WorldWideScience

Sample records for thermo siphon system

  1. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  2. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  3. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    International Nuclear Information System (INIS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-01-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN 2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  4. Thermo-siphon Mock-up Test for the HANARO-CNS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Lee, Kye Hong; Kim, Hark Rho; Kim, Youngki; Kim, Myong Seop; Wu, Sang Ik; Kim, Bong Su

    2006-04-15

    In order to moderate thermal neutrons into cold neutrons, the liquid hydrogen is selected as a moderator for the HANARO CNS. By the non-nuclear heat load and nuclear heat load induced from collision of gamma-ray, beta-ray, and thermal neutrons, the liquid hydrogen in the moderator cell evaporates and flows into the heat exchanger. This evaporated hydrogen gas is liquefied by the cryogenic helium supplied from the helium refrigeration system,, then flows back to the moderator cell. This is so-called two-phase thermo-siphon. The most important point in the stable thermo-siphon is to have the good balance between the cooling capacity of the HRS and the heat load on the moderator cell so as to maintain the stable two-phase liquid level in the moderator cell. Accordingly, for not only the experience of the cryogenic two-phase thermo-siphon but also setup of the operation procedure, the full-scaled mock-up test has been performed using the liquid hydrogen. Through the test, the stable thermo-siphon establishment is confirmed at the cold normal operation; furthermore, the detail design parameter is validated. On top of the normal operation procedure setup, the abnormal operation procedure is settled based on the understanding the abnormal pressure and temperature transient dynamics in the hydrogen system.

  5. Numerical Simulation of a Single-Phase Closed-Loop Thermo-Siphon in LORELEI Test Device

    International Nuclear Information System (INIS)

    Gitelman, D.; Shenha, H.; Gonnier, Ch.; Tarabelli, D.; Sasson, A.; Weiss, Y.; Katz, M.

    2014-01-01

    The LORELEI experimental setup in the Jules Horowitz Reactor (JHR) is dedicated for the study of fuel during a Loss of Coolant Accident (LOCA). The main objective of the LORELEI(2) (Light-Water One-Rod Equipment for LOCA Experimental Investigation) is to study the thermal-mechanical behavior of fuel during such an accident and to produce a short half-life fission products source term. In order to study those phenomena, the fuel sample will experience a transient neutron flux field, which in turn will generate a Linear Heat Generation Rate (LHGR) and determine the temperature of the fuel and its cladding, simulating the behavior of the fuel and the cladding during a LOCA accident. In order to reproduce a LOCA-type transient sequence, the experimental test device will be located on a displacement device. The displacement device moves the test device in the flux field in order to generate a representing LHGR in the fuel or temperature of its cladding. The LOCA-type transient sequence has four major features: „h An adiabatic heating of the fuel up to the ballooning and burst occurrence. „h High temperature plateau which will promote clad oxidation. „h Passive precooling by thermal inertia. „h Water re-flooding and quenching. The challenge in the thermo-hydraulic design of the LORELEI test section is in defining a one closed water capsule design that can operate as a thermo-siphon at re-irradiation phase and also can reproduce all LOCA-type transient sequence phases. This design should be validated and verified to fill all safety and regulation requirements. This work aims to investigate fluid flow behavior of a single-phase thermo-siphon in the LORELEI test device, as part of the conceptual design and optimization study. The complexity of the flow field in the LORELEI test device, as a closed-loop thermo-siphon, is due to the opposing forces in the device - buoyancy forces and natural convection flow generated (mainly) by the fuel power in the hot channel

  6. The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System

    Science.gov (United States)

    Homan, Jonathan; Montz, Michael; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao (Rao); Knudsen, Peter; Garcia, Sam; Linza, Robert; Meagher, Daniel; Lauterbauch, John

    2008-01-01

    NASA Johnson Space Center (JSC) in Houston is currently supplementing its 20K helium refrigeration system to meet the new requirements for testing the James Web Space Telescope in the environmental control Chamber-A (65 dia x 120 high) in Building 32. The new system is required to meet the various operating modes which include a high 20K heat load, a required temperature stability at the load, rapid (but controlled) cool down and warm up and bake out of the chamber. This paper will present the proposed modifications to the existing helium system(s) to incorporate the new requirements and the integration of the new helium refrigerator with the existing two 3.5KW 20K helium refrigerators. In addition, the floating pressure process control philosophy to achieve high efficiency over the operating range (40% to 100% of the refrigeration system capacity), and the required temperature stability of +/- 0.25 K at the load will be discussed. The refrigeration systems ability to naturally seek the operating conditions under various loads and thus minimizing operator involvement and the over all improvements to the system operability and the reliability will be explained.

  7. Feasibility study of the thermo-siphon mock-up test

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Jin; Lee, Kye Hong; Kim, Young Ki; Jeong, Sang Kwon

    2004-09-01

    Described is the feasibility of the thermo-siphon mock-up test for the HANARO-CNS facility. The purposes of the mock-up tests are discussed in detail as the three concepts: for the detailed design, for the operation of the CNS facility, for the safety assurance of itself. This report considers the two stages of mock-up tests in terms of the experimental schedule and plan. As the first stage, the small-size mock-up test using Argon will be implemented to obtain the experience in the cryogenic fluid and to understand the basic concept of the CNS thermo-siphon. In the second stage, two kinds of mock-up tests are discussed: the full-scale mock-up test using liquid hydrogen or the integrated final test using hydrogen outside the reactor after the full-scale mock-up test using Freon gas. The contents discussed in this report will be the basis or the guide lines for the mock-up test. In addition, the results of the mock-up test will be the foundation for the safe operation of the HANARO-CNS facility

  8. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    International Nuclear Information System (INIS)

    Makida, Y; Shintomi, T; Hamajima, T; Tsuda, M; Miyagi, D; Ota, N; Katsura, M; Ando, K; Takao, T; Tsujigami, H; Fujikawa, S; Hirose, J; Iwaki, K; Komagome, T

    2015-01-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured. (paper)

  9. The Heat Exchanger for Passive Part ECCS of WWER-1000 on Base of the Thermo siphons

    International Nuclear Information System (INIS)

    Kirov, V.; Chulkin, O.

    2008-01-01

    One of NPP's systems providing safe operation is the system of emergency core cooling system (ECCS), which primary function in accidents is to flood the nuclear reactor core and to assure the sub critical condition and core cooling. At injection of cold water in reactor thermal stresses and thermal fatigue in the vessel cladding and constructional materials are arise. Low temperature of the water injected in reactor is a reason of occurrence of these undesirable consequences. Some variants of the water heating in accumulators of ECCS are considered. Now at Ukrainian NPPs the electrical heating in accumulators is used. Electrical heaters create the essential additional loading to diesel generators at imposing of two accidents - the large break and losses of power supplies on own needs. It is offered to use a heater in accumulators that working by a principle two-phase thermal siphon which advantages is: small dimensions, small delay and design reliability. In such heat exchanger the heating medium is a direct steam and the heated up medium is water with boric acid from accumulators of ECCS. Under requirements of the service regulations of ECCS accumulators it is necessary to guarantee injected water heating up to 90 ?? in case of a small break and to 150 ?? in case of the large break. Results of calculations for different external diameters of a tube of thermal siphon which have allowed to define the constructive sizes of heat exchanger, providing necessary conditions for required functioning of passive part ECCS are submitted The calculation and analysis of operating modes of the changed circuit of passive part ECCS for various accidents is carried out. The calculated pressure drop indicates that changes do not have essential influence on system work as a whole. Thus, the submitted decision provides the increase of reliability of ECCS at small and large breaks accidents, i.e. in all modes stipulated by the project.(author)

  10. Establishing riparian vegetation through use of a self-cleaning siphon system

    Science.gov (United States)

    Mark D. Ankeny; L. Bradford Sumrall; Kuo-Chin Hsu

    1999-01-01

    Storm water or overland flow can be captured and injected into a soil trench or infiltration gallery attached to a siphon and emplaced adjacent to a stream or arroyo bank. This injected soil water can be used by stream side vegetation for wildlife habitat, bank stabilization or other purposes. The siphon system has three hydrologically-distinct flow regimes: (1)...

  11. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  12. Thermal hydraulic considerations and mock-up tests for developing two-phase thermo-siphon loop of CARR-CNS

    International Nuclear Information System (INIS)

    Shejiao, Du; Qincheng, Bi; Tingkuan, Chen; Quanke, Feng

    2005-01-01

    The main component of the China Advanced Research Reactor Cold Neutron Source (CARR-CNS), which is under design, is a two-phase thermo-siphon loop of hydrogen. It consists of a condenser, a single tube with counter current flow avoiding flooding and a cylindrical-annulus moderator cell. The mockup tests were carried out using a full-scale loop with Freon-113, to validate the self-regulating characteristics of the loop, void fraction less than 20% in the liquid of the moderator cell and the requirements for establishing the condition under which the inner shell of the moderator cell has only vapor and the outer shell liquid. In the case of these mockup tests the density ratio of liquid to vapor and the volumetric vapor evaporation rate due to heat load are kept the same as those in normal operation of the CARR-CNS. The results show that the loop has the self-regulating characteristics and the inner shell of the moderator cell contains only vapor, the outer shell liquid. The average void fraction of the moderator cell was verified less than 20% under the volumetric vapor generation of 0.65 l/s corresponding to the nuclear heating of 800 W in the case of the liquid hydrogen. The local void fraction in the liquid hydrogen increases with the increase of the loop pressure under the condition of a constant volumetric evaporation

  13. The Secret Siphon

    Science.gov (United States)

    Hughes, Stephen W.

    2011-01-01

    Although the siphon has been in use since ancient times, the exact mechanism of operation is still under discussion. For example, most dictionaries assert that atmospheric pressure is essential to the operation of a siphon rather than gravity. Although there is general agreement that gravity is the motivating force in a siphon, there is…

  14. Siphonic Concepts Examined: A Carbon Dioxide Gas Siphon and Siphons in Vacuum

    Science.gov (United States)

    Ramette, Joshua J.; Ramette, Richard W.

