WorldWideScience

Sample records for thermo-hydric stress application

  1. Contribution to the study of gas and liquid transfers inside damaged concrete walls under thermo-hydric stress: application to confinement buildings in test and accidental conditions; Contribution a l'etude des transferts gazeux et liquide au sein des parois en beton endommagees sous sollicitation thermo-hydrique: application au cas des enceintes de confinement en conditions d'epreuve et accidentelle

    Energy Technology Data Exchange (ETDEWEB)

    Laghcha, A

    2006-07-15

    The aim of this work is the study of fluid transfers induced by two types of stresses (test of tightness and LOCA-type accident), inside a concrete wall integrating the inhomogeneities and singularities susceptible to be present inside the confinement building of a nuclear reactor. After the study of several types of concretes, based on the permeabilities and types of gas flows involved, the experimental phase has permitted to test at scale 1 (1.3 m thickness) and in test and accidental conditions, a concrete composition which fulfills a representativeness criterion. The modeling part has been carried out using the thermo-hydro-mechanical model of non-saturated porous media, recently embedded inside the Code-Aster of EDF. The synthesis of physical observations and of numerical simulations has permitted to better constrain the different roles of the porous structure, in particular about the transposition between a air flow and a air + steam flow. (J.S.)

  2. Thermo-hydric characterization of partially saturated porous media; Caracterisation thermo-hydrique de milieux poreux partiellement satures d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Simon Salager; Frederic Jamin; Moulay Said El Youssoufi; Christian Saix [Laboratoire de Mecanique et Genie Civil, Universite Montpellier II, cc 048, Place Eugene Bataillon, 34095 Montpellier (France)

    2005-07-01

    We present a contribution to the thermo-hydric characterization of partially saturated porous media by water, through the characteristic curve. This curve defines the relation between suction and degree of saturation. Using this curve for a given temperature, a model is used to predict it for other temperatures. An experimental device called pressure cell was made in a thermo-regulated environment. The model was validated by several tests on a ceramic and silty clayey sand, at 20 and 60 C. The results obtained lead to a characteristic surface which can be considered as a generalization of the classical characteristic curve. (authors)

  3. Stress: Concepts and applications

    International Nuclear Information System (INIS)

    Nielsen, O.H.; Martin, R.M.

    1984-01-01

    The stress theorem determines the stress from the electronic ground state of any quantum system with arbitrary strains and atomic displacements. We derive this theorem in reciprocal space, within the local-density-functional approximation. The evaluation of stress, force and total energy permits, among other things, the determination of complete stress-strain relations including all microscopic internal strains. We describe results of ab-initio calculations for Si, Ge, and GaAs, giving the equilibrium lattice constant, all linear elastic constants c ij and the internal strain parameter ζ. (orig.)

  4. Phosphorus and humic acid application alleviate salinity stress of ...

    African Journals Online (AJOL)

    Phosphorus and humic acid application alleviate salinity stress of pepper seedling. ... It consequently affects plant growth and yield and ameliorates the deleterious effects of salt stress. The objective of the study ... from 32 Countries: Algeria (5) ...

  5. An interfacial stress sensor for biomechanical applications

    International Nuclear Information System (INIS)

    Sundara-Rajan, K; Bestick, A; Rowe, G I; Mamishev, A V; Klute, G K; Ledoux, W R; Wang, H C

    2012-01-01

    This paper presents a capacitive sensor that measures interfacial forces in prostheses and is promising for other biomedical applications. These sensors can be integrated into prosthetic devices to measure both normal and shear stress simultaneously, allowing for the study of prosthetic limb fit, and ultimately for the ability to better adapt prosthetics to individual users. A sensing cell with a 1.0 cm 2 spatial resolution and a measurement range of 0–220 kPa of shear and 0–2 MPa of pressure was constructed. The cell was load tested and found to be capable of isolating the applied shear and pressure forces. This paper discusses the construction of the prototype, the mechanical and electrode design, fabrication and characterization. The work presented is aimed at creating a class of adaptive prosthetic interfaces using a capacitive sensor. (paper)

  6. Smartphone Applications Utilizing Biofeedback Can Aid Stress Reduction

    Science.gov (United States)

    Dillon, Alison; Kelly, Mark; Robertson, Ian H.; Robertson, Deirdre A.

    2016-01-01

    Introduction: Stress is one of the leading global causes of disease and premature mortality. Despite this, interventions aimed at reducing stress have low adherence rates. The proliferation of mobile phone devices along with gaming-style applications allows for a unique opportunity to broaden the reach and appeal of stress-reduction interventions in modern society. We assessed the effectiveness of two smartphone applications games combined with biofeedback in reducing stress. Methods: We compared a control game to gaming-style smartphone applications combined with a skin conductance biofeedback device (the Pip). Fifty participants aged between 18 and 35 completed the Trier Social Stress Test. They were then randomly assigned to the intervention (biofeedback game) or control group (a non-biofeedback game) for thirty minutes. Perceived stress, heart rate and mood were measured before and after participants had played the games. Results: A mixed factorial ANOVA showed a significant interaction between time and game type in predicting perceived stress [F(1,48) = 14.19, p biofeedback intervention had significantly reduced stress compared to the control group. There was also a significant interaction between time and game in predicting heart rate [F(1,48) = 6.41, p biofeedback intervention showed significant reductions in heart rate compared to the control group. Discussion: This illustrates the potential for gaming-style smartphone applications combined with biofeedback as stress reduction interventions. PMID:27378963

  7. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  8. Stress strain tensors with their application to x-ray stress measurement

    International Nuclear Information System (INIS)

    Kurita, Masanori

    2015-01-01

    This paper describes in detail the method of obtaining the formulas of stress-strain tensor that express the directional dependence of stress-strain, that is, how these values change in response to coordinate transformation, and clarifies the preconditions for supporting both formulas. The two conversion formulas are both the second order of tensor, and the formula of strain tensor not only does not use the relational expression of stress and strain at all, but also is obtained completely independently of the formula of stress tensor. Except for the condition that the strain is very small (elastic deformation) in the conversion formula of strain, both formulas unconditionally come into effect. In other words, both formulas hold true even in the isotropic elastic body or anisotropic elastic body. It was shown that the conversion formula of strain can be derived from the conversion formula of stress using the formula of Hooke for isotropic elastic body. From these three-dimensional expressions, the two-dimensional stress-strain coordinate conversion formula that is used for Mohr's stress-strain circle was derived. It was shown that these formulas hold true for three-dimensional stress condition with stress-strain components in the three-axial direction that are not plane stress nor plane strain condition. In addition, as an application case of this theory, two-dimensional and three-dimensional X-ray stress measurements that are effective for residual stress measurement were shown. (A.O.)

  9. Virtual Reality Applications for Stress Management Training in the Military.

    Science.gov (United States)

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  10. Application of x-ray residual stress measurement to products

    International Nuclear Information System (INIS)

    Goto, T.; Iwamura, T.

    1975-01-01

    The X-ray residual stress measuring method is the only nondestructive method for measuring residual stress in polycrystalline materials. It is capable of obtaining information not only on macroscopic stress but also microscopic stress. The authors are employing this method for the development of pre-service and in-service inspection methods and for the improvement of various manufacturing techniques. In this paper, the results of measurement of some products as examples of its application are described. The examples introduced concern the following: (1) Selection of optimum conditions in heat treatment and stress-relief treatment. (2) Residual stress produced by mechanical processes such as autofrettage and flow form. (3) Check of manufacturing processes of rotary shaft and welded parts. (4) Estimation of fatigue strength of shot-peened part. (5) Detection of fatigue damage of shot-peened part. (auth.)

  11. High-resolution stress measurements for microsystem and semiconductor applications

    Science.gov (United States)

    Vogel, Dietmar; Keller, Juergen; Michel, Bernd

    2006-04-01

    Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  12. GASICA: Generic Automated Stress Induction and Control ApplicationDesign of an application for controlling the stress state

    Directory of Open Access Journals (Sweden)

    Benny Van Der Vijgh

    2014-12-01

    Full Text Available 1.In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope, Bogart, & Bartolome, 1995 and Fairclough, 2009 that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing measurement equipment, making it usable for various paradigms.

  13. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    Science.gov (United States)

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  14. [Methods and Applications of Psychological Stress State Assessment].

    Science.gov (United States)

    Li, Xin; Yang, Yadan; Hou, Yongjie; Chen, Zetao

    2015-08-01

    In this paper, the response of individual's physiological system under psychological stress state is discussed, and the theoretical support for psychological stress assessment research is provided. The two methods, i.e., the psychological stress assessment of questionnaire and physiological parameter assessment used for current psychological stress assessment are summarized. Then, the future trend of development of psychological stress assessment research is pointed out. We hope that this work could do and provide further support and help to psychological stress assessment studies.

  15. Modified stress intensity factor as a crack growth parameter applicable under large scale yielding conditions

    International Nuclear Information System (INIS)

    Yasuoka, Tetsuo; Mizutani, Yoshihiro; Todoroki, Akira

    2014-01-01

    High-temperature water stress corrosion cracking has high tensile stress sensitivity, and its growth rate has been evaluated using the stress intensity factor, which is a linear fracture mechanics parameter. Stress corrosion cracking mainly occurs and propagates around welded metals or heat-affected zones. These regions have complex residual stress distributions and yield strength distributions because of input heat effects. The authors previously reported that the stress intensity factor becomes inapplicable when steep residual stress distributions or yield strength distributions occur along the crack propagation path, because small-scale yielding conditions deviate around those distributions. Here, when the stress intensity factor is modified by considering these distributions, the modified stress intensity factor may be used for crack growth evaluation for large-scale yielding. The authors previously proposed a modified stress intensity factor incorporating the stress distribution or yield strength distribution in front of the crack using the rate of change of stress intensity factor and yield strength. However, the applicable range of modified stress intensity factor for large-scale yielding was not clarified. In this study, the range was analytically investigated by comparison with the J-integral solution. A three-point bending specimen with parallel surface crack was adopted as the analytical model and the stress intensity factor, modified stress intensity factor and equivalent stress intensity factor derived from the J-integral were calculated and compared under large-scale yielding conditions. The modified stress intensity was closer to the equivalent stress intensity factor when compared with the stress intensity factor. If deviation from the J-integral solution is acceptable up to 2%, the modified stress intensity factor is applicable up to 30% of the J-integral limit, while the stress intensity factor is applicable up to 10%. These results showed that

  16. Shielding Flowers Developing under Stress: Translating Theory to Field Application

    Directory of Open Access Journals (Sweden)

    Noam Chayut

    2014-07-01

    Full Text Available Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.

  17. X-ray multiaxial stress analysis by means of polynomial approximation and an application to plane stress problem

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.

    1984-01-01

    A new polynomial approximation method was proposed for the X-ray multiaxial stress analysis, in which the effect of stress gradient along the penetration depth of X-rays was taken into account. Three basic assumptions were made; (1) the stress gradient is linear in respect to the depth from the specimen surface, (2) the ponetration depth of X-rays is a function of Sin 2 phi and (3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near the surface was expressed by making use of three surface stresses and six stress gradients in the present method. The average strains by X-rays were approximated by the third order polynomial equations of sin 2 phi using a least square method at several phi angles on the coordinate system of specimen. Since the coefficients of these polynomials include these nine stress components mentioned above, it is possible to solve them as simultaneous equations. The calculating process of this method is simpler than that of the integral method. An X-ray plane stress problem was analyzed as an application of the present method, and the residual stress distribution on a shot-peened steel plate was actually measured by use of Cr-Kα X-rays to verify the analysis. The result showed that the compressive residual stress near the surface determined by the present method was smaller than the weighted average stress by the Sin 2 phi method because of the steep stress gradient. The present method is useful to obtain a reasonable value of stress for such a specimen with steep stress gradients near the surface. (author)

  18. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  19. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  20. Staff Stress and Burnout in Intellectual Disability Services: Work Stress Theory and Its Application

    Science.gov (United States)

    Devereux, Jason; Hastings, Richard; Noone, Steve

    2009-01-01

    Background: Staff in intellectual disability services can be at risk of stress and burnout at work. Given that staff well-being has implications for the quality of life of the staff themselves and people with intellectual disabilities themselves, this is an important research and practical topic. In this paper, we review work stress theories that…

  1. Analysis of rock stress and rock stress measurements with application to Aespoe HRL

    International Nuclear Information System (INIS)

    Lundholm, Beatrice

    2000-11-01

    The process of choosing a site for a nuclear waste repository means that many aspects have to be taken into consideration. One of these is that the repository has to be mechanically stable for a long time. The mechanical stability of the rock is very difficult to determine. One of several factors, which determine the mechanical stability, is the virgin state of stress. The thesis project consists of two parts. In the first part the state of stress at Aespoe Hard Rock Laboratory had to be defined. This was done based on earlier rock stress measurements conducted during the years 1988 to 1997. Two different measurement techniques have been used, hydraulic fracturing and overcoring. During the overcoring two types of cells have been used, CSIRO HI-cell and a cell developed by the Swedish State Power Board (SSPB). In the second part of the project, investigation of the correlation between the stress and geological structures are made using numerical modelling tools such as FLAC, UDEC and 3DEC. The rock stress measurements using the hydraulic fracturing gave orientations of the horizontal stress that coincide with earlier hydraulic fracturing measurements conducted in Scandinavia. The magnitudes of rock stresses are slightly lower than the earlier reported stress magnitudes for the Scandinavian part of the earth crust. The rock stresses obtained from the overcoring resulted in higher stresses than what was predicted by the hydraulic fracturing measurements. However, the orientation of the maximum horizontal stresses coincides well between the two techniques. The orientation is also more or less constant with respect to increasing depth. The state of stress at Aespoe is defined by using the results from the hydraulic fracturing and the measurements conducted by SSPB-cell. The measurements from the SSPB-cell are used since these have a Poisson's ratio that corresponds well with the uniaxial tests of rock samples and since the measurements have been done at a distance from

  2. Phosphorus and humic acid application alleviate salinity stress of ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... improve plant growth and enhance stress tolerance (Piccolo et al., 1992). ..... shoot of pepper seedling, but the reverse was the case with Na, Fe and Zn of .... salinity, and extreme temperatures: towards genetic engineering for.

  3. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  4. Low-stress silicon nitride layers for MEMS applications

    Science.gov (United States)

    Iliescu, Ciprian; Wei, Jiashen; Chen, Bangtao; Ong, Poh Lam; Tay, Francis E. H.

    2006-12-01

    The paper presents two deposition methods for generation of SiN x layers with "zero" residual stress in PECVD reactors: mixed frequency and high power in high frequency mode (13.56 MHz). Traditionally, mix frequency mode is commonly used to produce low stress SiN x layers, which alternatively applies the HF and LF mode. However, due to the low deposition rate of LF mode, the combined deposition rate of mix frequency is quite small in order to produce homogenous SiN x layers. In the second method, a high power which was up to 600 W has been used, may also produce low residual stress (0-20 MPa), with higher deposition rate (250 to 350 nm/min). The higher power not only leads to higher dissociation rates of gases which results in higher deposition rates, but also brings higher N bonding in the SiN x films and higher compressive stress from higher volume expansion of SiN x films, which compensates the tensile stress and produces low residual stress. In addition, the paper investigates the influence of other important parameters which have great impact to the residual stress and deposition rates, such as reactant gases flow rate and pressure. By using the final optimized recipe, masking layer for anisotropic wet etching in KOH and silicon nitride cantilever have been successfully fabricated based on the low stress SiN x layers. Moreover, nanoporous membrane with 400nm pores has also been fabricated and tested for cell culture. By cultivating the mouse D1 mesenchymal stem cells on top of the nanoporous membrane, the results showed that mouse D1 mesenchymal stem cells were able to grow well. This shows that the nanoporous membrane can be used as the platform for interfacing with living cells to become biocapsules for biomolecular separation.

  5. Practical Application of Residual Stress Measurements on Maritime Vessels

    Science.gov (United States)

    2012-06-01

    is alloyed with copper, zinc or magnesium. While these alloys still have reasonably good overall corrosion characteristics they are all vulnerable to...welding. Four welding passes were utilized, three on the top side and once along the root. Upon cooling all excess and slag was ground off of the...stress in this area. Further investigation showed that this result most likely came from compressive stresses caused by grinding off slag and spill from

  6. Optimization of aluminium stressed skin panels in offshore applications

    NARCIS (Netherlands)

    Hove, van B.W.E.M.; Soetens, F.; Songmene, V.

    2013-01-01

    Since the introduction of Eurocode 9 specific design rules for the calculation of aluminium stressed skin panels are available. These design rules have been used for optimization of two extrusions: one for explosions and wind loading governing and one for explosions and floor loading governing. The

  7. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie

    2017-07-31

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  8. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie; Chroneos, Alexander; Wang, Lei; Rao, Feng; Schwingenschlö gl, Udo

    2017-01-01

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  9. Thermoelastic stress analysis system developed for industrial applications

    DEFF Research Database (Denmark)

    Haldorsen, Lars Magne

    The thesis is divided into three parts. The first part describes an extensive evaluation of the existing thermoelastic theory. The second part describes the development and results af a reliable numerical simulation code of the thermoelastic effect and the associated heat transfer effects. Finall......, theories, methods and additional equipment are developed in order to adopt a commercial IR-imaging system to preform Termoelastic Stress Analysis (TSA)....

  10. Role of metabolic stress for enhancing muscle adaptations: Practical applications

    OpenAIRE

    de Freitas, Marcelo Conrado; Gerosa-Neto, Jose; Zanchi, Nelo Eidy; Lira, Fabio Santos; Rossi, Fabr?cio Eduardo

    2017-01-01

    Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensit...

  11. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  12. On microscopic stress nonequilibrium: Application to the magnetopause

    International Nuclear Information System (INIS)

    Wu, Z.J.

    1986-01-01

    The main purpose of this paper is to propose the concept of microscopic stress nonequilibrium (or simply micro-nonequilibrium) in plasma physics. This concept arises as a consequence of the insolubility of the steady-state Vlasov-Maxwell equations (or the kinetic-field equations in general) under certain conditions. In what follows: (1) A general stress equilibrium condition for tangential plasma discontinuities is derived from the Maxwell tensor and the plasma stress tensor. (2) An equivalent equilibrium condition, which takes the form of equations of motion of a ''fictitious particle'', is also derived from the above condition. (3) A general solution of the distribution functions is derived according to Jeans's theorem or Liouville's theorem for the solar wind particles in a tangential magnetopause. (4) This solution is applied to the equilibrium condition to investigate the equilibrium state of the tangential magnetopause. Both Parker's tail-region and Wu's dawn-side ''nonequilibria''are confirmed to be micro-nonequilibria because of the violation of the above equilibrium condition. (5) The effects of various factors in micro-nonequilibria are discussed. It is found that randomly trapped particles and inwards electric field in the magnetopause layer generally cannot relieve the dawn-side or tail-region micro-nonequilibria; and that a northward magnetic field in the solar wind generally can suppress the dawn-side nonequilibrium, while a southward field can jeopardize a dusk-side Vlasov equilibrium. (6) Discussion: The concept of ''micro-nonequilibrium'' may become of importance in basic plasma dynamics. It is also possible that the micro-nonequilibrium may play a fundamental role in solar wind particles entering the magnetopause and in magnetospheric substorms

  13. Global Stress Classification System for Materials Used in Solar Energy Applications

    Science.gov (United States)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  14. Extreme of random field over rectangle with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2000-01-01

    to time consuming simulation procedures. This paperrevives a conceptually simple approach that gives surprisingly good results in particular for wide band typesof random processes and fields. The closed form formulas obtained for smooth Gaussian fieldsover rectangles contain size effects both with respect...... to the area of the rectangle and the side lengths of therectangle. Published rupture stress data for plain concrete beams illustrate the applicability of the derivedclosed form extreme value distributions as models for distributions of rupture stresses related to weakest linkmechanisms....

  15. Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications

    Science.gov (United States)

    Qin, F. X.; Peng, H. X.; Popov, V. V.; Phan, M. H.

    2011-02-01

    Composites consisting of glass-coated amorphous microwire Co 68.59Fe 4.84Si 12.41B 14.16 and 913 E-glass prepregs were designed and fabricated. The influences of tensile stress, annealing and number of composite layers on the giant magneto-impedance (GMI) and giant stress-impedance (GSI) effects in these composites were investigated systematically. It was found that the application of tensile stress along the microwire axis or an increase in the number of composite layers reduced the GMI effect and increased the circular anisotropy field, while the annealing treatment had a reverse effect. The value of matrix-wire interfacial stress calculated via the GMI profiles coincided with the value of the applied effective tensile stress to yield similar GMI profiles. Enhancement of the GSI effect was achieved in the composites relative to their single microwire inclusion. These findings are important for the development of functional microwire-based composites for magnetic- and stress-sensing applications. They also open up a new route for probing the interfacial stress in fibre-reinforced polymer (FRP) composites.

  16. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  17. Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L. plants: Comparison of root with foliar application

    Directory of Open Access Journals (Sweden)

    Sara Bahrami-Rad

    2017-12-01

    Full Text Available Effect of potassium (K application through leaves (LA or roots (RA was studied in tobacco plants grown under K deficiency and drought stress conditions. Application of K was effective in improving the shoot growth only under drought conditions, whereas root biomass and length responded under both watering regimes. Under drought conditions, photosynthesis and transpiration activities increased upon K application leading to a reduced water use efficiency. Both RA and LA increased the leaf water potential, relative water content and turgor under both well-watered and drought conditions; RA was more effective than LA in the recovery of leaf turgor. Analyses of water relation parameters in different aged leaves showed lower susceptibility of the middle-aged leaves to both K deficiency and drought stresses than the upper and lower leaves; this phenomenon was accompanied by a more conservative control of water loss in the middle-aged leaves. In contrast, proline was accumulated in the young leaves, and K application increased it further. Although various organic osmolytes were accumulated under the combinative effect of K deficiency and drought stress, they did not exceed the amounts found in the control (well-watered +K plants and were merely a result of the concentration effect. Collectively, our results revealed that the majority of leaf biochemical responses to drought stress are developmentally regulated processes. In addition, the alleviating effect of both RA and LA despite higher water loss indicated that an improved stomatal function upon K application allowed carbohydrates synthesis, thus, enhancing plant growth under water stress.

  18. Stress evolution in elastic-plastic electrodes during electrochemical processes: A numerical method and its applications

    Science.gov (United States)

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-07-01

    Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.

  19. Analysis and measurement of residual stress distribution of vanadium/ceramics joints for fusion reactor applications

    International Nuclear Information System (INIS)

    Nemoto, Y.; Ueda, K.

    1998-01-01

    Vanadium alloys are considered as candidate structural materials for fusion reactor system. When vanadium alloys are used in fusion reactor system, joining with ceramics for insulating is one of material issues to be solved to make component of fusion reactor. In the application of ceramics/metal jointing and coating, residual stress caused by difference of thermal expansion rate between ceramics and metals is an important factor in obtaining good bonding strength and soundness of coating. In this work, residual stress distribution in direct diffusion bonded vanadium/alumina joint (jointing temperature: 1400 C) was measured by small area X-ray diffraction method. And the comparison of finite element method (FEM) analysis and actual stress distribution was carried out. Tensile stress concentration at the edge of the boundary of the joint in alumina was observed. The residual stress concentration may cause cracks in alumina, or failure of bonding. Actually, cracks in alumina caused by thermal stress after bonding at 1500 C was observed. The stress concentration of the joint must be reduced to obtain good bonded joint. Lower bonding temperature or to devise the shape of the outer surface of the joint will reduce the stress concentration. (orig.)

  20. Distribution of Side Abutment Stress in Roadway Subjected to Dynamic Pressure and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Yao Qiangling

    2015-01-01

    Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.

  1. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  2. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  3. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  5. Mechanical-Stress Analytical Modeling for the Design of Coils in Power Applications

    Directory of Open Access Journals (Sweden)

    Bellan D.

    2014-12-01

    Full Text Available Modern electrical-power systems are often exploited for transmitting high-frequency carrier signals for communications purposes. Series-connected air-core coils represent the fundamental component allowing such applications by providing a proper filtering in the frequency domain. They must be designed, however, to withstand also the line short-circuit current. When a high-magnitude current flows through a coil, strong mechanical stresses are produced within the conductor, leading to possible damage of the coil. In this paper, an approximate analytical model is derived for the relationship between the maximum mechanical stress and the electrical/geometrical parameters of the coil. Such a model provides the guidelines for a fast and safe coil design, whereas numerical simulations are only needed for the design refinement. The presented approach can be extended to other applications such as, for example, the mechanical stress resulting from the inrush currents in the coils of power transformers.

  6. Effects of Nutrients Foliar Application on Agrophysiological Characteristics of Maize under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Nour Ali SAJEDI

    2010-09-01

    Full Text Available To investigate effects of nutrients foliar application on agrophysiological characteristics of maize hybrid �KSC 704� water deficit stress conditions, an experiment was arranged in a split plot factorial based on a randomized complete block design with four replications to the Research Station of Islamic Azad University-Arak Branch, Iran in 2007-2008. Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, blister stage (R2 and filling grain stage (R4 in the main plot. Combined levels of selenium treatment (without and with application 20 gha-1 and micronutrients (without and with application 2 lha-1 were situated in sub plots. Results showed that water deficit stress decreased grain yield 19.7% in blister stage as compared with control. Using selenium increased relative content water at R2 and R4 stages significantly. Using selenium in water deficit stress condition increased measured traits except plant height as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. Between treatments of water deficit stress, highest grain yield equal 6799.52 and 6736.97 kgha-1 was obtained from combined treatments of water deficit stress at eight-leaf stage+without selenium+without micronutrients and water deficit stress at eight-leaf stage+selenium+without micronutrients respectively which compared with treatment of irrigation equal to crop water requirement+selenium+microelements did not differ significant. According to the results of experiment, it is concluded that with micronutrients fertilizer spray under optimum irrigation and selenium spray under water deficit obtain optimum yield.

  7. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  8. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  9. Practical application of fracture mechanics with consideration of multiaxiality of stress state to degraded nuclear piping

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.

    1995-01-01

    Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior

  10. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  11. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes

    Science.gov (United States)

    Kim, Dong Hyun; Gratchev, Ivan; Hein, Maw; Balasubramaniam, Arumugam

    2016-08-01

    This paper focuses on the influence of the shapes of rock cores, which control the sliding or toppling behaviours in tilt tests for the estimation of rock joint roughness coefficients (JRC). When the JRC values are estimated by performing tilt tests, the values are directly proportional to the basic friction of the rock material and the applied normal stress on the sliding planes. Normal stress obviously varies with the shape of the sliding block, and the basic friction angle is also affected by the sample shapes in tilt tests. In this study, the shapes of core blocks are classified into three representative shapes and those are created using plaster. Using the various shaped artificial cores, a set of tilt tests is carried out to identify the shape influences on the normal stress and the basic friction angle in tilt tests. The test results propose a normal stress reduction function to estimate the normal stress for tilt tests according to the sample shapes based on Barton's empirical equation. The proposed normal stress reduction functions are verified by tilt tests using artificial plaster joints and real rock joint sets. The plaster joint sets are well matched and cast in detailed printed moulds using a 3D printing technique. With the application of the functions, the obtained JRC values from the tilt tests using the plaster samples and the natural rock samples are distributed within a reasonable JRC range when compared with the measured values.

  12. Application of photostress method in stress analysis of a rotating disc

    OpenAIRE

    Frankovský, P.; Trebuňa, F.

    2014-01-01

    The presented article demonstrates the application of PhotoStressR method in stress analysis of a rotating disc of a constant thickness, which was made of a photoelastic material PS-1A. Isoclinic fringes were observed on the rotating disc using linear polarized light at revolutions 5 000 RPM. Observations were carried out under angle parameter 0 o to 90 o with 10 o increase. A set of isostatic lines of I and II set was made from the set of obtained isoclinic lines. During gradual increase of ...

  13. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  14. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  15. Recovery and residual stress of SMA wires and applications for concrete structures

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Cho, Sung-Chul; Park, Taehyo; Hu, Jong Wan; Chung, Young-Soo

    2010-01-01

    In general, NiTi shape memory alloys are used for applications in civil structures. NiTi SMAs show good superelasticity and shape memory effect properties. However, for application of the shape memory effect, it is desirable for SMAs to show a wide temperature hysteresis, especially for civil structures which are exposed to severe environmental conditions. NiTiNb SMAs, in general, show a wider temperature hysteresis than NiTi SMAs and are more applicable for civil structures. This study examines the temperature hysteresis of NiTiNb and NiTi SMAs, and their recovery and residual stress are investigated. In addition, the tensile behaviors of SMA wires under residual stress are evaluated. This study explains the possible applications for concrete structures with the shape memory effect and illustrates two experimental results of concrete cylinders and reinforced concrete columns. For both tests, SMA wires of NiTiNb and NiTi are used to confine concrete using residual stress. The SMA wire jackets on the concrete cylinders increase the peak strength and the ductility compared to the plain concrete cylinders. In addition, the SMA wire jackets on reinforced concrete columns increase the ductility greatly without flexural strength degradation

  16. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  17. Application of neural networks for finding the relation between stress and operational parameters of NPP Temelin

    International Nuclear Information System (INIS)

    Ruzek, L.

    2003-01-01

    Quick and sufficiently precise determination of stresses and strains measured by I and C, TMDS a CHEMIS is very important for on-line assessment of continuous damage of material under operating conditions. The application of some of the artificial intelligence methods, viz. neural network, is convenient in this context. A practical example of the application of this method is presented and the advantages in comparison with the finite element method (FEM) are discussed. The approach to the selection of characteristic loading used for the preparation of training data is also shown. The paper presents the results of actual calculation and analyses the merits of the attained coincidence for the determination of the tensor of stresses by FEM and neural networks

  18. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications.

    Science.gov (United States)

    Laszczak, P; Jiang, L; Bader, D L; Moser, D; Zahedi, S

    2015-01-01

    A novel capacitance-based sensor designed for monitoring mechanical stresses at the stump-socket interface of lower-limb amputees is described. It provides practical means of measuring pressure and shear stresses simultaneously. In particular, it comprises of a flexible frame (20 mm × 20 mm), with thickness of 4mm. By employing rapid prototyping technology in its fabrication, it offers a low-cost and versatile solution, with capability of adopting bespoke shapes of lower-limb residua. The sensor was first analysed using finite element analysis (FEA) and then evaluated using lab-based electromechanical tests. The results validate that the sensor is capable of monitoring both pressure and shear at stresses up to 350 kPa and 80 kPa, respectively. A post-signal processing model is developed to induce pressure and shear stresses, respectively. The effective separation of pressure and shear signals can be potentially advantageous for sensor calibration in clinical applications. The sensor also demonstrates high linearity (approx. 5-8%) and high pressure (approx. 1.3 kPa) and shear (approx. 0.6 kPa) stress resolution performance. Accordingly, the sensor offers the potential for exploitation as an assistive tool to both evaluate prosthetic socket fitting in clinical settings and alert amputees in home settings of excessive loading at the stump-socket interface, effectively preventing stump tissue breakdown at an early stage. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Application of the Raman technique to measure stress states in individual Si particles in a cast Al-Si alloy

    International Nuclear Information System (INIS)

    Harris, Stephen J.; O'Neill, Ann; Boileau, James; Donlon, William; Su, Xuming; Majumdar, B.S.

    2007-01-01

    While Raman spectroscopy is often used to measure stresses, the analyses are almost always limited to cases with simple stress states (uniaxial, equibiaxial). Recently we provided an experimental methodology to determine the full state of stress in Si wafers. Here we extend that methodology to interrogate stress states in Si particles embedded in an Al-Si alloy. Such determinations will ultimately be valuable for predicting ductility of cast Al, since a primary source of damage is cracking of eutectic Si particles. We combine electron back-scattered diffraction with the frequency shift, polarization and intensity of the Raman light to determine stress states. Stress states are measured both in the as-received residually stressed state and under in situ uniaxial loading. Comparison with finite element calculations shows good agreement. As an application of the technique, we show the determination of strength of an individual Si particle and compare the stress evolution with various models

  20. Atmospheric plasma processes for microbial inactivation: food applications and stress response in Listeria monocytogenes

    OpenAIRE

    Gozzi, Giorgia

    2015-01-01

    This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as t...

  1. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  2. Development and Clinical Evaluation of an mHealth Application for Stress Management

    Directory of Open Access Journals (Sweden)

    Brent D. Winslow

    2016-07-01

    Full Text Available A large number of individuals experience mental health disorders, with cognitive behavioral therapy (CBT emerging as a standard practice for reduction in psychiatric symptoms including stress, anger, anxiety and depression. However, CBT is associated with significant patient dropout, and lacks the means to provide objective data regarding a patient’s experience and symptoms between sessions. Emerging wearables and mobile health (mHealth applications represent an approach that may provide objective data to the patient and provider between CBT sessions. Here we describe the development of a classifier of real-time physiological stress in a healthy population (n=35, and apply it in a controlled clinical evaluation for armed forces veterans undergoing CBT for stress and anger management (n=16. Using cardiovascular and electrodermal inputs from a wearable device, the classifier was able to detect physiological stress in a non-clinical sample with an accuracy greater than 90%. In a small clinical sample, patients who used the classifier and an associated mHealth application were less likely to discontinue therapy (p=0.016, d=1.34 and significantly improved on measures of stress (p=0.032, d=1.61, anxiety (p=0.050, d=1.26, and anger (p=0.046, d=1.41 compared to controls undergoing CBT alone. Given the large number of individuals that experience mental health disorders, and the unmet need for treatment, especially in developing nations, such mHealth approaches have the potential to provide or augment treatment at low cost in the absence of in-person care.

  3. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  4. Dynamic of bioelectric activity back hypothalamus changes in conditions of pyroxan application on the background of stress-reaction developmen

    Directory of Open Access Journals (Sweden)

    T. G. Chaus

    2005-04-01

    Full Text Available The dynamic of changes of capacity of electroencephalogram’s rhythms back hypothalamus at animals of control group and group in stress conditions in parallel with rats who on a background of stress development accepted pyroxan is analyzed. The submitted results have shown influence of a pharmacological preparation pyroxan on bioelectric activity of back hypothalamus in stress conditions that restoration of electric activity under action of this preparation was more shown at 3 weeks of its application.

  5. A literature review of the application of the Geriatric Depression Scale, Depression Anxiety Stress Scales and Post-traumatic Stress Disorder Checklist to community nursing cohorts.

    Science.gov (United States)

    Allen, Jacqui; Annells, Merilyn

    2009-04-01

    To explore through literature review the appropriateness of three common tools for use by community nurses to screen war veteran and war widow(er) clients for depression, anxiety and post-traumatic stress disorder. War veterans and, to a lesser extent, war widow(er)s, are prone to mental health challenges, especially depression, anxiety and post-traumatic stress disorder. Community nurses do not accurately identify such people with depression and related disorders although they are well positioned to do so. The use of valid and reliable self-report tools is one method of improving nurses' identification of people with actual or potential mental health difficulties for referral to a general practitioner or mental health practitioner for diagnostic assessment and treatment. The Geriatric Depression Scale, Depression Anxiety Stress Scales and Post-traumatic Stress Disorder Checklist are frequently recommended for mental health screening but the appropriateness of using the tools for screening war veteran and war widow(er) community nursing clients who are often aged and have functional impairment, is unknown. Systematic review. Current literature informs that the Geriatric Depression Scale accurately predicts a diagnosis of depression in community nursing cohorts. The three Depression Anxiety Stress Scales subscales of depression, anxiety and stress are valid; however, no studies were identified that compared the performance of the Depression Anxiety Stress Scales in predicting diagnoses of depression or anxiety. The Post-traumatic Stress Disorder Checklist predicts post-traumatic stress disorder in community cohorts although no studies meeting the selection criteria included male participants. This review provides recommendations for the use of the Geriatric Depression Scale, Depression Anxiety Stress Scales and The Post-traumatic Stress Disorder Checklist based on examination of the published evidence for the application of these screening tools in samples

  6. Thick and low-stress PECVD amorphous silicon for MEMS applications

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao

    2008-01-01

    This paper presents a solution for the deposition of thick amorphous silicon (α-Si:H) in PECVD reactors for MEMS applications, such as sacrificial layer or mask layer for dry or wet etching of glass. This achievement was possible by tuning the deposition parameters to a 'zero' value of the residual stress in the α-Si:H layer. The influence of the process parameters, such as power, frequency mode, temperature, pressure and SiH 4 /Ar flow rates for tuning the residual stress and for a good deposition rate is analyzed. The deposition of low-stress and thick (more than 12 µm in our case) α-Si:H layers was possible without generation of hillock defects (previously reported in literature for layers thicker then 2 µm). Finally, the paper presents some MEMS applications of such a deposited α-Si:H layer: masking layer for deep wet etching as well as dry etching of glass, and sacrificial layer for dry or wet release

  7. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  8. Designing, Prototyping and Evaluating Digital Mindfulness Applications: A Case Study of Mindful Breathing for Stress Reduction.

    Science.gov (United States)

    Zhu, Bin; Hedman, Anders; Feng, Shuo; Li, Haibo; Osika, Walter

    2017-06-14

    During the past decade, there has been a rapid increase of interactive apps designed for health and well-being. Yet, little research has been published on developing frameworks for design and evaluation of digital mindfulness facilitating technologies. Moreover, many existing digital mindfulness applications are purely software based. There is room for further exploration and assessment of designs that make more use of physical qualities of artifacts. The study aimed to develop and test a new physical digital mindfulness prototype designed for stress reduction. In this case study, we designed, developed, and evaluated HU, a physical digital mindfulness prototype designed for stress reduction. In the first phase, we used vapor and light to support mindful breathing and invited 25 participants through snowball sampling to test HU. In the second phase, we added sonification. We deployed a package of probes such as photos, diaries, and cards to collect data from users who explored HU in their homes. Thereafter, we evaluated our installation using both self-assessed stress levels and heart rate (HR) and heart rate variability (HRV) measures in a pilot study, in order to measure stress resilience effects. After the experiment, we performed a semistructured interview to reflect on HU and investigate the design of digital mindfulness apps for stress reduction. The results of the first phase showed that 22 of 25 participants (88%) claimed vapor and light could be effective ways of promoting mindful breathing. Vapor could potentially support mindful breathing better than light (especially for mindfulness beginners). In addition, a majority of the participants mentioned sound as an alternative medium. In the second phase, we found that participants thought that HU could work well for stress reduction. We compared the effect of silent HU (using light and vapor without sound) and sonified HU on 5 participants. Subjective stress levels were statistically improved with both

  9. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  10. Application of photostress method in stress analysis of a rotating disc

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented article demonstrates the application of PhotoStressR method in stress analysis of a rotating disc of a constant thickness, which was made of a photoelastic material PS-1A. Isoclinic fringes were observed on the rotating disc using linear polarized light at revolutions 5 000 RPM. Observations were carried out under angle parameter 0 o to 90 o with 10 o increase. A set of isostatic lines of I and II set was made from the set of obtained isoclinic lines. During gradual increase of rotations of the rotating disc up to 17 000 RPM, and with circular polarized light, we observed the distribution of colourful isochromatic fringes on the rotating disc. The field of isochromatic fringes, gained experimentally, at 15 000 RPM was compared with the field which was gained by means of a numerical analysis.

