (United States)

    Mahatmavidya, P. A.; Soesanto, R. P.; Kurniawati, A.; Andrawina, L.

    2018-03-01

    Human resource is an important factor for a company to gain competitiveness, therefore competencies of each individual in a company is a basic characteristic that is taken into account. The increasing employee’s competency will affect directly to the company's performance. The purpose of this research is to improve the quality of human resources of maintenance staff in manufacturing company by designing competency measurement instrument that aims to assess the competency of employees. The focus of this research is the mechanical expertise of maintenance staff. SECI method is used in this research for managing knowledge that is held by senior employees regarding employee competence of mechanical expertise. The SECI method converts the knowledge of a person's tacit knowledge into an explicit knowledge so that the knowledge can be used by others. The knowledge that is gathered from SECI method is converted into a list of competence and break down into the detailed competency. Based on the results of this research, it is known that 11 general competencies, 17 distinctive competencies, 20 indicators, and 20 item list for assessing the competencies are developed. From the result of competency breakdown, the five-level instrument of measurement is designed which can assist in assessing employee’s competency for mechanical expertise.

  20. Study of the characteristics and outcomes of patients on mechanical ventilation in the intensive care unit of EL-Mahalla Chest Hospital

    Directory of Open Access Journals (Sweden)

    Mohamed A. Zamzam

    2015-07-01

    Conclusion: Survival among mechanically ventilated patients depended on the baseline characteristics at the start of MV, as well as on the development of complications and the management protocols in the ICU.

  1. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola; Kiviranta, Leena; Kumpulainen, Sirpa; Linden, Johan

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  2. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seetharaman, Sankaranarayanan, E-mail: seetharaman.s@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Blawert, Carsten [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Ng, Baoshu Milton [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Wong, Wai Leong Eugene [School of Mechanical and Systems Engineering, New Castle University International Singapore, 180 Ang Mo Kio Avenue 8, 569830 (Singapore); Goh, Chwee Sim [ITE Technology Development Centre, ITE College Central, 2 Ang Mo Kio Drive, 567720 (Singapore); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Gupta, Manoj, E-mail: mpegm@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore)

    2015-11-05

    In this study, new erbium modified Mg–Al alloys were developed by integrating trace erbium (in the form of Al{sub 94.67}Er{sub 5.33} master alloy) into pure Mg using disintegrated melt deposition technique. The developed Er- modified Mg–Al alloys were investigated for their microstructural, mechanical and corrosion characteristics in comparison with their unmodified counterparts. Microstructural investigation revealed (i) improved purity, (ii) (marginal) grain refinement, (iii) more uniform second phase distribution and (iv) Al{sub 3}Er phase formation due to Er modification. Mechanical property measurements revealed an overall enhancement under indentation, tension and compression loads. A remarkable improvement in tensile ductility (without adverse effects on strength) by +19%, +29%, and +58% was obtained in Mg–3Al–0.1Er, Mg–6Al–0.3Er and Mg–9Al–0.5Er when compared to Mg–3Al, Mg–6Al and Mg–9Al respectively. While the Mg–6Al–0.3Er alloy exhibited best ductility, the Mg–9Al–0.5Er has the best strength under both tension and compression loads. Corrosion characteristics evaluated by hydrogen evolution, salt spray and electrochemical impedance experiments revealed improved corrosion resistance of Er modified Mg–Al alloys by the enhanced purity levels and the formation of Al–Er phases. - Highlights: • New erbium modified Mg–Al alloys successfully synthesized using DMD method. • Erbium modification promoted Al{sub 3}Er formation and improved the purity. • Remarkable improvement in tensile ductility obtained after erbium modification. • The developed erbium modified Mg–Al alloys exhibit improved corrosion resistance.

  3. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys

    International Nuclear Information System (INIS)

    Seetharaman, Sankaranarayanan; Blawert, Carsten; Ng, Baoshu Milton; Wong, Wai Leong Eugene; Goh, Chwee Sim; Hort, Norbert; Gupta, Manoj

    2015-01-01

    In this study, new erbium modified Mg–Al alloys were developed by integrating trace erbium (in the form of Al 94.67 Er 5.33 master alloy) into pure Mg using disintegrated melt deposition technique. The developed Er- modified Mg–Al alloys were investigated for their microstructural, mechanical and corrosion characteristics in comparison with their unmodified counterparts. Microstructural investigation revealed (i) improved purity, (ii) (marginal) grain refinement, (iii) more uniform second phase distribution and (iv) Al 3 Er phase formation due to Er modification. Mechanical property measurements revealed an overall enhancement under indentation, tension and compression loads. A remarkable improvement in tensile ductility (without adverse effects on strength) by +19%, +29%, and +58% was obtained in Mg–3Al–0.1Er, Mg–6Al–0.3Er and Mg–9Al–0.5Er when compared to Mg–3Al, Mg–6Al and Mg–9Al respectively. While the Mg–6Al–0.3Er alloy exhibited best ductility, the Mg–9Al–0.5Er has the best strength under both tension and compression loads. Corrosion characteristics evaluated by hydrogen evolution, salt spray and electrochemical impedance experiments revealed improved corrosion resistance of Er modified Mg–Al alloys by the enhanced purity levels and the formation of Al–Er phases. - Highlights: • New erbium modified Mg–Al alloys successfully synthesized using DMD method. • Erbium modification promoted Al 3 Er formation and improved the purity. • Remarkable improvement in tensile ductility obtained after erbium modification. • The developed erbium modified Mg–Al alloys exhibit improved corrosion resistance

  4. Development of a numerical code for the prediction of the long-term behavior of the underground facilities for the high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Hasegawa, Takuma

    2006-01-01

    Complicated phenomena originated by thermo-hydro-mechanical coupling behavior will occur in the near-field of geological disposal of nuclear waste. Development of a numerical evaluation method for such phenomena is important in order to make a reasonable repository design and a safety assessment. In order to achieve the objective above, a numerical model using the equations which can evaluate the swelling characteristics of buffer materials based on the diffusive double layer theory is proposed, and a numerical scheme for the thermo-hydro-mechanical coupled analysis including the swelling model is constructed. The proposed swelling model can reproduce the behavior observed during both swelling pressure tests and swelling deformation tests. When the developed numerical code is applied to the laboratory heater test using a bentonite specimen, it can reproduce the thermal gradient, the distribution of saturation rate and the variation of porosity. The developed numerical code will be applied to well-controlled laboratory tests and full-scale in-situ tests in the future work. In order to apply to the various geochemical conditions around the engineered barrier, chemical component will be coupled to the present numerical code. (author)

  5. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy

    International Nuclear Information System (INIS)

    Han, G.M.; Han, Z.Q.; Luo, A.A.; Liu, B.C.