    2011-01-01

    Misconceptions of siphon action include assumptions that intermolecular attractions play a key role and that siphons will operate in a vacuum. These are belied by the siphoning of gaseous carbon dioxide and behaviour of siphons under reduced pressure. These procedures are suitable for classroom demonstrations. The principles of siphon action are…

  15. Conceptual design and feasibility test of two-phase hydrogen thermal siphon system of CNS in CARR

    International Nuclear Information System (INIS)

    Bi Qincheng; Chen Tingkuan; Feng Quanke; Du Shejiao; Li Xiaoming; Wei Liang

    2004-01-01

    Conceptual design of the hydrogen system of cold neutron source (CNS) in China Advanced Research Reactor (CARR) was proposed, and feasibility test was carried out. In order to determine the void fraction in neutron moderator, the circulation ability of the two-phase hydrogen thermal siphon system, and the structure of components of the CNS, the mockup test was performed using Freon-113 as working fluid. To obtain the modeling criterion so that the above experimental results can be applied to the design of CARR, the bubble rising velocities in different liquids were investigated to study the effects of physical properties such as density, viscosity and surface tension on bubble rising velocity, void fraction and circulation ability

  16. Effects of pressure reductions in a proposed siphon water lift system at St. Stephen Dam, South Carolina, on mortality rates of juvenile American shad and blueback herring. Technical report

    International Nuclear Information System (INIS)

    Nestler, J.M.; Schilt, C.R.; Jones, D.P.

    1998-09-01

    This report presents results of studies to predict the mortality rate of juvenile blueback herring (Alosa aestivalis) and American shad (A. sapidissima) associated with reduced pressure as they pass downstream through a proposed siphon water lift system at St. Stephen Dam, South Carolina. The primary function of the siphon is to increase attracting flow to better guide upstream migrating adult herring of both species into the existing fish lift for upstream passage. The US Army Engineer District, Charleston, wishes to consider the siphon as an alternative bypass route through the dam for downstream migrating juvenile and adult herring. A pressure-reduction testing system that emulates some of the pressure characteristics of the siphon was used to determine the approximate percentage of juvenile fishes that could be reasonably expected to be killed passing through the reduced pressures anticipated for the siphon water lift system. The testing system could duplicate the range of pressure change anticipated for the siphon lift system but could not obtain pressures lower than 4.1 psi, whereas pressures for some design alternatives may approach the theoretical minimum pressure of 0.0 psi. Study results indicate that the mortality rate is probably about 20 percent. Power analysis indicates that mortality rate above 30 percent is unlikely. Conducting additional mortality studies is recommended to refine predicted mortality rates. Measures should be taken to prevent juvenile fish from entering the siphon lift system if excessive mortality rates are observed

  17. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André

    2012-01-01

    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  18. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    Science.gov (United States)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  19. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...

  20. Thermo effect of chemical reaction in irreversible electrochemical systems

    International Nuclear Information System (INIS)

    Tran Vinh Quy; Nguyen Tang

    1989-01-01

    From first law of thermodynamics the expressions of statistical calculation of 'Fundamental' and 'Thermo-chemical' thermal effects are obtained. Besides, method of calculation of thermal effect of chemical reactions in non-equilibrium electro-chemical systems is accurately discussed. (author). 7 refs

  1. Can a Siphon Work in Vacuo?

    Science.gov (United States)

    Boatwright, Adrian L.; Puttick, Simon; Licence, Peter

    2011-01-01

    Used since the time of the ancient Egyptians as a method for transferring liquids from one vessel to another, the siphon is a dependable tool. Although, the act of siphoning beer from a fermentation barrel or wine from a demijohn is a skill that has been passed down from generation to generation, do we really know how the siphon works? It is…

  2. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  3. Towards Explaining the Water Siphon

    Science.gov (United States)

    Jumper, William D.; Stanchev, Boris

    2014-01-01

    Many high school and introductory college physics courses cover topics in fluidics through the Bernoulli and Poiseuille equations, and consequently one might think that siphons should present an excellent opportunity to engage students in various laboratory measurement exercises incorporating these fascinating devices. However, the flow rates (or…

  4. Experimental study on size effect of siphon-breaking hole in the real-scaled reactor pool

    International Nuclear Information System (INIS)

    Kang, Soon Ho; Ahn, Ho Seon; Kim, Ji Min; Kim, Moo Hwan; Lee, Kwon Yeong; Seo, Kyoung Woo; Chi, Dae Young

    2012-01-01

    A rupture in the primary piping of a cooling system with a heat source or in a research reactor could lead to a loss-of-coolant accident (LOCA). However, if the water level of the reactor pool could be sustained and a reactor scram follows, the heat source could be cooled by natural convection, and significant accidents could be avoided. When a piping-system rupture accident occurs, the coolant starts to siphon out of the reactor pool until the pressure head between the inlet and outlet is removed or the siphon flow is interrupted. Therefore, a siphon-breaker mechanism can be adopted as a passive safety device to maintain the reactor water level. The gas entrainment is used to block the continuous loss of coolant by interrupting the siphon flow. Siphon breaking is complicated due to the transient, turbulent, two-phase flow mode, so suitable models or correlations that describe this phenomenon do not exist, and no general analysis been developed. Previous researchers have conducted experiments and numerical simulations to design a siphon breaker to meet their needs. Previous research on siphon breaking has not been conducted systemically, and no literature exists, even though the topic is greatly concerned with hydraulic safety. In this study, siphon-breaking holes were used as siphon breakers, and their performance was evaluated by the residual water quantity. Flow visualization was conducted to interpret the siphon-breaking phenomenon

  5. Design and computational analysis of passive siphon breaker for 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Yue Zhiting; Song Yunpeng; Liu Xingmin; Zou Yao; Wu Yuanyuan

    2014-01-01

    Based on safety considerations, a passive siphon breaker will be added to the primary cooling system of 49-2 Swimming Pool Reactor (SPR). With the breaker location determined, the capability of siphon breakers with diameters of 1.5 cm and 2.0 cm was calculated and analyzed respectively by RELAP5/MOD3.3 code. The results show that in the condition of large break loss of coolant accident these two sizes of siphon breakers are able to break the siphon phenomena, and maintain the pool water level above the reactor core when the reactor and the pump are shutdown. In the end, to be conservative, the siphon breaker with diameter of 2.0 cm is adopted. (authors)

  6. Thermo-osmosis in Membrane Systems: A Review

    Science.gov (United States)

    Barragán, V. María; Kjelstrup, Signe

    2017-06-01

    We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

  7. A modified closed flow through siphon system for the cultivation of marine or estuarine organisms under simulated conditions

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, K.K.C.; Gopalakrishnan, T.C.; Sankaranarayanan, V.N.; Desai, B.N.

    . Some of the principles used in the present modified design have come from the design of Nair et al., (1978) and Nair and Anger (1980) with lot of innovations to improve the working efficiency. The systems designed is protected under Government..., employing the same principles, in place of diarom/algal culture for water treatment, mangrove plants such as Rhizophora apiculata and Kandelia kandal were found very effective for removal of dissolved nutrients and other end products in the culture media...

  8. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  9. Construction of database server system for fuel thermo-physical properties

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kwon Ho; Song, Kee Chan

    2003-12-01

    To perform the evaluation of various fuels in the nuclear reactors, not only the mechanical properties but also thermo-physical properties are required as one of most important inputs for fuel performance code system. The main objective of this study is to make a database system for fuel thermo-physical properties and a PC-based hardware system has been constructed for ease use for the public with visualization such as web-based server system. This report deals with the hardware and software which are used in the database server system for nuclear fuel thermo-physical properties. It is expected to be highly useful to obtain nuclear fuel data without such a difficulty through opening the database of fuel properties to the public and is also helpful to research of development of various fuel of nuclear industry. Furthermore, the proposed models of nuclear fuel thermo-physical properties will be enough utilized to the fuel performance code system

  10. Thermo-curable epoxy systems for nanoimprint lithography

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung

    2010-01-01

    In this work, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL

  11. A simplified approach for the computation of steady two-phase flow in inverted siphons.

    Science.gov (United States)

    Diogo, A Freire; Oliveira, Maria C

    2016-01-15

    Hydraulic, sanitary, and sulfide control conditions of inverted siphons, particularly in large wastewater systems, can be substantially improved by continuous air injection in the base of the inclined rising branch. This paper presents a simplified approach that was developed for the two-phase flow of the rising branch using the energy equation for a steady pipe flow, based on the average fluid fraction, observed slippage between phases, and isothermal assumption. As in a conventional siphon design, open channel steady uniform flow is assumed in inlet and outlet chambers, corresponding to the wastewater hydraulic characteristics in the upstream and downstream sewers, and the descending branch operates in steady uniform single-phase pipe flow. The proposed approach is tested and compared with data obtained in an experimental siphon setup with two plastic barrels of different diameters operating separately as in a single-barrel siphon. Although the formulations developed are very simple, the results show a good adjustment for the set of the parameters used and conditions tested and are promising mainly for sanitary siphons with relatively moderate heights of the ascending branch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A new formalism for non extensive physical systems: Tsallis Thermo statistics

    International Nuclear Information System (INIS)

    Tirnakli, U.; Bueyuekkilic, F.; Demirhan, D.

    1999-01-01

    Although Boltzmann-Gibbs (BG) statistics provides a suitable tool which enables us to handle a large number of physical systems satisfactorily, it has some basic restrictions. Recently a non extensive thermo statistics has been proposed by C.Tsallis to handle the non extensive physical systems and up to now, besides the generalization of some of the conventional concepts, the formalism has been prosperous in some of the physical applications. In this study, our effort is to introduce Tsallis thermo statistics in some details and to emphasize its achievements on physical systems by noting the recent developments on this line

  13. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  14. Case-study of thermo active building systems in Japanese climate

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    Thermo active building systems (TABS) have been applied in office buildings as a promising energy efficient solution in many European countries. The utilization of building thermal mass helps to provide high quality thermal environments with less energy consumption. However, the concept of TABS...... is entirely new in Japan. This paper introduces and evaluates TABS under Tokyo weather conditions to clarify the potential of use TABS in Japan. Cooling capacity of thermo active building systems used in an office building was evaluated by means of dynamic simulations. Two central rooms of the office were...

  15. Thermo Active Building Systems(TABS) - Performance in practice and possibilities for optimization

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    The project “Thermo Active Building Systems (TABS) – Performance in practice and possibilities for optimization” was carried out at DTU Byg in the period form 1.9.2012 until 31.12.2014. The aim of the project was to conduct field measurements in modern office buildings equipped with TABS systems...

  16. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    , Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling...