  11. Methods for FEM stress initialization based on stress functions, and application to a reservoir cross-section

    OpenAIRE

    Aliguer Piferrer, Ignasi; Rafels Ybern, Carles; Jaqués Adell, Irene; Carol, Ignacio; Prat Catalán, Pere; Lakashmikhanta, Ramasesha; Segura Segarra, José María

    2013-01-01

    An accurate description of the in-situ stress field in a rock mass is crucial in different areas of geo-engineering such as: underground excavations, hydrocarbon extraction, CO2 storage, hydraulic fracture etc. In this paper, a novel methodology to numerically generate the in-situ stress state within the Finite Elements framework is presented. It involves two steps: 1) an estimate of the stress components is given for integration point of the discretization, and 2) global equilibrium is verif...

  12. Effect of potassium application on ammonium nutrition in maize (zea mays l.) under salt stress

    International Nuclear Information System (INIS)

    Yousra, M.; Akhtar, J.; Saqib, A.; Haq, M.A

    2012-01-01

    Application of potassium has been found to minimize the toxic effect of NH/sup 4/sup +/ under salt stress. To study the interactive effect of K+ and NH4+ under saline condition, maize (Zea mays L., cv. Pioneer-3335) was grown in a hydroponic culture with ammonium (5.0 and 10 mM) as (NH/sub 4/)/sub 2/SO/ sub 4/ at two different levels (3.0 and 9.0 mM) of K+ under control and 100 mM NaCl. Under saline condition, 5 mM NH/sub 4/sup +/ application along with 3.0 mM K+ decreased the dry mass by 24% in maize while its addition at the rate of 10 mM showed a percent decline upto 70% than the control. A decrease in shoot dry mass induced by the combine application of 5.0 mM NH4+ and 9.0 mM K+ was 19% relative to control whilst a decrease i.e. 52% was observed at 10 mM NH/sub 4+/ level. The increasing concentration of potassium was found to alleviate the NH/sub 4+/ toxicity and salinity stress partly by inhibiting the uptake of NH/sub 4+/ and Na+ and by stimulating the N assimilation in plant body. Growth improvement at combination of 5.0 mM NH/sub 4+/ and 9.0 mM K+ was reinforced by higher K+ influx into root cells and its translocation to the growing tissues. Elevating the K+ supply also resulted in the enhanced plant growth several times and reduction in NH/sub 4+/ toxicity and salinity stress. (author)

  13. Towards the application of stress-in-motion (SIM) results in pavement design and infrastructure protection

    CSIR Research Space (South Africa)

    De Beer, Morris

    2004-03-01

    Full Text Available stream_source_info De Beer_2005_3.pdf.txt stream_content_type text/plain stream_size 53150 Content-Encoding UTF-8 stream_name De Beer_2005_3.pdf.txt Content-Type text/plain; charset=UTF-8 Proceedings 8th International...: Conference Planners TOWARDS THE APPLICATION OF STRESS-IN-MOTION (SIM) RESULTS IN PAVEMENT DESIGN AND INFRASTRUCTURE PROTECTION Morris De Beer1, Colin Fisher1 and Louw Kannemeyer2 1CSIR Transportek Pretoria, 0001. Tel: +27-(0)-(012) 841-2953. Fax: +27...

  14. Residual stress evaluation by neutron diffraction. Some industrial applications and perspectives

    International Nuclear Information System (INIS)

    Rogante, M.

    2001-01-01

    Materials and components of technological and industrial interest can present Residual Stresses (RS), that can be generated during the manufacturing process - e. g. extruding, welding, and forging -, or as a consequence of plastic deformations or thermal treatments. When RS add to external loads, they can enhance fatigue processes, earlier inducing failure of the component. Examples of RS determination in industrial applications are reported: the one focuses on AA 6082 alloy extruded samples, the other on a 2,25Cr1Mo ferritic steel welded pipe after thermal treatment. Other examples are shown, successively, concerning particular industrial problems which need to be studied also by adopting the same technique. (R.P.)

  15. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-10-01

    As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  17. Overview and applicability of residual stress estimation of film-substrate structure

    International Nuclear Information System (INIS)

    Chou, Tsung-Lin; Yang, Shin-Yueh; Chiang, Kuo-Ning

    2011-01-01

    Residual stresses arising from thermal mismatch in layered structures rank among the major causes of mechanical failures in light-emitting diodes, integrated circuits, electronic packages, and micro-electro-mechanical systems. Applying analytical solutions to predict or calculate residual stresses' magnitude and distribution in multilayer film-substrate system has been widely adopted by many researchers. These researches are based on multilayer theories of film-substrate systems, such as Suhir's formula, Stoney's equation, and extend Stoney's equations. To discuss and distinguish the characteristics of these approaches, finite element analysis numerical solutions and multilayer theory analytical solutions are compared and analyzed. This encompasses the theories' application spectrum as well as their prediction capability. In addition, this work not only discusses the theories' property and workability but also demonstrate the feasibility of the finite element method (FEM) and bilayer theories in experiment. The experimental result demonstrates that FEM is a reliable approach in predicting the mechanical behavior of multilayer structures. Hence, when calculating or predicting thin film stress using the aforementioned theories, the methodology proposed in this research can be employed to effectively validate the feasibility of these theories.

  18. The Application of Rational-Emotive Behavior Therapy to Reduce Stress among Mother with Leukemia Children

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2016-09-01

    Full Text Available Introduction: A child who is diagnosed with Leukemia will undergo several procedures are long and painful action. During the process of hospitalization due to leukemia children and parents can experience a variety of events or actions handling according to various studies shown by the experience very traumatic and stressful (Supartini 2004 in Arif, SY, 2007. Some of the methods used to deal with anxiety is psikoprofilaksis, relaxation and imagination (Reeder et al., 2011. Rational-emotive behavior therapy by Albert Ellis in 1990 describes a unique man who is basically have a tendency to think rational and irrational. Methods: aim of this study is to explain the effect of Rational Emotive Behavior Therapy (REBT for stress levels of mothers with children suffering from Leukemia. The study design used was a pre-experiment Quasy-post control group design. The sample was 10 mothers of children diagnosed with leukemia are treated in a child hematology ward Soetomo hospital. Variable in this study is the level of depression and anxiety mothers with children suffering from leukemia. Result: Based on the results obtained Wilcoxon statistical test p = 0.025 in the treatment group and p = 0.32 in the control group. Mann Whitney test results obtained p = 0.012. Conclution: Rational-emotive behavior therapy can reduce levels of depression and anxiety (stress mothers with children suffering from leukemia. It is expected that the application of rational -emotive behavior therapy can be done to reduce depression and anxiety in women with chronic disease cases while maintaining the effectiveness the goal of REBT. Keywords: stress, anxiety, depression, rational-emotive behavior

  19. Sine-Gordon equation and its application to tectonic stress transfer

    Science.gov (United States)

    Bykov, Victor G.

    2014-07-01

    An overview is given on remarkable progress that has been made in theoretical studies of solitons and other nonlinear wave patterns, excited during the deformation of fault block (fragmented) geological media. The models that are compliant with the classical and perturbed sine-Gordon equations have only been chosen. In these mathematical models, the rotation angle of blocks (fragments) and their translatory displacement of the medium are used as dynamic variables. A brief description of the known models and their geophysical and geodynamic applications is given. These models reproduce the kinematic and dynamic features of the traveling deformation front (kink, soliton) generated in the fragmented media. It is demonstrated that the sine-Gordon equation is applicable to the description of series of the observed seismic data, modeling of strain waves, as well as the features related to fault dynamics and the subduction slab, including slow earthquakes, periodicity of episodic tremor and slow slip (ETS) events, and migration pattern of tremors. The study shows that simple heuristic models and analytical and numerical computations can explain triggering of seismicity by transient processes, such as stress changes associated with solitary strain waves in crustal faults. The need to develop the above-mentioned new (nonlinear) mathematical models of the deformed fault and fragmented media was caused by the reason that it is impossible to explain a lot of the observed effects, particularly, slow redistribution and migration of stresses in the lithosphere, within the framework of the linear elasticity theory.

  20. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation.

    Science.gov (United States)

    Noiri, Eisei; Tsukahara, Hirokazu

    2005-05-01

    Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.

  1. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  2. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  3. Work Related Stress: Application of a Special Study to the General Business Community.

    Science.gov (United States)

    Gallagher, Denise M.; And Others

    There has been much recent attention given to stress and the negative side effects associated with excessive stress. Employers need to recognize the effect that stress can have on the productivity and attitudes of their employees. To examine work-related stress and to develop stress management strategies, a study was conducted of flight attendants…

  4. A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress.

    Science.gov (United States)

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-12-01

    The elevated ultraviolet-B (UV-B) stress induces the accumulation of a variety of intracellular reactive oxygen species (ROS), which seems to cause oxidative stress for plants. To date, very little work has been done to evaluate the biological effects of a combined treatment with He-Ne laser irradiation and exogenous nitric oxide (NO) application on oxidative stress resulting from UV-B radiation. Thus, our study investigated the effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative damages in wheat seedlings under elevated UV-B stress. Our data showed that the reductions in ROS levels, membrane damage parameters, while the increments in antioxidant contents and antioxidant enzyme activity caused by a combination with He-Ne laser and exogenous NO treatment were greater than those of each individual treatment. Furthermore, these treatments had a similar effect on transcriptional activities of plant antioxidant enzymes. This implied that the protective effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative stress resulting from UV-B radiation was more efficient than each individual treatment with He-Ne laser or NO molecule. Our findings might provide beneficial theoretical references for identifying some effective new pathways for plant UV-B protection.

  5. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  6. Application of indirect stress measurement techniques (non strain gauge based technology) to quantify stress environments in mines

    CSIR Research Space (South Africa)

    Stacey, TR

    2002-03-01

    Full Text Available Reliable values of in situ stress are essential for the valid modelling of mine layouts. Available non-strain gauge methods are reviewed as potential practical techniques for South African mines. From this review it is concluded that the most...

  7. Analytical model and application of stress distribution on mining coal floor

    Institute of Scientific and Technical Information of China (English)

    ZHU Shu-yun; JIAN Zhen-quan; HOU Hong-liang; XIAO Wei-guo; YAO Pu

    2008-01-01

    Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aquifers.

  8. Modified Application of Nitrogen Fertilizer for Increasing Rice Variety Tolerance toward Submergence Stress

    Directory of Open Access Journals (Sweden)

    Gribaldi Gribaldi

    2017-01-01

    Full Text Available This research was conducted from July to October 2015, using Randomized Block Design with two treatment factors and three replications for each treatment. The first factor was rice varieties (V: V1 = IR 64; V2 = Inpara 5. The second factor was fertilizer (N: N0: without submergence, all N fertilizer was given during planting; N1: all N fertilizer dose was given during planting; and N2: 1/2 dose of N fertilizer was given during planting; the rest was given at 42 days after planting. The submergence was during 7–14 days after planting; N3 = the entire dose of N fertilizer that was given during planting, N4 = 1/2 the dose of N fertilizer that was given during planting, and the rest was given at 42 days after planting. The submergence was during 7–14 and 28–35 days after planting. The results showed that the management of nitrogen fertilizer application had effect on rice growth and production which experienced dirty water submergence stress; the application of 1/2 dose of N fertilizer given during planting had the best effect on rice growth and production; the longer the submergence period for rice variety, the higher the effect on rice growth and production.

  9. Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species

    Directory of Open Access Journals (Sweden)

    Stitt Mark

    2007-09-01

    Full Text Available Abstract Background The results of transcriptome microarray analysis are usually presented as a list of differentially expressed genes. As these lists can be long, it is hard to interpret the desired experimental treatment effect on the physiology of analysed tissue, e.g. via selected metabolic or other pathways. For some organisms, gene ontologies and data visualization software have been implemented to overcome this problem, whereas for others, software adaptation is yet to be done. Results We present the classification of tentative potato contigs from the potato gene index (StGI available from Dana-Farber Cancer Institute (DFCI into the MapMan ontology to enable the application of the MapMan family of tools to potato microarrays. Special attention has been focused on mapping genes that could not be annotated based on similarity to Arabidopsis genes alone, thus possibly representing genes unique for potato. 97 such genes were classified into functional BINs (i.e. functional classes after manual annotation. A new pathway, focusing on biotic stress responses, has been added and can be used for all other organisms for which mappings have been done. The BIN representation on the potato 10 k cDNA microarray, in comparison with all putative potato gene sequences, has been tested. The functionality of the prepared potato mapping was validated with experimental data on plant response to viral infection. In total 43,408 unigenes were mapped into 35 corresponding BINs. Conclusion The potato mappings can be used to visualize up-to-date, publicly available, expressed sequence tags (ESTs and other sequences from GenBank, in combination with metabolic pathways. Further expert work on potato annotations will be needed with the ongoing EST and genome sequencing of potato. The current MapMan application for potato is directly applicable for analysis of data obtained on potato 10 k cDNA microarray by TIGR (The Institute for Genomic Research but can also be used

  10. New developments of the Integrated Stress Determination Method and application to the Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ask, Daniel

    2004-04-01

    This thesis presents new developments of the Integrated Stress Determination Method (ISDM) with application to the Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The new developments involve a 12-parameter representation of the regional stress field in the rock mass. The method is applicable to data from hydraulic fracturing, hydraulic tests on pre-existing fractures (HTPF), and overcoring data from CSIR- and CSIRO-type of devices. When hydraulic fracturing/HTPF data are combined with overcoring data, the former may be used to constrain the elastic parameters, i.e. the problem involves 14 model parameters. The Swedish Nuclear Fuel and Waste Management Co. (SKB), have conducted a vast amount of rock stress measurements at the Aespoe HRL since the late 1980s. However, despite the large number of stress measurement data collected in this limited rock volume, variability in the stress field exists. Not only does the result vary depending on measuring technique, e.g. overcoring data indicated larger stress magnitudes compared to hydraulic fracturing data; the results are also affected by existing discontinuities, indicated by non-linear stress magnitudes and orientations versus depth. The objectives for this study are therefore threefold: (1) find explanations to the observed differences between existing hydraulic and overcoring stress data at the Aspo HRL; (2) explain the non-linear stress distribution indicated by existing stress data; and (3) apply the ISDM, including the new developments, based on the results obtained in step 1 and 2. To evaluate the observed differences between existing hydraulic and overcoring stress data, a detailed re-interpretation was conducted. Several measurement-related uncertainties were identified and corrected for when possible, which effectively reduced the discrepancies between the hydraulic and overcoring measuring results. Modeling studies managed by SKB have shown that the redistribution of the stresses at Aespoe HRL to a

  11. Multi-parameter approximation of stress field in a cracked specimen using purpose-built Java applications

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sopek, J.; Tesař, D.; Frantík, P.; Pail, T.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 120-133 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Cracked specimen * Near-crack-tip fields * Williams expansion * Higher order terms * Stress field reconstruction * Finite element analysis * Java application Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Effect of Zeolite and Nitrogen Fertilizer Application under Water Deficit Stress Conditions on Agronomical and Physiological Traits of Rapeseed

    Directory of Open Access Journals (Sweden)

    A. Ghiasvand Ghiasi

    2014-08-01

    Full Text Available In order to evaluation of zeolite and nitrogen fertilizer application effect on agronomic and physilogical traits of rapeseed (cv RGS003 under water deficit stress conditions, an experiment was conducted in factorial based on randomized complete block design with three replications during 2010 in Qazvin region, Iran. In the where, the two levels of irrigation factor as the normal irrigation (irrigation after 80 mm evaporation from class A pan as control and irrigation cease from stem elongation stage till end of growth, nitrogen factor was at three levels (0, 75 and 150 kg.ha-1 and zeolite factor (0 and 10tons per hectare were studied. Results showed that drought stress decreased evaluated traits such as silique per plant (41%, grain per silique (26%, 1000 seed weight (33%, grain yield (52.5%, oil percent (14%, RWC (31.5% and chlorophyll content (35%. Non-application of nitrogen had adverse effects on total traits and reduced them. However, zeolite application at water deficit stress conditions had positive and significant effect on total traits except of oil percent and chlorophyll content, specially improved grain yield and oil yield. Based on the results of this experiment, application of zeolite (10ton/ha-1 through storage and maintenance of water and nutrients, reduced the intensity and harmful effects of stress in plants and enhances crop yield.

  13. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-06-01

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated

  14. Methamphetamine Use among Rural White and Native American Adolescents: An Application of the Stress Process Model

    Science.gov (United States)

    Eitle, David J.; Eitle, Tamela McNulty

    2013-01-01

    Methamphetamine use has been identified as having significant adverse health consequences, yet we know little about the correlates of its use. Additionally, research has found that Native Americans are at the highest risk for methamphetamine use. Our exploratory study, informed by the stress process model, examines stress and stress buffering…

  15. Application of secondary and residual stresses to the assessment of the structural integrity of nuclear power-generating plant

    International Nuclear Information System (INIS)

    Banahan, B.D.

    2008-01-01

    Magnox nuclear power stations were built in the 1960s to design codes that, in general, required weldments to be subject to a post-weld heat treatment to remove residual stresses. Implicit in this was the assumption that the heat treatment reduced the stresses significantly such that as stated in the codes 'stresses caused by fabrication and welding are practically annulled'. However, it has since been realised that the stresses remaining, although small, could still be significant when incorporated into the subsequently developed failure avoidance methodologies such as R6. Moreover, either at the time of construction or during the operating life, repairs are undertaken to remove manufacturing or service-induced defects. These repairs can be put into service with or without a post-weld heat treatment. As a consequence of a paucity of data for the two- and three-dimensional distribution of the magnitude of these stresses, extremely conservative values of stresses have been adopted to ensure that the plant is secure against the design intent throughout the service life. In this paper, the requirements of the failure-avoidance methodology R6 Revision 4 are briefly reviewed with respect to the categorisation of secondary and residual stresses and the application of the three approaches for determining the as-welded residual stress distribution at room temperature. These three levels comprise, Level 1, simple estimates, Level 2, bounding profiles, and Level 3, detailed evaluation. Examples are presented where knowledge of the residual stresses has been an important component of the overall integrity assessment. The first relates to multi-pass weldments in superheater headers fabricated from a ferritic steel and the second to the weldments in the standpipes, both at Magnox power stations with concrete pressure vessels. Although in these cases the weldments had been subject to a post-weld heat treatment, the remaining residual stresses presented a significant challenge to

  16. [Study of the occupational stress norm and it's application for the executive group and administrative support group].

    Science.gov (United States)

    Yang, Xin-wei; Wang, Zhi-ming; Jin, Tai-yi; Lan, Ya-jia

    2006-07-01

    A study of the occupational stress norm and it's application for the executive group and administrative support group. In this study, cross-sectional study method is used, and a synthetic way of sorting and randomized sampling is adopted to deal with research targets (263 executive group, 569 administrative support group). Descriptive statistics for OSI-R scale scores for the executive group, administrative support group were modulated. Scale raw score to T-score conversion tables derived from the OSI-R normative sample for executive group, administrative support group were established. OSI-R profile from for executive group, administrative support group were established. For the ORQ and PSQ scales, scores at or above 70 indicate a strong levels of maladaptive stress and strain. Score inthe range of 60 to 69 suggest middle levels of maladaptive stress and strain. Score in the range of 40 to 59 indicate normal levels of stress and strain. Score below 40 indicate a relative absence of occupational stress and strain. For the PRQ scales, score below 30 indicate a significant lack of coping resources. Score in the range of 30 to 39 suggest middle deficits in coping resources. Score in the range of 40 to 59 indicate average coping resources. Scores at or above 60 indicate a strong levels of coping resources. Based on occupational Stress norm, raw score to T-score conversion tables, OSI-R profile form and classification criterion, we could estimate the level of occupation stress, stressor, strain and coping resources in different occupation. In addition, we combined subjective and objective environment match model of occupational stress. The various individual and organizational intervention measures should be taken to reduce the occupational stress and to increase coping so as to improve the work ability.

  17. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-01

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  18. Topical application of ointment containing 0.5% green tea catechins suppresses tongue oxidative stress in 5-fluorouracil administered rats.

    Science.gov (United States)

    Miyai, Hisataka; Maruyama, Takayuki; Tomofuji, Takaaki; Yoneda, Toshiki; Azuma, Tetsuji; Mizuno, Hirofumi; Sugiura, Yoshio; Kobayashi, Terumasa; Ekuni, Daisuke; Morita, Manabu

    2017-10-01

    The purpose of this study was to investigate the preventive effects of topical application of green tea catechins on tongue oxidative stress induced by 5-fluorouracil (5-FU) administration in rats. Male Wistar rats (n=28, 8 weeks old) were divided into four groups of seven rats each: a negative control group (saline administration and application of ointment without green tea catechins), a positive control group (5-FU administration and application of ointment without green tea catechins), and two experimental groups (5-FU administration and application of ointment containing 0.1% or 0.5% green tea catechins). Topical application of each ointment to the ventral surface of the tongue was performed once a day for 5days. The level of 8-hydroxydeoxyguanosine (8-OHdG) was determined to evaluate oxidative stress. Fluorescence staining was also performed to confirm nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus. After the experimental period, the ratios of 8-OHdG-positive cells in the ventral tongue tissue were higher in the positive control group than in the negative control group (Ptea catechin group, but not in the 0.1% green tea catechin group, were lower than the positive control group (Ptea catechin group than in the positive control group (Ptea catechins could prevent tongue oxidative stress in 5-FU administered rats, via up-regulation of the Nrf2 signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. PHIT for Duty, a Mobile Application for Stress Reduction, Sleep Improvement, and Alcohol Moderation.

    Science.gov (United States)

    Kizakevich, Paul N; Eckhoff, Randall; Brown, Janice; Tueller, Stephen J; Weimer, Belinda; Bell, Stacey; Weeks, Adam; Hourani, Laurel L; Spira, James L; King, Laurel A

    2018-03-01

    Post-traumatic stress and other problems often occur after combat, deployment, and other military operations. Because techniques such as mindfulness meditation show efficacy in improving mental health, our team developed a mobile application (app) for individuals in the armed forces with subclinical psychological problems as secondary prevention of more significant disease. Based on the Personal Health Intervention Toolkit (PHIT), a mobile app framework for personalized health intervention studies, PHIT for Duty integrates mindfulness-based relaxation, behavioral education in sleep quality and alcohol use, and psychometric and psychophysiological data capture. We evaluated PHIT for Duty in usability and health assessment studies to establish app quality for use in health research. Participants (N = 31) rated usability on a 1 (very hard) to 5 (very easy) scale and also completed the System Usability Scale (SUS) questionnaire (N = 9). Results were (mean ± SD) overall (4.5 ± 0.6), self-report instruments (4.5 ± 0.7), pulse sensor (3.7 ± 1.2), sleep monitor (4.4 ± 0.7), sleep monitor comfort (3.7 ± 1.1), and wrist actigraphy comfort (2.7 ± 0.9). The average SUS score was 85 ± 12, indicating a rank of 95%. A comparison of PHIT-based assessments to traditional paper forms demonstrated a high overall correlation (r = 0.87). These evaluations of usability, health assessment accuracy, physiological sensing, system acceptability, and overall functionality have shown positive results and affirmation for using the PHIT framework and PHIT for Duty application in mobile health research.

  20. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  1. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  2. Support technology of deep roadway under high stress and its application

    Institute of Scientific and Technical Information of China (English)

    Cao Rihong; Cao Ping; Lin Hang

    2016-01-01

    Roadway instability has been a major concern in the fields of mining engineering. This paper aims to pro-vide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently, the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of sur-rounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deforma-tion, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.

  3. Support technology of deep roadway under high stress and its application

    Institute of Scientific and Technical Information of China (English)

    Cao Rihong; Cao Ping; Lin Hang

    2016-01-01

    Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.

  4. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  5. [A study of the occupational stress norm and it' s application for the technical group and scientific research group].

    Science.gov (United States)

    Yang, Xin-wei; Liu, Ze-jun; Zhao, Pei-qing; Bai, Shao-ying; Pang, Xing-huo; Wang, Zhi-ming; Jin, Tai-yi; Lan, Ya-jia

    2006-11-01

    A study of the occupational stress norm and it' s application for the technical group and scientific research group. In this study, cross-sectional study method is used, and a synthetic way of sorting and randomized sampling is adopted to deal with research targets(235 scientific research group, 857 technical group). Descriptive statistics for OSI-R scale scores for the technical group and scientific research group were modulated. Scale raw score to T-score conversion tables derived from the OSI-R normative sample for technical group and scientific research group were established. OSI-R profile from for technical group and scientific research group were established. For the ORQ and PSQ scales, scores at or above 70T indicate a strong levels of maladaptive stress and strain. Score in the range of 60T to 69T suggest middle levels of maladaptive stress and strain. Score in the range of 40T to 59T indicate normal levels of stress and strain. Score below 40T indicate a relative absence of occupational stress and strain. For the PRQ scales, score below 30T indicate a significant lack of coping resources. Score in the range of 30T to 39T suggest middle deficits in coping resources. Score in the range of 40T to 59T indicate average coping resources. Scores at or above 60T indicate a strong levels of coping resources. Different intervention measure should be take to reduce the occupational stress so as to improve the work ability.

  6. Development of Kossel micro-diffraction for strain and stress analysis at the micrometer scale: applications to crystalline materials

    International Nuclear Information System (INIS)

    Bouscaud, D.

    2012-01-01

    X-ray diffraction is a non-destructive method frequently used in materials science to analyse the stress state at a macroscopic scale. Due to the growing complexity of new materials and their applications, it is necessary to know the strain and stress state at a lower scale. Thus, a Kossel micro-diffraction experimental set-up was developed inside a scanning electron microscope. It allows to obtain the crystallographic orientation as well as the strains and stresses within a volume of a few cubic micrometers. Some experiments were also performed using a synchrotron radiation. An experimental procedure was developed to optimize the acquisition of Kossel line patterns and their post-processing. The stress calculation from Kossel patterns was validated by comparing the stress state of single crystals during in situ mechanical loading, obtained by Kossel micro-diffraction and with classical diffraction methods. Then Kossel micro-diffraction was applied to polycrystalline samples by gradually decreasing the grain size. Intergranular stress heterogeneities were for example measured in an interstitial-free steel. Experiments were finally carried out in thin layer samples representative of microelectronic components. (author)

  7. CURRENT ISSUES ON JOB STRESS IN JAPAN AND WORKSITE MENTAL HEALTH APPLICATION AMONG JAPANESE COMPANY A Case Study Analysis

    Directory of Open Access Journals (Sweden)

    S Purnawati

    2013-05-01

    Full Text Available Background: Issues about job stress is more popular in the world currently. Not just for Japan, Korea and Taiwan, but also an important issue in EU countries, especially the UK and Finland Increase of awareness about job stress effects on work performance, productivity and mental health is as onereason of the phenomenon.Objective: The present study aimed to explore the issue of job stress in Japan for the reference of good practices to Indonesia.Methods: This study, based on observationalstudies in the period of September-December in year 2010 in Tokyo, Kawasaki and Kitakyushu Japan. Observations on Japanese Company and discussions with experts, such as: occupational physician of Riken Company, experts from: Tokyo University and Tokyo University’s occupational physician, Department of ergonomics, the Institute of Industrial Ecological Sciences UOEH (University ofOccupational and Environmental Health, Institute for Science of Labor, and researcher of Japan NIOSH. Two stress management training and occupational mental health’ application program were observed in the period of October-December.Result: The trend of current occupational mental health research in Japan has being moved from job stress to more advanced issues of work engagement andwork-life balance. There are three approaches to prevention of job stress. Considering the three approach could improve of worker productivity and well-being. The training for Tokyo University’s staffs was as one session of individual-oriented stress prevention approach. It was conducted in very interactive class lecture. During 2 hours session, the participants learned some knowledge about job stress and its risk factors, exercised to construct better cognitive for stress prevention and productivity, practiced of progressive muscle relaxation technique, group work, did some home works and filled an evaluation sheet after the session was finish. We also observed the occupational mental

  8. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    International Nuclear Information System (INIS)

    Frutos, E.; Multigner, M.; Gonzalez-Carrasco, J.L.

    2010-01-01

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  9. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frutos, E. [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)] [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain); Multigner, M. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain); Gonzalez-Carrasco, J.L., E-mail: jlg@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)

    2010-07-15

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  10. Application of x-ray method for measuring internal stress in the gear teeth surface layer

    International Nuclear Information System (INIS)

    Zaborowski, T.

    1996-01-01

    This paper presents the methodics of the internal stress measurements concerning cylindrical gear teeth of involute profile. There are the method selected, relation between stress and strain presented and conditions of investigation discussed in the study, including preparation of samples for investigation and conditions of the strain measurement. Exemplifying results of stress measurements for teeth of gears made of 4OH steel are shown. Suitability of the developed investigation method is indicated

  11. Residual Stress Analysis for Engineering Applications by Means of Neutron Diffraction

    International Nuclear Information System (INIS)

    Gndupel-Herold, Thomas; Brand, Paul C.; Prask, Henry J.

    1999-01-01

    The economic and scientific importance of neutron diffraction residual stress analysis has led to an increasing number of suitable instruments worldwide. Recently, a dedicated state-of-the-art diffractometer has been installed at the National Institute of Standards and Technology reactor. It has been used for a variety of measurements on basic and engineering stress problems. Among the most prominent examples that have been investigated are residual stresses in rails, weldments, and plasma-sprayed coatings

  12. Residual stress analysis for engineering applications by means of neutron diffraction

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J.

    1999-01-01

    Residual stresses originate from spatial differences in plastic deformation, temperature, or phase distribution, introduced by manufacturing processes or during service. Engineering parts and materials experience mechanical, thermal, and chemical loads during their service, and most of these loads introduce stresses that are superimposed on the already existing residual stresses. Residual stresses can therefore limit or improve life and strength of engineering parts; knowledge and understanding of these stresses is therefore critical for optimizing strength and durability. The economic and scientific importance of neutron diffraction residual stress analysis has led to an increasing number of suitable instruments worldwide. All of the major sources due in the next several years will have instruments for the sole purpose of performing residual stress and texture measurements. Recently, a dedicated, state-of-the-art diffractometer has been installed at the National Institute of Standards and Technology reactor. It has been used for a variety of measurements on basic and engineering stress problems. Among the most prominent examples that have been investigated in collaboration with industrial and academic partners are residual stresses in rails, weldments, and plasma-sprayed coatings

  13. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  14. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  15. Analysis of Lithospheric Stresses Using Satellite Gravimetry: Hypotheses and Applications to North Atlantic

    Science.gov (United States)

    Minakov, A.; Medvedev, S.

    2017-12-01

    Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.

  16. Residual stress mapping by micro X-ray diffraction: Application to the study of thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of spontaneous detachment of the film from its substrate and in the case of compressive stresses, thin film buckling. Although these effects are undesirable for future applications, one may take benefit of it for thin film mechanical properties investigation. Since the 80's, a lot of theoretical works have been done to develop mechanical models with the aim to get a better understanding of driven mechanisms giving rise to this phenomenon and thus to propose solutions to avoid such problems. Nevertheless, only a few experimental works have been done on this subject to support these theoretical results and nothing concerning local stress/strain measurement mainly because of the small dimension of the buckling (few tenth mm). This paper deals with the application of micro beam x-ray diffraction available on synchrotron radiation sources for stress/ strain mapping analysis of gold thin film buckling.

  17. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    International Nuclear Information System (INIS)

    Scott, J.E.; Kenkre, V.M.; Hurd, A.J.

    1998-01-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts. copyright 1998 The American Physical Society

  18. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-05-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts.

  19. Application of Photocurrent Model on Polymer Solar Cells Under Forward Bias Stress

    DEFF Research Database (Denmark)

    Rizzo, Antonio; Torto, Lorenzo; Wrachien, Nicola

    2017-01-01

    We performed a constant current stress at forward bias on organic heterojunction solar cells. We measured current voltage curves in both dark and light at each stress step to calculate the photocurrent. An existing model applied to photocurrent experimental data allows the estimation of several...

  20. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  1. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  2. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Longxing eHu

    2016-02-01

    Full Text Available Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool‐season turfgrass species, tall fescue (Lolium arundinaceum, and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2 and 20 mM and two temperature levels (25/20 and 35/30 ± 0.5 ̊C, day/night treatments in growth chambers. Heat stress increased an electrolyte leakage (EL and malonaldehyde (MDA content, while reduced plant growth, chlorophyll (Chl content, photochemical efficiency (Fv/Fm, root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD. External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  3. Interface topography and residual stress distributions in W coatings for fusion armour applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)], E-mail: g.thomas@cranfield.ac.uk; Vincent, R. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Matthews, G. [UKAEA Fusion, K2 Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dance, B. [TWI Ltd, Granta Park, Great Abingdon, Cambridge CB1 6AL (United Kingdom); Grant, P.S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2008-03-25

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates.

  4. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  5. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  6. Measurement and modeling of magnetic hysteresis under field and stress application in iron–gallium alloys

    International Nuclear Information System (INIS)

    Evans, Phillip G.; Dapino, Marcelo J.

    2013-01-01

    Measurements are performed to characterize the hysteresis in magnetomechanical coupling of iron–gallium (Galfenol) alloys. Magnetization and strain of production and research grade Galfenol are measured under applied stress at constant field, applied field at constant stress, and alternately applied field and stress. A high degree of reversibility in the magnetomechanical coupling is demonstrated by comparing a series of applied field at constant stress measurements with a single applied stress at constant field measurement. Accommodation is not evident and magnetic hysteresis for applied field and stress is shown to be coupled. A thermodynamic model is formulated for 3-D magnetization and strain. It employs a stress, field, and direction dependent hysteron that has an instantaneous loss mechanism, similar to Coulomb-friction or Preisach-type models. Stochastic homogenization is utilized to account for the smoothing effect that material inhomogeneities have on bulk processes. - Highlights: ► We conduct coupled experiments and develop nonlinear thermodynamic models for magnetostrictive iron–gallium (Galfenol) alloys. ► The measurements show unexpected kinematic reversibility in the magnetomechanical coupling. ► This is in contrast with the magnetomechanical coupling in steel which is both thermodynamically and kinematically irreversible. ► The model accurately describes the measurements and provides a framework for understanding hysteresis in ferromagnetic materials which exhibit kinematically reversible magnetomechanical coupling.

  7. The relationship between perceived stress and computer technology attitude: an application on health sciences students.

    Science.gov (United States)

    Ozyurek, Pakize; Oztasan, Nuray; Kilic, Ibrahim

    2015-02-01

    The aim of this study is to define attitudes of students in health sciences towards perceived personal stress and computer technologies, and to present the relationship between stress and computer technology attitudes. In this scope, this study has a descriptive nature and thus a questionnaire has been applied on 764 students from Afyon Kocatepe University Health Sciences High School, Turkey for data gathering. Descriptive statistics, independent samples, t test, one way ANOVA, and regression analysis have been used for data analysis. In the study, it is seen that female (=3,78) have a more positive attitude towards computer technology than male students (=3,62). according to the results of regression analysis of the study, the regression model between computer technology attitude (CTA) and perceived stress (PS) has been found meaningful (F=16,291; ptechnology attitude and perceived stress (when computer technology altitude increases, perceived stress decreases), and an increase of one unit in computer attitude results in 0.275 decrease in perceived stress. it can be concluded that correct and proper use of computer technologies can be accepted as a component of overcoming stress methods.

  8. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  9. Determination of stress distribution in III-V single crystal layers for heterogeneous integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.; Hayashi, S. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M.S.; Sandhu, R.; Chang-Chien, P.; Gutierrez-Aitken, A.; Tsai, R. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Noori, A.; Poust, B. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2007-08-15

    Double crystal X-ray diffraction imaging and a variable temperature stage are employed to determine the stress distribution in heterogeneous wafer bonded layers though the superposition of images produced at different rocking curve angles. The stress distribution in InP layers transferred to a silicon substrate at room temperature exhibits an anticlastic deformation, with different regions of the wafer experiencing different signs of curvature. Measurements at elevated temperatures ({<=}125 C) reveals that differences in thermal expansion coefficients dominate the stress and that interfacial particulates introduce very high local stress gradients that increase with increased temperature. For thinned GaAs substrates (100 {mu}m) bonded using patterned metal interlayers to a separate GaAs substrate at {approx}200 C, residual stresses are produced at room temperature due to local stress points from metallization contacts and vias and the complex stress patterns can be observed using the diffraction imaging technique. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  11. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  12. Micromachined sensor for stress measurement and micromechanical study of free-standing thin films for MEMS applications

    Science.gov (United States)

    Zhang, Ping

    Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy

  13. Workshop on industrial application of neutron diffraction. Stress measurement by neutron diffraction

    CERN Document Server

    Minakawa, N; Morii, Y; Oyama, Y

    2002-01-01

    This workshop was planned to make use of the neutron from the reactor and the pulse neutron source JSNS for the industrial world. Especially, this workshop focused on the stress measurement by the neutron diffraction and it was held on the Tokai JAERI from October 15 to 16, 2001. The participant total was 93 and 40 participated from the industrial world. The introduction of the residual stress development of measurement technique by the neutron diffraction method and a research of the measurement of the residual stress such as the nuclear reactor material, the ordinary structure material, the composite material, the quenching steel, the high strength material were presented and discussed in this workshop. Moreover, it was introduced for the industrial world that an internal stress measurement is important for development of new product or an improvement of a manufacturing process. The question from the industrial world about which can be measured the product form, the size, the measurement precision, the reso...

  14. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  15. Potential applications of heat and cold stress indices to sporting events.

    Science.gov (United States)

    Moran, D S

    2001-01-01

    Many recreational and elite athletes participate in sporting events every year. However, when these events are conducted under hostile environmental conditions, whether in cold or hot climates, the risk for environmental illnesses increases. The higher the stress, the greater is the potential for performance decrements, injuries and illnesses. The most common expected heat illnesses are heat exhaustion and heatstroke, whereas hypothermia and frostbite are the most common cold injuries. However, heat and cold stress indices can minimise the risk for environmental illnesses and dehydration by following the recommendations and guidelines which accompany these indices. Stress indices should be used by athletes, coaches and officials to prevent injury and improve safety conditions for competitors and participants in recreational activities. All participants should be made aware of warning signs, susceptibility and predisposing conditions. Coaches should be aware of their responsibility with regard to the safety of their trainees, and officials should organise and plan events at times that are likely to be of low environmental stress. However, they must also be prepared and equipped with the means necessary to reduce injuries and treat cases of collapse and environmental illnesses. The lack of a friendly, small and simple device for environmental stress assessment is probably the main reason why stress indices are not commonly used. We believe that developing a new portable heat and cold stress monitor in wristwatch format for use by those exposed to environmental stress could help in the decision making process of expected hazards caused by exercising and working in hostile environments, and might help prevent heat and cold illnesses.