    2015-01-01

    Highlights: • Characterization of three-dimensional morphologies of precipitates using AFM. • Quantitative microstructure of aged squeeze-cast AZ91 alloy. • The non-uniform continuous precipitation during aging of squeeze-cast AZ91 alloy. • The relationship between microstructure and property of aged squeeze-cast AZ91 alloy. - Abstract: Quantitative microstructure information is critical to modeling and prediction of mechanical properties of structural components. In this study, the microstructure characteristics of aged squeeze-cast AZ91 alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses. Particularly, a study of the three-dimensional morphology of continuous precipitation during heat treatment was carried out using a combination of TEM and AFM. The results showed that a typical precipitate consisted of three kinds of faces, namely, broad, side, and end faces. The precipitate also presented a lath-shaped morphology with lozenge ends. Combined SEM and TEM analyses revealed quantitative information on the sizes and area number densities of precipitates after aging at different temperatures with different times. In general, the length and width of precipitates increased more rapidly than thickness during aging. The area number density initially increased and then slowly decreased because of coarsening. Furthermore, a special microstructure characteristic of the non-uniform continuous precipitation during aging was investigated using electron probe microanalysis (EPMA). The relationship between hardness response and yield strength was established

  6. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    Directory of Open Access Journals (Sweden)

    Mansour Ebrahimi

    Full Text Available The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896 of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms, percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for

  7. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    Science.gov (United States)

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  8. Investigation on Mechanical Properties and Reaction Characteristics of Al-PTFE Composites with Different Al Particle Size

    Directory of Open Access Journals (Sweden)

    Jia-xiang Wu

    2018-01-01

    Full Text Available Al-PTFE (aluminum-polytetrafluoroethylene serves as one among the most promising reactive materials (RMs. In this work, six types of Al-PTFE composites with different Al particle sizes (i.e., 50 nm, 1∼2 μm, 6∼7 μm, 12∼14 μm, 22∼24 μm, and 32∼34 μm were prepared, and quasistatic compression and drop weight tests were conducted to characterize the mechanical properties and reaction characteristics of Al-PTFE composites. The reaction phenomenon and stress-strain curves were recorded by a high-speed camera and universal testing machine. The microstructure of selected specimens was anatomized through adopting a scanning electron microscope (SEM to correlate the mesoscale structural characteristics to their macroproperties. As the results indicated, in the case of quasistatic compression, the strength of the composites was decreased (the yield strength falling from 22.7 MPa to 13.6 MPa and the hardening modulus declining from 33.3 MPa to 25 MPa with the increase of the Al particle size. The toughness rose firstly and subsequently decreased and peaked as 116.42 MJ/m3 at 6∼7 μm. The reaction phenomenon occurred only in composites with the Al particle size less than 10 μm. In drop weight tests, six types of specimens were overall reacted. As the Al particle size rose, the ignition energy of the composites enhanced and the composites turned out to be more insensitive to reaction. In a lower strain rate range (10−2·s−1∼102·s−1, Al-PTFE specimens take on different mechanical properties and reaction characteristics in the case of different strain rates. The formation of circumferential open cracks is deemed as a prerequisite for Al-PTFE specimens to go through a reaction.

  9. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals.

    Science.gov (United States)

    Zhou, Yun; Zhang, Zhiqiang; Zhang, Jiao; Xia, Siqing

    2016-07-01

    The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb(2+) and Zn(2+) in aqueous single-metal solutions. A pH value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients (above 0.99 for both metal ions) and insignificant lack of fit (p=0.0838 and 0.0782 for Pb(2+) and Zn(2+), respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation (between -NH2, -CN and metal ions) and ion-exchange (between -COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions. Copyright © 2016. Published by Elsevier B.V.

  10. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  11. Effect Of Irradiation Temperature and Dose On Mechanical Properties And Fracture Characteristics Of Cu//SS Joints For ITER

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Peacock, A.; Roedig, M.; Linke, J.; Gervash, A.; Barabash, V.

    2007-01-01

    Full text of publication follows: By now, a number of technologies have been proposed for the production of Cu//SS joints for ITER, such as brazing, friction welding, HIP and cast-copper-to-steel (CC). The two last-mentioned technologies ensure sufficiently high mechanical properties and a high joint quality, when unirradiated. The data, however, on mechanical characteristics of irradiated of Cu//SS HIP joints are limited. In this paper, the authors present the results of investigations into the mechanical characteristics after irradiation of GlidCopAl25/316L(N) and Cu-Cr-Zr/316L(N)-type joints produced by the HIP and CC technologies. Specimens of the joints were irradiated in the RBT-6 reactor in the dose range of 10 -3 - 10 -1 dpa at T irr = 200 deg. C and 300 deg. C. The tensile stress-strain curves for irradiated and unirradiated joint specimens show deformation processes occurring in both the Cu and SS parts of the specimens. Irradiation at T irr = 200 deg. C causes strengthening of the joints specimens (by about 100 MPa at the maximum dose). The uniform elongation drops from 8% in the initial state to 2-3 %. But the total elongation remains at a relatively high level of ∼ 7%. Irradiation at T irr = 300 deg. C causes a slight strengthening of the joints specimens (∼30 MPa). The uniform elongation remains unchanged at ∼ 7%. The total elongation also maintains a relatively high level of ∼9-13%. SEM investigations revealed that fracture occurs only in the copper part of the irradiated specimens, and ductile trans-crystalline fracture predominates in the joints. 3D finite element analysis of the tensile test indicates that the concentration of stresses and deformations in the copper layer adjacent to the joint line is responsible for this typical failure of the irradiated joints specimens. Comparison of the behavior of the joints irradiated at T irr = 200 deg. C and 300 deg. C indicate an increased embrittlement at lower irradiation temperatures. At a

  12. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ebenezer Omole

    2018-05-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling

  13. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications.

    Science.gov (United States)

    Omole, Adekunle Ebenezer; Fakoya, Adegbenro Omotuyi John

    2018-01-01

    The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and

  14. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure.

    Science.gov (United States)

    Liu, Cheng-Bin; Qu, Guang-Bo; Cao, Meng-Xi; Liang, Yong; Hu, Li-Gang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-12-01

    Inorganic divalent mercury complexes (Hg 2+ ) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg 2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg 2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg 2+ . The mechanisms responsible for the toxicity of MeHg and Hg 2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg 2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg 2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Search for morphological parameters influential for prediction of the mechanical characteristics of an austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Messiaen, L.