  17. A Theoretical Model for the Prediction of Siphon Breaking Phenomenon

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon

    2014-01-01

    A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height

  18. A Theoretical Model for the Prediction of Siphon Breaking Phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height.

  19. Case-study of thermo active building systems in Japanese climate

    NARCIS (Netherlands)

    Li, R.; Yoshidomi, T.; Ooka, R.; Olesen, B.

    2015-01-01

    Thermo active building systems (TABS) have been applied in office buildings as a promising energy efficient solution in many European countries. The utilization of building thermal mass helps to provide high quality thermal environments with less energy consumption. However, the concept of TABS is

  20. The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System

    Science.gov (United States)

    Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.

    2018-05-01

    An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.

  1. Griswold Tempered Water Flow Regulator Valves Used as Anti-Siphon Valves

    International Nuclear Information System (INIS)

    MISKA, C.

    2000-01-01

    FCV-1*22 and 1*23 are Griswold constant flow regulators used as anti-siphon valves in the tempered water system, they fail closed but valve cartridge orifice allows minimum flow to prevent loss of water from the MCO/CASK annulus

  2. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    Science.gov (United States)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  3. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery

    Science.gov (United States)

    Li, Lianjiang

    2017-08-01

    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  4. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  5. Damage evolution of TBC system under in-phase thermo-mechanical tests

    International Nuclear Information System (INIS)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y.; Liu, Y.F.

    2010-01-01

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y 2 O 3 -ZrO 2 thermal barrier coating (TBC) system (8 wt% Y 2 O 3 -ZrO 2 /CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  6. Damage evolution of TBC system under in-phase thermo-mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Liu, Y.F., E-mail: yfliu@hyper.rcast.u-tokyo.ac.jp [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2010-10-15

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier coating (TBC) system (8 wt% Y{sub 2}O{sub 3}-ZrO{sub 2}/CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  7. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  8. Thermo-mechanical analysis of RMP coil system for EAST tokamak

    International Nuclear Information System (INIS)

    Wang, Songke; Ji, Xiang; Song, Yuntao; Zhang, Shanwen; Wang, Zhongwei; Sun, Youwen; Qi, Minzhong; Liu, Xufeng; Wang, Shengming; Yao, Damao

    2014-01-01

    Highlights: • Thermal design requirements for EAST RMP coils are summarized. • Cooling parameters based on both theoretical and numerical solutions are determined. • Compromise between thermal design and structural design is made on number of turns. • Thermo-mechanical calculations are made to validate its structural performance. - Abstract: Resonant magnetic perturbation (RMP) has been proved to be an efficient approach on edge localized modes (ELMs) control, resistive wall mode (RWM) control, and error field correction (EFC), RMP coil system under design in EAST tokamak will realize the above-mentioned multi-functions. This paper focuses on the thermo-mechanical analysis of EAST RMP coil system on the basis of sensitivity analysis, both normal and off-normal working conditions are considered. The most characteristic set of coil system is chosen with a complete modelling by means of three-dimensional (3D) finite element method, thermo-hydraulic and thermal-structural performances are investigated adequately, both locally and globally. The compromise is made between thermal performance and structural design requirements, and the results indicate that the optimized design is feasible and reasonable

  9. Homogenization of a thermo-diffusion system with Smoluchowski interactions

    NARCIS (Netherlands)

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  10. Surgical construction of a novel simulated carotid siphon in canines

    International Nuclear Information System (INIS)

    Tan Huaqiao; Li Minghua; Zhu Yueqi; Fang Chun; Wang Jue; Wu Chungen; Cheng Yingsheng; Xie Jian; Zhang He

    2008-01-01

    Objective: To develop in vivo carotid siphon models by surgical method using the shaped devices for testing the performance of covered stent specially designed for intracranial vascular diseases. Methods: Six carotid siphon-shaped devices were established using stereolithographic biomodeling and the lost-wax technique. Six canines underwent surgery to expose and isolate bilateral CCA. The right CCA origin was ligated and incised distal to the ligation point after the distal right CCA was temporarily closed. The distal left CCA was ligated and incised proximal to the ligation point after the left CCA origin was closed. The proximal isolated left CCA was passed through the shaped device. The distal isolated right CCA and the proximal isolated left CCA were anastomosed end-to-end. Finally, the shaped device of carotid siphon was fixed with suture and embedded in the left neck. The intraarterial DSA was performed on postprocedural 7 days, 2 weeks and 1 month. The morphological characteristics of carotid siphon models were visually evaluated by two observers. The patency of siphon model and the stenosis of anastomotic stoma were followed-up. Results: All animals tolerated the surgical procedure well with mean model time construction of 90 minutes. The morphological characteristics of siphon models were similar to those in human. The anastomotic stoma stenosis occurred in 2 siphon models, and thrombosis of anastomotic stoma in 1, but all siphons of these models were patent on post-procedural follow-up angiography. Conclusion: Surgical construction of an in vivo carotid siphon model of canine with shaped device is practically feasible. This model can be used for testing neurovascular devices. (authors)

  11. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  12. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  13. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    Science.gov (United States)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  14. A methodology for thermo-economic modeling and optimization of solid oxide fuel cell systems

    International Nuclear Information System (INIS)

    Palazzi, Francesca; Autissier, Nordahl; Marechal, Francois M.A.; Favrat, Daniel

    2007-01-01

    In the context of stationary power generation, fuel cell-based systems are being foreseen as a valuable alternative to thermodynamic cycle-based power plants, especially in small scale applications. As the technology is not yet established, many aspects of fuel cell development are currently investigated worldwide. Part of the research focuses on integrating the fuel cell in a system that is both efficient and economically attractive. To address this problem, we present in this paper a thermo-economic optimization method that systematically generates the most attractive configurations of an integrated system. In the developed methodology, the energy flows are computed using conventional process simulation software. The system is integrated using the pinch based methods that rely on optimization techniques. This defines the minimum of energy required and sets the basis to design the ideal heat exchanger network. A thermo-economic method is then used to compute the integrated system performances, sizes and costs. This allows performing the optimization of the system with regard to two objectives: minimize the specific cost and maximize the efficiency. A solid oxide fuel cell (SOFC) system of 50 kW integrating a planar SOFC is modeled and optimized leading to designs with efficiencies ranging from 34% to 44%. The multi-objective optimization strategy identifies interesting system configurations and their performance for the developed SOFC system model. The methods proves to be an attractive tool to be used both as an advanced analysis tool and as support to decision makers when designing new systems

  15. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  16. A protection system of low temperature thermo-supply nuclear reactor

    International Nuclear Information System (INIS)

    Jiang Binsen

    1988-09-01

    A Protection system of low temperature thermo-supply nuclear reactor is introduced. It is the first protection system, which is designed and manufactred on the basis of Chinese National Standard GB 4083-83 'General Safety Principle of Nuclear Reactor Protection System', to be considered under the circumstances of industry level in China. Advantages of the protection system are as follows: 1)The single failure criteria can fully be fulfilled by the protection system. 2) On-line testing system can be used for detecting all of failure components and quick identifying the failure points in the system. 3) It is convenience for maintenacnce of the system. To complete this project is very important and helpful in promoting the development of the protection system and safety operation of nuclear reactor in China

  17. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  18. Evaluation of thermo-hydrological performance in support of the thermal loading systems study

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-01-01

    Heat generated as a result of emplacing spent nuclear fuel will significantly affect the pre- and post-closure performance of the Mined Geological Disposal System (MGDS) at the potential repository site in Yucca Mountain. Understanding thermo-hydrological behavior under repository thermal loads is essential in (a) planning and conducting the site characterization and testing program, (b) designing the repository and engineered barrier system, and (c) assessing performance. The greatest concern for hydrological performance is source of water that would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. The primary sources of liquid water are: (1) natural infiltration, (2) condensate generated under boiling conditions, and (3) condensate generated under sub-boiling conditions. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, any affect the generation of the second and third sources of liquid water. A system of connected fractures facilitates repository-heat-driven gas and liquid flow as well as natural infiltration. With the use of repository-scale and sub-repository-scale models, the authors analyze thermo-hydrological behavior for Areal Mass Loadings (AMLs) of 24.2, 35.9, 55.3, 83.4, and 110.5 MTU/acre for a wide range of bulk permeability. They examine the temporal and spatial extent of the temperature and saturation changes during the first 100,000 yr. They also examine the sensitivity of mountain scale moisture redistribution to a range of AMLs and bulk permeabilities. In addition, they investigate how boiling and buoyant, gas-phase convection influence thermo-hydrological behavior in the vicinity of emplacement drifts containing spent nuclear fuel

  19. ThermoCycle: A Modelica library for the simulation of thermodynamic systems

    DEFF Research Database (Denmark)

    Quoilin, Sylvain; Desideri, Adriano; Wronski, Jorrit

    2014-01-01

    This paper presents the results of an on-going project to develop ThermoCycle, an open Modelica library for the simulation of low-capacity thermodynamic cycles and thermal systems. Special attention is paid to robustness and simulation speed since dynamic simulations are often limited by numerical...... constraints and failures, either during initialization or during integration. Furthermore, the use of complex equations of state (EOS) to compute thermodynamic properties significantly decreases the simulation speed. In this paper, the approach adopted in the library to overcome these challenges is presented...

  20. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  1. Thermo-economic analysis of an integrated solar power generation system using nanofluids

    International Nuclear Information System (INIS)

    Alashkar, Adnan; Gadalla, Mohamed

    2017-01-01

    Highlights: • Develop a thermo-economic analysis of an integrated solar-power generation system. • A thermodynamic optimization is proposed to maximize system performance. • Select the optimum nanofluid to replace conventional heating fluids inside a PTSC. • Study the effect of thermal energy storage on performance and cost of the system. • Perform monthly and daily analyses to analyze system behavior using nanofluids. - Abstract: In this paper, a thermo-economic analysis of an Integrated Solar Regenerative Rankine Cycle (ISRRC) is performed. The ISRRC consists of a nanofluid-based Parabolic Trough Solar Collector (PTSC), and a Thermal Energy Storage System (TES) integrated with a Regenerative Rankine Cycle. The effect of dispersing metallic and non-metallic nanoparticles into conventional heating fluids on the output performance and cost of the ISRRC is studied for different volume fractions and for three modes of operation. The first mode assumes no storage, while the second and the third assume a storage system with a storage period of 7.5 h and 10 h respectively. For the modes of operation with the TES, the charging and discharging cycles are explained. The results show that the presence of the nanoparticles leads to an increase in the overall energy produced by the ISRRC for all modes of operation, causing a decrease in the Levelized Cost of Electricity (LEC), and an increase in the net savings of the ISRRC. After comparing the three modes of operation, it is established that the existence of a storage system leads to a higher power generation, and a lower LEC; however, the efficiency of the cycle drops. It is seen that the maximum increase in the annual energy output of the ISRRC caused by the addition of Cu nanoparticles to Syltherm 800 is approximately 3.1%, while the maximum increase in the net savings is about 2.4%.