  16. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  17. Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy.

    Science.gov (United States)

    Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki

    2015-10-01

    The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.

  18. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  19. Study on applicability of stress intensity factor solutions for flaw evaluation

    International Nuclear Information System (INIS)

    Miura, Naoki; Nagai, Masaki; Takahashi, Yukio

    2014-01-01

    Stress intensity factor is the quantity which characterizes the singularity of the stress field near a crack tip in the scheme of the linear elastic fracture mechanics, and is used for fatigue and/or SCC crack propagation evaluation. Stress intensity factor depends on the shape and the size of cracked structures, and is frequently prepared as the tabulated correction factors which are the functions of crack depth ratio, aspect ratio, etc. Some stress intensity factor solutions have been included in the JSME rules on fitness-for-service for nuclear power plants. Many of them have been significantly revised on the latest (2012) version of the rules, however, the validation of the revised solutions was not adequate so far. In this study, the implication of the revision was investigated together with its technical basis. A comprehensive comparison was made between available solutions including the 2008 and 2012 version of the rules. It was ascertained that the solutions in the 2012 version provided stress intensity factors consistent with the previous version and the referential stress intensity factors. (author)

  20. The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L. under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    N. Armand

    2016-02-01

    Full Text Available Introduction Available water is an important factor for plant growth in arid environments. Results indicated that foliar application of methanol is believed to be more important than the drought tolerance in C3 plant. Since bean is a C3 plant, it performs light respiration under intense heat, light and water stress due to internal leaf CO2 concentration reduction and oxygen concentration increase. Light respiration can cause up to 20% loss of carbon in plants and decrease the yield. Increasing concentration of carbon dioxide can neutralize the effect caused by drought stress. Thus, the use of substances that can cause an increase in the concentration of carbon dioxide in the plant, leads to improving the yield under the drought conditions. One of the ways of increasing the concentration of carbon dioxide in plants is by using compounds such as methanol, ethanol, propanol, butanol as well as use of the amino acids of glycine, glutamate and aspartate. Plants can easily absorb methanol sprayed on leaves and use it as a carbon source added to atmospheric carbon. Methanol is relatively smaller compared to the CO2 molecules, so it can be easily absorbed and utilized by plants. Materials and Methods In order to evaluate the effects of foliar application of methanol on some morphological characteristics of bean under drought stress, a factorial experiment was conducted based on completely randomized block design with three replications in 2014 at the Khatam Alanbia University of Behbahan. The treatment of spraying methanol was at 4 levels include control (without spraying, 10, 20 and 30% v/v methanol which added 2 g l-1 glycine to each of solutions. Adding glycine to aqueous solution of methanol leads to prevention of damages caused by the toxicity of methanol. The drought factors including control (100% field of capacity, moderate drought stress (50% field of capacity and severe drought stress (25% field of capacity were considered. In this experiment

  1. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.).

    Science.gov (United States)

    Gou, Wei; Zheng, Pufan; Tian, Li; Gao, Mei; Zhang, Lixin; Akram, Nudrat Aisha; Ashraf, Muhammad

    2017-05-01

    Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H 2 O 2 ), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.

  2. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  3. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed indian mustard (brassica juncea) plants

    International Nuclear Information System (INIS)

    Yousuf, P. Y.; Ahmad, A.; Hemant, M.; Ganie, A. H.; Iqbal, M.; Aref, I. M.

    2015-01-01

    The effect of potassium (K) and calcium (Ca) on growth and antioxidant defence system of salt-stressed Indian mustard plants was studied. Twenty-day-old Indian mustard plants grown hydroponically in Hoagland growth medium were randomly divided into five groups. To served as control and did not receive any additional K or Ca (except that present in Hoagland solution), T1 received 150 mM NaCl, T2 was given an additional doze of 6 mM K, T3 was given 5.6 mM Ca as additional doze, while as T4 received a combination of 150 mM NaCl + 6 mM K + 5.6 mM Ca. The response of the plants was studied ten days after treatment. Salt stress inhibited growth parameters including biomass, chlorophyll content, protein content and NR activity. Membrane damage was induced by the salt treatment with a concurrent increase in antioxidant defence system and proline content. Individual application of K and Ca mitigated the negative influence of the stress with the maximum alleviating potential exhibited by the combined application of these nutrients. Results obtained on real time expression of genes encoding enzymatic antioxidants (SOD, APX, CAT and GR), NR and proline supported our findings with biochemical assays. We conclude from the study that maintaining high K and Ca levels may serve as an effective means for regulating the growth and productivity of Indian mustard plants under saline conditions. (author)

  4. The application of large amplitude oscillatory stress in a study of fully formed fibrin clots

    Science.gov (United States)

    Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.

    2017-12-01

    The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).

  5. Application of a Full Reynolds Stress Model to High Lift Flows

    Science.gov (United States)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  6. Application of photoelasticity to study stress in component of the fuel element of nuclear reator

    International Nuclear Information System (INIS)

    Diniz, S.M.C.

    1987-11-01

    The fuel assembly, in the core of the nuclear reactor, is submitted to a system of forces (weight, buoyancy and hydraulic lift-up) with a resultant oriented in the direction of the coolant flow. To assure the assembly stability, under all operation conditions of the nuclear reactor, a holding-down device composed of four leaf springs is used. The safe/operation of the reactor depends on the capacity of such springs to support the maximum loads applied on them. The strictly mathematical methods for stress analysis of these springs are very complex, due to several factors such as: tri-dimensional geometry, changing loading, plastic strains and stress concentration. The stress analysis of these springs was performed using the photoelastic method. This technique has been proved to be adequate to the leaf spring analysis. In order to permit the evaluation of the potentialities of the employed method the Photoelasticity is decribed in its multiples purposes; that is, two-dimensional problems, stress frozen technique and reflection photoelasticity. The results obtained certify the role of the Photoelasticity, as a powerfull tool to the stress analyst and to the nuclear industry as well. (author) [pt

  7. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  8. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    Science.gov (United States)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  9. Development of thermal stress screening method. Application of green function method

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Shibamoto, Hiroshi; Kasahara, Naoto

    2004-01-01

    This work was achieved for the development of the screening method of thermal transient stresses in FBR components. We proposed an approximation method for evaluations of thermal stress under variable heat transfer coefficients (non-linear problems) using the Green functions of thermal stresses with constant heat transfer coefficients (linear problems). Detailed thermal stress analyses provided Green functions for a skirt structure and a tube-sheet of Intermediate Heat Exchanger. The upper bound Green functions were obtained by the analyses using those upper bound heat transfer coefficients. The medium and the lower bound Green functions were got by the analyses of those under medium and the lower bound heat transfer coefficients. Conventional evaluations utilized the upper bound Green functions. On the other hand, we proposed a new evaluation method by using the upper bound, medium and the lower bound Green functions. The comparison of above results gave the results as follows. The conventional evaluations were conservative and appropriate for the cases under one fluid thermal transient structure such as the skirt. The conventional evaluations were generally conservative for the complicated structures under two or more fluids thermal transients such as the tube-sheet. But the danger locations could exists for the complicated structures under two or more fluids transients, namely the conventional evaluations were non-conservative. The proposed evaluations gave good estimations for these complicated structures. Though above results, we have made the basic documents of the screening method of thermal transient stresses using the conventional method and the new method. (author)

  10. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    Science.gov (United States)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  11. A Virtual Reality Exposure Therapy Application for Iraq War Post Traumatic Stress Disorder

    National Research Council Canada - National Science Library

    Pair, Jarrell; Allen, Brian; Dautricourt, Matthieu; Treskunov, Anton; Liewer, Matt; Graap, Ken; Reger, Greg; Rizzo, Albert

    2006-01-01

    .... The aim of the current paper is to present the rationale, technical specifications, application features, and user-centered design process for the development of a Virtual Iraq PTSD VR therapy application...

  12. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  13. Application of advanced one sided stress wave velocity measurement in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovices, J. S.; Achenbach, J. D.

    1997-01-01

    It is of interest to reliably measure the velocity of stress waves in concrete. At present, reliable measurement is not possible for dispersive and attenuating materials such as concrete when access to only one surface of the structure is available, such as in the case of pavement structures. In this paper, a new method for one-sided stress wave velocity determination in concrete is applied to investigate the effects of composition, age and moisture content. This method uses a controlled impact as a stress wave source and two sensitive receivers mounted on the same surface as the impact sites. The novel aspect of the technique is the data collection system which automatically determines the arrival of the generated longitudinal and surface wave arrivals. A conventional ultrasonic through transmission method is used to compare with the results determined by the one-sided method.

  14. Rock Strength Anisotropy in High Stress Conditions: A Case Study for Application to Shaft Stability Assessments

    Directory of Open Access Journals (Sweden)

    Watson Julian Matthew

    2015-03-01

    Full Text Available Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM, which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.

  15. CHANGES IN PATELLOFEMORAL JOINT STRESS DURING RUNNING WITH THE APPLICATION OF A PREFABRICATED FOOT ORTHOTIC.

    Science.gov (United States)

    Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M

    2015-12-01

    Foot orthotics are commonly utilized in the treatment of patellofemoral pain (PFP) and have shown clinical benefit; however, their mechanism of action remains unclear. Patellofemoral joint stress (PFJS) is thought to be one of the main etiological factors associated with PFP. The primary purpose of this study was to investigate the effects of a prefabricated foot orthotic with 5 ° of medial rearfoot wedging on the magnitude and the timing of the peak PFJS in a group of healthy female recreational athletes. The hypothesis was that there would be significant reduction in the peak patellofemoral joint stress and a delay in the timing of this peak in the orthotic condition. Cross-sectional. Kinematic and kinetic data were collected during running trials in a group of healthy, female recreational athletes. The knee angle and moment data in the sagittal plane were incorporated into a previously developed model to estimate patellofemoral joint stress. The dependent variables of interest were the peak patellofemoral joint stress as well as the percentage of stance at which this peak occurred, as both the magnitude and the timing of the joint loading are thought to be important in overuse running injuries. The peak patellofemoral joint stress significantly increased in the orthotic condition by 5.8% (p=.02, ES=0.24), which does not support the initial hypothesis. However, the orthotic did significantly delay the timing of the peak during the stance phase by 3.8% (p=.002, ES=0.47). The finding that the peak patellofemoral joint stress increased in the orthotic condition did not support the initial hypothesis. However, the finding that the timing of this peak was delayed to later in the stance phase in the orthotic condition did support the initial hypothesis and may be related to the clinical improvements previously reported in subjects with PFP. Level 4.

  16. An application of stress energy tensor to the vanishing theorem of differential forms

    Directory of Open Access Journals (Sweden)

    Kairen Cai

    1988-01-01

    Full Text Available The author applies the stress energy of differential forms to study the vanishing theorems of the Liouville type. It is shown that for a large class of underlying manifolds such as the Euclidean n-space, the complex n-space, and the complex hyperbolic space form, if any vector bundle valued p-form with conservative stress energy tensor is of finite norm or slowly divergent norm, then the p-form vanishes. This generalizes the recent results due to Hu and Sealey.

  17. Study on application of green's function method in thermal stress rapid calculation

    International Nuclear Information System (INIS)

    Zhang Guihe; Duan Yuangang; Xu Xiao; Chen Rong

    2013-01-01

    This paper presents a quick and accuracy thermal stress calculation method, the Green's Function Method, which is a combination of finite element method and numerical algorithm method. Thermal stress calculation of Safe Injection Nozzle of Reactor Coolant Line of PWR plant is performed with Green's function method for heatup and cooldown thermal transients as a demonstration example, and the result is compared with finite element method to verify the rationality and accuracy of this method. The advantage and disadvantage of the Green's function method and the finite element method are also compared. (authors)

  18. Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.

  19. Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L.

    Directory of Open Access Journals (Sweden)

    Xin Xiong

    2018-05-01

    Full Text Available To assess the influence of drought stress on the growth and nitrogen nutrition status of pakchoi (Brassica campestris ssp. Chinensis L. at different nitrogen (N levels, the changes in N accumulation and enzyme activities involved in N assimilation were investigated. The drought was induced by adding polyethylene glycol (PEG under hydroponic culture conditions. Pakchoi seedlings were exposed to a modified nutrient solution with different nitrogen concentration (N1, N2, and N3 represent 2, 9 and 18 mM NaNO3, respectively and osmotic potential (W1, W2 and W3 represent 0, 60 and 120 g·L−1 PEG 6000 in a full factorial, replicated randomized block design. A short time (seven days of drought stress caused a significant decline in plant water content, transpiration rate, shoot biomass and shoot nitrogen concentration. Increasing N availability considerably alleviate drought stress by increasing the content of total free amino acids in the roots, promoting the acceleration of root biomass accumulation, and improving the activities of nitrate reductase (NR; EC 1.7.1.1 and glutamine synthetase (GS; EC 6.3.1.2 which would reduce moisture limitations. The results suggested that pakchoi supplied with relative higher N had better growth performance under drought stress.

  20. Long-term application of the Crop Water Stress Index in Midwest agro-ecosystems

    Science.gov (United States)

    Agricultural land in the Midwestern US is largely used for rainfed corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production. The native ecosystems in this region predominantly consist of tallgrass prairie. Water stress can occur in summer which can affect carbon assimilation of those agro-...

  1. Family Economic Pressure and Adolescent Suicidal Ideation: Application of the Family Stress Model

    Science.gov (United States)

    Yoder, Kevin A.; Hoyt, Dan R.

    2005-01-01

    This study used a sample of 501 families from the Mississippi Delta region to examine the feasibility of the Family Stress Model for understanding adolescent suicidal ideation. The results indicated that family economic pressure was related to parental depressive symptoms, which, in turn, was related to parental hostile behavior and physical…

  2. Application of Assessment Tools to Examine Mental Health in Workplaces: Job Stress and Depression.

    Science.gov (United States)

    Jeon, Sang Won; Kim, Yong-Ku

    2018-06-07

    Despite the fact that the lifetime and yearly prevalence rates of mental illness continue rising, such diseases have only been acknowledged as involved in workplace health issue since the 2000s. Additionally, while the number of recognized cases of mental illnesses is rather low compared to their prevalence, they have a high likelihood of causing significant problems, including fatalities. Many workers are terrified of losing their jobs due to mental illness and therefore attempt to hide their mental health problems. For this reason, clinicians involved in occupational and environmental medicine should focus on interviews or screenings to identify such hidden mental health problems. More specifically, it would be helpful to evaluate job stress and depression in workplaces to ensure appropriate preventive actions and thereby reduce the prevalence of mental illness. Job stress not only causes mental illness and dissatisfaction with work, but also can increase the prevalence and morbidity of medical diseases, as well as other physical health problems. Depression is a major contributor to work loss and absence with effects surpassing almost all of the chronic medical disorder. These facts show why measure of job stress and depression should be highlighted in the occupational settings. This article introduces a variety of assessment tools to examine mental health, particularly stress and depression, in workplaces. These tools can be used by clinicians or professionals involved in the mental health, occupational safety, or health service fields for running diagnostics or screening tests.

  3. Review and synthesis of stress intensity factor solutions applicable to cracks in bolts

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1988-01-01

    The available literature for stress intensity factor solutions for cracks in round bars, both threaded and unthreaded, subjected to either tension or bending, is reviewed. The results are synthesized into a form that is appropriate for the analysis of bolts and studs. (author)

  4. Application of 2-dimensional coordinate system conversion in stress measurements with neutron diffraction

    International Nuclear Information System (INIS)

    Wang, D.-Q.; Hubbard, C.R.; Spooner, S.

    2000-01-01

    This paper will present a method and program to precisely calculate the coordinates in a positioner coordinate system from given sample position coordinates with a minimum number of neutron surface scans for three possible circumstances in stress and texture measurement using neutron diffraction

  5. Construction and application of EST library from Setaria italica in response to dehydration stress.

    Science.gov (United States)

    Zhang, Jinpeng; Liu, Tingsong; Fu, Junjie; Zhu, Yun; Jia, Jinping; Zheng, Jun; Zhao, Yinhe; Zhang, Ying; Wang, Guoying

    2007-07-01

    Foxtail millet is a gramineous crop with low water requirement. Despite its high water use efficiency, less attention has been paid to the molecular genetics of foxtail millet. This article reports the construction of subtracted cDNA libraries from foxtail millet seedlings under dehydration stress and the expression profile analysis of 1947 UniESTs from the subtracted cDNA libraries by a cDNA microarray. The results showed that 95 and 57 ESTs were upregulated by dehydration stress, respectively, in roots and shoots of seedlings and that 10 and 27 ESTs were downregulated, respectively, in roots and shoots. The expression profile analysis showed that genes induced in foxtail millet roots were different from those in shoots during dehydration stress and that the early response to dehydration stress in foxtail millet roots was the activation of the glycolysis metabolism. Moreover, protein degradation pathway may also play a pivotal role in drought-tolerant responses of foxtail millet. Finally, Northern blot analysis validated well the cDNA microarray data.

  6. Application of item response theory to achieve cross-cultural comparability of occupational stress measurement

    NARCIS (Netherlands)

    Tsutsumi, A.; Iwata, N.; Watanabe, N.; Jonge, de J.; Pikhart, H.; Férnandez-López, J.A.; Xu, Liying; Peter, R.; Knutsson, A.; Niedhammer, I.; Kawakami, N.; Siegrist, J.

    2009-01-01

    Our objective was to examine cross-cultural comparability of standard scales of the Effort-Reward Imbalance occupational stress scales by item response theory (IRT) analyses. Data were from 20,256 Japanese employees, 1464 Dutch nurses and nurses' aides, 2128 representative employees from

  7. Physiological and Fluorescence Reaction of Four Rice Genotypes to Exogenous Application of IAA and Kinetin under Drought Stress

    Directory of Open Access Journals (Sweden)

    Mostafa SALEHIFAR

    2017-09-01

    Full Text Available To assess the effects of IAA and Kinetin plant growth regulators in order to improve the drought tolerance in rice seedlings (Oryza sativa L., a factorial experiment was carried out based on complete randomized design with three replications. The experimental factors included different rice genotypes [‘Gharib’, ‘Khazar’, ‘Sepidrood’ and ‘IR83750 -131-1’ (‘IR83750’ ], drought stress from 1 to 4 code of the Vergara coding system and control (normal irrigation and growth regulators in three levels (IAA and Kinetin through foliar spraying and non-application as control. The results indicated, under normal irrigation condition together with IAA application, ‘IR83750’ rice had the highest number of tillers and leaf greenness, with mean of 18.27 and 49.46, respectively. The highest amount of leaf relative water content 95.11 percent was related to ‘Sepidrood’. Under drought stress condition, the highest electrolyte leakage (36.59 percent was observed in ‘Gharib’. In drought condition, the highest leaf drying score was related to ‘Gharib’ in both years, but the highest score of leaf rolling index (9 was observed in ‘Gharib’ and ‘Khazar’. The present findings showed that drought stress had harmful effects in all examined genotypes and the impact in susceptible genotypes (‘Gharib’ and ‘Khazar’ was more than ‘IR83750’ and ‘Sepidrood’. Application of growth regulators (IAA and Kin improved conditions for the growth of all genotypes. Therefore, using the tolerant genotypes along with growth regulators can improve the rice growth traits.

  8. Clinical application of stress/rest myocardial perfusion imaging in the patients with 50%-75% coronary stenosis

    International Nuclear Information System (INIS)

    Han Pingping; Tian Yueqin; Fang Wei; Yang Minfu; Shen Rui; Wei Hongxing; Guo Xinhua; He Zuoxiang

    2011-01-01

    Objective: To evaluate the clinical application of stress/rest Mpi in the patients with 50%-75% coronary artery stenosis. Methods: The criteria for patient selection were that the patients should have at least one main coronary artery with stenosis more than 50%, and the maximal stenosis should be less than 75% according to Cage. The stress/rest Mpi was performed in 2 weeks before or after CAG. A total of 244 patients (178 males, 66 females) with mean age (57 ± 10) years were included in this study. Symptom restriction stress test was used and stress MPI was performed 1-1.5 h after 99 Tc m -MIBI (925 MBq) injection at the exercise peak. Rest MPI was performed within 48-72 h after stress MPI.Myocardial ischemia was diagnosed when there was a reduced uptake or even a defect in 2 different tomographic sections or in the same part of a myocardium in the continuous 2 slices. When there was an irreversible reduced uptake or defect, myocardial infarction was given as the final diagnosis. No reduced uptake or defect in all slices was shown as normal. The impact of MPI images on the selection for optimal clinical therapy plans was also discussed. χ 2 test was used for statistical analysis. Results: A total of 340 coronary arteries with stenosis 50%-75% were found by CAG. According to stress/rest MPI results, 207 patients (84.8%)presented normal, 33 had myocardial ischemia, 3 had myocardial infarction, and 1 had both myocardial infarction and ischemia. In abnormal MPI images, there were 61 ischemic segments and 9 infarct segments,which were associated with 43 stenotic arteries (23 LAD, 10 LCX, and 10 RCA). Patients were divided into 2 groups according to the results of MPI: Group 1 with normal MPI (207/244, 84.8%) and Group 2 with abnormal MPI (37/244, 15.2%). In Group 1, 9 patients underwent coronary artery revascularization (PTCA or CABG), and the others had medical treatment. Eight patients had PTCA and 29 patients had medical treatment in Group 2. There was a

  9. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  10. Computational biology approaches to plant metabolism and photosynthesis: applications for corals in times of climate change and environmental stress.

    Science.gov (United States)

    Crabbe, M James C

    2010-08-01

    Knowledge of factors that are important in reef resilience helps us to understand how reef ecosystems react following major anthropogenic and environmental disturbances. The symbiotic relationship between the photosynthetic zooxanthellae algal cells and corals is that the zooxanthellae provide the coral with carbon, while the coral provides protection and access to enough light for the zooxanthellae to photosynthesise. This article reviews some recent advances in computational biology relevant to photosynthetic organisms, including Beyesian approaches to kinetics, computational methods for flux balances in metabolic processes, and determination of clades of zooxanthallae. Application of these systems will be important in the conservation of coral reefs in times of climate change and environmental stress.

  11. Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines.

    Science.gov (United States)

    Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Dehghan, Somayeh Farhang; Rafieepour, Athena; Mortezapour, Ali Reza; Asghari, Mehdi

    2017-10-07

    The purpose of this article is to examine the applicability of Universal Thermal Climate Index (UTCI) index as an innovative index for evaluating of occupational heat stress in outdoor environments. 175 workers of 12 open-pit mines in Tehran, Iran were selected for this research study. First, the environmental variables such as air temperature, wet-bulb temperature, globe temperature, relative humidity and air flow rate were measured; then UTCI, wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices were calculated. Simultaneously, physiological parameters including heart rate, oral temperature, tympanic temperature and skin temperature of workers were measured. UTCI and WBGT are positively significantly correlated with all environmental parameters (p0.05). Moreover, a strong significant relationship was found between UTCI and WBGT (r=0.95; p<0.001). The significant positive correlations exist between physiological parameters including oral temperature, tympanic and skin temperatures and heart rate and both the UTCI and WBGT indices (p<0.029). The highest correlation coefficient has been found between the UTCI and physiological parameters. Due to the low humidity and air velocity (~<1 m/s) in understudied mines, UTCI index appears to be appropriate to assess the occupational heat stress in these outdoor workplaces.

  12. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    Science.gov (United States)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  13. Empirical applications of an environmental stress indicator and the environmental efficiency revolution in Taiwan

    Directory of Open Access Journals (Sweden)

    Han-Shen Chen

    2013-09-01

    Full Text Available In this essay, the first aim is to apply the structure of material flow analysis (MFA and ecological footprint model to construct an environmental stress indicator. Secondly, an impact, population, affluence and technology (IPAT analysis is used to resolve indicators related to MFA and resource yield productivity. The research indicates following results: (1 The 2007 per capita ecological deficit in Taiwan is 6.3441 square hm.The figures reflect that productivity and life intensity of residents have exceeded the carrying capacity of Taiwan's ecological economic system. (2 Wealth becomes the most important factor in material needs and pollution discharge. (3 Environmental efficiency and ecological efficiency slowed down dramatically, demonstrating that use of resources and total amount of environmental stress stay at a developmental stage. Therefore, if proper measures are not adopted, the current weak sustainability will lead into the vicious circle which departs from sustainable development.

  14. Application of the method finite elements by numerical modeling stress-strain state in conveyor belts

    OpenAIRE

    Maras Michal; Hatala Jozef; Marasová Daniela

    1997-01-01

    Solving problems connected with damaging a conveyor belt at the transfer points is conditioned by knowing laws of this phenomenon. Acquiring the knowledge on this phenomen is possible to be gained either by experimental research or by the numerical model GEM 22, which enables to determine the distribution of stresses and strains in a suitably selected cross-section of a conveyor belt. The paper begins by defining the problem, determining the boundary model conditions and continues by modellin...

  15. Application of a 2-D approximation technique for solving stress analyses problem in FEM

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-10-01

    Full Text Available With the advent of computational techniques and methods like finite element method, complex engineering problems are no longer difficult to solve. These methods have helped engineers and designers to simulate and solve engineering problems in much more details than possible with experimental techniques. However, applying these techniques is not a simple task and require lots of acumen, understanding, and experience in obtaining a solution that is as close to an exact solution as possible with minimum computer resources. In this work using the finite element (FE method, stress analyzes of the low-pressure turbine of a small turbofan engine is carried out by employing two different techniques. Initially, a complete solid model of the turbine is prepared which is then finite element modelled with the eight-node brick element. Stresses are calculated using this model. Subsequently, the same turbine is modelled with four-node shell element for calculation of stresses. Material properties, applied loads (inertial, aerodynamic, and thermal, and constraints were same for both the cases. Authors have developed a “2-D approximation technique” to approximate a 3-D problem into a 2-D problem to study the saving invaluable computational time and resources. In this statistics technique, the 3-D domain of variable thickness is divided into many small areas of constant thickness. It is ensured that the value of the thickness for each sub-area is the correct representative thickness of that sub area, and it is within three sigma limit. The results revealed that technique developed is accurate, less time consuming and computational effort saving; the stresses obtained by 2-D technique are within five percent of 3-D results. The solution is obtained in CPU time which is six times less than the 3-D model. Similarly, the number of nodes and elements are more than ten times less than that of the 3-D model. ANSYS ® was used in this work.

  16. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  17. Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece)

    Science.gov (United States)

    Mangira, Ourania; Vasiliadis, Georgios; Papadimitriou, Eleftheria

    2017-06-01

    Spatio-temporal stress changes and interactions between adjacent fault segments consist of the most important component in seismic hazard assessment, as they can alter the occurrence probability of strong earthquake onto these segments. The investigation of the interactions between adjacent areas by means of the linked stress release model is attempted for moderate earthquakes ( M ≥ 5.2) in the Corinth Gulf and the Central Ionian Islands (Greece). The study areas were divided in two subareas, based on seismotectonic criteria. The seismicity of each subarea is investigated by means of a stochastic point process and its behavior is determined by the conditional intensity function, which usually gets an exponential form. A conditional intensity function of Weibull form is used for identifying the most appropriate among the models (simple, independent and linked stress release model) for the interpretation of the earthquake generation process. The appropriateness of the models was decided after evaluation via the Akaike information criterion. Despite the fact that the curves of the conditional intensity functions exhibit similar behavior, the use of the exponential-type conditional intensity function seems to fit better the data.

  18. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  19. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    Science.gov (United States)

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  20. Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers.

    Science.gov (United States)

    Karstoft, Karen-Inge; Statnikov, Alexander; Andersen, Søren B; Madsen, Trine; Galatzer-Levy, Isaac R

    2015-09-15

    Pre-deployment identification of soldiers at risk for long-term posttraumatic stress psychopathology after home coming is important to guide decisions about deployment. Early post-deployment identification can direct early interventions to those in need and thereby prevents the development of chronic psychopathology. Both hold significant public health benefits given large numbers of deployed soldiers, but has so far not been achieved. Here, we aim to assess the potential for pre- and early post-deployment prediction of resilience or posttraumatic stress development in soldiers by application of machine learning (ML) methods. ML feature selection and prediction algorithms were applied to a prospective cohort of 561 Danish soldiers deployed to Afghanistan in 2009 to identify unique risk indicators and forecast long-term posttraumatic stress responses. Robust pre- and early postdeployment risk indicators were identified, and included individual PTSD symptoms as well as total level of PTSD symptoms, previous trauma and treatment, negative emotions, and thought suppression. The predictive performance of these risk indicators combined was assessed by cross-validation. Together, these indicators forecasted long term posttraumatic stress responses with high accuracy (pre-deployment: AUC = 0.84 (95% CI = 0.81-0.87), post-deployment: AUC = 0.88 (95% CI = 0.85-0.91)). This study utilized a previously collected data set and was therefore not designed to exhaust the potential of ML methods. Further, the study relied solely on self-reported measures. Pre-deployment and early post-deployment identification of risk for long-term posttraumatic psychopathology are feasible and could greatly reduce the public health costs of war. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The Values of Self-tracking and Persuasive eCoaching According to Employees and Human Resource Advisors for a Workplace Stress Management Application : A Qualitative Study

    NARCIS (Netherlands)

    Lentferink, Aniek; Polstra, Louis; de Groot, Martijn; Oldenhuis, Hilbrand; Velthuijsen, Hugo; van Gemert-Pijnen, Lisette; Ham, Jaap; Karapanos, Evangelos; Morita, Plinio P.; Burns, Catherine M.

    2018-01-01

    Self-tracking and automated persuasive eCoaching combined in a smartphone application may enhance stress management among employees at an early stage. For the application to be persuasive and create impact, we need to achieve a fit between the design and end-users’ and important stakeholders’

  2. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  3. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    Science.gov (United States)

    Kumar, N.; Voulgaris, G.; Warner, John C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5

  4. Transformation of oats and its application to improving osmotic stress tolerance.

    Science.gov (United States)

    Maqbool, Shahina B; Zhong, Heng; Oraby, Hesham F; Sticklen, Mariam B

    2009-01-01

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic trade mark bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages. The characteristic of HVA1 expression for osmotic tolerance in transgenic oat progeny was analyzed in vitro as well as in vivo. Transgenic plants exhibited significantly (Pplants. The symptoms of wilting or death of leaves as observed in 80% of non-transgenic plants due to osmotic stress was delayed and detected only in less than 10% of trans-genic plants. These observations confirmed the characteristic of HVA1 protein as providing or enhancing the osmotic tolerance in transgenic plants against salinity and

  5. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  6. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Science.gov (United States)

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  7. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  8. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    Science.gov (United States)

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  9. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications

    Directory of Open Access Journals (Sweden)

    E. Serra

    2016-06-01

    Full Text Available In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiNx membranes using Deep Reactive Ion Etching (DRIE. Large area and high-stress SiNx membranes were fabricated and used as optomechanical resonators in a Michelson interferometer, where Q values up to 1.3 × 106 were measured at cryogenic temperatures, and in a Fabry-Pérot cavity, where an optical finesse up to 50000 has been observed.

  10. The Applicability of Different Fluid Media to Measure Effective Stress Coefficient for Rock Permeability

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available Effective stress coefficient for permeability (ESCK is the key parameter to evaluate the properties of reservoir stress sensitivity. So far, little studies have clarified which ESCK is correct for a certain reservoir while rock ESCK is measured differently by different fluid media. Thus, three different fluids were taken to measure a fine sandstone sample’s ESCK, respectively. As a result, the ESCK was measured to be the smallest by injecting nitrogen, the largest by injecting water, and between the two by brine. Besides, those microcharacteristics such as rock component, clay mineral content, and pore structure were further analyzed based on some microscopic experiments. Rock elastic modulus was reduced when water-sensitive clay minerals were encountered with aqua fluid media so as to enlarge the rock ESCK value. Moreover, some clay minerals reacting with water can spall and possibly block pore throats. Compared with water, brine can soften the water sensitivity; however, gas has no water sensitivity effects. Therefore, to choose which fluid medium to measure reservoir ESCK is mainly depending on its own exploitation conditions. For gas reservoirs using gas to measure ESCK is more reliable than water or brine, while using brine is more appropriate for oil reservoirs.

  11. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  12. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    Science.gov (United States)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  13. Psychophysiologic testing for post-traumatic stress disorder: forensic psychiatric application.

    Science.gov (United States)

    Pitman, R K; Orr, S P

    1993-01-01

    The validity of the post-traumatic stress disorder (PTSD) diagnosis is limited by both the illusory objectivity of the traumatic event and the subjectivity of the ensuing syndrome. These limitations are especially problematic in the forensic setting. Psychophysiologic measurements may strengthen PTSD's forensic value by offering a more objective assessment technique for cases that find their way into the courtroom. Based upon the results of published research studies conducted in a range of military and civilian, PTSD and non-PTSD subjects, psychophysiologic data can provide evidence helping to establish or refute the presence of the DSM-III-R PTSD arousal criteria, as well as aid psychiatric experts in estimating the probability of the disorder's presence in a given claimant. Psychophysiologic testing should be viewed as one component of a multimethod forensic psychiatric evaluation for PTSD. It is likely that it will soon be offered and, given current legal standards, admitted as evidence in civil and criminal litigation.

  14. Critical study of test methods in stress corrosion cracking. Application to stainless steels in chloride environment

    International Nuclear Information System (INIS)

    Ajana, Lotfi

    1985-01-01

    The transposition of results obtained in laboratory to the prediction of in-service material resistance is a crucial problem in the case of stress corrosion cracking (SCC). The search for a SCC test which allows a reliable and realistic classification of stainless steels in chloride environments requires a choice of adequate electrolytes and of mechanical solicitation mode. In this research, the author first justifies the choice of an environment which could be representative of actual service conditions in the case of 5 grades of austenitic steels and 1 grade of austeno-ferric steel. Using a computerized data acquisition and processing system, the author compares the information obtained with two types of test: under constant load and under slow strain rate [fr

  15. Application of plant biotechnology to address water and salt stress in developing countries (abstract)

    International Nuclear Information System (INIS)

    Masmoudi, K.

    2005-01-01

    Drought and salinity are major constraints on crop production and food security, and have adverse impact especially on socio-economic aspect in the Middle East and North Africa region. Studies of the physiological response of wheat to salt stress indicate that sequestering sodium that enters the leaf away from the cell cytosol, and enhancing osmotic adjustment capability, can ameliorate the negative impact of soil water salinity on plant growth. Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells, Sequestration of Na/sup +/ ions into the vacuole through the action of tonoplast proton pumps (an H/sup +/-ATPase in the case of yeast, and either an H/sup +/-pyrophosphatase (H/sup +/-PPase) or H/sup +/-ATPase in the case of plants) and an Na/sup +//H/sup +/ anti porter is one mechanism that confers salt tolerance to these organisms. The cloning and characterization of genes encoding these tonoplast transport proteins from crop plants may contribute to our understanding of how to enhance crop plant response to saline stress. We cloned wheat ortho logs of the Arabidopsis genes AtNHXI and AVP I using a wheat cDNA library, The full length sequence for the wheat Na/sup +//H/sup +/ anti porter (TNHX3) and the vacuolar H/sup +/-pyrophosphatase (TVP I) were deposited in Genbank database under the accession number AY296910 and AY296911, respectively. The deduced amino acid sequence of TNHXj is l homologous to the sequences of other NHX gene products cloned from wheat as well as barley and Arabidopsis. The vacuolar H/sup +/-PPase pump we cloned, TVP I is the first member of this gene family cloned from wheat. Function of TNHXj as a cation/proton antiporter was demonstrated using the nhxl yeast mutant. TNHXj was capable of suppressing the hygromycin sensitivity of nhxl. Functional characterization of the wheat H/sup +/-PPase TVP I was demonstrated using the yeast enal (plasma membrane Na/sup +/-efflux transporter) mutant. Expression of TVP I in enal

  16. Disability, Health Insurance and Psychological Distress among US Adults: An Application of the Stress Process.

    Science.gov (United States)

    Alang, Sirry M; McAlpine, Donna D; Henning-Smith, Carrie E

    2014-11-01

    Structural resources, including access to health insurance, are understudied in relation to the stress process. Disability increases the likelihood of mental health problems, but health insurance may moderate this relationship. We explore health insurance coverage as a moderator of the relationship between disability and psychological distress. A pooled sample from 2008-2010 (N=57,958) was obtained from the Integrated Health Interview Series. Chow tests were performed to assess insurance group differences in the association between disability and distress. Results indicated higher levels of distress associated with disability among uninsured adults compared to their peers with public or private insurance. The strength of the relationship between disability and distress was weaker for persons with public compared to private insurance. As the Affordable Care Act is implemented, decision-makers should be aware of the potential for insurance coverage, especially public, to ameliorate secondary conditions such as psychological distress among persons who report a physical disability.

  17. Modeling of stresses and electric fields in piezoelectric multilayer: Application to multi quantum wells

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Mishra

    2017-07-01

    Full Text Available Exact closed-form expressions have been derived for the stresses and the electric fields induced in piezoelectric multilayers deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix has been utilized to generalize the expressions so that they can be used for various growth orientations with each layer having hexagonal crystal symmetry. As an example, the influence of lattice misfit and thermal expansion coefficient mismatch on the state of electroelastic fields in different layers of GaN multi quantum wells has been examined. A comparison with the finite element analysis results showed very close agreement. The analytical expressions developed herein will be useful in designing optoelectronic devices as well as in predicting defect density in multi quantum wells.

  18. Creating a Residency Application Personal Statement Writers Workshop: Fostering Narrative, Teamwork, and Insight at a Time of Stress.

    Science.gov (United States)

    Campbell, Bruce H; Havas, Nancy; Derse, Arthur R; Holloway, Richard L

    2016-03-01

    Every graduating medical student must write a personal statement for the Electronic Residency Application Service (ERAS), yet there are no widely available resources designed to aid the writing process, causing stress among applicants. The authors offered every Medical College of Wisconsin senior student in the Classes of 2014 and 2015 a voluntary self-contained two-hour Residency Application Personal Statement Writers Workshop. The session included the selection of writing prompts, speedwriting, and a peer-edit critique. Data were gathered before and after each workshop and at the time of ERAS submission. One hundred nine students elected to participate. Of the 96 participants completing a preworkshop questionnaire, only 28 (29%) were comfortable with creative and reflective writing. Fifty-four students completed a follow-up survey after submitting their ERAS application. Fifty-one (94%) found the session effective in getting their personal statement started, and 65 (70%) were surprised by the quality of their writing. Almost all could trace some of their final statement to the workshop. Forty-six (85%) found working with other students helpful, and 49 (91%) would recommend the session to future students; 47 (87%) agreed that the workshop was "fun." The full workshop will be repeated yearly. Workshops will also be offered to residents preparing fellowship applications. A shorter version (without the peer-edit critique) was used successfully with the entire Class of 2016 to help them reflect on their initial clinical encounters. The authors will seek further opportunities to enhance reflection for students, residents, and faculty with these techniques.