    1997-01-01

    Duplex stainless steels are commonly used (among others in nuclear industry) for their good properties. However these steels may 'age' in service condition at high temperatures. As their mechanical properties (Charpy impact toughness, resistance to ductile tearing) are often very scattered and tend to decrease after ageing, it has become essential to predict them with high precision. For this, we propose to explain a part of the scattering of the mechanical properties with measurable parameters in relation with the particularly complicated two-phase morphology. The two-phase and bi-percolated morphology of the ferrite and austenite phases is first characterised from the observation of 2D images and from the reconstitution of a 3D image. At the same time we precise the genesis of the formation's mechanisms of the structure (germination and growth of the austenitic phase in the solidified ferri tic one) in relation with the literature. The morphological characteristics so observed corresponding with classical notions of mathematical morphology, - size, covariance, connexity -, we use morphological operators to measure morphological variables by image analysis. We establish then a link between toughness and a parameter measuring fineness of the morphology. The lack of data for very aged steels prevent us from proposing a model of toughness which could take this parameter into consideration at these ageing states, for which it is properly the more crucial to obtain specially precise predictions. A mathematical mo del of the 3D structure of the steel is finally proposed. We choose an homogeneous Markov chain of 3D spatial processes, whose evolution in time mimes the solidification. The morphology of the microstructure is so summarised with 8 parameters. This model is liable to be coupled with a model of toughness, for which it would so enlarge the possibilities of prediction. It could also be used to simulate subsequently the damage and the rupture of two

  16. Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology

    International Nuclear Information System (INIS)

    Hans, H; Miao, J M; Triantafyllou, M S

    2014-01-01

    In this paper, the mechanical properties of harbor seal vibrissae immersed in various solutions are investigated. As there are no nerves along the length of the vibrissae, all the perturbations have to be transmitted to their bases for sensing. Hence, quantification and understanding of the mechanical properties of the vibrissae are essential in determining the perturbations transmitted to the base of the vibrissae. Two experimental setups are devised for measurements of the different properties of the vibrissae. The first experimental setup is performed with a dynamic mechanical analysis machine. The measured properties in these experiments are the modulus of elasticity and the damping of the vibrissae. Dry, saline water-immersed, water-immersed and Hanks' balanced salt solution (HBSS)-immersed vibrissae are tested to determine the effects of these solutions on the properties of the vibrissae. Tests on the duration of immersion are also performed with saline water-immersed vibrissae. The second experimental setup is performed with a mini-shaker connected to a clamp, which rigidly holds the vibrissae at their bases. The measured properties in these experiments are the natural frequencies of the vibrissae. The results indicate that the moduli of elasticity of the vibrissae are found to decrease along their lengths. However, their damping does not vary along the lengths. HBSS-immersed and saline water-immersed vibrissae show similar characteristics on their properties. An analytical model for predicting the natural frequencies of the vibrissae is also derived. Strong agreement with previous studies on the underwater sensing principle of the harbor seal is also established. (paper)

  17. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  18. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  19. Research on simulation calculation method of biomechanical characteristics of C1-3 motion segment damage mechanism

    Directory of Open Access Journals (Sweden)

    HUANG Ju-ying

    2013-11-01

    Full Text Available Objective To develop the finite element model (FEM of cervical spinal C1-3 motion segment, and to make biomechanical finite element analysis (FEA on C1-3 motion segment and thus simulate the biomechanical characteristics of C1-3 motion segment in distraction violence, compression violence, hyperextension violence and hyperflexion violence. Methods According to CT radiological data of a healthy adult, the vertebrae and intervertebral discs of cervical spinal C1-3 motion segment were respectively reconstructed by Mimics 10.01 software and Geomagic 10.0 software. The FEM of C1-3 motion segment was reconstructed by attaching the corresponding material properties of cervical spine in Ansys software. The biomechanical characteristics of cervical spinal C1-3 motion segment model were simulated under the 4 loadings of distraction violence, compression violence, hyperextension violence and hyperflexion violence by finite element method. Results In the loading of longitudinal stretch, the stress was relatively concentrated in the anterior arch of atlas, atlantoaxial joint and C3 lamina and spinous process. In the longitudinal compressive loads, the maximum stress of the upper cervical spine was located in the anterior arch of atlas. In the loading of hyperextension moment, the stress was larger in the massa lateralis atlantis, the lateral and posterior arch junction of atlas, the posterior arch nodules of the atlas, superior articular surface of axis and C2 isthmus. In the loading of hyperflexion moment, the stress was relatively concentrated in the odontoid process of axis, the posterior arch of atlas, the posterior arch nodules of atlas, C2 isthmic and C2 inferior articular process. Conclusion Finite element biomechanical testing of C1-3 motion segment can predict the biomechanical mechanism of upper cervical spine injury.

  20. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  1. Mechanical Properties and Wear Characteristics Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites

    Science.gov (United States)

    Nayak, S. K.; Mahanta, T.; Sahoo, J. K.; Mishra, A.

    2018-03-01

    Development of Aluminum Metal Matrix Co mposites (AMMCs) has been one of the major requirements in engineering applicat ions due to their excellent mechanical properties, light weight and high strength. In the present investigation, Stir casting technique has been used for fabrication of co mposites, taking Alu miniu m as parent metal, Silicon Carbide (SiCp) of 7 vol. % of 220 mesh size and 1.75 vol. % of graphite as reinforcements. The Zirconia content was varied as 2.75, 4.5 and 6 vol. % to fabricate three d ifferent types of hybrid composites. The tensile strength and hardness were measured in UTM and Vickers hardness tester respectively and the wear characteristics were studied in a pin on disc friction monitor under dry sliding condition against steel counter face. The tensile strength was found to be 90 MPa, 120 MPa, 130 MPa and hardness 80.25 VHN, 103.22 VHN, 103.77 VHN for 2.75, 4.5 and 6vol. % of Zirconia respectively. Fro m the above investigation, it is recommended that composition with Al, 7 %-SiCp, 1.75 % -Gr and 6 vol %-ZrO2 showed better mechanical p roperties i.e . h igh tensile strength (130MPa) and reasonably good hardness (103.77 VHN) . The co mposite with Al, 7 % - SiCp, 1.75 % -Gr and 6 %-ZrO2 is good for short run frictional applicat ion and the composite with Al, 7 %- SiCp, 1.75 % -Gr and 4.5 %- ZrO2 may be used for long run frictional applicat ions after testing.