  2. Experimental investigations of heat transfer in thermo active building systems in combination with suspended ceilings

    DEFF Research Database (Denmark)

    Alvarez, Maria Alonso; Hviid, Christian Anker; Weitzmann, Peter

    2014-01-01

    buildings to cover acoustic requirements hinders the use of TABS. To measure the reduction of the heat capacity, several experiments are performed in a room equipped with TABS in the upper deck and mixing ventilation. The heat transfer is measured for different suspended ceiling covering percentages...... that the ventilation rate has a high influence on the convective heat capacity. When the ventilation rate is increased from 1.7 h-1 to 2.9 h-1, the heat transfer coefficient increases up to 16% for the same occupancy and suspended ceiling layout.......Thermo Active Building Systems (TABS), described as radiant heating or cooling systems with pipes embedded in the building structure, represent a sustainable alternative to replace conventional systems by using source temperatures close to room temperatures. The use of suspended ceiling in office...

  3. Signs management and acquisition system for measurement of thermo physics properties of nuclear fuel

    International Nuclear Information System (INIS)

    Migliorini, Fabricio Lima; Silva, Egonn Hendrigo Carvalho; Neto Ferreira, Ricardo Alberto; Miranda, Odair; Grossi, Pablo Andrade; Camarano, Denise das Merces

    2009-01-01

    This work presents the management and acquisition system (SGA-LMPT) developed in a Lab View platform implemented at the Laboratory for Measurement of Thermophysics Properties at the Center for Development of Nuclear Technology - Brazilian Nuclear Energy Commission (CDTN/CNEN-MG). The SGA-LMPT is a tool which guarantee the complete fulfilment of the regulatory regulations, allowing a much more quality, productivity, costs reduction and optimization of the laboratory process. Besides, the SGA-LMPT presents the necessary requirements for demonstration a management system capable to produce results technically valid. The determination of the thermal diffusivity of the UO 2 pellet fabricated with microspheres was used for demonstration of the new system adequacy for the measurement of nuclear fuel thermo physics properties. The results were discussed and compared with literature

  4. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system fo...

  5. Sufficient conditions for Hadamard well-posedness of a coupled thermo-chemo-poroelastic system

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2016-01-01

    Full Text Available This article addresses the well-posedness of a coupled parabolic-elliptic system modeling fully coupled thermal, chemical, hydraulic, and mechanical processes in porous formations that impact drilling and borehole stability. The underlying thermo-chemo-poroelastic model is a system of time-dependent parabolic equations describing thermal, solute, and fluid diffusions coupled with Navier-type elliptic equations that attempt to capture the elastic behavior of rock around a borehole. An existence and uniqueness theory for a corresponding initial-boundary value problem is an open problem in the field. We give sufficient conditions for the well-posedness in the sense of Hadamard of a weak solution to a fully coupled parabolic-elliptic initial-boundary value problem describing homogeneous and isotropic media.

  6. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  7. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the

  8. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  9. Thermo-characterization of power systems components: a tool to diagnose their malfunctions

    International Nuclear Information System (INIS)

    Zaleta-Aguilar, Alejandro; Royo, Javier; Rangel, Victor H.; Torres-Reyes, Ernestina

    2004-01-01

    Concepts on thermodynamic characterization of power system components are presented in this paper. The aim of this work is to evaluate and diagnose the actual operating condition for existing power plant components. What is more, a Reference Performance State (RPS) for power system components which uses the parameters defined as the enthalpy change, ω, the entropy change, σ and the Mass Flow Ratio design, MFR is put forward. Design information and simulation will help to determine the RPS for each component operating without any malfunction. The RPS can be used to compare, to evaluate and to diagnose the actual operating condition of the plant components so as to detect its possible malfunction. A simulated example of a 105 MW power plant is presented herein so that thermo-characterization of steam turbines, a condenser, a heat exchanger, and a pump is illustrated. The induced and intrinsic component malfunction effects on the RPS are also presented. Their effects are related to the RPS, thereby opening the possibility to apply methodologies to any internal decay and/or induced malfunctions that could appear in an operating component, in terms of the heat rate impact

  10. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  11. An evaluation of the fire barrier system thermo-lag 330-1

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1994-09-01

    This report presents the results of three fire endurance tests and one ampacity derating test set of the fire barrier system Thermo-Lag 330-1 Subliming Coating. Each test was performed using cable tray specimens protected by a nominal three-hour fire barrier envelope comprised of two layers of nominal 1/2 inch thick material. The fire barrier systems for two of the three fire endurance test articles and for the ampacity derating test article were installed in accordance with the manufacturer's installations procedures. The barrier system for the third fire endurance test article was a full reproduction of one of the original manufacturer's qualification test articles. This final test article included certain installation enhancements not considered typical of current nuclear power plant installations. The primary criteria for fire endurance performance evaluation was based on cable circuit integrity testing. Secondary consideration was also given to the temperature rise limits set forth in the ASTM E119 standard fire barrier test procedure. All three of the fire endurance specimens failed prematurely. Circuit integrity failures for the two fire endurance test articles with procedures-based installations were recorded at approximately 76 and 59 minutes into the exposures for a 6 inch wide and 12 inch wide cable tray respectively. Temperature excursion failures (single point) for these two test articles were noted at approximately 65 and 56 minutes respectively. The first circuit integrity failure for the full reproduction test article was recorded approximately 119 minutes into the exposure, and the first temperature excursion failure for this test article was recorded approximately 110 minutes into the exposure

  12. Well-Posedness of a fully coupled thermo-chemo-poroelastic system with applications to petroleum rock mechanics

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2017-05-01

    Full Text Available We consider a system of fully coupled parabolic and elliptic equations constituting the general model of chemical thermo-poroelasticity for a fluid-saturated porous media. The main result of this paper is the developed well-posedness theory for the corresponding initial-boundary problem arising from petroleum rock mechanics applications. Using the proposed pseudo-decoupling method, we establish, subject to some natural assumptions imposed on matrices of diffusion coefficients, the existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the problem. Numerical experiments confirm the applicability of the obtained well-posedness results for thermo-chemo-poroelastic models with real-data parameters.

  13. Interventional therapy of traumatic pseudoaneurysms in internal carotid artery siphon

    International Nuclear Information System (INIS)

    Tang Jun; Shang Jianqiang; Chen Jie; Li Fengxin; Liu Yanjun

    2007-01-01

    Objective: To determine the methods and results of treating traumatic pseudoaneurysms in siphon segment of internal carotid artery (ICA)by interventional therapy. Methods: Twelve cases of traumatic pseudoaneurysms in siphon segment of internal carotid artery were treated. The collateral circulation of Willis circle was observed after DSA. Different methods of treatment were applied according to the collateral circulation of Willis circle. Ten cases were treated by occlusion of ICA completely, 1 case was embolized by guglielmi detachable coil (GDC) only. Results: Nine of 12 treated by occlusion of ICA were cured. In the 3 cases who had poor collateral of Willis circle, one was cured by GDC embolization alone; one died 48 hours later after ICA occlusion though his consciousness and the activity of extremities were normal during the temporary balloon test occlusion (BTO) of ICA. One died during the training to improve the collateral of the Willis circle. Conclusion: ICA embolization is feasible for treatment of traumatic pseudoaneurysms in siphon segment of internal carotid artery after evaluating the collateral circulation of Willis circle. (authors)

  14. pH- and thermo-responsive microcontainers as potential drug delivery systems: Morphological characteristic, release and cytotoxicity studies.

    Science.gov (United States)

    Efthimiadou, Eleni K; Tapeinos, Christos; Tziveleka, Leto-Aikaterini; Boukos, Nikos; Kordas, George

    2014-04-01

    Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Generation of neutron cross sections library for the Thermos code of the Fuel management System (FMS)

    International Nuclear Information System (INIS)

    Alonso V, G.; Viais J, J.

    1990-10-01

    There is developed a method to generate the library of neutron cross sections for the Thermos code by means of the database ENDF-B/IV and the NJOY code. The obtained results are compared with the version previous of the library of neutron cross sections which was processed using the version ENDF-B/III. (Author)

  16. Ruthenium(II)- bipyridyl with extended π-system: Improved thermo ...

    Indian Academy of Sciences (India)

    aInorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, ... A new extended thermo-stable high molar extinction coefficient bipyridyl ruthenium(II) complex ... cyanines and metal free organic sensitizers have been ..... Iodide-based ionic liquids are more viscous than.