  19. Evaluation of Data Retention and Imprint Characteristics of FRAMs Under Environmental Stresses for NASA Applications

    Science.gov (United States)

    Sharma, Asbok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett

    2002-01-01

    A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.

  20. Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress.

    Science.gov (United States)

    Taju, G; Abdul Majeed, S; Nambi, K S N; Sahul Hameed, A S

    2017-10-01

    In the present study, we hypothesize that cytotoxicity, genotoxicity and oxidative stress play a key role in chromium induced toxicity in SISS, SISK, IEE, IEK, IEG, SICH and ICG cell lines after 24 h exposure. Three fish species namely Lates calcarifer, Etroplus suratensis and Catla catla were exposed to the concentrations of 0, 10, 20, 30, 40 and 50 mg/L of chromium for 96 h under static conditions for conducting acute toxicity tests. LC 50 was then calculated. The percentage cell survival was assessed by multiple endpoints such as MTT, NR, AB and CB assays in the seven fish cell lines exposed to different concentrations of chromium and EC 50 values of all the four endpoints were calculated. High significances were noted in the correlations between each in vitro cytotoxicity assays and in vivo mortality data. Cell shrinkage, cell detachment, vacuolations and cell swelling at the highest concentration of chromium (50 mg/L) were seen on microscopic examination of cell morphology. Comet assay and Hoechst staining were carried out to assess DNA damage and nuclear fragmentation in the seven fish lines exposed to chromium. The results of antioxidant parameters obtained indicate a significant reduction in the level of catalase, superoxide dismutase, glutathione S-transferase and Glutathione peroxidase, and increased level of lipid peroxidation in all the cell lines exposed to chromium. These results confirm that fish cell lines could be used as an alternative to whole fish for cytotoxicity, genotoxicity and oxidative stress assessment in chromium toxicity studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  2. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions

    NARCIS (Netherlands)

    Olsson, O.; Ikramova, M.; Bauer, M.; Froebrich, J.

    2010-01-01

    This paper introduces the conjunctive use of a deterministic water quality model and water balance criteria for supporting the assessment of simulation and to evaluate the effectiveness of proposed operation strategies. By this, the applicability of enhanced reservoir operation strategies addressing

  3. Salinity and/or drought stress influences on sesbania, sunflower and sorghum plants in response to silicon application using "1"5N

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Chammaa, M.; Al-ain, F.

    2015-05-01

    A pot experiment was conducted to study the impact of adding silicate fertilizer (Si) on growth, nitrogen uptake, nitrogen use efficiency and N_2 fixation in well watered (I1) and water stressed (I2) and/or salt (Salt+) and non-salt (Salt-) Sesbania aculeata plants using "1"5N isotope. Such effects were also studied in sunflower and sorghum plants which belong to different photosynthetic pathways (C_3 and C_4). Results showed that Si fertilizer had positive impacts on dry matter yield of different plant parts of sesbania plants grown under water stress conditions (I2). Only root dry matter yield were increased as a result of Si addition in plants grown under salt stress (I1Salt+Si+) or under both stress conditions (I2Salt+Si+). Moreover, N yield significantly increased in salt stressed sesbania plant grown under well irrigated conditions. However, the positive effect of Si in plants subjected to both stresses was only occurred in roots. In addition, Si application resulted in a significant enhancement of soil (Ndfs), fertilizer (Ndff)and N_2 fixation (Ndfa) under salt and/or water stress conditions, particularly in roots subjected to both stresses. Amounts of fixed N_2 fixation increased by 78 and 58% in I2Salt+Si+ and I1Salt+Si+, respectively as compared with non fertilized plants. Overall, Si can be considered as an important element for the symbiotic performance of sesbania plants grown under abiotic stress. Under prevailing experimental conditions, Si had, generally, no evident effect on total dry matter and N yield in sunflower plants grown under water and/or salt stress conditions, excepting some minor differences related to plant parts. In sorghum plants, Si did not positively affect dry matter yield in stressed and non-stressed plants, excepting those subjected to both stresses where a slight enhancement of total DM yield was obtained as compared with non fertilized plants. However, Si significantly enhanced fruits and whole plant N uptake in non stressed

  4. Sugarcane Initial Growth with Vinasse Application in Latosol under Gradual Aluminum Stress

    Science.gov (United States)

    Marques Viglio, Larissa; Leal Varanda, Leticia; Soares, Marcio Roberto; Casagrande, José Carlos

    2015-04-01

    One of the strategies for overcoming the high acidity of soils and the consequent toxicity of aluminum (Al) is based on the use of varieties adapted to these conditions. In Brazil, the application of vinasse is routine practice in the cultivation of sugarcane due to its fertilizing effect, mainly because of high potassium content. However, the vinasse may also attenuate the toxic effects of Al in the soil by forming complexes with low molecular weight organic acids providing greater depth of the root of sugarcane. The aim of this work was to evaluate the effect of vinasse on the initial growth of three cultivars of sugarcane (RB855453, RB966928 and RB867515), as well as its influence on root depth in a Dystrophic Red-Yellow Latosol (Typic Hapludox) with gradient of saturation by Al. The experiment was conducted in a greenhouse, in totally randomized design with factorial arrangement and three replications. Seedlings of sugarcane were transplanted to PVC columns 0.8 m high, built by stacking four rings (0.2 m high), filled with soil samples, which offered an increasing gradient of saturation by Al (m%) at depth (0-0.2 m (m% = 0,7); 0.2-0.4 m (m% = 7,9); 0.4-0.6 m (m %= 40.8); 0.6-0.8 m (m%= 62.6)). The collection of the experiment was conducted 120 days after planting, with the determination of the stalk diameter (DC), plant height (ALT), leaf nutrient content, dry matter of the aerial part (MSPA) and dry matter of the root system (MSSR). Cultivars of sugarcane and the application of vinasse had effect on DC and the MSSR. Cultivar RB867515 showed higher DC than in other cultivars, with 20.8 mm. The increase of MSSR by sugarcane cultivars varied due to depth. There were no effects of sugarcane cultivars and vinasse application in MSPA. The vinasse application resulted in plants with higher ALT. With the exception of the foliar content of Fe, the N, Ca, Mg, S and Mn content were below those considered appropriate for sugarcane. Unlike other cultivars, the application

  5. Application of the method finite elements by numerical modeling stress-strain state in conveyor belts

    Directory of Open Access Journals (Sweden)

    Maras Michal

    1997-06-01

    Full Text Available Solving problems connected with damaging a conveyor belt at the transfer points is conditioned by knowing laws of this phenomenon. Acquiring the knowledge on this phenomen is possible to be gained either by experimental research or by the numerical model GEM 22, which enables to determine the distribution of stresses and strains in a suitably selected cross-section of a conveyor belt. The paper begins by defining the problem, determining the boundary model conditions and continues by modelling the dynamic force acting on the conveyor belt. In the conclusions of the paper there are given table and graphical results of the numerical modelling aimed at solving the problems connected with the damaging of a conveyor belt. By numerical modelling, in this case the finite element method, in the given way can be realized the parametric studies with changing values of input parameters, especially: - stretching force, - thickness of cover layers of the conveyor belt and strain properties of the rubber, - parameters of the steel cord of the conveyor belt.

  6. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    Science.gov (United States)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  7. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat.

    Science.gov (United States)

    Gaind, Sunita

    2016-12-01

    The present investigation reveals the solubilization efficiency of tri-calcium phosphate (TCP), Udaipur rock phosphate (URP), aluminium phosphate (AP) and ferric phosphate (FP) by Aspergillus niger (ITCC 6719) and Trichoderma harzianum (ITCC 6721) as function of carbon concentrations. Increasing glucose concentration from 1 to 7% in the growth medium, though improved the phosphorus (P) solubilization significantly but each fungal strain preferred different optimum carbon concentrations for mediating solubilization of different P sources. The two fungi employed different mechanisms to reduce medium pH for release of P from TCP, AP and FP. However, URP was solubilized solely through fungal production of citric, succinic, propionic, malic and acetic acid. A linear increase in citric acid production with increasing carbon concentration was recorded during FP solubilization by T. harzianum. The cell free culture filtrate of A. niger detected high phytase and low acid phosphatase activity titre whereas results were vice versa for T. harzianum. Both the fungal strains possessed plant growth promoting attributes such as auxin and sidreophore production and could solubilize Zn. In hydroponic system (with 60mM of sodium chloride concentration), supplementation with culture filtrate from each fungal strain increased the shoot growth of wheat seedlings significantly compared to non culture filtrate control. Use of A.niger as bio-inoculant could be a sustainable approach to improve soil P availability, promote plant growth and alleviate adverse effect of salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Quantitative prediction of twinning stress in fcc alloys: Application to Cu-Al

    Science.gov (United States)

    Kibey, Sandeep A.; Wang, L. L.; Liu, J. B.; Johnson, H. T.; Sehitoglu, H.; Johnson, D. D.

    2009-06-01

    Twinning is one of most prevalent deformation mechanisms in materials. Having established a quantitative theory to predict onset twinning stress τcrit in fcc elemental metals from their generalized planar-fault-energy (GPFE) surface, we exemplify its use in alloys where the Suzuki effect (i.e., solute energetically favors residing at and near planar faults) is operative; specifically, we apply it in Cu-xAl ( x is 0, 5, and 8.3at.% ) in comparison with experimental data. We compute the GPFE via density-functional theory, and we predict the solute dependence of the GPFE and τcrit , in agreement with measured values. We show that τcrit correlates monotonically with the unstable twin fault energies (the barriers to twin nucleation) rather than the stable intrinsic stacking-fault energies typically suggested. We correlate the twinning behavior and electronic structure with changes in solute content and proximity to the fault planes through charge-density redistribution at the fault and changes to the layer- and site-resolved density of states, where increased bonding charge correlates with decrease in fault energies and τcrit .

  9. Transformation of Oats and Its Application to Improving Osmotic Stress Tolerance

    Science.gov (United States)

    Maqbool, Shahina B.; Zhong, Heng; Oraby, Hesham F.; Sticklen, Mariam B.

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic™ bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages.

  10. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    Science.gov (United States)

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  11. Light brick mortar with low thermal conductivity for stressed brickwork. Types, properties, limits of application

    Energy Technology Data Exchange (ETDEWEB)

    Plank, A [Bundesanstalt fuer Materialpruefung, Berlin (Germany, F.R.)

    1980-03-01

    Between 40 and 50% of the total energy consumption are used for space heating. 40% of the total heat loss dissipate through external walls due to transmission. The heat insulation properties of a brickwork is decisively determined by the mortar joints. Using light brick mortars with low thermal conductivity an improvement of the total thermal insulation of nearly 20% can be reached in most of the cases. The mechanical properties of these mortars that differ from the common mortars decisively reduce the application of the light brick mortar in brick working and require special measures for stability which are described in detail.

  12. Development of metabarcoding for tracking changes of soil fauna community under stress by application of ash

    DEFF Research Database (Denmark)

    Qin, J; de Groot, G.A.; Hansen, L. H.

    Ash is a waste product from combustion of bio-fuel in power plants. Application of ash on soil ensures nutrient recycling, but detrimental ecotoxicological consequences may arise since ash is a complex mixture that may contain compounds affecting soil invertebrates and their food and habitat...... and species. DNA metabarcoding, which couples the principle of DNA barcoding with next generation sequencing technology, has the potential to simplify community diversity monitoring. However, sampling and DNA extraction methods for the purpose of soil microarthropod metabarcoding have not been yet fully...

  13. Application of Short Screening Tools for Post-Traumatic Stress Disorder in the Korean Elderly Population

    Science.gov (United States)

    Jang, Yu Jin; Chung, Hae Gyung; Choi, Jin Hee; Kim, Tae Yong; So, Hyung Seok

    2016-01-01

    Objective Post-traumatic stress disorder (PTSD) is often missed or incorrectly diagnosed in primary care settings. Although brief screening instruments may be useful in detecting PTSD, an adequate validation study has not been conducted with older adults. This study aimed to evaluate the reliability and validity of the Korean version of the primary care PTSD screen (PC-PTSD) and single-item PTSD screener (SIPS) in elderly veterans. Methods The PC-PTSD and SIPS assessments were translated into Korean, with a back-translation to the original language to verify accuracy. Vietnamese war veterans [separated into a PTSD group (n=41) and a non-PTSD group (n=99)] participated in several psychometric assessments, including the Korean versions of the PC-PTSD (PC-PTSD-K), SIPS (SIPS-K), a structured clinical interview from the Diagnostic and Statistical Manual of Mental Disorders-IV(SCID), and PTSD checklist(PCL). Results The PC-PTSD-K showed high internal consistency (Cronbach α=0.76), and the test-retest reliability of the PC-PTSD-K and SIPS-K were also high (r=0.97 and r=0.91, respectively). A total score of 3 from the PC-PTSD-K yielded the highest diagnostic efficiency, with sensitivity and specificity values of 0.90 and 0.86, respectively. The 'bothered a lot' response level from the SIPS-K showed the highest diagnostic efficiency, with sensitivity and specificity values of 0.85 and 0.89, respectively. Conclusion Our findings suggest that both PC-PTSD-K and SIPS-K have good psychometric properties with high validity and reliability for detecting PTSD symptoms in elderly Korean veterans. However, further research will be necessary to increase our understanding of PTSD characteristics in diverse groups with different types of trauma. PMID:27482241

  14. Effect of different levels of foliar application of potassium on hysun-33 and ausigold-4 sunflower (helianthus annuus l.) cultivars under salt stress

    International Nuclear Information System (INIS)

    Arshadullah, M.; Ali, A.; Hyder, I.; Mahmood, I.A.; Zaman, B.U.

    2014-01-01

    A hydroponic study was conducted to see the growth response of two cultivars of sunflower (Hysun-33 and Ausigold-4) to K+ nutrition under salt stress during the growing season 2011, at National Agriculture Research Centre, Islamabad, Pakistan. Nursery of Helianthus annuus was raised in sand and ten-day old seedlings per hole were transplanted in each pot having four holes per pot lid. Half strength Hoagland's nutrient solution was filled in each pot. After the establishment of seedlings, salt stress (6 dS/m) was developed artificially. The treatments were, control, 2 and 4 % K + as K/sub 2/SO/sub 4/ foliar applications. Salt present in the growing medium caused a significant (P<0.00l), reduction in fresh and dry weights of sunflower. Salt stress suppresses the K uptake from pot. Application of varying levels of K/sub 2/SO/sub 4/ improved the fresh and dry weights of sunflower under both control and saline conditions. However, the highest increase in fresh and dry weight of control and stressed plants was observed when 2% K was applied. Further increase in the level of K application did not improve fresh and dry weights of salt stress and unstressed plants. The growth medium salts reduced sunflower growth. (author)

  15. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yang, E-mail: gaoyang0898@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083 (China); Miao Chiyuan [Department of Environmental Engineering, Peking University, Beijing, 100871 (China); Mao Liang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Zhou Pei [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240 (China); Jin Zhiguo; Shi Wanjun [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China)

    2010-09-15

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  16. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    International Nuclear Information System (INIS)

    Gao Yang; Miao Chiyuan; Mao Liang; Zhou Pei; Jin Zhiguo; Shi Wanjun

    2010-01-01

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  17. A Framework for Macroprudential Bank Solvency Stress Testing; Application to S-25 and Other G-20 Country FSAPs

    OpenAIRE

    Andreas A. Jobst; Li L Ong; Christian Schmieder

    2013-01-01

    The global financial crisis has placed the spotlight squarely on bank stress tests. Stress tests conducted in the lead-up to the crisis, including those by IMF staff, were not always able to identify the right risks and vulnerabilities. Since then, IMF staff has developed more robust stress testing methods and models and adopted a more coherent and consistent approach. This paper articulates the solvency stress testing framework that is being applied in the IMF’s surveillance of member countr...

  18. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Directory of Open Access Journals (Sweden)

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  19. Effect of Salinity Stress and Foliar Application of Methyl Jasmonate on Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency and Yield of German Chamomile

    Directory of Open Access Journals (Sweden)

    fatemeh Salimi

    2014-09-01

    Full Text Available Jasmonate is new plant growth regulator that plays an essential role at increasing plants resistance to the environmental stresses like salinity stress. Hence, in this research the effect of foliar application of methyl jasmonate on some physiological indices and yield of German chamomile under salinity conditions was studied. A factorial experiment was laid out based on randomized complete block design (RCBD with three replications in the greenhouse condition. Foliar application of methyl jasmonate was five levels (MJ1; 0, MJ2; 75, MJ3; 150, MJ4; 225 and MJ5; 300 μM and salinity stress was four levels (S1; 2, S2; 6, S3; 10, S4; 14 dS m-1. The effect of methyl jasmonate, salinity condition treatments and their interaction was significant for traits of photosynthesis rate, stomata conductance, transpiration rate, carboxylation efficiency, intercellular CO2 concentration and yield of flower. The highest values of photosynthetic rate, stomata conductance, transpiration rate, carboxylation efficiency and yield of flower (3.76 g pot-1 and the lowest intercellular CO2 concentration were achieved at MJ×S treatment. Maximum value of photosynthetic water use efficiency was revealed at MJ5×S2 treatment. With decreasing stomata conductance, photosynthetic water use efficiency and intercellular CO2 concentration were increased. In general, it seems that application of methyl jasmonate by lower dose (MJ2 under salinity conditions especially mild salinity stress (S2 can improve physiological indices and yield of chamomile.

  20. Imposition of defined states of stress on thin films by a wafer-curvature method; validation and application to aging Sn films

    International Nuclear Information System (INIS)

    Stein, J.; Pascher, M.; Welzel, U.; Huegel, W.; Mittemeijer, E.J.

    2014-01-01

    A wafer-curvature method has been developed to subject thin films, deposited on (Si) substrates, to well defined and controllable loads in a contact-free manner. To this end, a custom-made glass pan (i.e. a roof-less cylinder with a connection piece for vacuum tubes) connected to a needle valve, a vacuum pump and a pressure gauge has been used as an experimental setup. By fixing the coated Si wafer on top of the glass cylinder and evacuating the glass cylinder to a defined low-pressure, a state of stress is imposed in the thin film due to bending of the wafer. It has been shown that the (initial) stress state of a film and its change, due to its bending with the help of the wafer-curvature method, can be analyzed accurately close to the wafer center by application of one of two independent X-ray diffraction techniques: i) conventional X-ray diffraction stress analysis (i.e. application of the well known sin 2 ψ-method) to reflections originating from the film and ii) determination of the radii of curvature by rocking curve measurements utilizing reflections originating from the substrate. The validation of this stress-imposition method has been carried out with a tungsten film of 500 nm thickness, since tungsten is known to be (practically) intrinsically elastically isotropic. Further, the method has been applied to an electro-deposited, potentially whiskering, aging Sn film of 3 μm thickness where a combination of both stress-measurement techniques is essential for the determination of initial and (by wafer bending) imposed stresses. The results of the aging experiment of the Sn film under load have been discussed with respect to the current whisker-growth model. - Highlights: • A wafer-curvature method has been developed to subject thin films to defined loads. • Two X-ray diffraction techniques were employed for the analysis of stresses. • The wafer-curvature method was validated by application to a W film. • Application to a potentially whiskering Sn

  1. Imposition of defined states of stress on thin films by a wafer-curvature method; validation and application to aging Sn films

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J., E-mail: Jendrik.Stein@de.bosch.com [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Robert Bosch GmbH, Automotive Electronics/Engineering Assembly and Interconnect Technology (AE/EAI2), Robert-Bosch-Str. 2, 71701 Schwieberdingen (Germany); Pascher, M. [Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Welzel, U. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Huegel, W. [Robert Bosch GmbH, Automotive Electronics/Engineering Assembly and Interconnect Technology (AE/EAI2), Robert-Bosch-Str. 2, 71701 Schwieberdingen (Germany); Mittemeijer, E.J. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-10-01

    A wafer-curvature method has been developed to subject thin films, deposited on (Si) substrates, to well defined and controllable loads in a contact-free manner. To this end, a custom-made glass pan (i.e. a roof-less cylinder with a connection piece for vacuum tubes) connected to a needle valve, a vacuum pump and a pressure gauge has been used as an experimental setup. By fixing the coated Si wafer on top of the glass cylinder and evacuating the glass cylinder to a defined low-pressure, a state of stress is imposed in the thin film due to bending of the wafer. It has been shown that the (initial) stress state of a film and its change, due to its bending with the help of the wafer-curvature method, can be analyzed accurately close to the wafer center by application of one of two independent X-ray diffraction techniques: i) conventional X-ray diffraction stress analysis (i.e. application of the well known sin{sup 2}ψ-method) to reflections originating from the film and ii) determination of the radii of curvature by rocking curve measurements utilizing reflections originating from the substrate. The validation of this stress-imposition method has been carried out with a tungsten film of 500 nm thickness, since tungsten is known to be (practically) intrinsically elastically isotropic. Further, the method has been applied to an electro-deposited, potentially whiskering, aging Sn film of 3 μm thickness where a combination of both stress-measurement techniques is essential for the determination of initial and (by wafer bending) imposed stresses. The results of the aging experiment of the Sn film under load have been discussed with respect to the current whisker-growth model. - Highlights: • A wafer-curvature method has been developed to subject thin films to defined loads. • Two X-ray diffraction techniques were employed for the analysis of stresses. • The wafer-curvature method was validated by application to a W film. • Application to a potentially whiskering

  2. Application of the model of stress postraumático in the study of the impact of the violence on the health mental in displaced population

    Directory of Open Access Journals (Sweden)

    Edgar Gerardo Alejo

    2005-05-01

    Full Text Available The following document pretends to describe the mentalhealth problematic on displaced people, presenting the modelof Post-Traumatic Stress Disorder (PTSD as a possiblediagnose . It includes the characteristics of the experiencesrelated to forced displacement, the previous studies relatedto the assessment of the impact of the stressful experiencesand the need to identify the existing problem in relation tothe psychological impact of the violence presented in thispeople. Thesis in favour and against the application of thePTSD model are discussed and its implications on the studyof the mental health in this population.

  3. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    Science.gov (United States)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal

  4. A Systematic Review of Biopsychosocial Training Programs for the Self-Management of Emotional Stress: Potential Applications for the Military

    Science.gov (United States)

    Clausen, Shawn S.; Jonas, Wayne B.; Walter, Joan A. G.

    2013-01-01

    Combat-exposed troops and their family members are at risk for stress reactions and related disorders. Multimodal biopsychosocial training programs incorporating complementary and alternative self-management techniques have the potential to reduce stress-related symptoms and dysfunction. Such training can preempt or attenuate the posttraumatic stress response and may be effectively incorporated into the training cycle for deploying and redeploying troops and their families. A large systematic review was conducted to survey the literature on multimodal training programs for the self-management of emotional stress. This report is an overview of the randomized controlled trials (RCTs) identified in this systematic review. Select programs such as mindfulness-Based Stress Reduction, Cognitive Behavioral Stress Management, Autogenic Training, Relaxation Response Training, and other meditation and mind-body skills practices are highlighted, and the feasibility of their implementation within military settings is addressed. PMID:24174982

  5. A Systematic Review of Biopsychosocial Training Programs for the Self-Management of Emotional Stress: Potential Applications for the Military

    Directory of Open Access Journals (Sweden)

    Cindy Crawford

    2013-01-01

    Full Text Available Combat-exposed troops and their family members are at risk for stress reactions and related disorders. Multimodal biopsychosocial training programs incorporating complementary and alternative self-management techniques have the potential to reduce stress-related symptoms and dysfunction. Such training can preempt or attenuate the posttraumatic stress response and may be effectively incorporated into the training cycle for deploying and redeploying troops and their families. A large systematic review was conducted to survey the literature on multimodal training programs for the self-management of emotional stress. This report is an overview of the randomized controlled trials (RCTs identified in this systematic review. Select programs such as mindfulness-Based Stress Reduction, Cognitive Behavioral Stress Management, Autogenic Training, Relaxation Response Training, and other meditation and mind-body skills practices are highlighted, and the feasibility of their implementation within military settings is addressed.

  6. A systematic review of biopsychosocial training programs for the self-management of emotional stress: potential applications for the military.

    Science.gov (United States)

    Crawford, Cindy; Wallerstedt, Dawn B; Khorsan, Raheleh; Clausen, Shawn S; Jonas, Wayne B; Walter, Joan A G

    2013-01-01

    Combat-exposed troops and their family members are at risk for stress reactions and related disorders. Multimodal biopsychosocial training programs incorporating complementary and alternative self-management techniques have the potential to reduce stress-related symptoms and dysfunction. Such training can preempt or attenuate the posttraumatic stress response and may be effectively incorporated into the training cycle for deploying and redeploying troops and their families. A large systematic review was conducted to survey the literature on multimodal training programs for the self-management of emotional stress. This report is an overview of the randomized controlled trials (RCTs) identified in this systematic review. Select programs such as mindfulness-Based Stress Reduction, Cognitive Behavioral Stress Management, Autogenic Training, Relaxation Response Training, and other meditation and mind-body skills practices are highlighted, and the feasibility of their implementation within military settings is addressed.

  7. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  8. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  9. Application of in-situ stress measurement on bursts disasters of rock and CO{sub 2} in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Lian-Jie Wang; Dong-Sheng Sun; Li-Rong Zhang; Guan-Wu Zhou [Ministry of Land and Resources, Beijing (China)

    2009-01-15

    For the purpose of reduction and prevention of rock burst disasters and CO{sub 2}, measurements were made of in-situ stress and mechanical parameters of rock in Yingcheng mine. Geological structure and gas measurements were studied and the stress field was simulated and distribution of stress field was obtained in this area. On the basis of the study, the danger areas of rockbursts and CO{sub 2} were predicted. Preventive measures were suggested to decrease gas pressure and in-situ stress in front of the working face with advance boreholes relieving blasting. 12 refs., 5 figs., 1 tab.

  10. Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel

    International Nuclear Information System (INIS)

    Raghavender Rao, G.; Gupta, O.P.; Pradhan, B.

    2011-01-01

    Uniaxial isothermal stress relaxation tests (SRT) were performed on a tungsten-alloyed 10% Cr cast steel (G-X12Cr Mo W V Nb N 10 1 1) at temperatures of 580, 600 and 620 o C and initial strain levels of 0.2, 0.5 and 0.8%. Inelastic strain rates for different stresses were estimated from the stress versus time data generated from the tests. Conventional creep tests were also conducted on the same material at 580, 600 and 620 o C and at different stress levels. The strain rate data estimated from SRT were compared with minimum creep rates derived from the creep tests; the strain rates estimated from SRT with 0.8% initial strain level are in better agreement than those estimated from SRT with 0.2 and 0.5% initial strain levels. In order to ascertain the technique, stress relaxation behaviour was estimated from creep test data and compared with the stress relaxation curves obtained from SRT at corresponding temperatures. The stress relaxation curves obtained from SRT with 0.8% initial strain level are in good agreement with the stress relaxation curves estimated from the creep tests. It is concluded that the stress relaxation test with initial strain level of 0.8% could be considered as an appropriate short-term test technique for estimation of creep strength of newly developed materials.

  11. Effect of annealing temperature on the thermal stress and dislocation density of mc-Si ingot grown by DS process for solar cell application

    Science.gov (United States)

    Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.

  12. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  13. The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Ure, J.; Chen, H.F.

    2014-01-01

    The ratchet boundaries and ratchet strains are derived for the Bree problem and an elastic-perfectly plastic material with different yield stresses on-load and off-load. The Bree problem consists of a constant uniaxial primary membrane stress and a cycling thermal bending stress. The ratchet problem with differing yield stresses is also solved for a modified loading in which both the primary membrane and thermal bending stresses cycle in-phase. The analytic solutions for the ratchet boundaries are compared with the results of deploying the linear matching method (LMM) and excellent agreement is found. Whilst these results are of potential utility for purely elastic–plastic behaviour, since yield stresses will often differ at the two ends of the cycle, the solution is also proposed as a means of assessing creep ratcheting via a creep ductility exhaustion approach. -- Highlights: • The Bree problem is solved for differing yield stresses on and off load. • The modified Bree problem with cycling primary load is also solved. • These solutions can be applied to creep ratcheting using a pseudo-yield stress

  14. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ursula G. [Scientific Consultancy — Animal Welfare, Neubiberg (Germany); Vogel, Sandra [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Product Stewardship Water Solutions, BASF SE, Ludwigshafen (Germany); Aumann, Alexandra; Hess, Annemarie; Kolle, Susanne N.; Ma-Hock, Lan [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wohlleben, Wendel [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Material Physics, BASF SE, Ludwigshafen (Germany); Dammann, Martina; Strauss, Volker; Treumann, Silke; Gröters, Sibylle [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wiench, Karin [Product Safety, BASF SE, Ludwigshafen (Germany); Ravenzwaay, Bennard van [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Landsiedel, Robert, E-mail: robert.landsiedel@basf.com [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany)

    2014-04-01

    The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO{sub 2}, ZnO, CeO{sub 2}, SiO{sub 2}, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO{sub 2} NMs, CeO{sub 2} NMs, and two MWCNT caused significant (determined by trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO{sub 2} NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO{sub 2} NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO{sub 2} only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization. - Highlights: • 16 OECD reference nanomaterials were tested in rat precision-cut lung slices. • Nanomaterial cytotoxicity, apoptose, oxidative stress, and inflammation were

  15. [Study on the occupational stress norm and it's application for the marketing group, public service/safety group and production laborer group].

    Science.gov (United States)

    Yang, Xin-Wei; Wang, Zhi-Ming; Jin, Tai-Yi; Lan, Ya-Jia

    2006-09-01

    A study of the occupational stress norm and it's application for the marketing group, public service/safety group and production laborer group. In this study, cross-sectional study method is used, and a synthetic way of sorting and randomized sampling is adopted to deal with research targets (36 marketing group, 331 public service/safety group, 903 production laborer group). Descriptive statistics for OSI-R scale scores for the marketing group, public service/safety group and production laborer group were modulated. Scale raw score to T-score conversion tables derived from the OSI-R normative sample for marketing group public service/safety group and production laborer group were established. OSI-R profile from for marketing group, public service/safety group and production laborer group were established. For the ORQ and PSQ scales, scores at or above 70 indicate a strong levels of maladaptive stress and strain. Score in the range of 60 to 69 suggest middle levels of maladaptive stress and strain. Score in the range of 40 to 59 indicate normal levels of stress and strain. Score below 40 indicate a relative absence of occupational stress and strain. For the PRQ scales, score below 30 indicate a significant lack of coping resources. Score in the range of 30 to 39 suggest middle deficits in coping resources. Score in the range of 40 to 59 indicate average coping resources. Scores at or above 60 indicate a strong levels of coping resources. The authors combined subjective and objective environment match model of occupational stress. Different intervention measure should be take to reduce the occupational stress so as to improve the work ability.

  16. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors

    Energy Technology Data Exchange (ETDEWEB)

    Kirchheiner, Kathrin, E-mail: kathrin.kirchheiner@meduniwien.ac.at [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna (Austria); Czajka-Pepl, Agnieszka [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Vienna (Austria); Ponocny-Seliger, Elisabeth [Department of Psychology, Sigmund Freud Private University Vienna, Vienna (Austria); Scharbert, Gisela; Wetzel, Léonore [Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna/General Hospital of Vienna, Vienna (Austria); Nout, Remi A. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Sturdza, Alina [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Vienna (Austria); Dimopoulos, Johannes C. [Metropolitan Hospital, Athens (Greece); Dörr, Wolfgang; Pötter, Richard [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna (Austria)

    2014-06-01

    Purpose: To investigate the psychological consequences of high-dose-rate brachytherapy with 2 fractions in 1 application under spinal/epidural anesthesia in the treatment of locally advanced cervical cancer. Methods and Materials: In 50 patients with locally advanced cervical cancer, validated questionnaires were used for prospective assessment of acute and posttraumatic stress disorder (ASD/PTSD) (Impact of Event Scale–Revision), anxiety/depression (Hospital Anxiety and Depression Scale), quality of life (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30/Cervical Cancer 24), physical functioning (World Health Organization performance status), and pain (visual analogue scale), before and during treatment and 1 week and 3 months after treatment. Qualitative interviews were recorded in open format for content analysis. Results: Symptoms of ASD occurred in 30% of patients 1 week after treatment; and of PTSD in 41% 3 months after treatment in association with this specific brachytherapy procedure. Pretreatment predictive variables explain 82% of the variance of PTSD symptoms. Helpful experiences were the support of the treatment team, psychological support, and a positive attitude. Stressful factors were pain, organizational problems during treatment, and immobility between brachytherapy fractions. Conclusions: The specific brachytherapy procedure, as performed in the investigated mono-institutional setting with 2 fractions in 1 application under spinal/epidural anesthesia, bears a considerable risk of traumatization. The source of stress seems to be not the brachytherapy application itself but the maintenance of the applicator under epidural anesthesia in the time between fractions. Patients at risk may be identified before treatment, to offer targeted psycho-social support. The patients' open reports regarding helpful experiences are an encouraging feedback for the treatment team; the reported stressful

  18. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors

    International Nuclear Information System (INIS)

    Kirchheiner, Kathrin; Czajka-Pepl, Agnieszka; Ponocny-Seliger, Elisabeth; Scharbert, Gisela; Wetzel, Léonore; Nout, Remi A.; Sturdza, Alina; Dimopoulos, Johannes C.; Dörr, Wolfgang; Pötter, Richard

    2014-01-01

    Purpose: To investigate the psychological consequences of high-dose-rate brachytherapy with 2 fractions in 1 application under spinal/epidural anesthesia in the treatment of locally advanced cervical cancer. Methods and Materials: In 50 patients with locally advanced cervical cancer, validated questionnaires were used for prospective assessment of acute and posttraumatic stress disorder (ASD/PTSD) (Impact of Event Scale–Revision), anxiety/depression (Hospital Anxiety and Depression Scale), quality of life (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30/Cervical Cancer 24), physical functioning (World Health Organization performance status), and pain (visual analogue scale), before and during treatment and 1 week and 3 months after treatment. Qualitative interviews were recorded in open format for content analysis. Results: Symptoms of ASD occurred in 30% of patients 1 week after treatment; and of PTSD in 41% 3 months after treatment in association with this specific brachytherapy procedure. Pretreatment predictive variables explain 82% of the variance of PTSD symptoms. Helpful experiences were the support of the treatment team, psychological support, and a positive attitude. Stressful factors were pain, organizational problems during treatment, and immobility between brachytherapy fractions. Conclusions: The specific brachytherapy procedure, as performed in the investigated mono-institutional setting with 2 fractions in 1 application under spinal/epidural anesthesia, bears a considerable risk of traumatization. The source of stress seems to be not the brachytherapy application itself but the maintenance of the applicator under epidural anesthesia in the time between fractions. Patients at risk may be identified before treatment, to offer targeted psycho-social support. The patients' open reports regarding helpful experiences are an encouraging feedback for the treatment team; the reported stressful

  19. High-dose rate iridium-192 brachytherapy with flexible applicator. A trial toward decrease of stress during treatment and improvement of quality of life

    International Nuclear Information System (INIS)

    Inoue, Keiji; Kasahara, Kotaro; Karashima, Takashi; Inoue, Yuichiro; Kariya, Shinji; Inomata, Taisuke; Yoshida, Shoji; Shuin, Taro

    2001-01-01

    We tried to improve the materials and methods of high-dose rate Iridium-192 brachytherapy for localized prostate cancer and evaluated the stress during the treatment in 20 patients with whom the therapy was performed. Rigid applicators made of stainless steel of 1.6 mm in diameter were indwelt with a template as usual for 30 hours in 14 patients (group A). Flexible applicators made of polyoxymethylene rosin (POM) of 2.0 mm in diameter were indwelt without a template for 30 hours after the applicator insertion in 6 patients (group B). We made inquiries about lumbago, inconvenience and necessity of assistant help and sleep in the course of therapy, and urinary incontinence and erectile function after the course of therapy as the QOL. The stress during the course of therapy in the patients of group B was obviously less than that of group A. There were no significant differences in urinary incontinence and erectile function after the course of therapy between group A and B. In this study, our trial successfully reduced the stress during the course of therapy in the patients with localized prostate cancer in the course of high-dose rate Iridium-192 brachytherapy. (author)

  20. High-dose rate iridium-192 brachytherapy with flexible applicator. A trial toward decrease of stress during treatment and improvement of quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Keiji; Kasahara, Kotaro; Karashima, Takashi; Inoue, Yuichiro; Kariya, Shinji; Inomata, Taisuke; Yoshida, Shoji; Shuin, Taro [Kochi Medical School, Nankoku (Japan)

    2001-07-01

    We tried to improve the materials and methods of high-dose rate Iridium-192 brachytherapy for localized prostate cancer and evaluated the stress during the treatment in 20 patients with whom the therapy was performed. Rigid applicators made of stainless steel of 1.6 mm in diameter were indwelt with a template as usual for 30 hours in 14 patients (group A). Flexible applicators made of polyoxymethylene rosin (POM) of 2.0 mm in diameter were indwelt without a template for 30 hours after the applicator insertion in 6 patients (group B). We made inquiries about lumbago, inconvenience and necessity of assistant help and sleep in the course of therapy, and urinary incontinence and erectile function after the course of therapy as the QOL. The stress during the course of therapy in the patients of group B was obviously less than that of group A. There were no significant differences in urinary incontinence and erectile function after the course of therapy between group A and B. In this study, our trial successfully reduced the stress during the course of therapy in the patients with localized prostate cancer in the course of high-dose rate Iridium-192 brachytherapy. (author)

  1. Application of pre-stressed technology in the crossing construction of the China–Myanmar Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Xuejun Wang

    2015-01-01

    Full Text Available Concrete structure is commonly used in the anchorages of a large cable-suspended pipeline crossing construction. With the increase of span and load, the stress on the concrete anchorages may rise rapidly. In case of traditional anchoring structure fixed by anchor rods, concrete cracking will occur, thereby reducing the anchorage life. To solve this problem, the pre-stressed structure was designed to effectively improve the efficiency of anchoring and reduce engineering cost. In the crossing construction of China–Myanmar Gas Pipeline, the pre-stressed technology was used to establish an effective pre-stressed anchoring system, which integrates the pre-stressed structures (e.g. tunnel anchorages in the anchors and the optimization measures (e.g. positioning mode, anchorage structure, concrete placement, pre-stressed, and medium injection, in line with the crossing structure and load features of this project. The system can delay the occurrence of concrete cracking and enhance the stress durability of the structure and anchoring efficiency. This technology has been successfully applied in the crossing construction of China–Myanmar Gas Pipeline, with good economic and social benefits, indicating that this technology is a new effective solution to the optimization of suspended pipeline anchorage structures, providing technical support for the development of pipeline crossing structure.