  2. Effects of Heat Input on the Mechanical and Metallurgical Characteristics of Tig Welded Incoloy 800Ht Joints

    Directory of Open Access Journals (Sweden)

    Kumar S. Arun

    2017-09-01

    Full Text Available This study focuses on the effect of heat input on the quality characteristics of tungsten inert arc gas welded incoloy 800HT joints using inconel-82 filler wire. Butt welding was done on specimens with four different heat inputs by varying the process parameters like welding current and speed. The result indicated that higher heat input levels has led to the formation of coarser grain structure, reduced mechanical properties and sensitization issues on the weldments. The formation of titanium nitrides provided resistance to fracture and increased the tensile strength of the joints at high temperatures. Further aging was done on the welded sample at a temperature of 750°C for 500 hours and the metallographic result showed formation of carbides along the grain boundaries in a chain of discrete and globular form which increased the hardness of the material. The formation of spinel NiCr2O4 provided oxidation resistance to the material during elevated temperature service.

  3. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms.

    Science.gov (United States)

    Salas, Paloma F; Herrmann, Christoph; Cawthray, Jacqueline F; Nimphius, Corinna; Kenkel, Alexander; Chen, Jessie; de Kock, Carmen; Smith, Peter J; Patrick, Brian O; Adam, Michael J; Orvig, Chris

    2013-02-28

    Five compounds displaying an unprecedented binding mode of chloroquine to ferrocene through the bridging of the cyclopentadienyl rings were studied alongside their monosubstituted ferrocene analogues and organic fragments. The antiplasmodial activity was evaluated against strains of the malaria parasite (Plasmodium falciparum). While the chloroquine-bridged ferrocenyl derivatives were less active than their five monosubstituted ferrocenyl analogues, they retained activity in the drug-resistant strains. The biological and physical properties were correlated to antiplasmodial activity. Intramolecular hydrogen bonding was associated with increased antiplasmodial action, but it is not the determining factor. Instead, balance between lipophilicity and hydrophilicity had a greater influence. It was found that calculated partition coefficient (log P) values of 4.5-5.0 and topological polar surfaces area (tPSA) values of ∼26.0 Å(2) give the best balance. The particular conformation, compact size, and lipophilicity/hydrophilicity balance observed in the bridged compounds provide them with the structural characteristics needed to escape the mechanisms responsible for resistance.

  4. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  5. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    International Nuclear Information System (INIS)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new

  6. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China

    Science.gov (United States)

    Wang, Huanbo; Tian, Mi; Chen, Yang; Shi, Guangming; Liu, Yuan; Yang, Fumo; Zhang, Leiming; Deng, Liqun; Yu, Jiayan; Peng, Chao; Cao, Xuyao

    2018-01-01

    To investigate the characteristics of PM2.5 and its major chemical components, formation mechanisms, and geographical origins in the two megacities, Chengdu (CD) and Chongqing (CQ), in Sichuan Basin of southwest China, daily PM2.5 samples were collected simultaneously at one urban site in each city for four consecutive seasons from autumn 2014 to summer 2015. Annual mean concentrations of PM2.5 were 67.0 ± 43.4 and 70.9 ± 41.4 µg m-3 at CD and CQ, respectively. Secondary inorganic aerosol (SNA) and organic matter (OM) accounted for 41.1 and 26.1 % of PM2.5 mass at CD, and 37.4 and 29.6 % at CQ, respectively. Seasonal variations of PM2.5 and major chemical components were significant, usually with the highest mass concentration in winter and the lowest in summer. Daily PM2.5 concentration exceeded the national air quality standard on 30 % of the sampling days at both sites, and most of the pollution events were at the regional scale within the basin formed under stagnant meteorological conditions. The concentrations of carbonaceous components were higher at CQ than CD, likely partially caused by emissions from the large number of motorcycles and the spraying processes used during automobile production in CQ. Heterogeneous reactions probably played an important role in the formation of SO42-, while both homogeneous and heterogeneous reactions contributed to the formation of NO3-. Geographical origins of emissions sources contributing to high PM2.5 masses at both sites were identified to be mainly distributed within the basin based on potential source contribution function (PSCF) analysis.

  7. Mechanical and thermal-expansion characteristics of Ca10(PO46(OH2-Ca3(PO42 composites

    Directory of Open Access Journals (Sweden)

    Ruseska G.

    2006-01-01

    Full Text Available Three types of composites consisting of Ca10(PO46(OH2 and Ca3(PO42 with composition: 75% (wt Ca10(PO46(OH2: 25%(wt Ca3(PO42; 50%(wt Ca10(PO46(OH2: 50%(wtCa3(PO42 and 25 %(wt Ca10(PO46(OH2: 75%(wt Ca3(PO42 were the subject of our investigation. Sintered compacts were in thermal equilibrium, which was proved by the absence of hysteresis effect of the dependence ΔL/L=f(T during heating /cooling in the temperature interval 20-1000-200C. Sintered compacts with the previously mentioned composition possess 26-50% higher values of the E-modulus, G-modulus and K-modulus indicating the presence of a synergism effect. Several proposed model equations for predicting the thermal expansion coefficient in dependence of the thermal and elastic properties of the constitutive phases and their volume fractions, given by: Turner, Kerner, Tummala and Friedberg, Thomas and Taya, were used for making correlations between mechanical and thermal-expansion characteristics of the Ca10(PO46(OH2 - Ca3(PO42 composites. Application of the previously mentioned model equations to all kinds of composites leads to the conclusion that the experimentally obtained results for the thermal expansion coefficient are in an excellent agreement with the theoretical calculated values on account of the volume fraction of each constitutive phase and with all applied model equations, with a coefficient of correlation from 98.16-99.86 %.