  17. RELAP5/Mod3.3 and MARS3.0a Modeling of a Siphon Break Experiment

    International Nuclear Information System (INIS)

    Park, Su Ki; Kim, Heon Il; Park, Cheol; Yoon, Ju Hyeon

    2011-01-01

    Pool water plays a very important role as a final heat sink for most pool-type research reactors following postulated events. Therefore, one of design criteria for the reactors is that the water level of reactor pool must not decrease below a predefined elevation even against the most severe accident due to ruptures of coolant boundary of connecting systems to the reactor pool. In order to accomplish the design criterion, all the connecting systems are usually arranged to be above the elevation of reactor core. However, some research reactors with a downward flow in the reactor core have a primary cooling system located below the elevation of reactor core because of meeting an available net positive suction head of pumps in the system. These reactors have a provision consisting of pipes penetrating a reactor pool wall at a higher elevation than that of reactor core and siphon break devices to meet the design criterion. A series of experiments was carried out to figure out thermal hydraulic characteristics during siphon is blocked and establish design requirements for siphon breaker. The experimental study provided a lot of data and observations to the process of siphon break, but it does not provide a sufficient theoretical analysis and present practical design requirements applicable to industry. The experimental range is not also sufficient to cover operating conditions of siphon breakers for research reactors. A series of numerical simulations on the experimental data has been tried by using thermal hydraulic system analysis codes, RELAP5/Mod3.3 and MARS3.0a. This paper includes a part of the numerical simulations. First output from this study shows an importance of an adequate use of thermal hydraulic models in the codes and a big different prediction between the two codes especially in relation to the use of choked flow option. From this study, it seems that RELAP5/Mod3.3 has some problems on the control of a choked flow option-flag or the prediction of a

  18. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    Science.gov (United States)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  19. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  20. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  1. Establishing experimental model of human internal carotid artery siphon segment in canine common carotid artery

    International Nuclear Information System (INIS)

    Cui Xuee; Li Minghua; Wang Yongli; Cheng Yingsheng; Li Wenbin

    2005-01-01

    Objective: To study the feasibility of establishing experimental model of human internal carotid artery siphon segment in canine common carotid artery (CCA) by end-to-end anastomoses of one side common carotid artery segment with the other side common carotid artery. Methods: Surgical techniques were used to make siphon model in 8 canines. One side CCA was taken as the parent artery and anastomosing with the cut off contra-lateral CCA segment which has passed through within the S-shaped glass tube. Two weeks after the creation of models angiography showed the model siphons were patent. Results: Experimental models of human internal carotid artery siphon segment were successfully made in all 8 dogs. Conclusions: It is practically feasible to establish experimental canine common carotid artery models of siphon segment simulating human internal carotid artery. (authors)

  2. A Novel Aqueous Two Phase System Composed of a Thermo-Separating Polymer and an Organic Solvent for Purification of Thermo-Acidic Amylase Enzyme from Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-05-01

    Full Text Available The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus peel for the first time was investigated using a novel aqueous two-phase system (ATPS consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR, pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w EOPO 2500 and 15% (w/w 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  3. Development of a portable power system with meso-scale vortex combustor and thermo-electric device

    International Nuclear Information System (INIS)

    Shimokuri, D; Hara, T; Ishizuka, S

    2014-01-01

    In this study, a small scale power generation system with a meso-scale vortex combustor has been developed. The system was consisted of a couple of thermo-electric device and a heat medium. The medium was made of duralumin, 40 × 40 × 20 mm and 52 g weight, and the vortex combustion chamber of 7 mm inner diameter was embedded in it. It was found that a stable flame could be established in the narrow 7 mm channel even the mean axial velocity reached 1.2 m/s. And furthermore, the vortex flow significantly enhanced the heat transfer from the burned gas to combustion chamber, and as a result, the medium was heated to 300°C quickly (within 5 minutes) by the combustion of propane / air mixture for 145W input energy. The system could successfully generate 1.98 W (4.3 V and 0.46 A), which corresponded to the energy conversion rate of 0.7 % per unit thermo-electric device

  4. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  5. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Science.gov (United States)

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  6. Negative Pressures and the First Water Siphon Taller than 10.33 Meters.

    Directory of Open Access Journals (Sweden)

    Francisco Vera

    Full Text Available A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid's cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli's ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures.

  7. Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific.

    Science.gov (United States)

    Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R

    2017-01-01

    Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in

  8. Liver Trauma in the Kitchen: Preparing Whipped Cream with a Siphon Is Not without Risk

    Directory of Open Access Journals (Sweden)

    Jeremy Bourenne

    2015-01-01

    Full Text Available We report the case of a 36-year-old woman suffering from liver injury caused by the malfunction of a whipped cream siphon. When this patient handled the whipped cream siphon, the screwed metallic upper part of the siphon was suddenly dissociated from its base and came violently striking her right hypochondrium. At first, the severity of injury was underestimated. Subsequently, due to the persistence of pain experienced by the patient, an abdominal CT scan was performed. It highlighted a severe liver injury with rupture of a branch of the hepatic artery. The evolution was favorable after completion of an embolization and a secondary capsular rupture.

  9. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-10-25

    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department.

  10. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1999-01-01

    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department

  11. Fabrication of optical fiber micro(and nano)-optical and photonic devices and components, using computer controlled spark thermo-pulling system

    International Nuclear Information System (INIS)

    Fatemi, H.; Mosleh, A.; Pashmkar, M.; Khaksar Kalati, A.

    2007-01-01

    Fabrication of optical fiber Micro (and Nano)-Optical component and devices, as well as, those applicable for photonic purposes are described. It is to demonstrate the practical capabilities and characterization of the previously reported Computer controlled spark thermo-pulling fabrication system.

  12. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Full-scale test on coupled thermo-hydro-mechanical processes in engineered barrier system

    International Nuclear Information System (INIS)

    Moro, Yoshiji; Fujita, Tomoo; Kanno, Takeshi; Kobayashi, Akira.

    1994-01-01

    On dynamic behavior within artificial barrier in ground layer disposal of high level radioactive wastes, some phenomena such as exotherm from the wastes, penetration of groundwater from surrounding base rock, swelling pressure formation of buffer material due to penetration of groundwater, ground pressure change of the surrounding base rock, and so forth are supposed to affect each other. It is one of important problems from a viewpoint of elucidation of near field environment in the property evaluation study to evaluate such thermo-hydro-mechanical coupled phenomena. As results of the investigation from such reason and its application to actual test in accompany with execution of heating and water inserting test in the Big-Ben (Big-Bentonite facility), the following informations were obtained: (1) In heating and water inserting test, data on temperature distribution, water content ratio distribution and swelling pressure of each portion for 5 months could be obtained. (2) water migration due to water slope was divided to migrations due to steam and liquid water, of which models were made according to Fick and Darcy laws, respectively. (3) As a simulation of water migration, water diffusion coefficient due to temperature slope could be expressed almost by a model with nonlinearity to temperature. (G.K.)

  14. Synthesis of new thermo/pH sensitive drug delivery systems based on tragacanth gum polysaccharide.

    Science.gov (United States)

    Hemmati, Khadijeh; Ghaemy, Mousa

    2016-06-01

    In this study, new pH/temperature responsive graft copolymers were synthesized based on natural Tragacanth Gum (TG) carbohydrate and their controlled drug release was investigated. Amphiphilic alkyne terminated terpolymers (mPEG-PCL-PDMAEMA-CCH)s consist of methylated poly(ethyleneglycol) (mPEG), polycaprolactone (PCL), and poly(dimethylaminoethylmethacrylate) (PDMAEMA) were synthesized by using ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP), and then were grafted onto azide-functionalized TG molecules by click chemistry. Different techniques such as FT-IR, (1)H NMR, gel permeation chromatography (GPC), thermo-gravimetrical analysis (TGA) and scanning electron microscopy (SEM) were used to verify the successful synthesis of graft copolymers (TG-g-PDMAEMA-PCL-mPEG)s. The graft copolymers self-assembled to single micelles in aqueous solution and upon pH changes further assembled into micellar aggregates. These micelles were used to prepare quercetin loaded nanocarriers by probe sonication method. Size and morphology of the nanocarriers were studied by dynamic light scattering (DLS) and SEM. The in vitro release behavior of quercetin from these micelles showed pH-dependence. The results showed that release profile of quercetin best followed the first order model. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying

    2015-07-22

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve\\'s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  16. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  17. Comparative studies on the histology and ultrastructure of the siphons of two species of Tellinidae (Mollusca: Bivalvia from Brazil

    Directory of Open Access Journals (Sweden)

    João E.V.V. Vitonis

    2012-06-01

    Full Text Available Despite the great importance of the siphons for infaunal bivalves, only a few studies have examined their tissues using histology techniques or scanning electron microscopy. In the present study, the siphons of Tellina lineata Turton, 1819 and Macoma biota Arruda & Domaneschi, 2005 were investigated. The siphon walls are composed by a series of muscle sheets of longitudinal ("L", circular ("C" and radial ("R" fibers, with a clear pattern common to both species: there is a main median longitudinal layer (Lm, and two peripheral circular layers, one inner (Ci and one outer (Co, near the epithelia. A median circular layer (Cm separates an internal (Lmi from an outer (Lmo median longitudinal layer. Further, the Co is split by a thin outer longitudinal layer (Lo, forming Coi and Coo layers, the former being obliquely oriented. Thin radial fibers (R delimit clear packages of Lmi and Lmo fibers. In each siphon, there are six longitudinal nerve cords, running within the Lmi layer, adjacent to the Cm. The inhalant and exhalant siphons of M. biota are very similar in structure, but the Lmo of the exhalant siphon is almost twice as thick as its Lmi, while in the inhalant siphon these layers have similar thicknesses; the Coi is very thick, especially in the exhalant siphon. The inhalant siphon of T. lineata is very similar to that of M. biota, differing only with respect to the thickness of the Coi, which in the former species is not as well developed as in the latter. The Lmo of the exhalant siphon of T. lineata is by far the most developed layer, with the Lmi represented only by uniseriate small cells; in the vicinities of the nerve cords, the Cm is split in two layers. The epithelia of both siphons of M. biota and T. lineata bear ciliated receptors, which were difficult to observe as they were frequently covered with mucus. It was possible to observe that cilia are present in both species, differing in length and in the number per receptor between the

  18. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System.

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-08-12

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.

  19. Effect of Cervical Siphon of External and Internal Carotid Arteries.

    Science.gov (United States)

    Singh, Rajani; Tubbs, Richard Shane

    2017-10-01

    Variant courses, configuration, and branching pattern of the external and internal carotid arteries, especially when curved in S-shape, are important for hemodynamic changes and clinical implications. Therefore, the aim of the study is to report abnormal cervical siphons observed in external and internal carotid arteries to explore clinical significance by review of literature and hemodynamic changes theoretically.The right common carotid artery bifurcated into external and internal carotid arteries at the level of the upper border of thyroid cartilage in a 70-year-old female cadaver. After bifurcation, the external carotid artery underwent severe tortuosity coursing through 5 bends at points A, B, C, D, and E from its origin to termination and 2 bends at A' and B' in internal carotid artery in the cervical region. The angles between inflow and out flow of the blood at the bends were measured and the change in velocity at each bend was computed for both arteries. Hemodynamic changes were calculated, compared and relevant clinical complications were theoretically correlated.The angles of 20°, 30°, 51°, 52°, 60°, and 28°, 48° were formed by 5 bends of external and 2 bends of internal carotid arteries, respectively. The curved courses of these arteries caused reduction in velocity/stasis, turbulence, and low shear stress. Such kinks might cause stroke, ischemia and mistaken for tumors and abscess in imagery leading to or otherwise producing iatrogenic repercussions. This study will be useful for anatomists, clinicians, and radiologists.