  2. CURRENT ISSUES ON JOB STRESS IN JAPAN AND WORKSITE MENTAL HEALTH APPLICATION AMONG JAPANESE COMPANY A Case Study Analysis

    OpenAIRE

    S Purnawati

    2013-01-01

    Background: Issues about job stress is more popular in the world currently. Not just for Japan, Korea and Taiwan, but also an important issue in EU countries, especially the UK and Finland Increase of awareness about job stress effects on work performance, productivity and mental health is as onereason of the phenomenon.Objective: The present study aimed to explore the issue of job stress in Japan for the reference of good practices to Indonesia.Methods: This study, based on observationalstud...

  3. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Shan, Lin; Anjum, Shazia; Khan, Waqas-Ud-Din; Ronggui, Hu; Iqbal, Muhammad; Virk, Zaheer Abbas; Kausar, Salma

    2017-07-01

    Quinoa (Chenopodium quinoa Willd.) is a traditional Andean agronomical resilient seed crop having immense significance in terms of high nutritional qualities and its tolerance against various abiotic stresses. However, finite work has been executed to evaluate the growth, physiological, chemical, biochemical, antioxidant properties, and mineral nutrients bioavailability of quinoa under abiotic stresses. Depending on the consistency in the stability of pH, intended rate of S was selected from four rates (0.1, 0.2, 0.3, 0.4 and 0.5% S) for the acidification of biochar and compost in the presence of Thiobacillus thiooxidans by pH value of 4. All three soils were amended with 1% (w/w) acidified biochar (BC A ) and compost (CO A ). Results revealed that selective plant growth, yield, physiological, chemical and biochemical improved significantly by the application of BC A in all stressed soils. Antioxidants in quinoa fresh leaves increased in the order of control > CO A  > BC A , while reactive oxygen species decreased in the order of control < CO A  < BC A . A significant reduction in anti-nutrients (phytate and polyphenols) was observed in all stressed soils with the application of BC A . Moreover, incorporation of CO A and BC A reduced the pH of rhizosphere soil by 0.4-1.6 units in all stressed soils, while only BC A in bulk soil decreased pH significantly by 0.3 units. These results demonstrate that BC A was more effective than CO A to enhance the bioavailability, translocation of essential nutrients from the soil to plant and their enhanced bioavailability in the seed. Copyright © 2017. Published by Elsevier Masson SAS.

  4. [Understanding a hospitalized, school-aged child's stress in the PICU: the application of picture books in nursing care].

    Science.gov (United States)

    Wang, Pei-Ju; Feng, Jui-Ying

    2013-06-01

    Hospitalization in the pediatric intensive care unit (PICU) can be a very stressful and sometimes traumatic experience for school-aged children due to illness, painful procedures, unfamiliar environment, and separation from family. We incorporated picture books into PICU nursing care to explore the stress response in a school-aged child with compartment syndrome who was hospitalized in the PICU. Observation, interview and communication with the patient were used to assess her psychological reactions and emotional and behavioral responses to stress related to hospitalization and medical treatment. Autonomy and control were provided and strengthened by giving the patient choices and purposive life plans. Picture books were used to establish rapport and help the patient express her feelings, needs, and desires for parental love and company. This case report highlights the importance of nurses' awareness of children's stresses and needs during hospitalization in the PICU as well as the value of picture books or other age-appropriate tools for this patient population.

  5. The effect of the method of application and concentration of asahi sl on the response of cucumber plants to chilling stress

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In pot experiments conducted on cucumber cv. Śremski F1, the effect was studied of short-term chilling stress on plants which had grown from seeds germinating in the solution of Asahi SL or treated with this biostimulator during the early growth period. The plants were grown in a phytotron at an air temperature of 27/22°C (day/night, using fluorescent light with FAR flux density of 220 μmol x m-2 x s-1 and with a photoperiod of 16/8. The biostimulator was applied using the following methods: a germination of seeds in 0.01% and 0.05% solution, b watering of plants twice with 0.01% or 0.05% solution, c spraying leaves with 0.3% or 0.5% solution. Plants sprayed with distilled water were the control. After 24 hours from foliar or root application of Asahi SL, one half of the plants from each experimental series was treated for a period of 3 days at a temperature of 12/6°C, with all the other growth conditions unchanged. The obtained results show that short-term chilling stress caused a significant increase in electrolyte leakage, free proline content and in the activity of ascorbate peroxidase in leaves, but a decrease in the content of chlorophyll, its maximum fluorescence (Fm and quantum yield (Fv/Fm, carotenoid content, stomatal conductance, transpiration, photosynthesis, leaf biomass and in the activity of catalase in leaves. Foliar or root application of Asahi SL in the pre-stress period decreased the values of the traits which increased as a result of chilling or increased those which decreased. Higher concentrations of the biostimulator solutions, applied using this method, were more effective. The application of the biostimulator during seed germination did not result in significant changes in the response of plants to chilling stress.

  6. Application of the whole powder pattern decomposition procedure in the residual stress analysis of layers and coatings

    International Nuclear Information System (INIS)

    Schoderböck, Peter; Brechbühl, Jens

    2015-01-01

    The X-ray investigation of stress states in materials, based on the determination of elastic lattice strains which are converted to stresses by means of theory of elasticity, is a necessity in quality control of thin layers and coatings for optimizing manufacturing steps and process parameters. This work introduces the evaluation of residual stress from complex and overlapping diffraction patterns using a whole-powder pattern decomposition procedure defining a 2θ-offset caused by residual stresses. Furthermore corrections for sample displacement and refraction are directly implemented in the calculation procedure. The correlation matrices of the least square fitting routines have been analyzed for parameter interactions and obvious interdependencies have been decoupled by the introduction of an internal standard within the diffraction experiment. This decomposition based evaluation has been developed on tungsten as a model material system and its efficiency was demonstrated by X-ray diffraction analysis of a solid oxide fuel cell multilayer system. The results are compared with those obtained by the classical sin 2 Ψ-method. - Highlights: • Analysis of complex multiphase diffraction patterns with respect to residual stressStress-gradient determination with in situ correction of displacement and refraction • Consideration of the elastic anisotropy within the refinement

  7. Application of hydraulic fracturing to determine virgin in situ stress state around Waste Isolation Pilot Plant - in situ measurements

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Stone, C.M.

    1985-10-01

    Hydraulic fracturing tests were carried out in horizontal drillholes in rock salt in the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. It was determined that the virgin in situ stress field is isotropic or nearly isotropic. The inferred magnitude of the isotropic in situ stress falls between bounds of 14.28 MPa and 17.9 MPa for the average breakdown/reopening pressures and driving pressures. The best estimate from instantaneous shut-in pressures is 16.61 MPa. Given some uncertainties about the interpretation of hydraulic fracturing data in salt, all of the foregoing values are in acceptable agreement with an average calculated isotropic in situ stress of 14.9 MPa at an average depth of 657 m below surface. Interpretations of breakdown and reopening pressures are based on finite element analyses of the relaxed stress field around a borehole in salt. This stress field varies little between approximately 50 and 200 days after drilling. The finite element analyses were also used to interpret the observed stable pressure-time signatures with little or no pressure drops during primary breakdown of the salt formation. The conclusion about the isotropic nature of the virgin in situ stress field is supported by observations of the induced fracture patterns. The report includes a comparison of the hydrofrac data in the WIPP with the published results of hydraulic fracturing tests in salt at three other locations. 75 refs., 21 figs., 4 tabs

  8. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  9. Stress Management: Job Stress

    Science.gov (United States)

    Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and ... stress triggers, it's often helpful to improve time management skills — especially if you tend to feel overwhelmed ...

  10. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress.

    Science.gov (United States)

    Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir

    2016-06-01

    Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Childhood Stress

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Childhood Stress KidsHealth / For Parents / Childhood Stress What's in this ... and feel stress to some degree. Sources of Stress Stress is a function of the demands placed ...

  12. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    Science.gov (United States)

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  13. [The scale and application of the norm of occupational stress on the professionals in Chengdu and Chongqing area].

    Science.gov (United States)

    Zeng, Fan-Hua; Wang, Zhi-Ming; Wang, Mian-Zhen; Lan, Ya-Jia

    2004-12-01

    To establish the scale of the norm of occupational stress on the professionals and put it into practice. T scores were linear transformations of raw scores, derived to have a mean of 50 and a standard deviation of 10. The scale standard of the norm was formulated in line with the principle of normal distribution. (1) For the occupational role questionnaire (ORQ) and personal strain questionnaire (PSQ) scales, high scores suggested significant levels of occupational stress and psychological strain, respectively. T scores >/= 70 indicated a strong probability of maladaptive stress, debilitating strain, or both. T scores in 60 approximately 69 suggested mild levels of maladaptive stress and strain, and in 40 approximately 59 were within one standard deviation of the mean and should be interpreted as being within normal range. T scores /= 60) indicated increasingly strong coping resources. (2) This study provided raw score to T-score conversion tables for each OSI-R scale for the total normative sample as well as for gender, and several occupational groups, including professional engineer, professional health care, economic business, financial business, law, education and news. OSI-R profile forms for total normative samples, gender and occupation were also offered according to the conversion tables. The norm of occupational stress can be used as screening tool, organizational/occupational assessment, guide to occupational choice and intervention measures.

  14. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  15. [Methodological aspects of risk assessment of work related stress. Italian experience of R Karasek JCQ application, a multiphase approach].

    Science.gov (United States)

    Ferrario, M M; Cesana, G

    2009-01-01

    Due to a new legislation, the assessment of work stress has become compulsory in Italy for all the enterprise. Work stress is become a leading health problem in work settings all over Europe. The two major approaches, the expert-based direct observations and the measurements of the perceived job strain, are briefly introduced emphasizing on strengthens and weaknesses. Among the methods to assess perceived job stress, the Karasek's Job Content Questionnaire has been extensively used in Italy, and the available results support its use because reliable and able to pick up major constrictiveness at work. In addition, because it is now possible to have reference levels, comparisons are possible for either public or private enterprises. Acknowledging the complexity of carrying out reliable assessment of work stress, a multiphase approach is emphasised: first an analysis or current data can be used to estimate the levels of turnover, down-sizing, outsourcing, extra hours, shift work, sickness absenteeism, changes of job titles, work accidents and work-related diseases. At a second step, on groups of workers selected because recognised at risk at the first phase and on control groups, the JCQ can be used to assess workers stress perception. Finally, when constrain conditions emerge,further investigations are required, including: intervention of experts in work organisation analysis, clinical psychological examinations of selected workers, to separate between work-related and personal psychological problems and health consequences.

  16. On the constitutive relation for thermoirradiation induced creep with application to stress analysis of a fuel rod

    International Nuclear Information System (INIS)

    Huang, S.

    1979-01-01

    Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail

  17. [THE POSSIBILITY OF APPLICATION OF COLORIMETRY TECHNIQUE OF DETECTION OF LEVELS OF OXIDATIVE STRESS AND ANTIOXIDANT CAPACITY OF SERUM].

    Science.gov (United States)

    Sapojnikova, M A; Strakhova, L A; Blinova, T V; Makarov, I A; Rakhmanov, R S; Umniagina, I A

    2015-11-01

    The analysis was implemented concerning indicators of oxidative status and antioxidant capacity of serum. The indicators were received by colorimetry technique based on detection of peroxides in blood serum in examined patients of different categories: healthy persons aged from 17 to 20 years and from 30 to 60 years and patients with bronchopulmonary pathology. The low level of oxidative stress and high antioxidant capacity of serum were established in individuals ofyounger age. With increasing of age, degree of expression of oxidative stress augmented and level of antioxidant defense lowered. Almost all patients with bronchopulmonary pathology had high level of oxidative stress and low level of antioxidant defense. The analysis of quantitative data of examined indicators their conformity with health condition was established

  18. A prediction method of temperature distribution and thermal stress for the throttle turbine rotor and its application

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available In this paper, a prediction method of the temperature distribution for the thermal stress for the throttle-regulated steam turbine rotor is proposed. The rotor thermal stress curve can be calculated according to the preset power requirement, the operation mode and the predicted critical parameters. The results of the 660 MW throttle turbine rotor show that the operators are able to predict the operation results and to adjust the operation parameters in advance with the help of the inertial element method. Meanwhile, it can also raise the operation level, thus providing the technical guarantee for the thermal stress optimization control and the safety of the steam turbine rotor under the variable load operation.

  19. Salutary effects of an attention bias modification mobile application on biobehavioral measures of stress and anxiety during pregnancy.

    Science.gov (United States)

    Dennis-Tiwary, Tracy A; Denefrio, Samantha; Gelber, Shari

    2017-07-01

    Stress and anxiety during pregnancy are associated with a range of adverse health outcomes, but there is an unmet need for low-barrier treatments that target stress and anxiety. One such treatment approach, attention bias modification training (ABMT), targets the anxiety-related threat bias, a disruption in attention to and neural processing of threat-related information. It remains unclear, however, whether reducing treatment barriers via mobile delivery of ABMT is effective and whether ABMT efficacy varies depending on individual differences in neural processing of threat. The present study tested whether mobile, gamified ABMT reduced prenatal threat bias, anxiety and stress, and whether ABMT efficacy varied with individual differences in neural responses to threat. Participants were 29 women in their 19th-29th week of pregnancy, randomized to four weeks of an ABMT or placebo training (PT) version of the mobile app using a double-blind design. Self-report of anxiety, depression, and stress were obtained; salivary cortisol was collected at home and in lab in response to stressors to index biological stress reactivity. Threat bias was measured using a computerized attention assay during which EEG was recorded to generate event-related potentials (ERPs) to threat cues. Results showed lower levels of lab cortisol following ABMT versus PT. Although the main effect of ABMT on subjective anxiety was not significant, the magnitude of cortisol reduction was correlated with lower levels of subjective anxiety and threat bias. Those receiving ABMT also reported less anxiety when showing smaller ERPs to threat (P1, P2) prior to training, but, conversely reported more anxiety when showing larger ERPs to threat. Use of gamified, mobile ABMT reduced biobehavioral indices of prenatal stress and anxiety, but effects on anxiety varied with individual differences in cortisol response and neurocognitive indices of early attention to threat. Copyright © 2017 Elsevier B.V. All rights

  20. Automatic determination of the dynamic geometry of abdominal aortic aneurysm from MR with application to wall stress simulations

    NARCIS (Netherlands)

    Putter, de S.; Breeuwer, M.; Kose, U.; Vosse, van de F.N.; Gerritsen, F.A.; Lemke, H.U.

    2005-01-01

    The current surgical intervention criterion for abdominal aortic aneurysm is based on the maximum transverse diameter of the aorta. Recent research advances indicate that a better rupture predictor may be derived from the wall stress, which can be computed with the finite element method. An

  1. The application of MBSR in a stress management intervention in a study of a mining sector company.

    Science.gov (United States)

    Molek-Winiarska, Dorota; Żołnierczyk-Zreda, Dorota

    2018-03-26

    The aim of the article was to check if mindfulness based stress reduction (MBSR) is an effective intervention in reducing work-related stress in the case of workers of a copper mine. 66 employees were randomized to the experimental group (32 participants) or to the control group (34 participants). Work-related stress was measured using Job Content Questionnaire (JCQ) (Karasek, 1979) and mental health was measured using General Health Questionnaire (GHQ-28) (Goldberg, 1990). Experimental manipulation was 40-hour-long MBSR training. MANOVA has revealed significant increase of JCQ decision latitude (F=17.36, p=.00) and social support (supervisor. F=9.00, p<.004; coworker. F=5.61, p<.02), a significant decrease in GHQ anxiety (F=5.28, p<.079) and depression (F=3.95, p<.048) due to the intervention. The study confirms that MBSR can also be effective in reducing stress resulting from the external risk (and/or imagined fear) of losing one's health or life. The use of MBSR could be recommended in health & safety activities in difficult and dangerous work conditions, such as mining, to promote workers' well-being.

  2. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  3. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    Science.gov (United States)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (pmicro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  4. 78 FR 59779 - Regulations Y and YY: Application of the Revised Capital Framework to the Capital Plan and Stress...

    Science.gov (United States)

    2013-09-30

    ... consolidated assets as reported by a bank holding company on its Consolidated Financial Statements for Bank... companies with total consolidated asset of $50 billion or more and nonbank financial companies supervised by... stress test rules to require a bank holding company with total consolidated assets of $50 billion or more...

  5. Inferences about the local stress field from focal mechanisms: Applications to earthquakes in the southern Great Basin of Nevada

    International Nuclear Information System (INIS)

    Harmsen, S.C.; Rogers, A.M.

    1986-01-01

    Focal mechanisms determined from regional-network earthquake data or aftershock field investigation often contain members ranging from strike slip to normal slip in extensional tectonic environments or from strike slip to thrust slip in compressional environments. Although the coexistence of normal and strike-slip faulting has suggested to some investigators that the maximum and intermediate principal stresses are of approximately equal magnitude, several have asserted that the directions of principle stresses can or must interchange to accommodate both types of mechanisms (Zoback and Zoback 1980b; Vetter and Ryall, 1983). A Coulomb-Navier criterion of slip is invoked to demonstrate that both types of mechanisms, as well as oblique members having preferred nodal-plane dips intermediate between those of the strike-slip and normal mechanisms, may be observed in a region where the stress field, resolved into principal components, is axially symmetric. The proximate coexistence of earthquakes having diverse focal mechanisms could be interpreted as evidence for an approximately axially symmetric stress field in a region where optimally oriented planes of weakness are known to exist in the host rock. 10 refs., 6 figs

  6. Application of H-matrices method to the calculation of the stress field in a viscoelastic medium

    Science.gov (United States)

    Ohtani, M.; Hirahara, K.

    2017-12-01

    In SW Japan, the Philippine Sea plate subducts from the south and the large earthquakes around M (Magnitude) 8 repeatedly occur at the plate boundary along the Nankai Trough, called as Nankai/Tonankai earthquakes. Near the rupture area of these earthquakes, the active volcanoes lines in the Kyushu region SW Japan, such as Sakurajima volcano. There are also distributed in the Tokai-Kanto region SE Japan, such as Mt. Fuji. The eruption of Mt. Fuji in 1707, called as Hoei eruption, have occurred 49 days after the one of the series of Nankai/Tonankai earthquakes, 1707 Hoei earthquake (M8.4). It suggests that the stress field due to the earthquake sometimes helps the volcanoes to erupt. When we consider the stress change due to the earthquake, the effect of viscoelastic deformation of the crust will be important. FEM is always used for modeling such inelastic effect. However, it requires the high computational cost of O(N3), where N is the number of discretized cells of the inelastic medium. Recently, a new method based on BIEM is proposed by Barbot and Fialko (2010). In their method, calculation of the stress field due to the inelastic strain is replaced to solve the inhomogeneous Navier's equation with equivalent body forces of the inelastic strain. Then, using the stress-strain greenfunction in an elastic medium, we can take into account the inelastic effect. In this study, we employ their method to evaluate the stress change at the active volcanoes around the Nankai/Tonankai earthquakes. Their method requires the computational cost and memory storage of O(N2). We try to reduce the computational amount and the memory by applying the fast computation method of H-matrices method. With H-matrices method, a dense matrix is divided into hierarchical structure of submatrices, and each submatrix is approximated to be low rank. When we divide the viscoelastic medium into N = 8,640 or 69,120 uniform cuboid cells and apply the H-matrices method, the required storage memory for

  7. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  8. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  9. Modelling of surface stresses and fracturing during dyke emplacement: Application to the 2009 episode at Harrat Lunayyir, Saudi Arabia

    Science.gov (United States)

    Al Shehri, Azizah; Gudmundsson, Agust

    2018-05-01

    Correct interpretation of surface stresses and deformation or displacement during volcanotectonic episodes is of fundamental importance for hazard assessment and dyke-path forecasting. Here we present new general numerical models on the local stresses induced by arrested dykes. In the models, the crustal segments hosting the dyke vary greatly in mechanical properties, from uniform or non-layered (elastic half-spaces) to highly anisotropic (layers with strong contrast in Young's modulus). The shallow parts of active volcanoes and volcanic zones are normally highly anisotropic and some with open contacts. The numerical results show that, for a given surface deformation, non-layered (half-space) models underestimate the dyke overpressure/thickness needed and overestimate the likely depth to the tip of the dyke. Also, as the mechanical contrast between the layers increases, so does the stress dissipation and associated reduction in surface stresses (and associated fracturing). In the absence of open contacts, the distance between the two dyke-induced tensile and shear stress peaks (and fractures, if any) at the surface is roughly twice the depth to the tip of the dyke. The width of a graben, if it forms, should therefore be roughly twice the depth to the tip of the associated arrested dyke. When applied to the 2009 episode at Harrat Lunayyir, the main results are as follows. The entire 3-7 km wide fracture zone/graben formed during the episode is far too wide to have been generated by induced stresses of a single, arrested dyke. The eastern part of the zone/graben may have been generated by the inferred, arrested dyke, but the western zone primarily by regional extensional loading. The dyke tip was arrested at only a few hundred metres below the surface, the estimated thickness of the uppermost part of the dyke being between about 6 and 12 m. For the inferred dyke length (strike dimension) of about 14 km, this yields a dyke length/thickness ratio between 2400 and 1200

  10. Metal stress and decreased tree growth in response to biosolids application in greenhouse seedlings and in situ Douglas-fir stands

    International Nuclear Information System (INIS)

    Cline, Erica T.; Nguyen, Quyen T.N.; Rollins, Lucy; Gawel, James E.

    2012-01-01

    To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins – bioindicators of intracellular metal stress – were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits. - Highlights: ► Biosolids amendment increases soil metals over 25 years later. ► Douglas-fir growth benefits fail to materialize from biosolids amendments. ► Phytochelatins are elevated in foliage of trees and roots of greenhouse seedlings after new biosolids are added to soil. ► Biosolids connected to metal stress in Douglas-fir. - Biosolids applications increase bioindicators of intracellular metal stress and may counteract tree growth benefits.

  11. Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force.

    Science.gov (United States)

    Lu, Ying-juan; Chang, Shao-hai; Ye, Jian-tao; Ye, Yu-shan; Yu, Yan-song

    2015-01-01

    Stress on the bone surrounding dental micro-implants affects implant success. To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, 8, 10, and 12 mm and either a SF or CF was applied. The maximum equivalent stress (Max EQS) of the bone surrounding the micro-implant was determined, and the relationships among type of force, diameter, and length were evaluated. The Max EQS of the CF exceeded that of the SF (Pimplant diameter, but not to implant length. The larger CF led to greater instability of the micro-implant and the effect was most pronounced at an implant diameter of 1.2 mm. The use of implant diameters of 1.6 mm and 2.0 mm produced no significant difference in implant stability when either a CF or SF was applied. When considering the use of an implant to perform three-dimensional control on the teeth, the implant diameter chosen should be > 1.2 mm.

  12. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace structural applications

    Science.gov (United States)

    Pizzo, P. P.

    1980-01-01

    The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.

  13. Performance of organic field effect transistors with high-k gate oxide after application of consecutive bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunwoo; Choi, Changhwan; Lee, Kilbock [Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Cho, Joong Hwee [Department of Embedded Systems Engineering,University of Incheon, Incheon 406-722 (Korea, Republic of); Ko, Ki-Young [Korea Institute of Patent Information, Seoul, 146-8 (Korea, Republic of); Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2012-10-30

    We report the effect of consecutive electrical stress on the performance of organic field effect transistors (OFETs). Sputtered aluminum oxide (Al{sub 2}O{sub 3}) and hafnium oxide (HfO{sub 2}) were used as gate oxide layers. After the electrical stress, the threshold voltage, which strongly depends on bulk defects, was remarkably shifted to the negative direction, while the other performance characteristics of OFETs such as on-current, transconductance and mobility, which are sensitive to interface defects, were slightly decreased. This result implies that the defects in the bulk layer are significantly affected compared to the defects in the interface layer. Thus, it is important to control the defects in the pentacene bulk layer in order to maintain the good reliabilities of pentacene devices. Those defects in HfO{sub 2} gate oxide devices were larger compared to those in Al{sub 2}O{sub 3} gate oxide devices.

  14. Evaluation of Chlorophyll fluorescence and Biochemical traits of lettuce under drought stress and super absorbent or bentonite application

    OpenAIRE

    GHALE BEIG AKRAM VALIZADEH; Neamati, Seyyed; Tehranifar, Ali; Emami, Hojat

    2014-01-01

    The effects of two superabsorbents (natural-bentonite) and (synthetic-A 200) on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce ( Lactuca sativa L.) was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%), drought stress at 2 levels (60 and 100% of field capacity) and 4 replicates was conducted. Results showed that photos...

  15. Reiki: Application as a Modality of Integrative Therapy for Treating Post-Traumatic Stress Disorder and Other Wounded Warrior Issues

    Science.gov (United States)

    2015-02-17

    Oncology Nursing 12, no. 3 (June 2008): 489-494. 62 Wounded Warrior Project, “Combat Stress Recovery Programs,” http://www.woundedwarriorproject.org...Health Care Professionals with Burnout ,” Biological Research for Nursing 13, no. 4 (October 2011): 376-82. 78 A. T. Vitale and P. C. O’Conner, “The...Variability, Cortisol Levels, and Body Temperature in Health Care Professionals with Burnout .” Biological Research for Nursing 13, no. 4 (October 2011): 376

  16. Calculation of stress intensity factors using the UNCLE finite element system and their application in fracture mechanics

    International Nuclear Information System (INIS)

    Pearce, J.H.B.

    1978-02-01

    The behaviour of crack-like defects in loaded structures is in many cases characterised by the stress intensity factor, K, which describes the spatial distribution around the crack tip. Analytical evaluation of K for generalised loading and geometry would be extremely complex. A finite element approach is described which utilises the existing UNCLE system of the UKAEA. The interpretation of the results for a fracture mechanics analysis is briefly reviewed. (author)

  17. The application of white radiation to residual stress analysis in the intermediate zone between surface and volume

    CERN Document Server

    Genzel, C; Wallis, B; Reimers, W

    2001-01-01

    Mechanical surface processing is known to give rise to complex residual stress fields in the near surface region of polycrystalline materials. Consequently, their analysis by means of non-destructive X-ray and neutron diffraction methods has become an important topic in materials science. However, there remains a gap with respect to the accessible near surface zone, which concerns a range between about 10 mu m and 1 mm, where the conventional X-ray methods are no longer and the neutron methods are not yet sensitive. In order to achieve the necessary penetration depth tau to perform residual stress analysis (RSA) in this region, advantageous use can be made of energy dispersive X-ray diffraction of synchrotron radiation (15-60 keV) in the reflection mode. Besides an example concerning the adaptation of methods applied so far in the angle dispersive RSA to the energy dispersive case, the concept of a new materials science beamline at BESSY II for residual stress and texture analysis is presented.

  18. The application of white radiation to residual stress analysis in the intermediate zone between surface and volume

    International Nuclear Information System (INIS)

    Genzel, Ch.; Stock, C.; Wallis, B.; Reimers, W.

    2001-01-01

    Mechanical surface processing is known to give rise to complex residual stress fields in the near surface region of polycrystalline materials. Consequently, their analysis by means of non-destructive X-ray and neutron diffraction methods has become an important topic in materials science. However, there remains a gap with respect to the accessible near surface zone, which concerns a range between about 10 μm and 1 mm, where the conventional X-ray methods are no longer and the neutron methods are not yet sensitive. In order to achieve the necessary penetration depth τ to perform residual stress analysis (RSA) in this region, advantageous use can be made of energy dispersive X-ray diffraction of synchrotron radiation (15-60 keV) in the reflection mode. Besides an example concerning the adaptation of methods applied so far in the angle dispersive RSA to the energy dispersive case, the concept of a new materials science beamline at BESSY II for residual stress and texture analysis is presented

  19. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Adanyi, Nora [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)]. E-mail: n.adanyi@cfri.hu; Nemeth, Edina [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Halasz, Anna [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Szendro, Istvan [MicroVacuum Ltd., H-1147 Budapest, Kerekgyarto u. 10 (Hungary); Varadi, Maria [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method.

  20. Application of one-sided stress wave velocity measurement technique to evaluate freeze-thaw damage in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Park, Won Su

    1998-01-01

    It is well recognized that damage resulting from freeze-thaw cycles is a serious problems causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a 400 x 150 x 100 mm concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  1. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    International Nuclear Information System (INIS)

    Adanyi, Nora; Nemeth, Edina; Halasz, Anna; Szendro, Istvan; Varadi, Maria

    2006-01-01

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method

  2. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wrocaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Drzik, Milan [International Laser Center, Ilkovicova 3, 841-04 Bratislava 4 (Slovakia)

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  3. The application of the technique of imposition of hands on stress-anxiety: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Pedro Mourão Roxo da Motta

    2015-07-01

    Full Text Available This article aims to analyze, according to a systematic review of the literature, the use and effect of techniques of imposition of hands: Reiki, Therapeutic Touch, and Healing Touch on stress-anxiety. Searches were performed in PubMed/Medline, Lilacs, Web of Science, Embase and Ebsco databases in October 2013; 24 articles were selected and analyzed according to the following issues: methodology, object of study, impact factors of journals, countries where the studies were developed, year of publication, and results. The literature shows predominance of quantitative methodology, 21 of the 24 studies; use of techniques of imposition of hands in patients with symptoms of stress-anxiety in cancer treatment, 8 of the 24 studies; predominance of publications in North America, 19 of the 24 studies, 14 in the U.S.; very new field of research, with the publication of the first indexed article in 1999; publication in journals with low or no impact factor, only 8 of the 24 articles were published in periodicals listed in the Journal Citation Reports; and predominance of statistically significant articles, 18 of 24 studies. Although most studies have shown positive results, the data are insufficient and further studies are needed to develop the relationship of the use of Reiki, Therapeutic Touch, and Healing Touch for the treatment of stress-anxiety

  4. TheEffect of Salicylic Acid Application on Some Morphological and Physiological Characteristics of Grape Cultivars (Vitisvinifera L. Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Nasser Abbaspour

    2017-12-01

    related to the interaction of various levels of drought and salicylic acid, increasing watering intervals resulted in significant decrease in parameters of plant height, stem diameter, leaf area, leaf number and chlorophyll index,and increase inproline content, malondialdehyde, total protein and total soluble sugars.Furthermore, according to the obtained results, plant height, stem diameter, leaf number, chlorophyll index, accumulation of prolineandtotal protein in grape cv. Rashehwere higher than Bidanesefidone.Drought effected the mitotic division, andelongation and expansion of cells, leading to reduced growth and crop yield. It was concluded that plant height, stem diameter, and leaf area decreased noticeably byincreasing water stress. The reduction in plant height could be attributed to decline in the cell enlargement and higher rate ofleaf senescence in the plant under water stress. The reduction in leaf number under severe water deficit was partially due to leaf senescence. Reduction inthe number of leaves could be a response by plants to minimize the transpiration surface. Sorghum plants have also been reported to have a similarbehaviorthroughwhichthey conserve water by reducing the number of leaves. When exposed to chronic water deficit, they showed an initial decrease in the daily increment of leaf area and eventually a decrease due to accelerated senescence. Dropping of the leaves during severe stress markedly reduces the evaporative surface and allows the plant to conserve water.It is well known that proline contents in leaves of many plants are enhanced by several stresses including drought stress. The efficiency of exogenous SA depends on multiple causes such as the species, developmental stage of the plant, manner of application and concentration of SA.Plant height, stem diameter, leaf number, leaf area, leaf total soluble sugar and chlorophyll index increased by applying 2 mM salicylic acid comparedwith 0 and 1 mM doses. The findings of this study showed

  5. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications

    International Nuclear Information System (INIS)

    Zheng, Liang; Zhang, Guoqing; Lee, Tung L.; Gorley, Michael J.; Wang, Yue; Xiao, Chengbo; Li, Zhou

    2014-01-01

    Highlights: • An equiaxed superalloy has high rupture life equivalent to single crystal alloy DD3. • Low Cr and high W superalloys possess good microstructrual stability at 850–1100 °C. • Tantalum promotes, strengthens and stabilizes the eutectic γ′ and MC carbides. • Excessive Ta leads to form harmful abnormal primary α and plate-like M 6 C phases. • Proper Ta can improve the stress rupture life at intermediate and high temperatures. - Abstract: A novel polycrystalline Ni-base superalloy was developed for land-based high temperature applications, such as isothermal forging dies and industrial gas turbines. The alloy possessed surprisingly high stress rupture life of 52 h at 1100 °C/118 MPa which is comparable to the first generation single crystal (SC) superalloy and exhibited good microstructural stability. The effects of Ta addition on the phase change, stress rupture properties and microstructural stability of the alloy were investigated. The results indicated that Ta is a γ′-former and promotes the formation of eutectic γ′. The alloys with ∼7 vol.% eutectic γ′ possess higher stress rupture life at 1100 °C/118 MPa than the alloys with higher ∼20 vol.% eutectic. However, ∼20 vol.% excessive eutectic phases will enhance the stress rupture life at intermediate temperature of 760 °C for 686 MPa but weaken high temperature stress rupture properties. The (Al + Ta) content over 14.4 at.% led to the formation of large amounts of eutectic γ′ and exceeded the solubility of W and Mo in the residue liquid pool, which then promoted the precipitation of primary α-(W,Mo) and M 6 C phases. Tantalum was also found as a strong MC carbides forming element. The order of ability to form monocarbide decreased from NbC to TaC to TiC. 6Al–0Ta (wt.%) alloys possessed good microstructural stability with no harmful topologically close-packed (TCP) phases being observed after thermal exposure at 850 °C/3000 h, 900 °C/1000 h. Only trace amounts of

  6. Scintigraphic assessment of normal values of lower limb perfusion under stress and rest, with possible clinical applications

    International Nuclear Information System (INIS)

    Malkowski, B.; Zajac, A.; Maziarz, Z.; Zaborowski, G.; Ryglewska-Brzozowska, M.; Malara, A.; Tryniszewski, W.

    2005-01-01

    The lack of a range of normal values of perfusion in the lower limbs during stress and at rest narrows the use of this type of diagnostic tool to the estimation of the current state of relative perfusion without indications of the presence or level of perfusion disturbances. Numerous reports on early changes in endothelium reactivity (depending on disease and degree of vessel pathology) encouraged us to assess lower limb perfusion in healthy people. Our goal was to 1) work out a program and method which would enable lower limb perfusion assessment under stress and at rest in patients without signs of lower limb circulation deprivation and 2) establish the normal range of indexes of lower limb perfusion under stress and at rest which would enable their use in the diagnostics of lower limb muscle circulation. 33 male patients aged between 25 to 45 years (mean: 35.30 ± 6.04) without signs of circulatory problems were entered into the study. To exclude circulatory disturbances, Doppler USG, blood pressure, and laboratory tests were performed on every patient at rest 5 min. after the injection of 11.1 MBq/kg 99 mTc MIBI. Whole body as well as thigh and calf scintigrams were made with an ELSCINT SP6HR gamma-camera. The symmetry of the thigh and calf perfusion (WSU, WSP) and the indexes of the thigh (WPLU, WPPU) and calf (WPLP, WSPP) perfusion of both lower limbs were estimated. At rest: WSP: 96.47% ±1.02, WSP: 96.47% ± 1.02, WPLP: 9.77 ± 0.32, WPPP: 9.78 ± 0.31, WPLU: 8.45 ± 0.22, WPPU: 8.48 ± 0.22. Under stress: WSP: 96.69% ± 1.32, WSU: 96.41% ± 1.20, WPLP: 8.78 ± 0.26, WPPP: 8.81 ± 0.25, WPLU: 7.77 ± 0.25, WPPU: 7.82 ± 0.26. Anamnesis, additional studies, and laboratory tests in the group examined did not show any circulatory disturbances. The estimated values in patients without circulatory disturbances are similar and within a narrow range, which allows us to calculate the norms of lower limb perfusion at rest and under stress. The determined normal

  7. Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?

    Science.gov (United States)

    Suhir, Ephraim

    2015-08-01

    Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short beam with clamped and known-in-advance offset ends. The analysis is limited to elastic deformations. While the classical Timoshenko short-beam theory seeks the beam's deflection caused by the combined bending and shear deformations for the given loading, an inverse problem is considered here: the lateral force is sought for the given ends offset. In short beams this force is larger than in long beams, since, in order to achieve the given displacement (offset), the applied force has to overcome both bending and shear resistance of the beam. It is envisioned that short beams could adequately mimic the state of stress in solder joint interconnections, including ball-grid-array (BGA) systems, with large, compared to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is subjected to the change in temperature, the thermal expansion (contraction) mismatch of the package and the PCB results in an easily predictable relative displacement (offset) of the ends of the solder joint. This offset can be determined from the known external thermal mismatch strain (determined as the product of the difference in the coefficients of thermal expansion and the change in temperature) and the position of the joint with respect to the mid-cross-section of the assembly. The maximum normal and shearing stresses could be viewed as suitable criteria of the beam's (joint's) material long-term reliability. It is shown that these stresses can be brought down by employing beam-like joints, i.e., joints with an increased stand-off height compared to conventional joints. It is imperative, of course, that, if such joints are employed, there is still enough interfacial real estate, so that the BGA bonding strength is not compromised. On the other hand, owing to the lower stress level, reliability assurance might be much less of a challenge than in the case of

  8. Essential oil composition of sweet basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress.

    Science.gov (United States)

    Keramati, Sara; Pirdashti, Hemmatollah; Babaeizad, Valliollah; Dehestani, Ali

    2016-12-01

    Essential oil content and oil composition of paclobutrazol treated sweet basil (Ocimum basilicum L.) plant inoculated with Piriformospora indica under salt stress were investigated by GC-MS. The results show a slight increase in essential oil content when basil plants subjected to moderate salinity stress (3 dS m -1 of NaCl). It decreased signifiicantly with increasing salinity level to 9 dS m -1 . The findings revealed that leaf area, above ground and leaf dry weights, essential oil content and yield were significantly affected by P. indica inoculation, however paclobutrazol application significantly influenced essential oil yield but not content. Fungal symbiosis as well as paclobutrazol application ameliorated the negative effects of salinity on dry matter and essential oil yield. The main constituents found in the volatile oil of O. basilicum in control treatment were Geranial (26.03%), Neral (24.88%) and Estragole (24.78%). The compounds concentrations showed some differences in P. indica and paclobutrazol treatments. The results demonstrate that micorrhiza-like fungi concomitantly increase essential oil production and biomass in sweet basil, a medicinal herb rich in commercially valuable essential oils.

  9. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stress Management

    Science.gov (United States)

    Healthy Lifestyle Stress management By Mayo Clinic Staff Stress basics Stress is a normal psychological and physical reaction to the demands of life. ... some people's alarm systems rarely shut off. Stress management gives you a range of tools to reset ...

  11. Manage Stress

    Science.gov (United States)

    ... Manage Stress Print This Topic En español Manage Stress Browse Sections The Basics Overview Signs and Health ... and Health Effects What are the signs of stress? When people are under stress, they may feel: ...

  12. Stress Incontinence

    Science.gov (United States)

    Stress incontinence Overview Urinary incontinence is the unintentional loss of urine. Stress incontinence happens when physical movement or activity — such ... coughing, sneezing, running or heavy lifting — puts pressure (stress) on your bladder. Stress incontinence is not related ...