  8. Effect of mechanically deboned poultry meat content on technological properties and sensory characteristics of lamb and mutton sausages

    Directory of Open Access Journals (Sweden)

    Armando Abel Massingue

    2018-04-01

    Full Text Available Objective This study aimed to develop a value-added product concerning technological and sensory characteristics changes of the use of mechanically deboned poultry meat (MDPM as meat replacer in lamb and mutton emulsion-type sausages (mortadella. Methods Sausages were produced with lamb and mutton and with different contents of MDPM. Six treatments, using lamb or mutton and 0%, 30%, and 60% of MDPM in relation to the meat batter, were produced and analyzed for pH, proximal composition, calcium and residual nitrite content, water activity, 2-thiobarbituric acid reactive substances (TBARS, instrumental color and texture profile. The sensory profile of the mortadella’s was also evaluated by acceptance test and check-all-that-applies (CATA analysis. Results The MDPM addition increased (p<0.05 fat, residual nitrite and calcium content in the all sausage formulations, but mutton sausage had (p<0.05 higher fat and lower moisture content than lamb sausage. The pH, water activity, TBARS index and color was not affected by MDPM additions, while the mutton sausages were significantly redder (higher a*, C*, and lower h° and darker (lower L* than lamb sausages. Adding up to 60% of MDPM reduced (p<0.05 sausages hardness and chewiness. Overall, the meat replacement by MDPM increased the sausages acceptance, but the mutton sausage with 30% of MDPM replacer were the most preferred. Consumers related that pink color, glossy appearance, poultry meat-like taste, soft texture, juicy and greasy mouth feel to all sausages contain MDPM according to CATA analysis. Conclusion Mutton from culled ewes can be utilized for mortadella production with 30% replacement of lean mutton and fat by MDPM.

  9. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers.

    Science.gov (United States)

    Lohr, Christine; Braumann, Klaus-Michael; Reer, Ruediger; Schroeder, Jan; Schmidt, Tobias

    2018-04-20

    Tensiomyography™ (TMG) and MyotonPRO ® (MMT) are two non-invasive devices for monitoring muscle contractile and mechanical characteristics. This study aimed to evaluate the test-retest reliability of TMG and MMT parameters for measuring (TMG:) muscle displacement (D m ), contraction time (T c ), and velocity (V c ) and (MMT:) frequency (F), stiffness (S), and decrement (D) of the erector spinae muscles (ES) in healthy adults. A particular focus was set on the establishment of reliability measures for the previously barely evaluated secondary TMG parameter V c . Twenty-four subjects (13 female and 11 male, mean ± SD, 38.0 ± 12.0 years) were measured using TMG and MMT over 2 consecutive days. Absolute and relative reliability was calculated by standard error of measurement (SEM, SEM%), Minimum detectable change (MDC, MDC%), coefficient of variation (CV%) and intraclass correlation coefficient (ICC, 3.1) with a 95% confidence interval (CI). The ICCs for all variables and test-retest intervals ranged from 0.75 to 0.99 indicating a good to excellent relative reliability for both TMG and MMT, demonstrating the lowest values for TMG T c and between-day MMT D (ICC TMG parameter (ICC > 0.95, CV TMG V c could be established successfully. Its further applicability needs to be confirmed in future studies. MMT was found to be more reliable on repeated testing than the two other TMG parameters D m and T c .

  10. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    H. Wang

    2018-01-01

    Full Text Available To investigate the characteristics of PM2.5 and its major chemical components, formation mechanisms, and geographical origins in the two megacities, Chengdu (CD and Chongqing (CQ, in Sichuan Basin of southwest China, daily PM2.5 samples were collected simultaneously at one urban site in each city for four consecutive seasons from autumn 2014 to summer 2015. Annual mean concentrations of PM2.5 were 67.0 ± 43.4 and 70.9 ± 41.4 µg m−3 at CD and CQ, respectively. Secondary inorganic aerosol (SNA and organic matter (OM accounted for 41.1 and 26.1 % of PM2.5 mass at CD, and 37.4 and 29.6 % at CQ, respectively. Seasonal variations of PM2.5 and major chemical components were significant, usually with the highest mass concentration in winter and the lowest in summer. Daily PM2.5 concentration exceeded the national air quality standard on 30 % of the sampling days at both sites, and most of the pollution events were at the regional scale within the basin formed under stagnant meteorological conditions. The concentrations of carbonaceous components were higher at CQ than CD, likely partially caused by emissions from the large number of motorcycles and the spraying processes used during automobile production in CQ. Heterogeneous reactions probably played an important role in the formation of SO42−, while both homogeneous and heterogeneous reactions contributed to the formation of NO3−. Geographical origins of emissions sources contributing to high PM2.5 masses at both sites were identified to be mainly distributed within the basin based on potential source contribution function (PSCF analysis.

  11. Effect of mechanically deboned poultry meat content on technological properties and sensory characteristics of lamb and mutton sausages.

    Science.gov (United States)

    Massingue, Armando Abel; de Almeida Torres Filho, Robledo; Fontes, Paulo Rogério; de Lemos Souza Ramos, Alcinéia; Fontes, Edimar Aparecida Filomeno; Perez, Juan Ramon Olalquiaga; Ramos, Eduardo Mendes

    2018-04-01

    This study aimed to develop a value-added product concerning technological and sensory characteristics changes of the use of mechanically deboned poultry meat (MDPM) as meat replacer in lamb and mutton emulsion-type sausages (mortadella). Sausages were produced with lamb and mutton and with different contents of MDPM. Six treatments, using lamb or mutton and 0%, 30%, and 60% of MDPM in relation to the meat batter, were produced and analyzed for pH, proximal composition, calcium and residual nitrite content, water activity, 2-thiobarbituric acid reactive substances (TBARS), instrumental color and texture profile. The sensory profile of the mortadella's was also evaluated by acceptance test and check-all-that-applies (CATA) analysis. The MDPM addition increased (p<0.05) fat, residual nitrite and calcium content in the all sausage formulations, but mutton sausage had (p<0.05) higher fat and lower moisture content than lamb sausage. The pH, water activity, TBARS index and color was not affected by MDPM additions, while the mutton sausages were significantly redder (higher a *, C *, and lower h °) and darker (lower L *) than lamb sausages. Adding up to 60% of MDPM reduced (p<0.05) sausages hardness and chewiness. Overall, the meat replacement by MDPM increased the sausages acceptance, but the mutton sausage with 30% of MDPM replacer were the most preferred. Consumers related that pink color, glossy appearance, poultry meat-like taste, soft texture, juicy and greasy mouth feel to all sausages contain MDPM according to CATA analysis. Mutton from culled ewes can be utilized for mortadella production with 30% replacement of lean mutton and fat by MDPM.