  20. Validating predictions made by a thermo-mechanical model of melt segregation in sub-volcanic systems

    Science.gov (United States)

    Roele, Katarina; Jackson, Matthew; Morgan, Joanna

    2014-05-01

    A quantitative understanding of the spatial and temporal evolution of melt distribution in the crust is crucial in providing insights into the development of sub-volcanic crustal stratigraphy and composition. This work aims to relate numerical models that describe the base of volcanic systems with geophysical observations. Recent modelling has shown that the repetitive emplacement of mantle-derived basaltic sills, at the base of the lower crust, acts as a heat source for anatectic melt generation, buoyancy-driven melt segregation and mobilisation. These processes form the lowermost architecture of complex sub-volcanic networks as upward migrating melt produces high melt fraction layers. These 'porosity waves' are separated by zones with high compaction rates and have distinctive polybaric chemical signatures that suggest mixed crust and mantle origins. A thermo-mechanical model produced by Solano et al in 2012 has been used to predict the temperatures and melt fractions of successive high porosity layers within the crust. This model was used as it accounts for the dynamic evolution of melt during segregation and migration through the crust; a significant process that has been neglected in previous models. The results were used to input starting compositions for each of the layers into the rhyolite-MELTS thermodynamic simulation. MELTS then determined the approximate bulk composition of the layers once they had cooled and solidified. The mean seismic wave velocities of the polymineralic layers were then calculated using the relevant Voight-Reuss-Hill mixture rules, whilst accounting for the pressure and temperature dependence of seismic wave velocity. The predicted results were then compared with real examples of reflectivity for areas including the UK, where lower crustal layering is observed. A comparison between the impedance contrasts at compositional boundaries is presented as it confirms the extent to which modelling is able to make predictions that are

  1. Neutronics/Thermo-fluid Coupled Analysis of PMR-200 Equilibrium Cycle by CAPP/GAMMA+ Code System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Tak, Nam-il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The equilibrium core was obtained by performing CAPP stand-alone multi-cycle depletion calculation with critical rod position search. In this work, a code system for coupled neutronics and thermo-fluids simulation was developed using CAPP and GAMMA+ codes. A server program, INTCA, controls the two codes for coupled calculations and performs the mapping between the variables of the two codes based on the nodalization of the two codes. In order to extend the knowledge about the coupled behavior of a prismatic VHTR, the CAPP/GAMMA+ code system was applied to steady state performance analysis of PMR-200. The coupled calculation was carried out for the equilibrium core of PMR-200 from BOC to EOC. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle-average fuel temperature was calculated as 1230 .deg. C, which is slightly below the design target of 1250 .deg. C. In addition, significant impact of the bypass flow on the central reflector temperature was found. Without bypass flow, the temperature of the active core region was slightly decreased while the temperature of the central and side reflector region was increased much. The both changes in the temperature increase the multiplication factor and the total change of the multiplication factor was more than 300 pcm. On the other hand, the effect of the bypass flow on the power density profile was not significant.

  2. Understanding karst environments by thermo-hygrometric monitoring: preliminary results from the Cesi Mountain karst system (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Di Matteo

    2016-06-01

    Full Text Available The understanding of karst systems is of paramount importance for the protection and valorisation of these environments. A multidisciplinary study is presented to investigate the possible interconnection between karst features of a karst area located in the south-western part of the Martani chain (Cesi Mountain, Central Italy. This hydrogeological structure contributes to recharge a deep regional aquifer. The latter feeds the high discharge and salinity Stifone springs. In the southwestern part of Martani chain, seven caves have been mapped, five of which are hosted in the Calcare Massiccio Formation. The analysis of thermo-hygrometric data collected since Autumn 2014 into the caves and those from external meteorological stations, showed the timing of the airflow inversion occurring on late winter/early spring and summer/ early autumn. Despite the complexity of the morphology of caves and of conceptual models of airflow pattern, these data seem to indicate that the monitored small caves could be interconnected to a considerably wider cave system. Data here presented coupled with the knowledge on hydrogeological and geological-structural setting of the limestone massif are useful to drive future speleological explorations, aiming to discover new large cavities and to better understand the water recharge process.

  3. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-01-01

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage. PMID:28805703

  4. Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study

    International Nuclear Information System (INIS)

    Schmelas, Martin; Feldmann, Thomas; Bollin, Elmar

    2017-01-01

    Highlights: •An adaptive and predictive algorithm for the control of TABS (AMLR) is evaluated. •Comparison of standard TABS control and AMLR over a period of nine month each. •Thermal comfort, energy and investment savings in a passive seminar building. •Reduction of peak power of chilled beams (auxiliary system) with AMLR algorithm. •Simplification of the TABS hydraulics with AMLR algorithm. -- Abstract: The building sector is one of the main consumers of energy. Therefore, heating and cooling concepts for renewable energy sources become increasingly important. For this purpose, low-temperature systems such as thermo-active building systems (TABS) are particularly suitable. This paper presents results of the use of a novel adaptive and predictive computation method, based on multiple linear regression (AMLR) for the control of TABS in a passive seminar building. Detailed comparisons are shown between the standard TABS and AMLR strategies over a period of nine months each. In addition to the reduction of thermal energy use by approx. 26% and a significant reduction of the TABS pump operation time, this paper focuses on investment savings in a passive seminar building through the use of the AMLR strategy. This includes the reduction of peak power of the chilled beams (auxiliary system) as well as a simplification of the TABS hydronic circuit and the saving of an external temperature sensor. The AMLR proves its practicality by learning from the historical building operation, by dealing with forecasting errors and it is easy to integrate into a building automation system.

  5. A siphon well model for hydraulic performance optimization and bubble elimination

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hui, E-mail: fuhui_iwhr@126.com; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-15

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  6. A siphon well model for hydraulic performance optimization and bubble elimination

    International Nuclear Information System (INIS)

    Fu, Hui; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-01

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  7. SHRIMP (CRANGON-CRANGON L) BROWSING UPON SIPHON TIPS INHIBITS FEEDING AND GROWTH IN THE BIVALVE MACOMA-BALTHICA (L)

    NARCIS (Netherlands)

    KAMERMANS, P; HUITEMA, HJ

    1994-01-01

    The influence of siphon browsing on the feeding behaviour and growth of Macoma balthica, a deposit-feeding bivalve, was studied in three manipulative experiments. Browsing was simulated by removing part of the inhalant siphon with scissors, or studied by exposing the bivalves to shrimps (Crangon

  8. Thermo-dynamic analysis and simulation of a combined air and hydro energy storage (CAHES) system

    International Nuclear Information System (INIS)

    Bi, Xianyun; Liu, Pei; Li, Zheng

    2016-01-01

    Large-scale energy storage is essential for the stability of a grid, especially for those with large proportion of intermittent renewable energy sources. The efficiency of a conventional compressed air energy storage (CAES) technology is limited by compression heat loss and changing working conditions. In this manuscript, a combined air and hydro energy storage (CAHES) system is proposed, which realizes a higher exergy efficiency compared with conventional CAES systems by reducing compression heat losses and addressing issues of changing working conditions through thermal compensation from solar radiation. The configuration and two operating modes of the proposed CAHES system are firstly introduced, followed by theoretical analysis and numerical simulation under different operating modes to analyze system performances. Impacts of external and internal factors on the system performances are analyzed. The practical feasibility of the system is also investigated. Results show that the exergy efficiency of the system reaches approximately 50%, whilst the charging electricity ratio reaches over 80%. - Highlights: • A combined air and hydro energy storage system is proposed. • High exergy efficiency is achieved and consumption of fossil fuel is eliminated. • The system performance is affected by compression ratio and solar radiation.

  9. Thermo economic comparison of conventional micro combined heat and power systems with solid oxide fuel cell systems for small scale applications

    DEFF Research Database (Denmark)

    Batens, Ellen; Cuellar, Rafael; Marissal, Matthieu

    2013-01-01

    out a thermo economic comparison of a conventional micro combined heat and power systems with solid oxide fuel cell systems. A model to estimate the savings and cost targets for solid oxide fuel cell systems is presented. A comparison between fuel cell technologies in the danish market with “state......Fuel cells have the potential to reduce domestic energy consumption by providing both heat and electricity at the point of use. However, the cost of installing the fuel cell must be sufficiently competitive to be recovered by the savings made over its lifetime. The goal of this paper is to carry...... of the art” traditional heat and power generation technologies currently used in Denmark is considered. The conventional method of covering electrical, heating (e.g. hot water) and cooling (e.g. space cooling) load demands is by purchasing electricity from the electricity network grid and with a fossil fuel...

  10. A thermo-diffusion system with Smoluchowski interactions : well-posedness and homogenization

    NARCIS (Netherlands)

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  11. Thermo-Mechanical Test of Seal System in Flexible Pipe End Fittings

    DEFF Research Database (Denmark)

    Banke, Lars

    1999-01-01

    are driven radially into the barrier layer and supported by the surrounding steel casing. In order to verify the integrity of the concept the seal system is subjected cyclic pressure and temperature variations to simulate the service conditions.The aim of the testing is to demonstrate the sensitivity...... of the seal system geometry and its tolerances necessary to maintain a tight seal. The test is carried out in a purpose built autoclave, in which the seal system can be tested while undergoing variations in pressure and temperature.The paper will present a study on the importance of the geometry of the gasket...... and the inner liner. The inner and outer diameter of the gasket are varied to see the effectiveness of the seal mechanism. The effect of varying the width of the gasket as well as the surface roughness of the components in the seal system is analysed. Finally, it is investigated how the seal system is affected...