  13. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Alharby Hesham F.

    2016-01-01

    Full Text Available The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen contents and changes in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl, and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1. The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1 was more effective than a higher concentration (30 mg L-1. This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

  14. Application of eddy currents for identification of dimensional variations in PWR steam generator tubes and detection of stress corrosion cracks

    International Nuclear Information System (INIS)

    Comby, R.; Gourmelon, A.

    1985-01-01

    To avoid the risk of cracking on the secondary side of the roll expansion transition zone in steam generator (SG) tubes, tube profile at the upper face of the tube sheet must comply with specifications laid down by the manufacturer and EDF. EDF has developed an eddy current (EC) signal identification method, used for pre-service testing to detect any deviation in tube profile. Nevertheless, circumferential or longitudinal stress corrosion cracks (SCC), initiated on the primary side, have appeared on some SGs. A special rotating probe was used on these generators. The results of these checks have been correlated with metallurgical examination of the extracted tubes

  15. Examining the aging process through the stress-coping framework: application to driving cessation in later life.

    Science.gov (United States)

    Choi, Moon; Adams, Kathryn Betts; Mezuk, Briana

    2012-01-01

    The aging process is marked by a series of transitions that influence multiple domains of well-being. One important transition for older adults is the process of driving cessation. Numerous studies have examined risk factors for driving cessation among older adults to identify at-risk older drivers for road safety. Recent research has focused on the consequences of driving cessation in later life for health and well-being. However, these reports have been largely empirical and are not drawn from a defined conceptual framework. Establishing a theoretical model of 'how driving cessation interacts with other processes and domains of aging' will promote synthesis of seemingly disparate findings and also link the empirical research on cessation to the broader field of gerontology. This article describes a conceptual model for articulating and examining the components of the driving cessation process based on the stress-coping paradigm. This model situates driving cessation within the context of exogenous stressors, individual vulnerabilities and coping strategies, and environmental hazards and buffers over the lifespan. This model could assist in guiding intervention strategies aimed at reducing premature driving cessation in older drivers with ameliorable impairments while assisting at-risk older drivers to reduce or stop driving in a less stressful way.

  16. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  17. Examining the aging process through the stress-coping framework: application to driving cessation in later life

    Science.gov (United States)

    Choi, Moon; Adams, Kathryn Betts; Mezuk, Briana

    2017-01-01

    The aging process is marked by a series of transitions that influence multiple domains of well-being. One important transition for older adults is the process of driving cessation. Numerous studies have examined risk factors for driving cessation among older adults to identify at-risk older drivers for road safety. Recent research has focused on the consequences of driving cessation in later life for health and well-being. However, these reports have been largely empirical and are not drawn from a defined conceptual framework. Establishing a theoretical model of ‘how driving cessation interacts with other processes and domains of aging’ will promote synthesis of seemingly disparate findings and also link the empirical research on cessation to the broader field of gerontology. This article describes a conceptual model for articulating and examining the components of the driving cessation process based on the stress-coping paradigm. This model situates driving cessation within the context of exogenous stressors, individual vulnerabilities and coping strategies, and environmental hazards and buffers over the lifespan. This model could assist in guiding intervention strategies aimed at reducing premature driving cessation in older drivers with ameliorable impairments while assisting at-risk older drivers to reduce or stop driving in a less stressful way. PMID:21702704

  18. Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior.

    Science.gov (United States)

    Yu, Gui-Rui; Wang, Qiu-Feng; Zhuang, Jie

    2004-03-01

    Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation

  19. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    Science.gov (United States)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  20. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    Science.gov (United States)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  1. Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Laraufie, Romain; Deck, Sébastien

    2013-01-01

    Highlights: • Present various Reynolds stresses reconstruction methods from a RANS-SA flow field. • Quantify the accuracy of the reconstruction methods for a wide range of Reynolds. • Evaluate the capabilities of the overall process (Reconstruction + SEM). • Provide practical guidelines to realize a streamwise RANS/LES (or WMLES) transition. -- Abstract: Hybrid or zonal RANS/LES approaches are recognized as the most promising way to accurately simulate complex unsteady flows under current computational limitations. One still open issue concerns the transition from a RANS to a LES or WMLES resolution in the stream-wise direction, when near wall turbulence is involved. Turbulence content has then to be prescribed at the transition to prevent from turbulence decay leading to possible flow relaminarization. The present paper aims to propose an efficient way to generate this switch, within the flow, based on a synthetic turbulence inflow condition, named Synthetic Eddy Method (SEM). As the knowledge of the whole Reynolds stresses is often missing, the scope of this paper is focused on generating the quantities required at the SEM inlet from a RANS calculation, namely the first and second order statistics of the aerodynamic field. Three different methods based on two different approaches are presented and their capability to accurately generate the needed aerodynamic values is investigated. Then, the ability of the combination SEM + Reconstruction method to manufacture well-behaved turbulence is demonstrated through spatially developing flat plate turbulent boundary layers. In the mean time, important intrinsic features of the Synthetic Eddy method are pointed out. The necessity of introducing, within the SEM, accurate data, with regards to the outer part of the boundary layer, is illustrated. Finally, user’s guidelines are given depending on the Reynolds number based on the momentum thickness, since one method is suitable for low Reynolds number while the

  2. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  3. Effect of Foliar Application of Chelate Iron in Common and Nanoparticles Forms on Yield and Yield Components of Cumin (Cuminum cyminum L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Nasiri Dehsorkhi

    2018-05-01

    Full Text Available Introduction Cumin is a member of Apiaceae family and annual plant which is widely cultivated in arid and semi-arid zone. Iran is one of the main producers of this plant. Water deficit is the major limiting factor in crops production. Proper nutrition management under stress conditions could partly help the plant to tolerate different stresses. Various studies were carried out to understand the effect of nanoparticles on the growth of plants. For example, Hong et al. (2005 and Yang et al. (2006 reported that a proper concentration of nano-TiO2 was found to improve the growth of spinach by promoting photosynthesis and nitrogen metabolism. Iran a country with arid and semi-arid climate, always face water deficiency. Thus the aim of this research was investigate the effect of foliar application of chelate iron in common and nanoparticles forms on yield and yield components of cumin (Cuminum cyminum L. under drought stress conditions. Materials and Methods A field experiment was conducted as a split plot in complete randomized block design with three replications in Esfahan city, during the growing season of 2015-2016. Treatments were included three irrigation intervals (5, 10 and 15 days as main plots and Fe foliar application in four levels (control, 2 g L-1 iron chelate, 2 g L-1 Nano-iron chelate, 4 g L-1 iron chelate, 4 g L-1 nano-iron chelate. Foliar application of Fe chelate on leaves was done two times at before and after flowering stage. The plots were 16 m2 with 4 sowing rows, 4 m long. Seeds were placed at 2 to 4 cm depth in each row. All data collected were subjected of analysis of variance (ANOVA using MSTATC software. Significant differences between means refer to the probability level of 0.05 by LSD test. Results and Discussion The results indicated that drought stress decreased the investigated traits significantly but the effect of irrigation by 15 days interval was more than 10 days. Plots which irrigated by 15 days interval showed

  4. Effect of foliar application of α-tocopherol on vegetative growth and some biochemical constituents of two soybean genotypes under salt stress

    Science.gov (United States)

    Rahmawati, N.; Damanik, R. I. M.

    2018-02-01

    Foliar spray of plant growth regulating compounds including antioxidants is an effective strategy to overcome the adverse effects of environmental constraints on different plants. A field experiment was conducted on May - July 2017 at the experimental farm in Paluh Merbau Village Deli Serdang (EC 6 - 7 dS/m). The aim was to study the effects of foliar spray of α-tocopherol (0, 250, 500, 500 ppm) on vegetative growth and some chemical constituents of 2 soybean genotypes (Grobogan x Grobogan and Grobogan x Anjasmoro) under salt stress (EC 6 - 7 dS/m). Most of morphological and biochemical parameters were significantly affected by application of α-tocopherol. The α-tocopherol at 500 ppm recorded the best value of root fresh weight, shoot and root dry weight, number of leaves, chlorophyll b, and soluble protein content. There was significant difference found between plants treated with α-tocopherol in terms of number of branch, shoot fresh weight, and chlorophyll a. Soybean genotypes showed diverse morphology and physiological responses to salt stress. Grobogan x Anjasmoro genotype was salt-sensitive based on all variable, while Grobogan x Grobogan genotype was more tolerant based on morphological and biochemical characters.

  5. Application of a Multi-Scale form of Terzaghi’s Effective Stress Principle for Unsaturated Expansive Clays to Simulate Hydro-Mechanical Behavior During Hydration

    Directory of Open Access Journals (Sweden)

    Mainka Julia

    2016-01-01

    Full Text Available Our recently developed multi-scale form of Terzaghi’s effective stress principle for unsaturated swelling clays that was rigorously derived by periodic homogenization starting from micro- and nano-mechanical analyses is applied to numerically simulate one-dimensional swelling pressure tests of compacted bentonites during hydration. The total macroscopic stress captures the coupling between disjoining forces at the nanoscopic scale of clay platelets and capillary effects at the microscopic scale of clay aggregates over the entire water content range. The numerical results allow to draw conclusions on the water transfer mechanism between inter- and intra-aggregate pores during hydration and consequently on the evolution of the external swelling pressure resulting from the competition between capillary and disjoining forces. In addition, such application highlights the abilities and the limits of the electrical double-layer theory to compute the disjoining pressure in the nano-pores. For large platelet distances, in the range of osmotic swelling, the nature of the disjoining pressure is electro-chemical and can be computed from Poisson-Boltzmann theory. Conversely, at small distances, in the crystalline swelling, a solvation component has to be added to account for the molecular nature of the solvent. As a first improvement of the nano-scale description the solvent is treated as a hard sphere fluid using Density Functional Theory.

  6. Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease.

    Science.gov (United States)

    Moreira, Paula I; Sayre, Lawrence M; Zhu, Xiongwei; Nunomura, Akihiko; Smith, Mark A; Perry, George

    2010-01-01

    Oxidative stress is a key factor involved in the development and progression of Alzheimer disease (AD), and it is well documented that free radical oxidative damage, particularly of neuronal lipids, proteins, nucleic acids, and sugars, is extensive in brains of AD patients. The complex chemistry of peroxynitrite has been the subject of intense study and is now evident that there are two principal pathways for protein modification: the first one involves homolytic hydroxyl radical-like chemistry that results in protein-based carbonyls and the second involves electrophilic nitration of vulnerable side chains, in particular the electron-rich aromatic rings of Tyr and Trp. In the presence of buffering bicarbonate, peroxynitrite forms a CO(2) adduct, which augments its reactivity. Formation of 3-nitrotyrosine by this route has become the classical protein marker specifically for the presence of peroxynitrite. Protein-based carbonyls can be detected by two methods: (i) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and detection of the protein-bound hydrazones using an enzyme-linked anti-2,4-dinitrophenyl antibody and (ii) derivatization with biotin-hydrazide and detection of the protein-bound acyl hydrazone with enzyme-linked avidin or streptavidin. Glycation of proteins by reducing sugars (Maillard reaction) results in a profile of time-dependent adduct evolution rendering susceptibility to oxidative elaboration. In addition, oxidative stress can result in oxidized sugar derivatives which can subsequently modify protein through a process known as glycoxidation. Of more general importance, oxidative stress results in lipid peroxidation and the production of a range of electrophilic and mostly bifunctional aldehydes that modify numerous proteins. The more important protein modifications are referred to as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Protein modification can result in both non-cross-link and cross-link AGEs

  7. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  8. A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals

    Directory of Open Access Journals (Sweden)

    Hai-Lin Feng

    2012-01-01

    Full Text Available Ensemble empirical mode decomposition (EEMD has been recently used to recover a signal from observed noisy data. Typically this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs. The time intervals between two adjacent zero-crossings within the IMF, called instantaneous half period (IHP, are used as a criterion to detect and classify the noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this approach can be derived from the signal itself using the consecutive mean square error (CMSE. The method is fully data driven, and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab. The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this paper is suitable to preprocess the stress wave signals in the wood nondestructive testing.

  9. Quality of Life in Women with Stage 1 Stress Urinary Incontinence after Application of Conservative Treatment—A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Magdalena Ptak

    2017-05-01

    Full Text Available Stress urinary incontinence (SUI influences quality of life in female patients. In this study, we used ICIQ LUTS QoL (The International Consultation Incontinence Questionnaire Lower Urinary Tract Symptoms quality of life to determine the quality of life (QoL in various domains in patients with stage 1 SUI. The study included 140 perimenopausal women subjected to urodynamic tests at the Department of Gynaecology, Endocrinology and Gynaecologic Oncology, Pomeranian Medical University, Police (Poland in 2013–2015. The study subjects were divided into two groups, A and B. Each patient completed two questionnaires, an original survey developed by the authors and the validated ICIQ LUTS QoL. Two exercise programs, each lasting for 3 months and consisting of 4 weekly sessions, were recommended to the study subjects. The program for Group A included exercises for pelvic floor muscles (PFM with simultaneous tension of the transverse abdominal muscle (TrA, and the program for Group B, PFM exercises without TrA tension. After completing the exercise programs, patients with stage 1 SUI, both from Group A and from Group B, showed a significant improvement in most QoL domains measured with ICIQ LUTS QoL. However, more beneficial effects of the training were observed in the group subjected to PFM exercises with TrA tension.

  10. Improvement of thermophysiological stress in participants wearing protective clothing for spraying pesticide, and its application in the field.

    Science.gov (United States)

    Hayashi, C; Tokura, H

    2000-04-01

    Thermoregulatory responses were compared under two experimental conditions, in the laboratory (Experiment I), and in the field (Experiment II), between two kinds of protective clothing for spraying pesticides. One was currently being used (Type A), and was composed of ready made Gore-Tex clothing, mask, polyurethane gloves and rubber boots. The other one was newly designed (Type B), and was composed of pesticide-proof clothing (100% cotton with water repellent finish), mask, Gore-Tex gloves, and special boots consisting of rubber for the feet and ankle and Gore-Tex around the legs. In addition, the head and chest were cooled by frozen gel strips fixed in the cap and undershirt. In Experiment I, five female adults took part, in a climate-chamber controlled at an ambient temperature of 28 degrees C and a relative humidity of 60%. In Experiment II, five farmers (one male and four female) were tested in an apple orchard in July, August and September. The main results are summarized as follows: (1) change of rectal temperature was inhibited more effectively in Type B in Experiment I, (2) change of heart rate tended to be lower in Type B than in Type A in both experiments, (3) salivary lactic acid concentration at the end of the first exercise was significantly higher in Type A than in Type B in Experiment I, (4) the number of contractions in the handgrip exercise which was performed immediately after the third exercise, was significantly smaller in Type A than in Type B in Experiment I, (5) subjective comfort sensation was significantly improved in Type B in Experiments I and II. Thus, it was concluded that the newly designed protective clothing could reduce thermal stress during the spraying of pesticides in an apple orchard in summer.

  11. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  12. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    Science.gov (United States)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified

  13. Influence of localized plasticity on Stress Corrosion Cracking of austenitic stainless steel. Application to IASCC of internals reactor core vessels

    International Nuclear Information System (INIS)

    Cisse, Sarata

    2012-01-01

    The surface conditions of the 316L screw connecting vessel internals of the primary circuit of PWR (pressurized water reactor) corresponds to a grinding condition. These screws are affected by the IASCC (Irradiation Assisted Stress Corrosion Cracking). Initiation of cracking depends on the surface condition but also on the external oxidation and interactions of oxide layer with the deformation bands. The first objective of this study is to point the influence of surface condition on the growth kinetic of oxide layer, and the surface reactivity of 304, 316 stainless steel grade exposed to PWR primary water at 340 C. The second objective is to determine influence of strain localization on the SCC of austenitic stainless steels in PWR primary water. Indeed, the microstructure of irradiated 304, 316 grades correspond to a localized deformation in deformation bands free of radiation defects. In order to reproduce that microstructure without conducting irradiations, low cycle fatigue tests at controlled stain amplitude are implemented for the model material of the study (A286 austenitic stainless steel hardened by the precipitation of phase γ'Ni3(Ti, Al)). During the mechanical cycling (after the first hardening cycles), the precipitates are dissolved in slip bands leading to the localization of the deformation. Once the right experimental conditions in low cycle fatigue obtained (for localized microstructure), interactions oxidation / deformation bands are studied by oxidizing pre deformed samples containing deformation bands and non deformed samples. The tensile tests at a slow strain rate of 8 x 10 -8 /s are also carried out on pre deformed samples and undeformed samples. The results showed that surface treatment induces microstructural modifications of the metal just under the oxide layer, leading to slower growth kinetics of the oxide layer. However, surface treatment accelerates development of oxides penetrations in metal under the oxide layer. As example, for

  14. Occupational Stress

    OpenAIRE

    Löblová, Klára

    2011-01-01

    The thesis deals with load, stress and related questions of the working life. Work-related stress brings numerous difficulties not only to affected individuals, but as a result also to organizations. The thesis follows symptoms, impacts, somatic and mental aspects of stress, its types and also types of stressors, which cause this problem. It is concentrated on workload as a specific area of work-related stress, individual resistance to the load, factors of workload and work-related stress and...

  15. Amelioration of Adverse Effects of Salt Stress on Maize (Zea Mays L.) Cultivars by Exogenous Application of Sulfur at Seedling Stage

    International Nuclear Information System (INIS)

    Riffat, A.; Ahmad, M. S. A.

    2016-01-01

    Sulfur is an important plant nutrient involved in seed germination and seedling establishment. It also plays an important role in response of plants to tolerate abiotic stresses such as salinity. A study was conducted to assess the role of sulfur on salinity tolerance of maize (Zea mays L.) at seed germination stage. Six varieties (Sadaf, MMRI, Pearl Basic, Agaitti 2003, Saiwal 2002 and Pak Afgoi 2003) and two hybrids (Yusafwala Hybrid and Hybrid 1898) of maize were used to assess the modulation of salt stress by exogenously applied sulfur. Three NaCl (25, 50 and 75 mM) and five potassium sulfate (20, 40, 60, 80 and 100 mM) levels were applied to plants as sand amendment at sowing time along with a control. The experiment was laid down in a Completely Randomized Design (CRD) with three replicates. The data for various germination attributes were recorded. The results revealed that sulfur application significantly modulated all germination parameters i-e. germination percentage germination index, coefficient of velocity of emergence, mean emergence time, vigour index, germination energy, germination speed, mean daily germination and germination value and thus reduced the toxic effect of salinity. It was found that sulfur at 60 and 80 mM had more pronounced effect in enhancing seed germination. Application of sulfur at 60 to 80 mM improved all germination parameters and reduced time needed for 50 percent seed to germinate. The phylogenetic tree constructed by NTSysPC clearly clustered all genotypes the two distinct clusters. The tolerant cluster mainly contained 4 varieties (Sadaf, MMRI, Pearl Basic and Agati 2003) while the sensitive cluster included two varieties (Sahiwal 2002, Pak Afgoi 2003) and two hybrids (Hybrid 1898 and Yusaf wala hybrid). Based on the distance matrixes generated by software, Agati 2003 proved to be the most tolerant genotype. In comparison, a maize variety (Pak Afgoi-2003) and a Hybrid-1898 showed the least improvement by exogenously applied

  16. Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model

    Science.gov (United States)

    Lévite, Hervé; Sally, Hilmy; Cour, Julien

    Like many river basins in South Africa, water resources in the Olifants river basin are almost fully allocated. Respecting the so-called “reserve” (water flow reservation for basic human needs and the environment) imposed by the Water Law of 1998 adds a further dimension, if not difficulty, to water resources management in the basin, especially during the dry periods. Decision makers and local stakeholders (i.e. municipalities, water users’ associations, interest groups), who will soon be called upon to work together in a decentralized manner within Catchment Management Agencies (CMAs) and Catchment Management Committees (CMCs), must therefore be able to get a rapid and simple understanding of the water balances at different levels in the basin. This paper seeks to assess the pros and cons of using the Water Evaluation and Planning (WEAP) model for this purpose via its application to the Steelpoort sub-basin of the Olifants river. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users’ behavior. Water demand management is one of the options discussed in more detail here. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. It is evident that the quality of data (in terms of availability and reliability) is very crucial and must be dealt with carefully and with good judgment. Secondly, credible hypotheses have to be made about water uses (losses, return flow) if the results are to be meaningfully used in support of decision-making. Within the limits of data availability, it appears that some water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not

  17. IMPACT OF FOLIAR APPLICATION OF ASCORBIC ACID AND α-TOCOPHEROL ON ANTIOXIDANT ACTIVITY AND SOME BIOCHEMICAL ASPECTS OF FLAX CULTIVARS UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Hala M.S. El-Bassiouny

    2015-05-01

    Full Text Available ABSTRACT The interactive effects of saline water (2000, 4000 and 6000 mg/l and foliar application of 400 mg/l of ascorbic acid (Asc or α – tocopherol (α-Toco on three flax cultivars (Sakha 3, Giza 8 and Ariane were conducted during two successive seasons (2011 and 2012. The results showed that, total soluble carbohydrates, free amino acids, proline contents were significantly increased with increasing salinity levels in all three tested cultivars except free amino acid content of Giza 8 which showed a non significant decrease. While, nucleic acids (DNA and RNA showed significant decreases compared with the corresponding controls. Moreover, applications of vitamins (Asc or α-Toco as foliar spraying increased all mentioned contents compared to the corresponding salinity levels. On the other hand, lipid peroxidation, and activity levels of polyphenol oxidase (PPO, peroxidase (POX and catalase (CAT enzymes showed progressive significant increases with increasing salinity levels of all tested three cultivars, while the behaviour of superoxide dismutase (SOD activity showed an opposite response as compared with the control in Sakha 3 and Giza 8. Treatments with Asc or α-Toco induced significant reduction in lipid peroxidation and activities of PPO and POX of all three tested cultivars. Meanwhile, SOD increased in all three cultivars, and CAT activities increased only in Sakha 3 cultivar under salt stress as compared with reference controls. Some modifications are observed in protein patterns hence some proteins were disappeared, while certain other proteins were selectively increased and synthesis of a new set of proteins were induced, some of these responses were observed under treatments and salinity, while others were induced by either treatments or salinity.

  18. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    Science.gov (United States)

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The association between in-service sexual harassment and post-traumatic stress disorder among Department of Veterans Affairs disability applicants.

    Science.gov (United States)

    Murdoch, Maureen; Polusny, Melissa A; Hodges, James; Cowper, Diane

    2006-02-01

    The goal was to describe the association between post-traumatic stress disorder (PTSD) and in-service sexual harassment in a nationally representative sample of Department of Veterans Affairs PTSD disability applicants. The study was a cross-sectional survey. Of 4,918 eligible veterans, 3,337 (68%) returned surveys. Nonresponse bias appeared to be minimal. After adjustment for other reported traumas, women's reported in-service sexual harassment severity was significantly associated with PTSD symptom severity (p men and for in-service sexual assault among the women. Men showed no association between in-service sexual harassment and PTSD (p = 0.33), although power was low for this test. Sexual harassment significantly contributed to female veterans' PTSD symptoms; its contribution to men's symptoms was unclear. We discuss mechanisms through which sexual harassment might affect PTSD symptom severity, including the possibility that sexual harassment sometimes meets the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, definition of a criterion A stressor.

  20. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  1. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress.

    Science.gov (United States)

    Li, Da; Xu, Guojie; Ren, Guangxi; Sun, Yufeng; Huang, Ying; Liu, Chunsheng

    2017-10-20

    The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS). A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares-discriminate analysis (PLS-DA) revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  2. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress

    Directory of Open Access Journals (Sweden)

    Da Li

    2017-10-01

    Full Text Available The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap–Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS. A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares–discriminate analysis (PLS-DA revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  3. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  4. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  5. Changes in affect after completing a mailed survey about trauma: two pre- and post-test studies in former disability applicants for posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Maureen Murdoch

    2017-05-01

    Full Text Available Abstract Background One potential concern with using mailed surveys containing trauma-related content is the possibility of re-traumatizing survivors without a trained mental health professional present. Prior research provides insufficient guidance regarding the prevalence and magnitude of this risk because the psychological harms of trauma-related surveys have typically been estimated using single post-test observations. Post-test observations cannot quantify magnitude of change in participants’ emotional states and may over or under estimate associations between participants’ characteristics (risk factors and post-survey upset. Methods We conducted two pre- and post-test studies in samples of former applicants for posttraumatic stress disorder disability benefits: 191 males who served during Gulf War I plus 639 male and 921 female Veterans who served sometime between 1955 and 1998. We used two 9-point items from the Self-Assessment Manikins to measure participants’ valence (sadness/happiness and arousal (tenseness/calmness before and after they completed mailed surveys asking about trauma-related symptoms or experiences. We examined the following potential predictors for post-survey sadness and tenseness: screening positive for posttraumatic stress disorder, having a serious mental illness, and history of military sexual assault or combat. Results After the survey, across the groups, 29.3–41.8% were sadder, 45.3–52.2% had no change in valence, and 12.9–22.5% were happier; 31.7–40.2% were tenser, 40.6–48.2% had no change in arousal, and 17.3–24.0% were calmer. The mean increase in sadness or tenseness post-survey was less than one point in all groups (SD’s < 1.7. Cohen’s d ranged from 0.07 to 0.30. Most hypothesized predictors were associated with greater baseline sadness or tenseness, but not necessarily with larger post-survey changes. Women with a history of military sexual assault had the largest net post

  6. Development and validation of UPLC/ESI-Q-TOF-MS for carteolol in aqueous humour: Stability, stress degradation and application in pharmacokinetics of nanoformulation

    Directory of Open Access Journals (Sweden)

    Ameeduzzafar

    2017-05-01

    Full Text Available Carteolol (CRT is currently under development as a potential therapeutic agent for the treatment of open angle glaucoma. The purpose of the present work is to develop and validate a stability indicating assay method and its application to estimate CRT in aqueous humour and study the pharmacokinetic parameters. An ultra performance liquid chromatographic tandem mass spectroscopy (UPLC–MS/MS method was developed and validated for the quantitative determination of CRT in rabbit aqueous humour, using propranolol as the internal standard (I.S.. Aqueous humour samples were prepared by a simple liquid–liquid extraction technique (LLE. The analyte and internal standard were separated by an Acquity UPLC BEH C18 (100.0 × 2.1 mm; 1.7 μm column with a mobile phase of acetonitrile – 2 mM (milli mole ammonium acetate (90/10, v/v over 3 min of retention time. Detection was based on the multiple reactions monitoring with the precursor-to-product ion transitions m/z 293.2 → 237.12 for CRT and m/z 260.09 → 183.04 for I.S. The method was validated according to FDA guidelines on the bio-analytical method validation. The method developed was linear (r2 = 0.999 over the concentration range of 1–1000 ng/mL. The selectivity, sensitivity, linearity, accuracy, precision, extraction recovery, and stability were within the acceptable ranges. Forced degradation studies were performed on bulk sample of CRT as per ICH prescribed stress conditions, such as acid, base, oxidative and photolytic to show the forced of the method. Significant degradation was observed during basic stress condition. The pharmacokinetic study of CRT solution and nanoparticles in aqueous humour of rabbit eye was performed and results showed that CRT nanoparticles enhance the ocular bioavailability by 5.61-fold as compared to CRT-solution.

  7. Neuromuscular Stress.

    Science.gov (United States)

    White, Timothy P.; Kern, Marialice

    1994-01-01

    Discusses exercise-induced stress that results from motor unit recruitment, the impact of recruitment on selected systemic support systems, and some of the environmental overlays that affect the degree of physiological stress. Adaptations to sustained changes in physical activity and muscle and myotendinous injury induced by stress are examined.…

  8. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  9. Effect of stress on NiO reduction in solid oxide fuel cells: A new application of energy-resolved neutron imaging

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, Markus; Lauridsen, Erik Mejdal

    2015-01-01

    Recently, two new phenomena linking stress field and reduction rates in anode-supported solid oxide fuel cells (SOFCs) have been demonstrated, so-called accelerated creep during reduction and reduction rate enhancement and nucleation due to stress (Frandsen et al., 2014). These complex phenomena...

  10. Alternative prophylaxis/disinfection in aquaculture - Adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS

    DEFF Research Database (Denmark)

    Liu, Dibo; Pedersen, Lars-Flemming; Straus, David L.

    2017-01-01

    Stress was monitored by measuring cortisol in water instead of in blood.•Fish adapted to regular prophylaxis/disinfection with peracetic acid by showing reduced stress.•A mathematic model was established to improve understanding of substance distribution in RAS....

  11. A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow. Part 1: Application to the ASU-annular channel case

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.f [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Archambeau, F.; Boucker, M.; Lavieville, J. [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Morel, C. [Commissariat a l' Energie Atomique, 17 rue des Martyrs, F-38000 Grenoble (France)

    2010-09-15

    High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation eddy viscosity models (EVM), especially the standard K-{epsilon} model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. But extensive testing and application over the past three decades have revealed a number of shortcomings and deficiencies in eddy viscosity models. In fact, the K-{epsilon} model is totally blind to rotation effects and the swirling flows can be regarded as a special case of fluid rotation. This aspect is crucial for the simulation of a hot channel in a fuel assembly. In fact, the mixing vanes of the spacer grids generate a swirl in the coolant water, to enhance the heat transfer from the rods to the coolant in the hot channels and to limit boiling. First, we started to evaluate computational fluid dynamics results against the AGATE-mixing experiment: single-phase liquid water tests, with Laser-Doppler liquid velocity measurements upstream and downstream of mixing blades. The comparison of computed and experimental azimuthal (circular component in a horizontal plane) liquid velocity downstream of a mixing vane for the AGATE-mixing test shows that the rotating flow is qualitatively well reproduced by CFD calculations but azimuthal liquid velocity is underestimated with the K-{epsilon} model. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with a simpler geometry, the ASU-annular channel case. A wall function model dedicated to boiling flows is also

  12. Correcting systematic inflation in genetic association tests that consider interaction effects: application to a genome-wide association study of posttraumatic stress disorder.

    Science.gov (United States)

    Almli, Lynn M; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B; Bradley, Bekh; Ressler, Kerry J; Conneely, Karen N; Epstein, Michael P

    2014-12-01

    Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. We believe the robust joint test should be used in candidate-gene studies and GWASs of

  13. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    Debelle, A.

    2006-09-01

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a 0 , solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a 0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  14. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Science.gov (United States)

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  15. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  16. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    International Nuclear Information System (INIS)

    Sandoval-Pineda, J M; Garcia-Lira, J; Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R

    2009-01-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  17. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Pineda, J M; Garcia-Lira, J [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Unidad profesional, Azcapotzalco, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. Mexico (Mexico); Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R, E-mail: jsandovalp@ipn.m, E-mail: guiurri@hotmail.co [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. Mexico (Mexico)

    2009-08-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  18. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  19. Work Stress

    OpenAIRE

    Roeters, Anne

    2014-01-01

    Most of us agree that stress is a growing problem within organizations. We hear about the postal workers who had killed fellow employees and supervisors, and then hear that a major cause of tension is at work. Friends tell us that they are stressed due to increased workload and he has to work overtime because the company is restructured. We read the polls that employees complain about the stress in trying to balance family life with the work. Stress is a dynamic condition in which an individu...

  20. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    International Nuclear Information System (INIS)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru; Sasaki, Toshihiko; Hirose, Yukio; Sakurai, Kenji

    2006-01-01

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few μm. However, for a grazing incidence beam it is only 0.2μm. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin 2 ψ technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  1. Application of in-plane x-ray diffraction technique for residual stress measurement of TiN film/WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Takago, Shigeki; Yasui, Haruyuki; Awazu, Kaoru [Industrial Research Inst. of Ishikawa, Kanazawa, Ishikawa (Japan); Sasaki, Toshihiko; Hirose, Yukio [Kanazawa Univ., Dept. of Materials Science and Engineering, Kanazawa, Ishikawa (Japan); Sakurai, Kenji [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2006-06-15

    An in-plane X-ray diffraction technique was used to measure the residual stress of a CVD (chemical vapor deposition) TiN-coated WC-Co alloy. We could obtain the diffraction pattern from a thin film layer, eliminating that of the substrate. In the case of a conventional X-ray diffractometer, the X-ray penetration depth is about few {mu}m. However, for a grazing incidence beam it is only 0.2{mu}m. Depth profiles of residual stress in TiN film layer were evaluated by the present method and the conventional sin{sup 2}{psi} technique. We concluded that the in-plane diffraction technique enables us to determine the residual stress in a DVD-TiN film having an oriented texture. It was found that the residual tensile stress generated a mismatch of the coefficient of thermal expansion between the film and the substrate. (author)

  2. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    International Nuclear Information System (INIS)

    Grassia, Luigi; D'Amore, Alberto

    2010-01-01

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  3. Countermeasures to stress corrosion cracking by stress improvement

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1983-01-01

    One of the main factors of the grain boundary stress corrosion cracking occurred in the austenitic stainless steel pipes for reactor cooling system was the tensile residual stress due to welding, and a number of methods have been proposed to reduce the residual stress or to change it to compressive stress. In this paper, on the method of improving residual stress by high frequency heating, which has been applied most frequently, the principle, important parameters and the range of application are explained. Also the other methods of stress improvement are outlined, and the merit and demerit of respective methods are discussed. Austenitic stainless steel and high nickel alloys have good corrosion resistance, high toughness and good weldability, accordingly they have been used for reactor cooling system, but stress corrosion cracking was discovered in both BWRs and PWRs. It occurs when the sensitization of materials, tensile stress and the dissolved oxygen in high temperature water exceed certain levels simultaneously. The importance of the residual stress due to welding, induction heating stress improvement, and other methods such as heat sink welding, last pass heat sink welding, back lay welding and TIG torch heating stress improvement are described. (Kako, I.)

  4. Reduction in oxidative stress levels in the colonic mucosa without fecal stream after the application of enemas containing aqueous Ilex paraguariensis extract.

    Science.gov (United States)

    Cunha, Fernando Lorenzetti da; Silva, Camila Morais Gonçalves da; Almeida, Marcos Gonçalves de; Lameiro, Thais Miguel do Monte; Marques, Letícia Helena Souza; Margarido, Nelson Fontana; Martinez, Carlos Augusto Real

    2011-08-01

    To evaluate the antioxidant effects of enemas containing aqueous extract of Ilex paraguariensis, comparing segments with and without fecal stream and correlating the segments with the duration of intervention. Twenty-six Wistar rats were subjected to a diversion of the fecal stream in the left colon by a proximal colostomy and distal mucosal fistula. The rats were distributed randomly into two experimental groups of 13 animals each based on the time of sacrifice after surgical procedure (two or four weeks). Each group was then divided into two experimental subgroups that received either second daily enemas containing 0.9% saline solution or aqueous extract of Ilex paraguariensis at 0.2g/100g. Colitis was diagnosed by histopathological analysis and the detection of oxidative tissue damage by measuring the levels of malondialdehyde. The Mann-Whitney test was used to compare the tissue levels of malondialdehyde between colon segments with and without fecal stream in each experimental group, and the Kruskal-Wallis test was used to verify the variance between the levels of oxidative stress according the duration of the irrigation; both tests determined significance at 5% (pirrigation were 0.05±0.006 and 0.06±0.006, and 0.05± 0.03 and 0.08 ±0.02, respectively. The malondialdehyde levels in the animals irrigated with Ilex paraguariensis with and without fecal stream after two and four weeks of irrigation were 0.010±0.002 and 0.02±0.004, and 0.03±0.007 and 0.04±0.01, respectively. After two and four weeks of intervention, the levels of malondialdehyde were lower in the animals irrigated with Ilex paraguariensis regardless of the time of irrigation (p=0.0001 and p=0.002, respectively). The daily rectal application of enemas containing aqueous extract of Ilex paraguariensis decreases oxidative tissue damage in the colon without fecal stream regardless of the time of irrigation.

  5. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  6. Geopotential Stress

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Density heterogeneity in the Earth’s lithosphere causes lateral pressure variations. Horizontal gradients of the vertically integrated lithostatic pressure, the Geopotential Energy (GPE), are a source of stresses (Geopotential Stress) that contribute to the Earth’s Stress Field. In theory the GPE...... is linearly related to the lithospheric part of the Geoid. The Geopotential Stress can be calculated if either the density structure and as a consequence the GPE or the lithospheric contribution to the Geoid is known. The lithospheric Geoid is usually obtained by short pass filtering of satellite Geoid...... are not entirely suitable for the stress calculations but can be compiled and adjusted. We present an approach in which a global lithospheric density model based on CRUST2.0 is obtained by simultaneously fitting topography and surface heat flow in the presence of isostatic compensation and long-wavelength lateral...

  7. Learn to manage stress

    Science.gov (United States)

    Stress - managing; Stress - recognizing; Stress - relaxation techniques ... LEARN TO RECOGNIZE STRESS The first step in managing stress is recognizing it in your life. Everyone feels stress in a different way. ...

  8. Pacing stress echocardiography

    Directory of Open Access Journals (Sweden)

    Agrusta Marco

    2005-12-01

    Full Text Available Abstract Background High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/ end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility. Methods The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon. To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer/end-systolic volume index (biplane Simpson rule. The heart rate is determined from ECG. Conclusion Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker. The force-frequency can be defined as up- sloping (normal when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress

  9. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  10. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  11. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  12. Practical stress analysis in engineering design

    CERN Document Server

    Huston, Ronald

    2008-01-01

    Presents the application of engineering design and analysis based on the approach of understanding the physical characteristics of a given problem and then modeling the important aspects of the physical system. This book covers such topics as contact stress analysis, singularity functions, gear stresses, fasteners, shafts, and shaft stresses.

  13. Stress Management

    Science.gov (United States)

    ... with regions of your brain that control mood, motivation and fear. The body's stress-response system is ... problems Headaches Heart disease Sleep problems Weight gain Memory and concentration impairment That's why it's so important ...

  14. Stressing academia?

    DEFF Research Database (Denmark)

    Opstrup, Niels; Pihl-Thingvad, Signe

    Incongruences between the individual and the organizational work context are potential stressors. The present study focuses on the relationship between a complementary need-supply fit and Danish researchers’ self-perceived job stress. Strain is expected to increase as organizational supplies fall...... hand, the fit on “hard” dimensions as salary, financial rewards and career opportunities is found to be unrelated to the researchers’ self-perceived stress-level. The fit with regard to job security is an important exception, however....... to “soft” dimensions as freedom and independence in the job, personal and professional development at work, and receiving peer recognition is highly significant for the researchers’ self-perceived stress-level. The better the fit is the lower stress-levels the researchers’ on average report. On the other...