  12. Characteristics of Carotid Artery Structure and Mechanical Function and Their Relationships with Aortopathy in Patients with Bicuspid Aortic Valves

    Directory of Open Access Journals (Sweden)

    Mihyun Kim

    2017-08-01

    Full Text Available Patients with a bicuspid aortic valve (BAV often have proximal aortic dilatation and systemic vascular dysfunction. We hypothesized that BAV patients would have different carotid artery structural and functional characteristics compared to tricuspid aortic valve (TAV patients. In 28 patients with surgically confirmed BAV and 27 patients with TAV, intima media thickness (IMT, number of plaques, fractional area change (FAC, global circumferential strain (GCS, and standard deviation of CS (SD-CS in both common carotid arteries were assessed using duplex ultrasound and velocity vector imaging (VVI. Patients with BAV were younger and had less co-morbidity, but showed a significantly larger ascending aorta (43.3 ± 7.5 vs. 37.0 ± 6.2 mm, p < 0.001 and a higher prevalence of aortopathy (61 vs. 30%, p = 0.021 than those with TAV. BAV patients showed a significantly lower IMT and fewer plaques. Although FAC and GCS were not significantly different between the two groups, they tended to be lower in the BAV group when each group was divided into three subgroups according to age. There was a significant age-dependent increase in IMT and decreases in FAC and GCS in the TAV group (p = 0.005, p = 0.001, p = 0.002, respectively, but this phenomenon was not evident in the BAV group (p = 0.074, p = 0.248, p = 0.394, respectively. BAV patients with aortopathy showed a higher SD-CS than those without aortopathy (p = 0.040, reflecting disordered mechanical function. In conclusion, BAV patients have different carotid artery structure and function compared with TAV patients, suggesting intrinsic vascular abnormalities that are less affected by established cardiovascular risk factors and more strongly related to the presence of aortopathy.

  13. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Science.gov (United States)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  14. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  15. Elastic and nonlinear behaviour of argillaceous rocks under combined moisture and mechanical loads investigated by means of multiscale full-field strain measurement techniques

    International Nuclear Information System (INIS)

    Yang, D.S.; Nguyen Minh, D.; Chanchole, S.; Gharbi, H.; Valli, P.; Bornert, M.

    2010-01-01

    Document available in extended abstract form only. The construction of underground nuclear waste repositories will strongly disturb the initial thermo-hydro-chemo-mechanical equilibrium of the site. In addition to direct mechanical perturbations during excavation, which induce redistribution of the stresses and possible damage of the surrounding rock mass, the ventilation of the galleries will also modify the moisture content of the rock, resulting in shrinking or swelling, and more generally modifying the physical-chemical properties of the material. Safety concerns about preservation of confining properties of rock mass at short and long time scales require a deep understanding of the hydro-mechanical behavior of the host rock. In particular the dependence of elastic, possibly anisotropic, moduli and nonlinear properties (plasticity, damage, creep...) as a function of the moisture level, need to be quantified. In addition, in order to construct physically based micromechanical models of these dependencies, the various micro-mechanisms at their origin and their characteristic scales need to be identified. Various independent studies agree on the decrease of overall rigidity and failure stress of argillite with increasing humidity. A recent study making use of optical full-field strain measurement techniques on centi-metric samples under uniaxial compression suggests that this apparent decrease of elastic properties on wet samples can be essentially explained by the presence of a millimetric network of 'meso-cracks', induced by the preliminary unconfined hydration process. Indeed, thanks to the full-field measurement technique, it was possible to show that the mechanical response of undamaged areas, in-between cracks, was very similar at all moisture contents, both in terms of average strains and strain fluctuations at the micrometric scale of the composite structure of the rock (matrix clay + other mineral inclusions). The preliminary hydro-mechanical

  16. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    Science.gov (United States)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  17. Failure characteristics and mechanisms of EB-PVD TBCs with Pt-modified NiAl bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Le; Mukherjee, Sriparna; Huang, Ke; Park, Young Whan; Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu

    2015-06-18

    Microstructural evolution and failure characteristics/mechanisms were investigated for thermal barrier coatings that consist of electron beam physical vapor deposited ZrO{sub 2}−8 wt% Y{sub 2}O{sub 3} (YSZ) topcoat, Pt-modified nickel aluminide, (Ni,Pt)Al bond coat, and CMSX-4 superalloy substrate with furnace cycling at 1100 °C with 1-h dwell. Photo stimulated luminescence spectroscopy, scanning electron microscopy equipped with X-ray energy dispersive spectroscopy and transmission electron microscopy were employed to examine the residual stress of the thermally grown oxide (TGO) and microstructural changes. For comparison, (Ni,Pt)Al bond coat on CMSX-4 without the YSZ topcoat was also characterized. The TGO grew faster for the YSZ-coated (Ni,Pt)Al bond coat than the (Ni,Pt)Al coating without the YSZ topcoat. Correspondingly, the β-to-γ′/martensite formation in the (Ni,Pt)Al bond coat occurred faster on the YSZ-coated (Ni,Pt)Al bond coat. However the rumpling occurred much faster and with larger amplitude on the (Ni,Pt)Al coating without the YSZ topcoat. Still, the rumpling at the TGO/bond coat interface caused crack initiation as early as 10 thermal cycles, decohesion at the YSZ/TGO interface, and eventual spallation failure primarily through the TGO/bond coat interface. The magnitude of compressive residual stress in the TGO showed an initial increase up to 3−4 GPa followed by a gradual decrease. The rate of stress relaxation was much quicker for the TGO scale without the YSZ topcoat with distinctive relief corresponding to the cracking at the top of geometrical ridges associated with the (Ni,Pt)Al bond coat. The maximum elastic energy for the TGO scale was estimated at 90 J/m{sup 2} at 50% of its lifetime (N{sub f}=545 cycles). The YSZ presence/adhesion to the TGO scale is emphasized to minimize the undulation of the TGO/bond coat interface, i.e., decohesion at the YSZ/TGO scale accelerates the rumpling and crack-coalescence at the TGO/bond coat

  18. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  19. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Science.gov (United States)

    Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang

    2016-04-01

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  1. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei [State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Liu, Zirui [State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China); Guo, Anxiang [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xi' an, Shaanxi (China)

    2016-04-15

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  2. Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate/Poly(acrylonitrile-co-butadiene Blends

    Directory of Open Access Journals (Sweden)

    Murugan N.

    2017-12-01

    Full Text Available This paper addresses the compatibility, morphological characteristics, crystallization, physico-mechanical properties and thermal stability of the melt mixed EMA/NBR blends. FTIR spectroscopy reveals considerable physical interaction between the polymers that explain the compatibility of the blends. DSC results confirm the same (compatibility and reveals that NBR hinders EMA crystallization. Mechanical and thermal properties of the prepared EMA/NBR blends notably enhance with increasing the fraction of EMA in the blends. Morphology study exhibit the dispersed particles in spherical shape in the nanometer level. Swelling and oil resistance study have also been carried out in details to understand the performance behaviour of these blends at service condition

  3. Effect of temperature on the mechanical characteristics of cold-worked steel OKh16N15M3B with active tension and creep

    International Nuclear Information System (INIS)

    Erasov, V.S.; Konoplenko, V.P.; Pirogov, E.N.