  12. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  13. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  14. Development of data acquisition system for test circuit for the Thermo-Hydraulic Laboratory of CDTN

    International Nuclear Information System (INIS)

    Corrade, Thales Jose Rodrigues; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos

    2013-01-01

    The Circuit Water-Air (CWA), present in the Laboratorio de Termo-Hidraulica of the Centro de Desenvolvimento da Tecnologia Nuclear/Comissao Nacional de Energia Nuclear (CDTN / CNEN), has been used to evaluate devices present in nuclear fuel elements of a PWR (Pressurized Water Reactor). Currently, a segment of 5x5 beam simulators grids with spacer bars is being tested, serving one of the activities under the Project FUJB / FINEP / INB - 'Development of New Generation of Nuclear Fuel Element '. For the measurements of pressure drop along this beam, a system of data acquisition based on Basic language was created. Although this system is efficient and robust, their resources are very limited. Therefore, it was decided to use the software LabVIEW® implementing a more versatile and modern system. This article describes the new data acquisition system, and presents some results. The main parameters are monitored: temperature, density, dynamic viscosity, Reynolds number. The values of standard deviation, mean and uncertainty of an arbitrary channel are calculated. The system was installed and tested in the circuit under experimental conditions and showed satisfactory results.

  15. Use of sensitivity-information for the adaptive simulation of thermo-hydraulic system codes

    International Nuclear Information System (INIS)

    Kerner, Alexander M.

    2011-01-01

    Within the scope of this thesis the development of methods for online-adaptation of dynamical plant simulations of a thermal-hydraulic system code to measurement data is depicted. The described approaches are mainly based on the use of sensitivity-information in different areas: statistical sensitivity measures are used for the identification of the parameters to be adapted and online-sensitivities for the parameter adjustment itself. For the parameter adjustment the method of a ''system-adapted heuristic adaptation with partial separation'' (SAHAT) was developed, which combines certain variants of parameter estimation and control with supporting procedures to solve the basic problems. The applicability of the methods is shown by adaptive simulations of a PKL-III experiment and by selected transients in a nuclear power plant. Finally the main perspectives for the application of a tracking simulator on a system code are identified.

  16. ThermoMap. Interactive analysis and information system for the area-selected evaluation of the near-surface geothermal potential; ThermoMap. Interaktives Analyse- und Auskunftssystem zur flaechenhaften Abschaetzung des oberflaechennahen geothermischen Potenzials

    Energy Technology Data Exchange (ETDEWEB)

    Bertemann, David [Erlangen-Nuernberg Univ., Erlangen (DE). Lehrstuhl fuer Geologie (Exogene Dynamik); Psyk, Mario [REHAU AG and CO, Erlangen-Eltersdorf (Germany)

    2012-07-01

    The project ThermoMap funded by the European Commission enables a comprehensive assessment of the near-surface geothermal energy potential from already existing geoscientific data sets. Currently, twelve partners from nine EU Member States are involved.

  17. Thermo-economic Optimization of Solar Assisted Heating and Cooling (SAHC System

    Directory of Open Access Journals (Sweden)

    A. Ghafoor

    2014-12-01

    Full Text Available The energy demand for cooling is continuously increasing due to growing thermal loads, changing architectural modes of building, and especially due to occupants indoor comfort requirements resulting higher electricity demand notably during peak load hours. This increasing electricity demand is resulting higher primary energy consumption and emission of green house gases (GHG due to electricity generation from fossil fuels. An exciting alternative to reduce the peak electricity consumption is the possible utilization of solar heat to run thermally driven cooling machines instead of vapor compression machines utilizing high amount of electricity. In order to widen the use of solar collectors, they should also be used to contribute for sanitary hot water production and space heating. Pakistan lying on solar belt has a huge potential to utilize solar thermal heat for heating and cooling requirement because cooling is dominant throughout the year and the enormous amount of radiation availability provides an opportunity to use it for solar thermal driven cooling systems. The sensitivity analysis of solar assisted heating and cooling system has been carried out under climatic conditions of Faisalabad (Pakistan and its economic feasibility has been calculated using maximization of NPV. Both storage size and collector area has been optimized using different economic boundary conditions. Results show that optimum area of collector lies between 0.26m2 to 0.36m2 of collector area per m2 of conditioned area for ieff values of 4.5% to 0.5%. The optimum area of collector increases by decreasing effective interest rate resulting higher solar fraction. The NPV was found to be negative for all ieff values which shows that some incentives/subsidies are needed to be provided to make the system cost beneficial. Results also show that solar fraction space heating varies between 87 and 100% during heating season and solar fraction cooling between 55 and 100% during

  18. Thermo Active Building Systems Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2012-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany,......, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia)....

  19. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    Science.gov (United States)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  20. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  1. Parametric thermo-hydraulic analysis of the TF system of JT-60SA during fast discharge

    International Nuclear Information System (INIS)

    Polli, Gian Mario; Lacroix, Benoit; Zani, Louis; Besi Vetrella, Ugo; Cucchiaro, Antonio

    2013-01-01

    Highlights: • We modeled the central clock-wise pancake of JT-60SA TF magnet at the EOB. • We simulated a quench followed by a fast discharge. • We evaluated the temperature and pressure rises in the nominal configuration. • We evaluated the effect of several parameter changes on the thermal-hydraulic response of the system. -- Abstract: The evolution of the conductor temperature and of the helium pressure of the central pancake of the TF superconducting magnet of the JT-60SA tokamak in a quench scenario are here discussed. The quench is triggered by a heat disturbance applied at the end of burning and followed by a fast safety discharge. A parametric study aimed at assessing the robustness of the calculation is also addressed with special regard to the voltage threshold, used to define the occurrence of the quench, and to the time delay, that cover all the possible delays in the fast discharge after quench detection. Finally, due to sensitivity analyses the influences of different parameters were assessed: the material properties of the strands (RRR, copper fraction), the magnitude and the spatial length of the triggering disturbance and the magnetic field distribution. The numerical evaluations were performed in the framework of the Broader Approach Agreement in collaboration with CEA, ENEA and the JT-60SA European Home Team using the 1D code Gandalf [1

  2. Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease.

    Science.gov (United States)

    Jamil, Muhammad; Tan, Germaine Xin Yi; Huq, Mehnaz; Kang, Heidi; Lee, Zhi Rui; Tang, Phua Hwee; Hu, Xi Hong; Yap, Choon Hwai

    2016-12-01

    The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.

  3. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  4. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  5. Study on self-regulation characteristics of closed two-phase thermo-siphon for cold neutron source

    International Nuclear Information System (INIS)

    Shen Feng; Yuan Luzheng

    2006-01-01

    A self-regulation model and its characteristics of closed two-phase thermosiphon loop, which including buffer tank, were proposed, under the conditions of adiabatic and transient temperature balance for connect tube between buffer tank and condenser. The comparison between these models and the model from Kyoto University is conducted. Measures to improve the self-regulation are proposed. (authors)

  6. Unifying treatment of nonequilibrium and unstable dynamics of cold bosonic atom system with time-dependent order parameter in Thermo Field Dynamics

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yamanaka, Y.

    2011-01-01

    Research highlights: → Cold atoms with time-dependent condensate in nonequilibrium Thermo Field Dynamics. → Coupled equations which describe the temporal evolution of the system are derived. → They are not the naive assemblages of presumable equations, but the self-consistently ones. → Valid even for systems with Landau or dynamical instability, and describing decays. → Transport equation has new collision term that is important in Landau instability. - Abstract: The coupled equations which describe the temporal evolution of the Bose-Einstein condensed system are derived in the framework of nonequilibrium Thermo Field Dynamics. The key element is that they are not the naive assemblages of assumed equations, but are the self-consistent ones derived by appropriate renormalization conditions. While the order parameter is time-dependent, an explicit quasiparticle picture is constructed by a time-dependent expansion. Our formulation is valid even for the system with a unstable condensate, and describes the condensate decay caused by the Landau instability as well as by the dynamical one.

  7. Analysis of 3D geometry in the stenosis of internal carotid artery siphon

    International Nuclear Information System (INIS)

    Xie Sheng; Xiao Jiangxi; Huang Yining; Zhang Chi; Li Deyu; Li Shuyu

    2010-01-01

    Objective: To identify the differences of 3D geometry of internal carotid artery (ICA) siphon between the controls and patients with ICA siphon stenosis. Methods: The clinical and imaging data of the inpatients under, vent carotid artery MRA in the past three years were collected. All patients were divided into the control group (17 males and 14 females with mean age of 67.5 years) and ICA siphon stenosis group (20 males and 9 females with mean age of 58.6 years). There were 5 smokers and 9 smokers in two groups, respectively. The atheroselerotic predisposing factors were compared between the two groups using chi-square test and paired t-test. In order to extract the 3D geometry of ICA siphon, the MRA data were transferred to PC and processed with the software of Mimics. The average curvature radius (ACR) was calculated and paired t-test was applied to determine the bilateral differences in the controls. According to the stenotic site of ICA siphon, ICA siphon stenosis group was divided into C2 segment stenosis group and C4 segment stenosis group. The differences of ACR among the control group, C2 segment stenosis group and C4 segment stenosis group were compared. In addition, the values of ACR in the stenotic and normal sides were compared with paired t-test in patients with unilateral C2 segment stenosis. Results: No significant differences were found in gender and smoker between the control group and the ICA siphon stenosis group (χ 2 =1.63, P>0.05; χ 2 =1.86, P>0.05). The systolic blood pressure was (146.6±21.3) mm Hg (1 mm Hg=0.133 kPa)and (140.3±17.3) mm Hg respectively in the ICA siphon stenosis group and the control group. The serum glucose level was (5.94±1.89) mmoL/L and (6.79±3.57) mmol/L respectively in two groups. The serum cholesterol level and triglyceride level were (4.57±0.87) mmol/L, (1.34±0.63) mmoL/L and (4.75±1.70) mmol/L, (1.54±0.72) mmol/L respectively in two groups. There were no differences in the atherosclerotic predisposing

  8. Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion

    Directory of Open Access Journals (Sweden)

    Astafyeva Liudmila

    2011-01-01

    Full Text Available Abstract Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell, created under laser heating of nanoparticle in water, were theoretically investigated. Vapor shell expansion leads to decreasing up to one to two orders of magnitude in comparison with initial values of scattering and extinction of the radiation with wavelengths 532 and 633 nm by system while shell radius is increased up to value of about two radii of nanoparticle. Subsequent increasing of shell radius more than two radii of nanoparticle leads to rise of scattering and extinction properties of system over initial values. The significant decrease of radiation scattering and extinction by system of nanoparticle-vapor shell can be used for experimental detection of the energy threshold of vapor shell formation and investigation of the first stages of its expansion. PACS: 42.62.BE. 78.67. BF

  9. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Mehmet; Kirtay, Elif; Balat, Havva

    2009-01-01

    Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air-steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.