  15. Stress Management

    Directory of Open Access Journals (Sweden)

    Prof.Univ. Dr. Paul Marinescu

    2007-05-01

    Full Text Available In the post-modern management organizational leaders have the obligation of protecting their employees against factors that could cause damages to their potentially wealthy lives. Stress is such a factor. We shall attempt by means of the present article to draw attention on certain general aspects that should be taken into account in drafting plans for fighting against and diminishing the stress faced by the employees

  16. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  17. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  18. The scaling of stress distribution under small scale yielding by T-scaling method and application to prediction of the temperature dependence on fracture toughness

    International Nuclear Information System (INIS)

    Ishihara, Kenichi; Hamada, Takeshi; Meshii, Toshiyuki

    2017-01-01

    In this paper, a new method for scaling the crack tip stress distribution under small scale yielding condition was proposed and named as T-scaling method. This method enables to identify the different stress distributions for materials with different tensile properties but identical load in terms of K or J. Then by assuming that the temperature dependence of a material is represented as the stress-strain relationship temperature dependence, a method to predict the fracture load at an arbitrary temperature from the already known fracture load at a reference temperature was proposed. This method combined the T-scaling method and the knowledge “fracture stress for slip induced cleavage fracture is temperature independent.” Once the fracture load is predicted, fracture toughness J c at the temperature under consideration can be evaluated by running elastic-plastic finite element analysis. Finally, the above-mentioned framework to predict the J c temperature dependency of a material in the ductile-to-brittle temperature distribution was validated for 0.55% carbon steel JIS S55C. The proposed framework seems to have a possibility to solve the problem the master curve is facing in the relatively higher temperature region, by requiring only tensile tests. (author)

  19. Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an oblique elliptical crack front

    NARCIS (Netherlands)

    Fawaz, S.

    1998-01-01

    Fractographic observations on fatigue tested 2024 T3 clad aluminium riveted lap-splice joints indicate oblique fronts after the initial surface or corner crack at a rivet hole has penetrated through the sheet thichness. No stress intensity factor solutions are available for this geometry subjected

  20. The Effects of Heat Stress on Selective Attention and Reaction Time among Workers of a Hot Industry: Application of Computerized Version of Stroop Test

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    .Conclusion: According to the findings in present study, heat stress causes an increase in reaction time and a decrease in selective attention. Thus, heat can be assumed as a stressor in hot work environments and the heat should be taken into account while design of job and tasks which needed selective attention or reaction time.

  1. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions

    NARCIS (Netherlands)

    Azcón, R.; Medina, A.

    2010-01-01

    Plant growth is limited in arid and/or contaminated sites due to the adverse conditions coming from heavy metal (HM) contamination and/or water stress. Moreover, soils from these areas are generally characterised by poor soil structure, low water-holding capacity, lack of organic matter and nutrient

  2. Stress history and fracture pattern in fault-related folds based on limit analysis: application to the Sub-Andean thrust belt of Bolivia

    Science.gov (United States)

    Barbe, Charlotte; Leroy, Yves; Ben Miloud, Camille

    2017-04-01

    A methodology is proposed to construct the stress history of a complex fault-related fold in which the deformation mechanisms are essentially frictional. To illustrate the approach, fours steps of the deformation of an initially horizontally layered sand/silicone laboratory experiment (Driehaus et al., J. of Struc. Geol., 65, 2014) are analysed with the kinematic approach of limit analysis (LA). The stress, conjugate to the virtual velocity gradient in the sense of mechanicam power, is a proxy for the true statically admmissible stress field which prevailed over the structure. The material properties, friction angles and cohesion, including their time evolution are selected such that the deformation pattern predicted by the LA is consistent with the two main thrusting events, the first forward and the second backward once the layers have sufficiently rotated. The fractures associated to the stress field determined at each step are convected on today configuration to define the complete pattern which should be observed. The end results are presented along virtual vertical wells and could be used within the oil industry at an early phase of exploration to prepare drealing operations.

  3. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles.

    Science.gov (United States)

    Wichelhaus, Andrea; Brauchli, Lorenz; Ball, Judith; Mertmann, Matthias

    2010-05-01

    The main advantage of superelastic nickel-titanium (NiTi) products is their unique characteristic of force plateaus, which allow for clinically precise control of the force. The aims of this study were to define the mechanical characteristics of several currently available closed-coil retraction springs and to compare these products. A universal test frame was used to acquire force-deflection diagrams of 24 NiTi closed-coil springs at body temperature. Data analysis was performed with the superelastic algorithm. Also, the influence of temperature cycles and mechanical microcycles simulating ingestion of different foods and mastication, respectively, were considered. Mechanical testing showed significant differences between the various spring types (ANOVA, mechanical properties of the springs: strong superelasticity without bias stress, weak superelasticity without bias stress, strong superelasticity with bias stress, and weak superelasticity with bias stress. In sliding mechanics, the strongly superelastic closed-coil springs with preactivation are recommended. In addition, we found that the oral environment seems to have only a minor influence on their mechanical properties. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. The exogenous application of brassinosteroids to Zea Mays (L.) stressed by long-term chilling does not affect the activities of photosystem 1 or 2

    Czech Academy of Sciences Publication Activity Database

    Honnerová, J.; Rothová, O.; Holá, D.; Kohout, Ladislav; Kvasnica, Miroslav

    2010-01-01

    Roč. 29, č. 4 (2010), s. 500-505 ISSN 0721-7595 R&D Projects: GA AV ČR KJB601110611 Institutional research plan: CEZ:AV0Z40550506 Keywords : chilling stress * brassinosteroids * photosystem 1 * Hill reaction Subject RIV: CC - Organic Chemistry Impact factor: 2.066, year: 2010

  5. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  6. Genome-wide association analysis accounting for environmental factors through propensity-score matching: application to stressful live events in major depressive disorder.

    Science.gov (United States)

    Power, Robert A; Cohen-Woods, Sarah; Ng, Mandy Y; Butler, Amy W; Craddock, Nick; Korszun, Ania; Jones, Lisa; Jones, Ian; Gill, Michael; Rice, John P; Maier, Wolfgang; Zobel, Astrid; Mors, Ole; Placentino, Anna; Rietschel, Marcella; Aitchison, Katherine J; Tozzi, Federica; Muglia, Pierandrea; Breen, Gerome; Farmer, Anne E; McGuffin, Peter; Lewis, Cathryn M; Uher, Rudolf

    2013-09-01

    Stressful life events are an established trigger for depression and may contribute to the heterogeneity within genome-wide association analyses. With depression cases showing an excess of exposure to stressful events compared to controls, there is difficulty in distinguishing between "true" cases and a "normal" response to a stressful environment. This potential contamination of cases, and that from genetically at risk controls that have not yet experienced environmental triggers for onset, may reduce the power of studies to detect causal variants. In the RADIANT sample of 3,690 European individuals, we used propensity score matching to pair cases and controls on exposure to stressful life events. In 805 case-control pairs matched on stressful life event, we tested the influence of 457,670 common genetic variants on the propensity to depression under comparable level of adversity with a sign test. While this analysis produced no significant findings after genome-wide correction for multiple testing, we outline a novel methodology and perspective for providing environmental context in genetic studies. We recommend contextualizing depression by incorporating environmental exposure into genome-wide analyses as a complementary approach to testing gene-environment interactions. Possible explanations for negative findings include a lack of statistical power due to small sample size and conditional effects, resulting from the low rate of adequate matching. Our findings underscore the importance of collecting information on environmental risk factors in studies of depression and other complex phenotypes, so that sufficient sample sizes are available to investigate their effect in genome-wide association analysis. Copyright © 2013 Wiley Periodicals, Inc.

  7. STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and Applications

    Science.gov (United States)

    Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.

    2016-02-01

    Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.

  8. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A

    2010-05-01

    Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Science.gov (United States)

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  10. Professional stress

    Directory of Open Access Journals (Sweden)

    Stanojević Dragana Z.

    2011-01-01

    Full Text Available Job stress is a line, for the person at work hired adverse physiological, psychological and behavioral reactions to situations in which job requirements are not in accordance with its capabilities, abilities and needs. Sources of stress at work are numerous. Personal factors: personality types have been most studied so far, environmental changes and demographic characteristics as well. Interpersonal stress inducing factors act and influence to the occurrence of many psychosomatic diseases. Psychosocial climate and relationships which are prevented or encouraged such as: cooperation and competition, trust and suspicion certainly affect to the appearance of professional stress. The way of leadership is very important. Organizational factors are the type of work, work time, noncompliance of the job, the introduction of new ethnologies, the conflict of personal roles, fear of job loss, bad physical conditions of working environment. The consequences of stress at work are numerous: at the cognitive level, the emotional level, the production plan, the health, plan reduces the immune system that cause a variety of psychosomatic illnesses and accidents at work.

  11. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  12. APPLICATION OF COMPUTER SIMULATION IN THE EVALUATION OF THE STRESS-STRAIN STATE OF LOAD-BEARING STRUCTURES OF BUILDINGS MASONRY

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Bedov

    2017-03-01

    Full Text Available The results of studies on the analysis of the stress-strain state of the structures of bearing walls of high-hollow pottery. The way of modeling masonry finite element method. The experimental study of masonry structures produced in the Republic of Bashkortostan high-hollow pottery, set the nature of their work load, the mechanism of destruction. The results of the comparative evaluation of the calculations in the software package and the traditional “manual” calculation.

  13. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  14. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter; Gall, Brady B. [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Dale, Gregory E. [High Power Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  15. Evaluating the relationship between job stress and job satisfaction among female hospital nurses in Babol: An application of structural equation modeling

    Directory of Open Access Journals (Sweden)

    Majid Bagheri Hosseinabadi

    2018-04-01

    Full Text Available Background: This study was designed to investigate job satisfaction and its relation to perceived job stress among hospital nurses in Babol County, Iran.Methods: This cross-sectional study was conducted on 406 female nurses in 6 Babol hospitals.Respondents completed the Minnesota Satisfaction Questionnaire (MSQ, the health and safety executive (HSE indicator tool and a demographic questionnaire. Descriptive, analytical and structural equation modeling (SEM analyses were carried out applying SPSS v. 22 and AMOS v. 22.Results: The Normed Fit Index (NFI, Non-normed Fit Index (NNFI, Incremental Fit Index (IFIand Comparative Fit Index (CFI were greater than 0.9. Also, goodness of fit index (GFI=0.99and adjusted goodness of fit index (AGFI were greater than 0.8, and root mean square error of approximation (RMSEA were 0.04, The model was found to be with an appropriate fit. The R-squared was 0.42 for job satisfaction, and all its dimensions were related to job stress. The dimensions of job stress explained 42% of changes in the variance of job satisfaction. There was a significant relationship between the dimensions of job stress such as demand (β =0.173,CI =0.095 - 0.365, P≤0.001, control (β =0.135, CI =0.062 - 0.404, P =0.008, relationships(β =-0.208, CI =-0.637– -0.209; P≤0.001 and changes (β =0.247, CI =0.360 - 1.026, P≤0.001with job satisfaction.Conclusion: One of the important interventions to increase job satisfaction among nurses maybe improvement in the workplace. Reducing the level of workload in order to improve job demand and minimizing role conflict through reducing conflicting demands are recommended.

  16. Evaluating the relationship between job stress and job satisfaction among female hospital nurses in Babol: An application of structural equation modeling.

    Science.gov (United States)

    Bagheri Hosseinabadi, Majid; Etemadinezhad, Siavash; Khanjani, Narges; Ahmadi, Omran; Gholinia, Hemat; Galeshi, Mina; Samaei, Seyed Ehsan

    2018-01-01

    Background: This study was designed to investigate job satisfaction and its relation to perceived job stress among hospital nurses in Babol County, Iran. Methods: This cross-sectional study was conducted on 406 female nurses in 6 Babol hospitals. Respondents completed the Minnesota Satisfaction Questionnaire (MSQ), the health and safety executive (HSE) indicator tool and a demographic questionnaire. Descriptive, analytical and structural equation modeling (SEM) analyses were carried out applying SPSS v. 22 and AMOS v. 22. Results: The Normed Fit Index (NFI), Non-normed Fit Index (NNFI), Incremental Fit Index (IFI)and Comparative Fit Index (CFI) were greater than 0.9. Also, goodness of fit index (GFI=0.99)and adjusted goodness of fit index (AGFI) were greater than 0.8, and root mean square error of approximation (RMSEA) were 0.04, The model was found to be with an appropriate fit. The R-squared was 0.42 for job satisfaction, and all its dimensions were related to job stress. The dimensions of job stress explained 42% of changes in the variance of job satisfaction. There was a significant relationship between the dimensions of job stress such as demand (β =0.173,CI =0.095 - 0.365, P≤0.001), control (β =0.135, CI =0.062 - 0.404, P =0.008), relationships(β =-0.208, CI =-0.637- -0.209; P≤0.001) and changes (β =0.247, CI =0.360 - 1.026, P≤0.001)with job satisfaction. Conclusion: One of the important interventions to increase job satisfaction among nurses maybe improvement in the workplace. Reducing the level of workload in order to improve job demand and minimizing role conflict through reducing conflicting demands are recommended.

  17. Construction of computational models for the stress analysis of the bones using CT imaging: application in the gleno-humeral joint

    International Nuclear Information System (INIS)

    Cisilino, Adrian; D'Amico, Diego; Buroni, Federico; Commisso, Pablo; Sammartino, Mario; Capiel, Carlos

    2008-01-01

    A methodology for the construction of computational models from CT images is presented in this work. Computational models serve for the stress analysis of the bones using the Finite Element Method. The elastic constants of the bone tissue are calculated using the density data obtained in from the CTs. The proposed methodology is demonstrated in the construction of a model for the gleno-humeral joint. (authors) [es

  18. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response.

    Science.gov (United States)

    Zhang, Jingxia; Wang, Furong; Zhang, Chuanyun; Zhang, Junhao; Chen, Yu; Liu, Guodong; Zhao, Yanxiu; Hao, Fushun; Zhang, Jun

    2018-06-04

    A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.). Here, we developed a simple and effective VIGS method for silencing genes in young cotton seedlings and roots by soaking naked seeds in Agrobacterium cultures carrying tobacco rattle virus (TRV)-VIGS vectors. When the naked seeds were soaked in Agrobacterium cultures with an OD600 of 1.5 for 90 min, it was optimal for silencing genes effectively in young seedlings as clear photo-bleaching phenotype in the newly emerging leaves of pTRV:GhCLA1 seedlings were observed at 12-14 days post inoculation. Silencing of GhPGF (cotton pigment gland formation) by this method resulted in a 90% decrease in transcript abundances of the gene in roots at the early development stage. We further used the tool to investigate function of GhBI-1 (cotton Bax inhibitor-1) gene in response to salt stress and demonstrated that GhBI-1 might play a protective role under salt stress by suppressing stress-induced cell death in cotton. Our results showed that the newly established VIGS method is a powerful tool for elucidating functions of genes in cotton, especially the genes expressed in young seedlings and roots.

  19. Fish-friendly prophylaxis/disinfection in aquaculture: Low concentration of peracetic acid is stress-free to the carp (Cyprinus carpio) after repeated applications

    Science.gov (United States)

    Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...

  20. Investigation of the main chemical properties of water-magnesium chloride solutions. Application to the understanding of stress corrosion phenomena in 17.12 Mo stainless steel

    International Nuclear Information System (INIS)

    Hasni, Abdellatif

    1988-01-01

    This research thesis reports the investigation of the main chemical properties of concentrated aqueous solutions of MgCl 2 and of their influence of stress corrosion of 17Cr-12Ni-2Mo stainless steel. It shows that the most important chemical properties are the equilibrium pH and the acidity range of MgCl 2 aqueous solutions, and that they strongly depend on solution temperature and concentration. The medium pH is governed by the increased acidity of water in presence of Mg ++ ions, while the acidity range is determined by a hydrolysis reaction of these ions which results in a precipitation of magnesium hydroxyl-chlorides. The investigation of stress corrosion behaviour of the steel in MgCl 2 solutions with varying temperature and concentration shows that this behaviour comes down to a prevailing pH effect which results from the variation of these both parameters, with a not negligible but less important effect of temperature. A study of cracking surfaces indicates that it is possible to pass from a transgranular to an intergranular mode by a variation of either media aggressiveness (pH, temperature, voltage) or strain rate. These results are explained by a concept of kinetic factor which limits stress corrosion [fr

  1. Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress.

    Science.gov (United States)

    Akladious, Samia Ageeb

    2014-05-01

    High temperature is a major factor limiting the growth of plant species during summer. Understanding the mechanisms of plant tolerance to high temperature would help in developing effective management practices and heat-tolerant cultivars through breeding or biotechnology. The present investigation was carried out to study the role of thiourea in enhancing the tolerance of sunflower plants to heat stress. Sunflower plants were subjected to temperature stress by exposing plants to 35 or 45 °C for 12 h. Two levels of thiourea (10 and 20 mM) were applied before sowing (seed treatment). The results indicated that the plants exposed to temperature stress exhibited a significant decline in growth parameters, chlorophylls, relative leaf water content, oil content, leaf nutrient status, and nitrate reductase activity. Treatment with thiourea, especially when applied at 10 mM, improved the above parameters and induced non-enzymatic and enzymatic antioxidants responsible for antioxidation. SDS-PAGE of protein revealed that high-temperature treatments alone or in combination with thiourea were associated with the disappearance of some bands or the appearance of unique ones. The result of RAPD analysis using five primers showed variable qualitative and quantitative changes. These findings confirm the effectiveness of applying thiourea on alleviating heat injuries in sunflower plants.

  2. Methods for determining thermal stresses values. Some examples relating to nuclear reactors; Methodes de determination des contraintes thermiques. Quelques exemples d'application aux reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J; Gautier, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Peres, A [Israel Institute of Technology, Dept. of Nuclear Science Technion (Israel)

    1958-07-01

    As modern techniques develop more elaborate machines, and make their way towards higher and higher temperatures and pressures, the thermal stresses become a matter of major importance in the design of mechanical structures. In the first part of this paper, the authors examine the problem from a theoretical standpoint, and try to evaluate the aptitude and limitation of mathematical techniques to attain the quantitative values of thermal stresses. This paper deals mainly with the experimental methods to measure thermal stresses. The authors show some examples relating to nuclear reactors. (author)Fren. [French] Au fur et a mesure que la technique moderne developpe des machines plus poussees et s'oriente vers des temperatures et des pressions toujours plus elevees, les contraintes thermiques deviennent un facteur d'importance capitale dans le calcul des structures mecaniques. Les auteurs examinent d'abord l'aspect theorique du probleme, ainsi que l'aptitude et les limites du calcul pour exprimer quantitativement la valeur des contraintes thermiques. Les auteurs exposent principalement, ensuite, les methodes experimentales qui permettent de mesurer ces contraintes, et illustrent cet expose de quelques exemples relatifs aux installations nucleaires. (auteur)

  3. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    Science.gov (United States)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  4. Stress Analysis

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)......The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)...

  5. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  6. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  7. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  8. (stress) testing

    African Journals Online (AJOL)

    However, maximal HR was significantly higher in all groups during their sporting activities than during stress testing in the laboratory (P < 0.01). Conclusions. Maximal HR in veteran athletes during specific sporting activities was significantly higher than that attained during a routine sECG. This finding was not sport-specific, ...

  9. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications

    OpenAIRE

    Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    Background: Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. Res...

  10. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  11. Potential Application of the Oryza sativa Monodehydroascorbate Reductase Gene (OsMDHAR to Improve the Stress Tolerance and Fermentative Capacity of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Il-Sup Kim

    Full Text Available Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4 is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR. OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C. The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1 higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.

  12. Part of the oxidative stress in the development of radio-induced cell effects at cutaneous level: application to accidental localised irradiations

    International Nuclear Information System (INIS)

    Carine, Laurent

    2005-10-01

    The objective of our study was to answer to the following questions: does the initial radio-induced oxidative stress lead to the accumulation of DNA damages in the low renewal cells (fibroblasts, endothelial cells) that could be responsible of delayed effects; does it exist delayed oxidative phenomena and era they implied in the delayed effects arising; does it exist a phenomenon of premature senescence; does it exist a premature senescence phenomenon that could lead to an accumulation of damages before the cell death; what are the action mechanisms of the association pentoxifylline/α-tocopherol. (N.C.)

  13. Voice stress analysis and evaluation

    Science.gov (United States)

    Haddad, Darren M.; Ratley, Roy J.

    2001-02-01

    Voice Stress Analysis (VSA) systems are marketed as computer-based systems capable of measuring stress in a person's voice as an indicator of deception. They are advertised as being less expensive, easier to use, less invasive in use, and less constrained in their operation then polygraph technology. The National Institute of Justice have asked the Air Force Research Laboratory for assistance in evaluating voice stress analysis technology. Law enforcement officials have also been asking questions about this technology. If VSA technology proves to be effective, its value for military and law enforcement application is tremendous.

  14. A methodology to obtain strain indicators under deep drawing multiaxial stresses. Application to DC-05 electro galvanized steel (UNE in ISO 10130)

    International Nuclear Information System (INIS)

    Miguel, V.; Catalayud, A.; Ferrer, C.

    2007-01-01

    In this work a methodology to investigate deep drawing quality steel sheets deformation tendency under multiaxial deep drawing stresses has been proposed. the method consists in assaying a sheet in a wedge die in order to order to introduce a pure shear estate in the material 0 degree centigree, 45 degree centigree and 90 degree centigree rolling directions are selected in the assays, and transversal strain is the variable considered in them. a strain coefficient 0/% has been defined in order to evaluate thickness variations in the test. almost no changes in thickness have been registered and this indicates that strain carried out in the test is similar to that taking place in deep drawing. The stress necessary for practice a certain plastic deformation is obtained too and a potential function between them is formulated. Indicators presented in this work are compared to anisotropy and strength coefficients obtained in normalized tensile tests. these results allow us to justify the steel behaviour in the cup deep drawing processes related to ear forming. (Author) 11 refs

  15. Application of A Physiological Strain Index in Evaluating Responses to Exercise Stress – A Comparison Between Endurance and High Intensity Intermittent Trained Athletes

    Directory of Open Access Journals (Sweden)

    Pokora Ilona

    2016-04-01

    Full Text Available The study evaluated differences in response to exercise stress between endurance and high-intensity intermittent trained athletes in a thermoneutral environment using a physiological strain index (PSI. Thirty-two subjects participated in a running exercise under normal (23°C, 50% RH conditions. The group included nine endurance trained athletes (middle-distance runners - MD, twelve high-intensity intermittent trained athletes (soccer players - HIIT and eleven students who constituted a control group. The exercise started at a speed of 4 km·h–1 which was increased every 3 min by 2 km·h–1 to volitional exhaustion. The heart rate was recorded with a heart rate monitor and aural canal temperature was measured using an aural canal temperature probe. The physiological strain index (PSI and the contribution of the circulatory and thermal components to the overall physiological strain were calculated from the heart rate and aural canal temperature. The physiological strain index differed between the study and control participants, but not between the MD and HIIT groups. The physiological strain in response to exercise stress in a thermoneutral environment was mainly determined based on the circulatory strain (MD group - 73%, HIIT group – 70%. The contribution of the circulatory and thermal components to the physiological strain did not differ significantly between the trained groups (MD and HIIT despite important differences in morphological characteristics and training-induced systemic cardiovascular and thermoregulatory adaptations.

  16. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils.

    Science.gov (United States)

    Gupta, Pratishtha; Rani, Rupa; Chandra, Avantika; Kumar, Vipin

    2018-03-20

    Contamination of agricultural soil with heavy metals has become a serious concern worldwide. In the present study, Cr 6+ resistant plant growth promoting Pseudomonas sp. (strain CPSB21) was isolated from the tannery effluent contaminated agricultural soils and evaluated for the plant growth promoting activities, oxidative stress tolerance, and Cr 6+ bioremediation. Assessment of different plant growth promotion traits, such as phosphate solubilization, indole-3-acetic acid production, siderophores, ammonia and hydrogen cyanide production, revealed that the strain CPSB21 served as an efficient plant growth promoter under laboratory conditions. A pot experiment was performed using sunflower (Helianthus annuus L.) and tomato (Solanum lycopersicum L.) as a test crop. Cr 6+ toxicity reduced plant growth, pigment content, N and P uptake, and Fe accumulation. However, inoculation of strain CPSB21 alleviated the Cr 6+ toxicity and enhanced the plant growth parameters and nutrient uptake. Moreover, Cr toxicity had varied response on oxidative stress tolerance at graded Cr 6+ concentration on both plants. An increase in superoxide dismutase (SOD) and catalase (CAT) activity and reduction in malonialdehyde (MDA) was observed on inoculation of strain CPSB21. Additionally, inoculation of CPSB21 enhanced the uptake of Cr 6+ in sunflower plant, while no substantial enhancement was observed on inoculation in tomato plant.

  17. Application of an immunoperoxidase staining method for detection of 7,8-dihydro-8-oxodeoxyguanosine as a biomarker of chemical-induced oxidative stress in marine organisms

    International Nuclear Information System (INIS)

    Machella, Nicola; Regoli, Francesco; Cambria, Antonio; Santella, Regina M.

    2004-01-01

    7,8-Dihydro-8-oxodeoxyguanosine (8-oxo-dG) is a typical modification of DNA caused by oxygen free radicals and can be an useful biomarker for pollutants inducing oxidative stress. An immunoperoxidase method using monoclonal antibody 1F7 toward 8-oxo-dG was applied to tissues and smeared cells of marine organisms for detection and quantification of oxidative DNA damage in such models. The assay, previously employed on human cells, was assessed for the first time on Mediterranean mussels (Mytilus galloprovincialis) and European eels (Anguilla anguilla), exposed to model pro-oxidant chemicals, namely benzo[a]pyrene (B[a]P) and copper. Quantification of 8-oxo-dG was microscopically carried out and expressed as relative nuclear staining intensity. Higher levels of oxidative DNA damage were detected in the digestive glands of treated mussels compared to controls, while the effect was less pronounced in haemocytes, characterized by more elevated basal levels of 8-oxo-dG. The assay was suitable for detection of 8-oxo-dG also in fish liver sections indicating consistent damage after B[a]P exposure. The main advantage of the immunohistochemical approach is the elimination of DNA extraction which considerably reduces the processing of biological samples. In addition, the assay requires small amounts of frozen tissues or fixed cells for detection of 8-oxo-dG and is potentially able to discriminate variable susceptibility to oxidative stress in different cell types. Although further investigations are required for the improvement and the validation of the assay in field conditions, laboratory exposures provided useful indications on the consistency of the approach and the efficacy of antibody 1F7 in marine organisms for a rapid assessment of pollutant-induced oxidative DNA damage

  18. Stress and Mood

    Science.gov (United States)

    ... Relaxation Emotions & Relationships HealthyYouTXT Tools Home » Stress & Mood Stress & Mood Many people who go back to smoking ... story: Time Out Times 10 >> share What Causes Stress? Read full story: What Causes Stress? >> share The ...

  19. Stress Management: Positive Thinking

    Science.gov (United States)

    Healthy Lifestyle Stress management Positive thinking helps with stress management and can even improve your health. Practice overcoming negative self-talk ... with optimism is a key part of effective stress management. And effective stress management is associated with ...

  20. Stress and your heart

    Science.gov (United States)

    Coronary heart disease - stress; Coronary artery disease - stress ... Your body responds to stress on many levels. First, it releases stress hormones that make you breathe faster. Your blood pressure goes up. Your muscles ...

  1. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  2. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  3. Impact of seeding rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. minor in the absence of moisture stress

    Directory of Open Access Journals (Sweden)

    Turk M.A.

    2002-01-01

    Full Text Available Field experiments were conducted during the winter seasons of 1998-1999, 1999-2000 and 2000-2001 at the semi-arid region in north of Jordan, to study the effect of seeding dates (14 January, 28 January and 12 February, seeding rates (50, 75 and 100 plants per metre, phosphorus levels (0, 17.5, 35.0 and 52.5 kg P per ha and two methods of P placement (banding and broadcast. Seeding rate, seeding date, and rate of phosphorus had a significant effect on most of the measured traits and the yield determinates. Method of phosphorus application had only a significant effect on seed yield and seed weight per plant. In general high yields were obtained by early seeding (14 January, high seeding rate (100-plant per square metre, and P application (52.5 kg P per ha drilled with the seed after cultivation (banded.

  4. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  5. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.

  6. Alterations in the translocation of photosynthesis products in soy bean varieties stressed by salt administration: Application of the radionuclides 11C and 14C

    International Nuclear Information System (INIS)

    Fritz, R.

    1984-11-01

    In the soy bean varities ''Lee'' and ''Jackson'' possessing different sensitivity to salt the influence of NaCl salinification of the culture medium of different intensity and duration on the net rate of photosynthesis and assimilate translocation was investigated. The two radioactive isotopes 11 C and 14 C proved to be suitable indicators for tracing the assimilate transport. By means of the short-lived isotope 11 C (Tsub(1/2)=20.3 min) short-time kinetics of assimilate transport by the roots were established, and 14 C helped to strike the balance of assimilate distribution in the total plant. For the implementation of the experiments it was necessary to average extensive experimental set-ups. For the labelling of individual leaf organs under laboratory conditions an inexpensive furnigation system was constructed. A special device was built for in-vivo measurement of leaf-to-root translocation using 11 C. Stressing by salt administration had a differentiated effect on photosynthesis and assimilate translocation, which depended both on the intensity and duration of the salt administration. (orig./MG) [de

  7. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    International Nuclear Information System (INIS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-01-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  8. How Stress Treatments Influence the Performance of Biodegradable Poly(Butylene Succinate-Based Copolymers with Thioether Linkages for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Valentina Siracusa

    2017-08-01

    Full Text Available Biodegradable poly(butylene succinate (PBS-based random copolymers containing thioether linkages (P(BSxTDGSy of various compositions have been investigated and characterized from the gas barrier, thermal, and mechanical point of view, after food contact simulants or thermal and photoaging processes. Each stress treatment was performed on thin films and the results obtained have been compared to the same untreated film, used as a standard. Barrier properties with different gases (O2 and CO2 were evaluated, showing that the polymer chemical composition strongly influenced the permeability behavior. The relationships between the diffusion coefficients (D and solubility (S with polymer composition were also investigated. The results highlighted a correlation between polymer chemical structure and treatment. Gas transmission rate (GTR mainly depending on the performed treatment, as GTR increased with the increase of TDGS co-unit amount. Thermal and mechanical tests allowed for the recording of variations in the degree of crystallinity and in the tensile properties. An increase in the crystallinity degree was recorded after contact with simulant liquids and aging treatments, together with a molecular weight decrease, a slight enhancement of the elastic modulus and a decrement of the elongation at break, proportional to the TDGS co-unit content.

  9. How Stress Treatments Influence the Performance of Biodegradable Poly(Butylene Succinate)-Based Copolymers with Thioether Linkages for Food Packaging Applications.

    Science.gov (United States)

    Siracusa, Valentina; Genovese, Laura; Munari, Andrea; Lotti, Nadia

    2017-08-30

    Biodegradable poly(butylene succinate) (PBS)-based random copolymers containing thioether linkages (P(BSxTDGSy)) of various compositions have been investigated and characterized from the gas barrier, thermal, and mechanical point of view, after food contact simulants or thermal and photoaging processes. Each stress treatment was performed on thin films and the results obtained have been compared to the same untreated film, used as a standard. Barrier properties with different gases (O₂ and CO₂) were evaluated, showing that the polymer chemical composition strongly influenced the permeability behavior. The relationships between the diffusion coefficients ( D ) and solubility ( S ) with polymer composition were also investigated. The results highlighted a correlation between polymer chemical structure and treatment. Gas transmission rate ( GTR ) mainly depending on the performed treatment, as GTR increased with the increase of TDGS co-unit amount. Thermal and mechanical tests allowed for the recording of variations in the degree of crystallinity and in the tensile properties. An increase in the crystallinity degree was recorded after contact with simulant liquids and aging treatments, together with a molecular weight decrease, a slight enhancement of the elastic modulus and a decrement of the elongation at break, proportional to the TDGS co-unit content.

  10. Analytical considerations for stress related remedies

    International Nuclear Information System (INIS)

    Rybicki, E.F.; McGuire, P.A.

    1984-01-01

    The study described here focuses on reducing the impact of one of the factors, contributing to integranular stress corrosion cracking (IGSCC) in BWR reactor piping, e.g., tensile residual stresses in the areas of observed cracking. There are several techniques for controlling residual stresses on the inside surface of girth welded pipes. The work described here is part of a larger study where various remedies and pipe geometries were considered. The stress remedy technique utilizes an induction heating method to alter residual stresses due to welding. The method is referred to as Induction Heating for Stress Improvement (IHSI). While IHSI was first applied to pipe-to-pipe weldments with successful results, many field applications of IHSI will be to pipe-to-tee or pipe-to-component geometries. Therefore, this study is directed toward obtaining a better understanding of the weld induced residual stress and the effect of IHSI on weldments with this type of geometry

  11. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  12. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  13. An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress.

    Science.gov (United States)

    Singh, Amritpal; Saini, Barjinder Singh; Singh, Dilbag

    2016-06-01

    Multiscale approximate entropy (MAE) is used to quantify the complexity of a time series as a function of time scale τ. Approximate entropy (ApEn) tolerance threshold selection 'r' is based on either: (1) arbitrary selection in the recommended range (0.1-0.25) times standard deviation of time series (2) or finding maximum ApEn (ApEnmax) i.e., the point where self-matches start to prevail over other matches and choosing the corresponding 'r' (rmax) as threshold (3) or computing rchon by empirically finding the relation between rmax, SD1/SD2 ratio and N using curve fitting, where, SD1 and SD2 are short-term and long-term variability of a time series respectively. None of these methods is gold standard for selection of 'r'. In our previous study [1], an adaptive procedure for selection of 'r' is proposed for approximate entropy (ApEn). In this paper, this is extended to multiple time scales using MAEbin and multiscale cross-MAEbin (XMAEbin). We applied this to simulations i.e. 50 realizations (n = 50) of random number series, fractional Brownian motion (fBm) and MIX (P) [1] series of data length of N = 300 and short term recordings of HRV and SBPV performed under postural stress from supine to standing. MAEbin and XMAEbin analysis was performed on laboratory recorded data of 50 healthy young subjects experiencing postural stress from supine to upright. The study showed that (i) ApEnbin of HRV is more than SBPV in supine position but is lower than SBPV in upright position (ii) ApEnbin of HRV decreases from supine i.e. 1.7324 ± 0.112 (mean ± SD) to upright 1.4916 ± 0.108 due to vagal inhibition (iii) ApEnbin of SBPV increases from supine i.e. 1.5535 ± 0.098 to upright i.e. 1.6241 ± 0.101 due sympathetic activation (iv) individual and cross complexities of RRi and systolic blood pressure (SBP) series depend on time scale under consideration (v) XMAEbin calculated using ApEnmax is correlated with cross-MAE calculated using ApEn (0.1-0.26) in steps of 0

  14. Numerical models of pore pressure and stress changes along basement faults due to wastewater injection: Applications to the 2014 Milan, Kansas Earthquake

    Science.gov (United States)

    Hearn, Elizabeth H.; Koltermann, Christine; Rubinstein, Justin R.

    2018-01-01

    We have developed groundwater flow models to explore the possible relationship between wastewater injection and the 12 November 2014 Mw 4.8 Milan, Kansas earthquake. We calculate pore pressure increases in the uppermost crust using a suite of models in which hydraulic properties of the Arbuckle Formation and the Milan earthquake fault zone, the Milan earthquake hypocenter depth, and fault zone geometry are varied. Given pre‐earthquake injection volumes and reasonable hydrogeologic properties, significantly increasing pore pressure at the Milan hypocenter requires that most flow occur through a conductive channel (i.e., the lower Arbuckle and the fault zone) rather than a conductive 3‐D volume. For a range of reasonable lower Arbuckle and fault zone hydraulic parameters, the modeled pore pressure increase at the Milan hypocenter exceeds a minimum triggering threshold of 0.01 MPa at the time of the earthquake. Critical factors include injection into the base of the Arbuckle Formation and proximity of the injection point to a narrow fault damage zone or conductive fracture in the pre‐Cambrian basement with a hydraulic diffusivity of about 3–30 m2/s. The maximum pore pressure increase we obtain at the Milan hypocenter before the earthquake is 0.06 MPa. This suggests that the Milan earthquake occurred on a fault segment that was critically stressed prior to significant wastewater injection in the area. Given continued wastewater injection into the upper Arbuckle in the Milan region, assessment of the middle Arbuckle as a hydraulic barrier remains an important research priority.

  15. Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents.

    Directory of Open Access Journals (Sweden)

    Yini Wang

    Full Text Available A new acridone derivative, 2-aminoacetamido-10-(3, 5-dimethoxy-benzyl-9(10H-acridone hydrochloride (named 8a synthesized in our lab shows potent antitumor activity, but the mechanism of action remains unclear. Herein, we report the use of an UPLC/Q-TOF MS metabolomic approach to study the effects of three compounds with structures optimized step-by-step, 9(10H-acridone (A, 10-(3,5-dimethoxybenzyl-9(10H-acridone (I, and 8a, on CCRF-CEM leukemia cells and to shed new light on the probable antitumor mechanism of 8a. Acquired data were processed by principal component analysis (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA to identify potential biomarkers. Comparing 8a-treated CCRF-CEM leukemia cells with vehicle control (DMSO, 23 distinct metabolites involved in five metabolic pathways were identified. Metabolites from glutathione (GSH and glycerophospholipid metabolism were investigated in detail, and results showed that GSH level and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in 8a-treated cells, while L-cysteinyl-glycine (L-Cys-Gly and glutamate were greatly increased. In glycerophospholipid metabolism, cell membrane components phosphatidylcholines (PCs were decreased in 8a-treated cells, while the oxidative products lysophosphatidylcholines (LPCs were significantly increased. We further found that in 8a-treated cells, the reactive oxygen species (ROS and lipid peroxidation product malondialdehyde (MDA were notably increased, accompanied with decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-3. Taken together our results suggest that the acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells. The UPLC/Q-TOF MS based metabolomic approach provides novel insights into the mechanistic studies of antitumor drugs from a point distinct from traditional biological investigations.

  16. Effect of Drought Stress During Phenological Stage and Biofertilizer and Nitrogen Application on Yield and Yield Components of Corn (KSC 704

    Directory of Open Access Journals (Sweden)

    M. Ashkavand

    2013-06-01

    Full Text Available To study the effect of cutting irrigation and application of biofertilizer and nitrogen on yield and yield components of corn single cross hybrid, an experiment was carried out in Satloo Agricultural and Natural resources Research Station of west Azarbaijan, 2009-2010. This experiment was arranged as split plot based on Randomized Complete Block Design with three replications.Four irrigation factors including I1, I2, I3 and I4, respectively: cutting irrigations at stem elongation, blossom and seed filling stages and normal irrigation assigned to main plots and fertilizer treatments consisted of Nitoxin + 50% urea (F1 , Niragin + 50% urea (F2 , and without biofertilizer application + 100% urea (F3 were allocated to sub plots.Results indicated that the effect of cutting irrigations had negative and significant effects on all characteristics; Fertilizer treatments on the other hand had significant effect only on seed numbers per ear, 100 seeds weight and seed yield. The highest seed yield was obtained under normal irrigation and treatment of Nitragin + 50% urea (12320.7 kg/ha and 11100.5 kg/ha respectively.