    1986-01-01

    Steel OKh16N15M3B is used extensively for the manufacture of atomic reactor fuel-element shells. The aim of this work is a study of the mechanical characteristics of this steel cold-worked by 20% with active tension and creep in the temperature range 973-1323 0 K, which is necessary for predicting the behavior of fuel-element shells in critical situations. It is found that above 973 0 K there is active loss of strength for cold-worked steel OKh16N15M3B. Strength characteristics in the region 973-1323 0 K decrease by more than a factor of six. Thermal activation analysis of the plastic deformation process, showing a sharp increase in activation energy above 1073 0 K, suggests a change in the mechanisms of plastic deformation taking place. For active tension and creep the same temperature range is obtained for a marked change in activation energy

  4. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  5. Influence of radiative heat and mass transfer mechanism in system “water droplet-high-temperature gases” on integral characteristics of liquid evaporation

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Physical and mathematical (system of differential equations in private derivatives models of heat and mass transfer were developed to investigate the evaporation processes of water droplets and emulsions on its base moving in high-temperature (more than 1000 K gas flow. The model takes into account a conductive and radiative heat transfer in water droplet and also a convective, conductive and radiative heat exchange with high-temperature gas area. Water vapors characteristic temperature and concentration in small wall-adjacent area and trace of the droplet, numerical values of evaporation velocities at different surface temperature, the characteristic time of complete droplet evaporation were determined. Experiments for confidence estimation of calculated integral characteristics of processes under investigation - mass liquid evaporation velocities were conducted with use of cross-correlation recording video equipment. Their satisfactory fit (deviations of experimental and theoretical velocities were less than 15% was obtained. The influence of radiative heat and mass transfer mechanism on characteristics of endothermal phase transformations in a wide temperature variation range was established by comparison of obtained results of numerical simulation with known theoretical data for “diffusion” mechanisms of water droplets and other liquids evaporation in gas.

  6. Effect of process control agent (PCA) on the characteristics of mechanically alloyed Ti-Mg powders [Journal article

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2011-03-01

    Full Text Available This paper reports the results of a study to determine the effect of process control agent (PCA) on the characteristics of Ti-Mg powders during milling. It has been shown that a 2% increase in PCA content leads to up to a 40% increase in yield...

  7. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  8. Modelling the hydro-mechanical behaviour of swelling unsaturated soils; Modelisation du comportement hydromecanique des sols gonflants non satures

    Energy Technology Data Exchange (ETDEWEB)

    Mrad, M

    2005-10-15

    The use of compacted swelling soils in engineering practice is very widely spread, especially in geotechnical and environmental engineering. After their setup, these materials are likely to be subject to complex suction/stress paths involving significant variations of their hydro-mechanical properties which can affect their initial behaviour. It is important to be able to predict the hydro-mechanical behaviour of these materials taking into account the significant applications for which they are intended. Barcelona team developed a finite-element code (Code-Bright) for the thermo-hydro-mechanical coupling (THM) integrating the BBM elastoplastic model for unsaturated soils based on the independent variables approach. This model is recognized to correctly describe the hydro-mechanical behaviour of unsaturated soils but fails to take into account some particular observed aspects on swelling soils. A second model BExM was then proposed to address these aspects. The objective of this study is: (i) to implement the elastoplastic model BExM for the unsaturated swelling soils in the finite-element code (Code-Bright); (ii) to check the numerical model validity through the numerical simulation of laboratory tests made on swelling soils; and (iii) to apply this model to some practical problems. For this purpose, a new family of numerical procedures adapted to the BExM model was introduced into the code. The equation of the yield surface of this model for a given deviatoric stress states was given in a manner to facilitate calculations of its derivatives. The model was checked by the numerical simulation of suction-controlled odometric tests made on three different swelling soils. The simulation results showed that the numerical model is able to correctly reproduce the experimental data. Lastly, the model was applied to two practical problems: radioactive waste repository in deep geological layers and a shallow footing under the action of a swelling soil. The results obtained

  9. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    International Nuclear Information System (INIS)

    Andersson, Johan

    2005-02-01

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  10. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-02-15

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  11. Mechanical characteristics of a double-fed machine in asynchronous mode and prospects of its application in the electric drive of mining machines

    Science.gov (United States)

    Ostrovlyanchik, V. Yu; Popolzin, I. Yu; Kubarev, V. A.; Marshev, D. A.

    2017-09-01

    The concept of a double-fed machine as an asynchronous motor with a phase rotor and a source of additional voltage is defined. Based on the analysis of a circuit replacing the double-fed machine, an expression is derived relating the moment, slip, amplitude and phase of additional voltage across the rotor. The conditions maximizing the moment with respect to amplitude and phase of additional voltage in the rotor circuit are also obtained, the phase surface of function of machine electromagnetic moment is constructed. The analysis of basic equation of electric drive motion in relation to electric drive of mine hoisting installations and the conclusion about the necessity of work in all four quadrants of coordinate plane “moment-slip” are made. Family of mechanical characteristics is constructed for a double-fed machine and its achievable speed control range in asynchronous mode is determined. Based on the type of mechanical characteristics and the calculated range of speed control, the conclusion is made about the suitability of using a dual-fed asynchronous machine for driving mine mechanisms with a small required speed control range and the need for organizing a combined operating mode for driving mine hoisting installations and other mechanisms with a large speed control range.

  12. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.

    Science.gov (United States)

    Lee, Se-Hwan; Cho, Yong Sang; Hong, Myoung Wha; Lee, Bu-Kyu; Park, Yongdoo; Park, Sang-Hyug; Kim, Young Yul; Cho, Young-Sam

    2017-09-13

    To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.

  13. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  14. Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting

    Science.gov (United States)

    Yoshida, Hidehisa; Nagai, Masao

    This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.

  15. Effect of Laser Power on Metallurgical, Mechanical and Tribological Characteristics of Hardfaced Surfaces of Nickel-Based Alloy

    Science.gov (United States)

    Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.

    2017-12-01

    In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.

  16. Characteristics of mechanical and rheological properties of concrete under heating conditions up to 200°C

    Directory of Open Access Journals (Sweden)

    Korsun V.