  17. Evaluation of stress intensity factors due to welding residual stresses for circumferential cracked pipes

    International Nuclear Information System (INIS)

    Oh, Chang-Young; Kim, Yun-Jae; Oh, Young-Jin; Kim, Jong-Sung; Song, Tae-Kwang; Kim, Yong-Beum

    2013-01-01

    To investigate the applicability of existing methods to estimate stress intensity factors due to welding residual stresses, comparisons with finite element (FE) solutions are made for two types of generic welding residual stress profiles, generated by simulating repair welds. It is found that fitting residual stresses over the crack depth using third-order polynomials gives good estimates of stress intensity factors but fitting over the entire thickness can result in inaccurate estimates even with fourth-order polynomials. Noting that welding residual stresses are often determined from FE analyses, linearization of residual stresses to estimate stress intensity factors is proposed. Comparison with FE solutions shows good agreements. -- Highlights: ► Applicability of K estimation methods is investigated for welding residual stresses. ► Two types of generic residual stress profiles with repair welds are considered. ► Fitting residual stresses over the crack depth gives good estimates of K. ► A method to estimate K by linearising residual stress profiles is proposed

  18. Stressed podocytes

    DEFF Research Database (Denmark)

    Svenningsen, Per

    2015-01-01

    and in response to injury induced by endoplasmatic reticulum (ER) stress (Golubinskaya et al., 2015). Their report shed light on the complex regulation of Best3 in podocytes and will help pave the way for future studies on the pathogenesis of kidneys diseases with podocyte injury. This article is protected...... structure appears to be a common finding in acquired proteinuric conditions (Pavenstadt et al., 2003). Identification of genes that are involved in physiological and pathophysiological functions of the podocytes is a major task. Recent studies indicate that Bestrophin (Best) 3 has cell protective functions...... in a number of cell types (Lee et al., 2012, Jiang et al., 2013, Song et al., 2014). In the present issue of Acta Physiologica, Golubinskaya et al. use cultured podocytes, kidneys and isolated glomeruli of the mouse kidney to provide a thorough characterisation of Best3 expression under normal conditions...

  19. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES.

    Science.gov (United States)

    Park, Sung Kyun; Zhao, Zhangchen; Mukherjee, Bhramar

    2017-09-26

    There is growing concern of health effects of exposure to pollutant mixtures. We initially proposed an Environmental Risk Score (ERS) as a summary measure to examine the risk of exposure to multi-pollutants in epidemiologic research considering only pollutant main effects. We expand the ERS by consideration of pollutant-pollutant interactions using modern machine learning methods. We illustrate the multi-pollutant approaches to predicting a marker of oxidative stress (gamma-glutamyl transferase (GGT)), a common disease pathway linking environmental exposure and numerous health endpoints. We examined 20 metal biomarkers measured in urine or whole blood from 6 cycles of the National Health and Nutrition Examination Survey (NHANES 2003-2004 to 2013-2014, n = 9664). We randomly split the data evenly into training and testing sets and constructed ERS's of metal mixtures for GGT using adaptive elastic-net with main effects and pairwise interactions (AENET-I), Bayesian additive regression tree (BART), Bayesian kernel machine regression (BKMR), and Super Learner in the training set and evaluated their performances in the testing set. We also evaluated the associations between GGT-ERS and cardiovascular endpoints. ERS based on AENET-I performed better than other approaches in terms of prediction errors in the testing set. Important metals identified in relation to GGT include cadmium (urine), dimethylarsonic acid, monomethylarsonic acid, cobalt, and barium. All ERS's showed significant associations with systolic and diastolic blood pressure and hypertension. For hypertension, one SD increase in each ERS from AENET-I, BART and SuperLearner were associated with odds ratios of 1.26 (95% CI, 1.15, 1.38), 1.17 (1.09, 1.25), and 1.30 (1.20, 1.40), respectively. ERS's showed non-significant positive associations with mortality outcomes. ERS is a useful tool for characterizing cumulative risk from pollutant mixtures, with accounting for statistical challenges such as high

  20. Managing Leadership Stress

    CERN Document Server

    Bal, Vidula; McDowell-Larsen, Sharon

    2011-01-01

    Everyone experiences stress, and leaders face the additional stress brought about by the unique demands of leadership: having to make decisions with limited information, to manage conflict, to do more with less . . . and faster! The consequences of stress can include health problems and deteriorating relationships. Knowing what signs of stress to look for and having a strategy for increasing your resources will help you manage leadership stress and be more effective over a long career.Table of ContentsThe Stress of Leadership 7Why Is Leadership Stressful? 8Stress Assessment 13When Stress Is Wh

  1. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further

  2. Mapping residual stress by ultrasonic tomography

    International Nuclear Information System (INIS)

    Hildebrand, B.P.; Harrington, T.P.

    1979-01-01

    It is known that internal stress concentrations can give rise to microcracks which then grow when the structure is subjected to external forces. It has also been found that the velocity of sound is altered as it propagates through a region of stress. In this paper a technique called Computer-Assisted Tomography (CAT) is discussed and an application that provides pictures of stress fields is described. The results of both simulated and experimental models used to evaluate the technique are reported. It is concluded that the CAT approach has great potential for locating and mapping residual stress in metals. (author)

  3. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  4. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations

    Directory of Open Access Journals (Sweden)

    Jonathan M. Peake

    2018-06-01

    Full Text Available The commercial market for technologies to monitor and improve personal health and sports performance is ever expanding. A wide range of smart watches, bands, garments, and patches with embedded sensors, small portable devices and mobile applications now exist to record and provide users with feedback on many different physical performance variables. These variables include cardiorespiratory function, movement patterns, sweat analysis, tissue oxygenation, sleep, emotional state, and changes in cognitive function following concussion. In this review, we have summarized the features and evaluated the characteristics of a cross-section of technologies for health and sports performance according to what the technology is claimed to do, whether it has been validated and is reliable, and if it is suitable for general consumer use. Consumers who are choosing new technology should consider whether it (1 produces desirable (or non-desirable outcomes, (2 has been developed based on real-world need, and (3 has been tested and proven effective in applied studies in different settings. Among the technologies included in this review, more than half have not been validated through independent research. Only 5% of the technologies have been formally validated. Around 10% of technologies have been developed for and used in research. The value of such technologies for consumer use is debatable, however, because they may require extra time to set up and interpret the data they produce. Looking to the future, the rapidly expanding market of health and sports performance technology has much to offer consumers. To create a competitive advantage, companies producing health and performance technologies should consult with consumers to identify real-world need, and invest in research to prove the effectiveness of their products. To get the best value, consumers should carefully select such products, not only based on their personal needs, but also according to the

  5. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    Science.gov (United States)

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  6. Part of the oxidative stress in the development of radio-induced cell effects at cutaneous level: application to accidental localised irradiations; Role du stress oxydatif dans le developpement des effets cellulaires radio-induits au niveau cutane: application aux irradiations localisees accidentelles

    Energy Technology Data Exchange (ETDEWEB)

    Carine, Laurent

    2005-10-15

    The objective of our study was to answer to the following questions: does the initial radio-induced oxidative stress lead to the accumulation of DNA damages in the low renewal cells (fibroblasts, endothelial cells) that could be responsible of delayed effects; does it exist delayed oxidative phenomena and era they implied in the delayed effects arising; does it exist a phenomenon of premature senescence; does it exist a premature senescence phenomenon that could lead to an accumulation of damages before the cell death; what are the action mechanisms of the association pentoxifylline/{alpha}-tocopherol. (N.C.)

  7. Stress Management: Yoga

    Science.gov (United States)

    Healthy Lifestyle Stress management Is yoga right for you? It is if you want to fight stress, get fit and stay healthy. By ... particular, may be a good choice for stress management. Hatha is one of the most common styles ...

  8. Stress and Heart Health

    Science.gov (United States)

    ... It Works Healthy Workplace Food and Beverage Toolkit Stress and Heart Health Updated:Jan 8,2018 When ... therapist in your community. Last reviewed 6/2014 Stress Management • Home • How Does Stress Affect You? Introduction ...

  9. Overcoming job stress

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000884.htm Overcoming job stress To use the sharing features on this page, ... stay healthy and feel better. Causes of Job Stress Although the cause of job stress is different ...

  10. Posttraumatic Stress Disorder

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Posttraumatic Stress Disorder (PTSD) KidsHealth / For Parents / Posttraumatic Stress Disorder ( ... My Child? Looking Ahead Print What Is Posttraumatic Stress Disorder (PTSD)? Someone who is the victim of ( ...

  11. Stress Management: Spirituality

    Science.gov (United States)

    Healthy Lifestyle Stress management Taking the path less traveled by exploring your spirituality can lead to a clearer life purpose, better personal relationships and enhanced stress management skills. By Mayo Clinic Staff Some stress relief ...

  12. Teacher Wellness: Too Stressed for Stress Management?

    Science.gov (United States)

    Kipps-Vaughan, Debi; Ponsart, Tyler; Gilligan, Tammy

    2012-01-01

    Healthier, happier teachers promote healthier, happier, and more effective learning environments. Yet, many teachers experience considerable stress. Studies have found that between one fifth and one fourth of teachers frequently experience a great deal of stress (Kyriacou, 1998). Stress in teaching appears to be universal across nations and…

  13. Prenatal Maternal Stress Programs Infant Stress Regulation

    Science.gov (United States)

    Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

    2011-01-01

    Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

  14. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Stress and Health

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej

    2014-01-01

    Background Stress is an important public health issue. One in ten Danish adults experience high levels of stress in their daily lives and stress is one of the main occupational health problems in Europe. The link between stress and health is still debated in the scientific literature...... and the pathways underlying these potential health effects are far from elucidated. The dissertation contributions to the literature on stress and health by empirically testing the relationship between stress and major chronic disorders and by providing new evidence on the underlying physiological, psychological...... and behavioral mechanisms. Stress is a complex concept and in order to better understand the relation between stress and health, the dissertation works with a clear distinction between the health consequences of different types of stress including external stressors, perceived stress, and measures of the stress...

  16. The effect of academic stress and attachment stress on stress-eaters and stress-undereaters.

    Science.gov (United States)

    Emond, Michael; Ten Eycke, Kayla; Kosmerly, Stacey; Robinson, Adele Lafrance; Stillar, Amanda; Van Blyderveen, Sherry

    2016-05-01

    It is well established that stress is related to changes in eating patterns. Some individuals are more likely to increase their overall food intake under conditions of stress, whereas others are more likely to consume less food when stressed. Attachment style has been linked to disordered eating and eating disorders; however, comparisons of eating behaviors under attachment versus other types of stress have yet to be explored. The present laboratory study examined the eating patterns in self-identified stress-undereaters and stress-eaters under various types of stress. More specifically, the study examined the effects of academic and attachment stress on calorie, carbohydrate and sugar consumption within these two groups. Under the guise of critiquing student films, university students viewed either one of two stress-inducing videos (academic stress or attachment stress, both designed to be emotionally arousing) or a control video (designed to be emotionally neutral), and their food intake was recorded. Results demonstrated that the video manipulations were effective in inducing stress. Differential patterns of eating were noted based on group and stress condition. Specifically, stress-undereaters ate fewer calories, carbohydrates and sugars than stress-eaters in the academic stress condition, but not in the attachment stress or control condition. Findings suggest that specific types of stressors may influence eating behaviors differently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Management of journalists professional stress

    Directory of Open Access Journals (Sweden)

    Rvović Jelena J.

    2014-01-01

    Full Text Available This research has been conducted with the purpose of identifying the causes of stress (stressors within the journalists' work in Serbia, their intensity and frequency, as well as their negative impact on health on one hand, and on the other hand to identify what is the role of Human Resources Management within the media in overcoming journalists' stress caused by identified stressors. . The research method, a Questionnaire (N=60 was created as a combination of modified pSS (perceived Stress Scale and a Questionnaire proposed by Cousins et al. (2004 for measuring of work-related stress intensity, adapted to the specific features of this research. Results have revealed a large number of stressors that can and must be managed; therefore the specific goal of this research would include the creation of a draft template for management of journalists' professional stress. If the media in Serbia wish to be organizations that care about their journalists' health, they will have to adopt certain activities through a department of HR management to prevail over stress at work, due to permanent exposure of journalists to their great professional demands. However, human resources management in the media can not protect the health of their journalists most efficiently by one activity only, considering that a large number of stressors have been identified in the research. The proposed activities of HR management in overcoming the work-related stress represent only a macro-framework for outlining this phenomenon in Serbia, because we shall not be able to ascertain that the proposed template for journalists' professional stress management is completely efficient, before its application is proven empirically, i.e. in practice. This should not be regarded as a limitation to this research, considering that only a small number of credible studies in the world are using quantified data for verifying their conclusions. In any case the need for a study based on evidence

  18. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas

    2015-12-15

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  19. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas; Ali, Shawkat; Tester, Mark A.; Fotopoulos, Vasileios

    2015-01-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  20. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  1. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...

  2. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging....

  3. Coral lipids and environmental stress.

    Science.gov (United States)

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  4. Bruxism affects stress responses in stressed rats.

    Science.gov (United States)

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  5. Estimation of stress intensity factors for circumferential cracked pipes under welding residual stress filed

    International Nuclear Information System (INIS)

    Oh, Chang Young; Kim, Yun Jae; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum

    2012-01-01

    Recently, stress corrosion cracking(SCC) have been found in dissimilar metal welds of nozzles in some pressurized water reactors and on low carbon stainless steel piping systems of boiling water reactors. The important factor of SCC is the residual stress field caused by weld. For the evaluation of crack growth analysis due to SCC, stress intensity factor under a residual stress field should be estimated. Several solutions for stress intensity factor under residual stress field were recommended in flaw assessment codes such as the American Society of Mechanical Engineers (ASME) Section XI, R6, American Petroleum Institute (API579). Some relevant works have been studied. Dong et al. evaluated stress intensity factors in welded structures. Miyazaki et al. estimated stress intensity factors of surface crack in simple stress fields. This paper presents a simple method to estimate stress intensity factors in welding residual stress field. For general application, results of structure integrity assessment codes KI solutions were compared Finite element analyses of welding simulation and cracked pipes are described. Comparison results of KI solutions and proposed simplified solution are presented in the works

  6. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  7. Stress and Coping with Stress in Adolescence

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2015-12-01

    Full Text Available Because of the many developmental changes in adolescence, young people are exposed to greater likelihood of experiencing stress. On the other hand, this period is critical for developing effective and constructive coping strategies. In the contribution, we summarize part of what is known about stress, stress responses and coping. Throughout, we focus on common stressful events among adolescents and emphasize the importance of dealing successfully with stressors in their daily lives. Finally, we highlight the most frequently used instruments to measure coping behaviour in youth and present an overview of the research findings on differences in coping among adolescents according to age and gender.

  8. Measurement of residual stresses by the moire method

    Science.gov (United States)

    Sciammarella, C. A.; Albertazzi, A., Jr.

    Three different applications of the moire method to the determination of residual stresses and strains are presented. The three applications take advantage of the property of ratings to record the changes of the surface they are printed on. One of the applications deals with thermal residual stresses, another with contact residual stress and the third one is a generalization of the blind hole technique. This last application is based on a computer assisted moire technique and on the generalization of the quasi-heterodyne techniques of fringe pattern analysis.

  9. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  10. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  11. Stress at Work Place

    OpenAIRE

    Mohammad A. Shahrour

    2010-01-01

    One of hardest forms of stresses to avoid is that work place or job stress Job stress refers to stress experienced by an individual at or because of issues at their work place The term work related stress has many meanings and it causes different levels of anxiety. Not all challenges at work can be called stress as some of these challenges drive employees upward, and empower them to learn new skills or push them to work harder to achieve a certain goal. So, this type of challenges cannot be c...

  12. Stress: a concept analysis.

    Science.gov (United States)

    Goodnite, Patricia M

    2014-01-01

    To analyze the concept of stress and provide an operational definition of stress. Literature review revealed that stress is a commonly used, but often ambiguous, term. Findings supported a definition of stress entailing an individual's perception of a stimulus as overwhelming, which in turn elicits a measurable response resulting in a transformed state. This analysis adopts a dynamic definition of stress that may serve to encourage communication, promote reflection, and enhance concept understanding. This definition may provide direction for future work, as well as enhance efforts to serve patients affected by stress. © 2013 Wiley Periodicals, Inc.

  13. Ki aikido: a solution to stress.

    Science.gov (United States)

    Wiles, L

    1990-03-10

    It is common knowledge that the life of the general dental practitioner is extremely stressful. Different dentists resort to various ways of unwinding--perhaps a game of golf, a sailing trip, or mending the odd clock as occupational therapy. These are all ways of getting away from the stress of day-to-day work--but perhaps the time has come to look for a more fundamental solution. How many dentists have considered taking up a martial art to alleviate the problem of stress? Here, we outline the background of ki aikido and its practical applications in daily life.

  14. Horizontal stresses below two agricultural vehicles

    DEFF Research Database (Denmark)

    Lamande, Mathieu André Maurice; Munkholm, Lars Juhl; Nielsen, Janne Aalborg

    Abstract Deformation of the pore system in the subsoil due to mechanical stress applied by agricultural machinery is persistent for at least decades. Application of normal stress exceeding subsoil strength leads to a reduction of capacity soil properties (i.e. air-filled porosity) by compaction...... below the edge of tires. Stress distribution at the tire/soil contact is not uniform. Dimensions and inflation pressure are key factors for the ability of agricultural tires to distribute the wheel load. Our hypothesis was that the risk of shearing increases with the tire inflation pressure...

  15. Tank waste remediation system heat stress control program report, 1995

    International Nuclear Information System (INIS)

    Carls, D.R.

    1995-01-01

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it's inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  16. The stress of life

    National Research Council Canada - National Science Library

    Selye, H

    1978-01-01

    .... This is also a dependable personal guide that tells you how to combat both physical and mental stress, how to handle yourself during the stress of everyday life, and how your bodily changes can help...

  17. Stress and Migraine

    Science.gov (United States)

    ... Spotlight On News Content Capsule Contact Understanding Migraine Stress and Migraine Doctor Q&A Managing Migraine Migraine ... of Headache Disorders Cluster Headache Post-Traumatic Headache Stress and Migraine March 16, 2017 How to cope ...

  18. Institutional Preventive Stress Management.

    Science.gov (United States)

    Quick, James C.

    1987-01-01

    Stress is an inevitable characteristic of academic life, but colleges and universities can introduce stress management activities at the organizational level to avert excessive tension. Preventive actions are described, including flexible work schedules and social supports. (Author/MSE)

  19. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging.......Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders...

  20. Neuroepigenetics of stress.

    Science.gov (United States)

    Griffiths, B B; Hunter, R G

    2014-09-05

    Stress, a common if unpredictable life event, can have pronounced effects on physiology and behavior. Individuals show wide variation in stress susceptibility and resilience, which are only partially explained by variations in coding genes. Developmental programing of the hypothalamic-pituitary-adrenal stress axis provides part of the explanation for this variance. Epigenetic approaches have successfully helped fill the explanatory gaps between the influences of gene and environment on stress responsiveness, and differences in the sequelae of stress across individuals and generations. Stress and the stress axis interacts bi-directionally with epigenetic marks within the brain. It is now clear that exposure to stress, particularly in early life, has both acute and lasting effects on these marks. They in turn influence cognitive function and behavior, as well as the risk for suicide and psychiatric disorders across the lifespan and, in some cases, unto future generations. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Stress and Health

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej

    2014-01-01

    and behavioral mechanisms. Stress is a complex concept and in order to better understand the relation between stress and health, the dissertation works with a clear distinction between the health consequences of different types of stress including external stressors, perceived stress, and measures of the stress......’s disease patients. Results The combined evidence of this dissertation shows a moderately higher risk of some common chronic disorders including cardiovascular disease and atopic disorders among individuals exposed to work-related stressors and perceived stress. Most empirical studies also report higher...... of pathways. The physiological stress response has the ability to directly affect vital body systems including the cardiovascular, immune, and metabolic systems. Further, stress can lead to unfavorable changes in health-related behavior, impaired sleep and poor mental health. An increasing number of well...

  2. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  3. Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses.

    Science.gov (United States)

    Chen, Yuncai; Molet, Jenny; Lauterborn, Julie C; Trieu, Brian H; Bolton, Jessica L; Patterson, Katelin P; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2016-11-02

    Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption

  4. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...... under the head, at the thread start or at the thread root. To minimize the stress concentration shape optimization is applied....

  5. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...... and insomnia thus share complex interactions and the mechanisms involved are insufficiently understood but involve both psychological and physiological processes. First choice interventions involve behavioural and cognitive strategies and, to a lesser extent, pharmacological treatment....

  6. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Managing Stress. Project Seed.

    Science.gov (United States)

    Muto, Donna; Wilk, Jan

    One of eight papers from Project Seed, this paper describes a stress management project undertaken with high school sophomores. Managing Stress is described as an interactive workshop that offers young people an opportunity to examine specific areas of stress in their lives and to learn effective ways to deal with them. The program described…

  8. Stress i gymnasiet

    DEFF Research Database (Denmark)

    Nielsen, Anne Maj; Lagermann, Laila Colding

    Denne undersøgelse af stress hos gymnasieelever i Aalborg viser, hvordan stress giver sig udslag i gymnasiet, hvad der stresser eleverne, hvad der adskiller de stressramte elever fra andre elever, hvordan et stressreduktionskurset Åben og Rolig for Unge virker for de unge i gymnasiet, og hvad der...... kan modvirke stress i gymnasiet....

  9. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  10. The price of stress

    NARCIS (Netherlands)

    Groot, W.; Maassen, van den H.

    1999-01-01

    In this paper an economic approach is taken to the analysis of work-related stress. This economic approach not only allows us to infer the monetary equivalent of stress, it also enables us to test some of the psychological theories on stress, such as the demand/control theory. Evidence is found that

  11. Leadership and Occupational Stress

    Science.gov (United States)

    Stickle, Fred E.; Scott, Kelly

    2016-01-01

    In a leadership position, it is important to understand what stress is and how it affects others. In an occupational setting, stressors vary according to personality types, gender, and occupational rank. The purpose of this manuscript is to review the foundations of stress and to explore how personality characteristics influence stress.…

  12. Occupational Stress among Teachers.

    Science.gov (United States)

    Albertson, Larry M.; Kagan, Dona M.

    1987-01-01

    Two studies were conducted to investigate the degree to which occupational stress among teachers could be attributed to personal characteristics of the individuals themselves. The first study developed dispositional stress scales. The second examined correlations between these scales, occupational stress scales, and teachers' attitudes toward…

  13. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  14. Evaluation of Residual Stresses using Ring Core Method

    Directory of Open Access Journals (Sweden)

    Holý S.

    2010-06-01

    Full Text Available The method for measuring residual stresses using ring-core method is described. Basic relations are given for residual stress measurement along the specimen depth and simplified method is described for average residual stress estimation in the drilled layer for known principal stress directions. The estimation of calculated coefficients using FEM is described. Comparison of method sensitivity is made with hole-drilling method. The device for method application is described and an example of experiment is introduced. The accuracy of method is discussed. The influence of strain gauge rosette misalignment to the evaluated residual stresses is performed using FEM.

  15. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  16. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  17. Gender differences in the experience of Postraumatic Stress

    Directory of Open Access Journals (Sweden)

    Nevzat Shemsedini

    2016-03-01

    Full Text Available The aim of this research is to understand whether there are gender differences in the symptoms of stress post-traumatic stress disorder. Many researches that have been made in this area have reached the conclusion that there are gender differences in the symptoms of stress posttraumatic stress disorder. To investigate this issue is to select a sample of 100 respondents, the selection of whom is done at random, with people who we have met in the street the library, the faculties of other public sites. The research was of the type quantitative – where the data are collected through the application of questionnaires. The results from this survey show that there are gender differences in the symptoms of stress post-traumatic stress disorder. So, women survive with the many symptoms of stress post-traumatic stress disorder than men. The results are processed with the Analysis of data ,with the program SPSS.- krostabulim (crosstabulation Gender with questions. The aim of this research is to understand whether there are gender differences in the symptoms of stress post-traumatic stress disorder. Many researches that have been made in this area have reached the conclusion that there are gender differences in the symptoms of stress post-traumatic stress disorder. To investigate this issue is to select a sample of 100 respondents, the selection of whom is done at random, with people who we have met in the street the library, the faculties of other public sites. The research was of the type quantitative – where the data are collected through the application of questionnaires. The results from this survey show that there are gender differences in the symptoms of stress post-traumatic stress disorder. So, women perjetojnë with the many symptoms of stress post-traumatic stress disorder than men. The results are processed with the Analysis of data ,with the program SPSS.- krostabulim (crosstabulation Gender with questions.

  18. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  19. Stress and headache chronification.

    Science.gov (United States)

    Houle, Timothy; Nash, Justin M

    2008-01-01

    In this special section, the concept of stress has been linked to the chronification of headache and is considered to be one of several likely mechanisms for the progression of an otherwise episodic disorder to a chronic daily phenomenon. The present review discusses the concept of stress and describes the mechanisms through which stress could influence headache progression. The hypothesized mechanisms include stress serving as a unique trigger for individual attacks, as a nociceptive activator, and as a moderator of other mechanisms. Finally, the techniques used in the screening and management of stress are mentioned in the context of employing strategies for the primary, secondary, or tertiary prevention of headache progression.

  20. Neuropeptide Y and Stress

    Directory of Open Access Journals (Sweden)

    Murat Gulsun

    2012-03-01

    Full Text Available The neurobiological aspects of stress and coping skills has been the focus of interest for many researchers. Some of the studies has shown that there is a significant relationship among genetically variables, stress response and life events. Neuropeptide Y is one of the systems regulating the stress response. Under the prolonged or repeated trauma neuropeptide Y is released from the brain's key areas. This system shows different levels of functioning in individuals with different levels of resilience. There is particular interest in the variations of genes that encode stress-sensitive signaling molecules during gene-environment interaction. This condition may contribute to susceptibility of stress or stress resilience. Neuropeptide Y system plays a key role in the adaptation to behavioral stress. The reduced levels of neuropeptide Y have also been observed in treatment-resistant depression and posttraumatic stress disorder. Lower level of neuropeptide Y expression and dysfunctional neuropeptide Y system in response to stress and resulting decreased stress resilience could increase susceptibility to stress-related disorders.

  1. Does student debt affect dental students' and dentists' stress levels?

    Science.gov (United States)

    Boyles, J D; Ahmed, B

    2017-10-27

    Introduction Many studies have shown financial worries and debt to induce stress in individuals, this combined with the existing stress of being a dentist raises the question of how student debt affects students' and dentists' stress levels.Objectives Determine whether student debt has had any noticeable effect on student stress levels; investigate whether student debt has any effect on dentists' career choice; investigate whether the increase in tuition fees has influenced the number of applicants to study dentistry at the University of Birmingham.Method Anonymous questionnaires were completed by 70 4th year and 38 5th year BDS and 22 Dental Core Trainees (DCTs). Participants circled the response which best fitted their situation regarding statements on their level of stress and future career path. Ethical approval granted. Application figures to study dentistry obtained from head of admissions.Results Forty-two percent of males and 63% of females strongly agreed with the statement that having no debt would reduce their stress levels. Of those with debt >£40,000, 11% strongly agreed and 42% agreed that their total amount of student debt causes them stress. Whereas, those whose debt is stress. Seventy-seven percent of participants who had parental or family financial support reported this reduced their stress levels. Student debt was found to deter females from undertaking further study more than it deters males (P stressed about their total student loan(s) (P stress (P stress; students reporting a higher level of debt also report more stress and concern about paying off their student debt. Having no student debt would reduce stress levels, although to what extent is undetermined. Applications to study dentistry have fallen since the increase in tuition fees.

  2. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  3. Stress and Cancer

    DEFF Research Database (Denmark)

    Christoffer, Johansen,; Sørensen, Ivalu; Lim Høeg, Beverly

    2017-01-01

    The role of stress in relation to cancer remains controversial. Stress is assumed to be an emerging public health problem in modern society. Still, we argue that it is relevant to view the role of stress in cancer from a scientific point of view. A critical overview of existing evidence...... is presented through previous review studies, and the importance of methodological challenges is highlighted. We summarize the evidence on the role of stress as a cause of cancer, on the impact of stress on cancer prognosis, and on how coping mechanisms may influence stress levels in cancer patients. Finally......, we describe the evidence on interventions to relieve stress in cancer patients for the purpose of improving both well-being and cancer prognosis. Against public opinion, we critically dismiss the evidence on psychotherapy as a tool to prolong life after cancer as inconsistent and unresolved....

  4. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  5. Pain stress and headache.

    Science.gov (United States)

    Panerai, Alberto E

    2012-05-01

    The association between pain and stress is an old one, but still it is not really clear who comes first. Pain induces stress, and stress induces pain. Pain is part of our homeostatic system and in this way is an emotion, i.e., it tells us that something is out-of-order (control), and emotion drives our behavior and one behavior is stress response. Stress comes from ourselves: the imagination we have or would like to have of us, from the image others give of us, from the goals we assume it is necessary to reach for our well-being or the goals others want us to fulfill. Stress comes from our social condition and the condition we would like, stress comes from dangerous situations we cannot control. Headache easily fits in the picture.

  6. [Stress in surgeries].

    Science.gov (United States)

    Daian, Márcia Rodrigues; Petroianu, Andy; Alberti, Luiz Ronaldo; Jeunon, Ester Eliane

    2012-01-01

    The purpose of this article was to provide the literature regarding the psychological stress in the peri-operative period of adult patients undergoing operations under general anesthesia. The articles were obtained by surveying the papers published and catalogued in the Medline Pubmed interface database, Lilacs and the Biblioteca Virtual de Saúde (BVS) since 1984, crossing the headings stress, surgery, general anesthesia, psychology. Over 800 articles related to stress and surgery were analyzed with regards to their relevance to the considered subject. Eighteen articles were related to psychological stress. Their results confirmed the presence of psychological and physical stress, during the peri-operative period as well as relation between stress and de clinical post-operative recovery. There is a gap regarding in the peri-operative period. More studies on psychological influence on stress may benefit patients and help professionals during the surgical treatment.

  7. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  8. Stress Management and Gifted Children

    Science.gov (United States)

    Patel, Vidisha A.

    2009-01-01

    Stress can affect anyone, and gifted children are no exception. Giftedness can sometimes be the cause of the stress. Perfectionism, sensitivity, and intensity are characteristics of gifted children that may exacerbate stress. Stress can be constructive. Prolonged stress, however, with no time to recover becomes detrimental. Continued stress upsets…

  9. Application of the results of pipe stress analyses into fracture mechanics defect analyses for welds of nuclear piping components; Uebernahme der Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) fuer bruchmechanische Fehlerbewertungen fuer Schweissnaehte an Rohrleitungsbauteilen in kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, S.; Neubrech, G.E.; Wernicke, R. [TUeV Nord SysTec GmbH und Co.KG (Germany); Rieck, D. [IGN Ingenieurgesellschaft Nord mbH und Co.KG (Germany)

    2008-07-01

    For the fracture mechanical assessment of postulated or detected crack-like defects in welds of piping systems it is necessary to know the stresses in the un-cracked component normal to the crack plane. Results of piping stress analyses may be used if these are evaluated for the locations of the welds in the piping system. Using stress enhancing factors (stress indices, stress factors) the needed stress components are calculated from the component specific sectional loads (forces and moments). For this procedure the tabulated stress enhancing factors, given in the standards (ASME Code, German KTA regulations) for determination and limitation of the effective stresses, are not always and immediately adequate for the calculation of the stress component normal to the crack plane. The contribution shows fundamental possibilities and validity limits for adoption of the results of piping system analyses for the fracture mechanical evaluation of axial and circumferential defects in welded joints, with special emphasis on typical piping system components (straight pipe, elbow, pipe fitting, T-joint). The lecture is supposed to contribute to the standardization of a code compliant and task-related use of the piping system analysis results for fracture mechanical failure assessment. [German] Fuer die bruchmechanische Bewertung von postulierten oder bei der wiederkehrenden zerstoerungsfreien Pruefung detektierten rissartigen Fehlern in Schweissnaehten von Rohrsystemen werden die Spannungen in der ungerissenen Bauteilwand senkrecht zur Rissebene benoetigt. Hierfuer koennen die Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) genutzt werden, wenn sie fuer die Orte der Schweissnaehte im Rohrsystem ausgewertet werden. Mit Hilfe von Spannungserhoehungsfaktoren (Spannungsindizes, Spannungsbeiwerten) werden aus den komponentenweise berechneten Schnittlasten (Kraefte und Momente) die benoetigten Spannungskomponenten berechnet. Dabei sind jedoch die in den Regelwerken (ASME

  10. Interoception and Stress

    Directory of Open Access Journals (Sweden)

    André eSchulz

    2015-07-01

    Full Text Available Afferent neural signals are continuously transmitted from visceral organs to the brain. Interoception refers to the processing of visceral-afferent neural signals by the central nervous system, which can finally result in the conscious perception of bodily processes. Interoception can, therefore, be described as a prominent example of information processing on the ascending branch of the brain-body axis. Stress responses involve a complex neuro-behavioral cascade, which is elicited when the organism is confronted with a potentially harmful stimulus. As this stress cascade comprises a range of neural and endocrine pathways, stress can be conceptualized as a communication process on the descending branch of the brain-body axis. Interoception and stress are, therefore, associated via the bi-directional transmission of information on the brain-body axis. It could be argued that excessive and/or enduring activation (e.g. by acute or chronic stress of neural circuits, which are responsible for successful communication on the brain-body axis, induces malfunction and dysregulation of these information processes. As a consequence, interoceptive signal processing may be altered, resulting in physical symptoms contributing to the development and/or maintenance of body-related mental disorders, which are associated with stress. In the current paper, we summarize findings on psychobiological processes underlying acute and chronic stress and their interaction with interoception. While focusing on the role of the physiological stress axes (HPA axis and autonomic nervous system, psychological factors in acute and chronic stress are also discussed. We propose a feed-forward model involving stress (in particular early life or chronic stress, as well as major adverse events, the dysregulation of physiological stress axes, altered perception of bodily sensations, and the generation of physical symptoms, which may in turn facilitate stress.

  11. Stress Corrosion Cracking of Aluminum Alloys

    Science.gov (United States)

    2012-09-10

    Hossain and B. J, O’Toole: Stress Corrosion Cracking of Martensitic Stainless Steel for Transmutation Application, Presented at 2003 International...SCC of marternsitic stainless steel by Roy,[12] and learn the annealing effect on SCC of carbon steel by Haruna.[13] The application of slow...observations. In his study on SCC of AISI 304 stainless steel , Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and

  12. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  13. Occupational stress in the multicultural workplace.

    Science.gov (United States)

    Pasca, Romana; Wagner, Shannon L

    2011-08-01

    Occupational stress is a well researched topic leading to the development of strong, viable models of workplace stress. However, there is a gap in the literature with respect to the applicability of this research to specific cultural groups, in particular those of immigrant status. The present paper reviews the extant literature regarding occupational stress from a multicultural perspective, evaluates the usefulness for existing models in the multicultural context, and discusses current issues with respect to increasing multiculturalism in the work environment. The authors conclude that workforce diversity is emerging as a pressing issue of organizational life and consequently, that future research needs to continue investigating whether current knowledge regarding workplace stress is fitting with the multicultural diversity of the present-day working population.

  14. New Approaches to Anti-Stress Practices in Poultry

    OpenAIRE

    Atilla Taşkın; Ahmet Şahin; Ömer Camcı; Güray Erener

    2015-01-01

    Parameters of health, productivity, behaviour and physiology which are used in order to determine the stress shaped by the effects of various factors in poultries can only be detected when the effects of stress emerge; in other words, when the changes are shaped. Therefore; it is important to interfere before the emergence of these indications in order to develop animal welfare by preventing stress. Information programmes, as traditional methods, and vitamin applications as well as anti-stres...

  15. Stresses in the foil of an electron accelerator extraction channel

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Makarenko, T.I.; Tokmakov, I.L.

    1983-01-01

    Stresses in the foil of an electron accelerator extraction channel are assessed with account of contributions of thermal expansion and stress concentrations during switchings. Optimization of extraction grid parameters of the electron accelerator extraction channel and choice of foil material for high current electron beam is conducted. It is suggested that an extraction grid with circular cells and Al-Mg foil should be used. A simple formula applicable for design calculations is proposed for evaluation of stress concentration coefficient during phase switchings

  16. CAM and Post-Traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Alex Hankey

    2007-01-01

    Full Text Available In the form of the Transcendental Meditation program CAM offers a method of eliminating deep-rooted stress, the efficacy of which has been demonstrated in several related studies. Any discussion of CAM and post-traumatic stress disorder should include a study of its application to Vietnam War Veterans in which improvements were observed on all variables, and several participants were able to return to work after several years of being unable to hold a job. The intervention has been studied for its impact on brain and autonomic nervous system function. It has been found to be highly effective against other stress-related conditions such as hypertension, and to improve brain coherence—a measure of effective brain function. It should be considered a possible ‘new and improved mode of treatment’ for PTSD, and further studies of its application made.

  17. Stress transmission in soil

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals......). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil in each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative to the transducers was recorded using a laser sensor. Finally, the vertical stresses near...... the soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports...

  18. Learning During Stressful Times

    Science.gov (United States)

    Shors, Tracey J.

    2012-01-01

    Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128

  19. Stresses in Dolosse

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou; Howell, Gary L.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structu......Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams...... for structural integrity. The paper presents the results and the analyses of model tests with 200 kg and 200 g load-cell instrumented Dolosse. Static stresses and wave generated stresses were studied as well as model and scale effects. A preliminary design diagram for Dolosse is presented as well....

  20. Stress Erythropoiesis Model Systems.

    Science.gov (United States)

    Bennett, Laura F; Liao, Chang; Paulson, Robert F

    2018-01-01

    Bone marrow steady-state erythropoiesis maintains erythroid homeostasis throughout life. This process constantly generates new erythrocytes to replace the senescent erythrocytes that are removed by macrophages in the spleen. In contrast, anemic or hypoxic stress induces a physiological response designed to increase oxygen delivery to the tissues. Stress erythropoiesis is a key component of this response. It is best understood in mice where it is extramedullary occurring in the adult spleen and liver and in the fetal liver during development. Stress erythropoiesis utilizes progenitor cells and signals that are distinct from bone marrow steady-state erythropoiesis. Because of that observation many genes may play a role in stress erythropoiesis despite having no effect on steady-state erythropoiesis. In this chapter, we will discuss in vivo and in vitro techniques to study stress erythropoiesis in mice and how the in vitro culture system can be extended to study human stress erythropoiesis.