    2013-09-01

    Full Text Available The results of experimental research of high up to 200°C temperature influence and scale effect on temperature and shrinkage strain, creep and characteristics of strength and strain properties of high-strength modified fine and heavy concretes under axial compression are presented in the article. The practical way of accounting of the influence of the scale effect on design variables of shrinkage strain and concrete creep is proposed.

  17. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    Science.gov (United States)

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  18. Self-validated calculation of characteristics of a Francis turbine and the mechanism of the S-shape operational instability

    International Nuclear Information System (INIS)

    Zhang, Z; Titzschkau, M

    2012-01-01

    A calculation method has been presented to accurately estimate the characteristics of a Francis turbine. Both the shock loss at the impeller inlet and the swirling flow loss at the Impeller exit have been confirmed to dominantly influence the turbine characteristics and particularly the hydraulic efficiency. Both together totally govern the through flow of water through the impeller being at the rest. Calculations have been performed for the flow rate, the shaft torque and the hydraulic efficiency and compared with the available measurements on a model turbine. Excellent agreements have been achieved. Some other interesting properties of the turbine characteristics could also be derived from the calculations and verified by experiments. For this reason and because of not using any unreliable assumptions the calculation method has been confirmed to be self-validated. The operational instability in the upper range of the rotational speed, known as the S-shape instability, is ascribed to the total flow separation and stagnation at the impeller inlet. In that range of the rotational speed, the operation of the Francis turbine oscillates between pump and turbine mode.

  19. Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and south-western Oregon, USA

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2009-01-01

    Mechanically masticated fuelbeds are distinct from natural or logging slash fuelbeds, with different particle size distributions, bulk density, and particle shapes, leading to challenges in predicting fire behavior and effects. Our study quantified some physical properties of fuel particles (e.g. squared quadratic mean diameter, proportion of non-cylindrical particles...

  20. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo; Chung, Suk-Ho; Lu, Tianfeng; Sarathy, Mani

    2015-01-01

    ) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction

  1. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency

    Czech Academy of Sciences Publication Activity Database

    Janoš, P.; Ederer, J.; Pilařová, V.; Henych, Jiří; Tolasz, Jakub; Milde, D.; Opletal, T.

    2016-01-01

    Roč. 362, SEP (2016), s. 114-120 ISSN 0043-1648 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Chemical mechanical polishing * Ceria-based polishing powders * Polishing efficienc Subject RIV: CA - Inorganic Chemistry Impact factor: 2.531, year: 2016

  2. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  3. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    OpenAIRE

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-01-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1??m are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200?% strain, a significant improvement in mechanical properties is observed. Maximum values for Young?s modulus and strength are ~...

  4. The Prediction of the Mechanical Properties for Dual-Phase High Strength Steel Grades Based on Microstructure Characteristics

    Directory of Open Access Journals (Sweden)

    Emil Evin

    2018-04-01

    Full Text Available The decrease of emissions from vehicle operation is connected mainly to the reduction of the car’s body weight. The high strength and good formability of the dual phase steel grades predetermine these to be used in the structural parts of the car’s body safety zones. The plastic properties of dual phase steel grades are determined by the ferrite matrix while the strength properties are improved by the volume and distribution of martensite. The aim of this paper is to describe the relationship between the mechanical properties and the parameters of structure and substructure. The heat treatment of low carbon steel X60, low alloyed steel S460MC, and dual phase steel DP600 allowed for them to reach states with a wide range of volume fractions of secondary phases and grain size. The mechanical properties were identified by a tensile test, volume fraction of secondary phases, and grain size were measured by image analysis. It was found that by increasing the annealing temperature, the volume fraction of the secondary phase increased, and the ferrite grains were refined. Regression analysis was used to find out the equations for predicting mechanical properties based on the volume fraction of the secondary phase and grain size, following the annealing temperature. The hardening mechanism of the dual phase steel grades for the states they reached was described by the relationship between the strain-hardening exponent and the density of dislocations. This allows for the designing of dual phase steel grades that are “tailored” to the needs of the automotive industry customers.

  5. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    Science.gov (United States)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  6. Mechanical characteristic and biological behaviour of implanted and restorative bioglasses used in medicine and dentistry: A systematic review.

    Science.gov (United States)

    Lizzi, F; Villat, C; Attik, N; Jackson, P; Grosgogeat, B; Goutaudier, C

    2017-06-01

    Nowadays bioactive glasses are finding increasing applications in medical practice due to their ability to stimulate re-mineralisation. However, they are intrinsically brittle materials and the study of new compositions will open up new scenarios enhancing their mechanical properties and maintaining the high bioactivity for a broader range of applications. This systematic review aims to identify the relationship between the composition of bioactive glasses used in medical applications and their influence on the mechanical and biological properties. Various electronic databases (PubMed, Science Direct) were used for collecting articles on this subject. This research includes papers from January 2011 to March 2016. PRISMA guidelines for systematic review and meta-analysis have been used. 109 abstracts were collected and screened, 68 articles were read as relevant articles and a total of 22 papers were finally selected for this study. Most of the studies obtained enhanced mechanical properties and the conservation of bioactivity behaviours; although a lack of homogeneity in the characterization methods makes it difficult to compare data. New compositions of bioactive glasses incorporating specific ions and the addition in polymers will be the most important direction for future researches in developing new materials for medical applications and especially for dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Kingshuk, Poddar; Shi, Zhilong; Wang, Wilson; Tan, Reginald B H

    2017-08-01

    The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Research on the mechanical characteristic of the bentonite mixture material under the groundwater environment of Horonobe. 2

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Shigeno, Yoshimasa; Simogouchi, Takafumi

    2005-02-01

    In the Horonobe underground research project, various in-situ experiments are conducted in order to confirm the applicability of the Engineered Barrier System (EBS) design techniques shown in H12 report, to understand the long-term effects of EBS, and to improve the reliability of the prediction method. Moreover, since it is assumed that the circumference of Horonobe underground research laboratory is the saline water environment, to understand the mechanical behavior of the bentonite mixture material under the saline water environment is important when influenced in design of in-situ experiments. In this study, unconfined compression tests, consolidated-undrained triaxial compression tests and long-term consolidation tests of the bentonite mixture material were performed using groundwater that is extracted near the Horonobe underground research laboratory, and simulation analyses of EBS over a period of time using the results of laboratory experiments etc. were carried out. Consequently, although compressive strength and the elastic modulus under the saline water environment declined compared with that the fresh water, neither shear deformation behavior under triaxial stress condition nor volume deformation behavior by consolidation test almost had a difference, and it was suggested that there were few possibilities that the saline water had serious influence mechanically also about long-term mechanical behavior. (author)

  9. The effect of bond