  10. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  11. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Mehta, Neeraj [Banaras Hindu University, Department of Physics, Institute of Science, Varanasi (India)

    2017-06-15

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se{sub 78-x}Te{sub 20}Sn{sub 2}Cd{sub x} glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V{sub h}), formation energy (E{sub h}) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated. (orig.)

  12. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    Science.gov (United States)

    Kumar, Amit; Mehta, Neeraj

    2017-06-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.

  13. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    International Nuclear Information System (INIS)

    Kumar, Amit; Mehta, Neeraj

    2017-01-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se_7_8_-_xTe_2_0Sn_2Cd_x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V_h), formation energy (E_h) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated. (orig.)

  14. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    International Nuclear Information System (INIS)

    Daniel Molloy

    2003-01-01

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter

  15. Host specificity and coevolution of Flavobacteriaceae endosymbionts within the siphonous green seaweed Bryopsis

    OpenAIRE

    Hollants, J.; Leliaert, F.; Verbruggen, H.; De Clerck, O.; Willems, A.

    2013-01-01

    The siphonous green seaweed Bryopsis harbors complex intracellular bacterial communities. Previous studies demonstrated that certain species form close, obligate associations with Flavobacteriaceae. A predominant imprint of host evolutionary history on the presence of these bacteria suggests a highly specialized association. In this study we elaborate on previous results by expanding the taxon sampling and testing for host–symbiont coevolution Therefore, we optimized a PCR protocol to directl...

  16. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  17. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  18. Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization

    OpenAIRE

    Frost, William N.; Castellucci, Vincent F.; Hawkins, Robert D.; Kandel, Eric R.

    1985-01-01

    We have found that in the gill- and siphon- withdrawal reflex of Aplysia, the memory for short-term sensitization grades smoothly into long-term memory with increased amounts of sensitization training. One cellular locus for the storage of the memory underlying short-term sensitization is the set of monosynaptic connections between the siphon sensory cells and the gill and siphon motor neurons. We have now also found that these same monosynaptic connections participate in the storage of the m...

  19. 3. Workshop for IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents. Presentations

    International Nuclear Information System (INIS)

    2012-04-01

    Most advanced nuclear power plant designs adopted several kinds of passive systems. Natural circulation is used as a key driving force for many passive systems and even for core heat removal during normal operation such as NuScale, CAREM, ESBWR and Indian AHWR designs. Simulation of natural circulation phenomena is very challenging since the driving force of it is weak compared to forced circulation and involves a coupling between primary system and containment for integral type reactor. The IAEA ICSP (International Collaborative Standard Problem) on 'Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents' was proposed within the CRP on 'Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems that utilize Natural Circulation'. Oregon State University (OSU) of USA offered to host this ICSP. This ICSP plans to conduct the following experiments and blind/open simulations with system codes: 1. Quasi-steady state operation with different core power levels: Conduct quasi-steady state operation with step-wise increase of core power level in order to observe single phase natural circulation flow according to power level. The experimental facility and operating conditions for an integral PWR will be used. 2. Thermo-hydraulic Coupling between Primary system and Containment: Conduct a loss of feedwater transient with subsequent ADS blowdown and long term cooling to determine the progression of a loss of feedwater transient by natural circulation through primary and containment systems. These tests would examine the blowdown phase as well as the long term cooling using sump natural circulation by coupling the primary to containment systems. This data could be used for the evaluation of system codes to determine if they model specific phenomena in an accurate manner. OSU completed planned two ICSP tests in July 2011 and real initial and boundary conditions measured from the

  20. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  1. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  2. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; De Luca, Giuseppina; Figaj, Rafal Damian; Vanoli, Laura

    2015-01-01

    Highlights: • A PV/T heating system for indoor–outdoor swimming pools is proposed. • A comparison among some thermal pool models available in literature is carried out. • Dynamic simulations of the thermal behavior of the swimming-pools are performed. • PV/T thermal energy is used to heat the swimming pool and for DHW production. • Energy and economic parametric analyses of the proposed system are presented. - Abstract: This paper presents an analysis of an innovative renewable energy plant serving an existing indoor/outdoor swimming pool located in Naples. The proposed solar hybrid system is designed in order to balance the remarkable energy demand of the swimming pool facility and to ensure suitable comfort conditions for swimmers. With the aim to accomplish such goals, the dynamic thermal behavior of the swimming pool was analyzed as a function of the thermo-hygrometric conditions of the indoor space and on the meteorological conditions of the pool site. In order to properly design and size the proposed renewable energy system, different thermal pool loss formulations for the calculation of the swimming pool thermal balance, in indoor and outdoor regimes, are adopted. The solar hybrid system consists of a water cooled photovoltaic/thermal collectors plant (PV/T), designed to meet a part of the facility demands of electricity and heat. Electricity is completely utilized by the facility, while the produced thermal energy is primarily used to meet the pool thermal demand and secondarily for sanitary hot water scopes. In order to carry out dynamic simulations and sensitivity analyses, the system performance is designed and dynamically simulated in TRNSYS environment. The developed simulation model enables the calculation of both the indoor and outdoor swimming pool thermal losses and the overall energy and economic system performance. Such results are obtained as a function of the thermo-hygrometric conditions of the environment, of the occupants and the

  3. A thermo economic analysis of a PV-hydrogen system feeding the energy requests of a residential building in an isolated valley of the Alps

    International Nuclear Information System (INIS)

    Santarelli, M.; Macagno, S.

    2004-01-01

    The subject of this paper is an economic analysis of a model of a stand alone energy system based only on a renewable source (solar irradiance) integrated with a system for the production of hydrogen. The purpose of this system is to supply the complete electric and part of the heat requests of a small residential user in a remote area (an isolated building in a valley of the Alps in Italy) during a complete year of operation without integration of a traditional energy system based on fossil fuels. The system analysed is composed of a PV array integrated with an electrolyser, with a tank where the hydrogen is stored as compressed gas and with a proton exchange membrane fuel cell. Such a system has no pollutant emissions and is environmentally friendly. A simulation program has been developed to design the system and to analyse the technical and economic performance during a complete year of operation. The economic analysis is developed using thermo economic analysis. This procedure joins some aspects of exergy analysis with some economic information, such as the fuel market costs and the investment and maintenance costs of the components of the energy plant. Using this methodology, it is possible to obtain some information on the economic behaviour of the plant and to analyse in depth the process of cost formation of all system flows, in particular those of the final products. The thermo economic analysis can be performed to evaluate the different economic behaviour of the system in different operating conditions (e.g. during daylight hours or in evening hours). In this paper, the analysis has been effected considering a representative day for each month of operation and two significant hours (1:00 p.m. and 8:00 p.m.) in order to consider two opposite situations (with and without solar irradiance) with high energy demands by the user. Moreover, a sensitivity analysis has been developed to calculate the variation of the cost of the final energy products (and of the

  4. Thermo-electric pump

    International Nuclear Information System (INIS)

    Georges, J.-L.; Veyret, J.-F.

    1973-01-01

    Description is given of a thermo-pump for electrically conductive liquid fluids, e.g. for a liquid metal such as sodium. This pump is characterized in that the piping for the circulation of the conductive liquid is constituted by a plurality of conduits defined by two co-axial cylinders and two walls parallel to their axis. Each conduit limited outside by a magnet, inside by a mild-iron tube, and laterally by two materials forming a thermocouple. The electric current generated by that thermo-couple and the magnetic flux generated by the magnets both loop the loop through an outer cylindrical nickel shell. This can be applied to sodium circulation loops for testing nuclear fuel elements [fr

  5. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura

    2017-01-13

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  6. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura; Alabastri, Alessandro; Bonanni, Simon; Majewska, Roksana; Dattoli, Elisabetta; Barberio, Marianna; Candeloro, Patrizio; Perozziello, Gerardo; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Gentile, Francesco

    2017-01-01

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  7. Thermo-hydraulic modelling of the South East Gas Pipeline System - an integrated model; Modelagem termo-hidraulica do Sistema de Gasodutos do Sudeste : um modelo integrado

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Armando M.; Santos, Arnaldo M.; Mercon, Eduardo G. [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the development of an integrated simulation model, for the numerical calculation of thermal-hydraulic behaviors in the Brazilian southeast onshore gas pipeline flow system, remotely operated by TRANSPETRO's Gas Pipeline Control Centre (CCG). In its final application, this model is supposed to provide simulated results at the closer range to reality, in order to improve gas pipeline simulation studies and evaluations for the system in question. Considering the fact that numerical thermo-hydraulic simulation becomes the CCG's most important tool to analyze the boundary conditions to adjust the mentioned gas flow system, this paper seeks and takes aim to the optimization of the following prime attributions of a gas pipeline control centre: verification of system behaviors, face to some unit maintenance stop or procedure, programmed or not, or to some new gas outlet or inlet connection to the system; daily operational compatibility analysis between programmed and realized gas volumes; gas technical expedition and delivery analysis. Finally, all this work was idealized and carried out within the one-phase flow domain (dry gas) (author)

  8. Raphides in the Uncalcified Siphonous Green Seaweed, Codium minus (Schmidt P. C. Silva

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Prince

    2012-01-01

    Full Text Available The vacuole of utricles, the outermost cell layer of the siphonous green seaweed, Codium minus, had numerous single needles and needle bundles. The crystals composing each needle appeared arranged in a twisted configuration, both ends were pointed, and each needle was contained in a matrix or membrane; bundles of needles appeared enclosed by a matrix. Chemical and electron diffraction analysis indicated that the needles consisted of calcium oxalate. This is the first paper on terrestrial plant-like raphides in an alga.

  9. Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application

    International Nuclear Information System (INIS)

    Bhardwaj, Tarun; Bhardwaj, Varun; Sharma, Kundan; Gupta, Abhishek; Cameotra, Swaranjit Singh; Sharma, Poonam

    2014-01-01

    Highlights: • The mixed micellar system was analyzed for sodium dodecyl sulfate and fluconazole. • Early micellization was found with CMC shift towards lower surfactant concentration. • Negative ΔG m o values suggested that the micelle formation is spontaneous and feasible. • Thermo-acoustical parameters revealed the existence of intermolecular interactions within the molecules. - Abstract: Micellar systems hold excellent drug delivery applications due to their capability to solubilize a large number of hydrophobic and hydrophilic molecules. In this present work, the mixed micelle formation between the anionic surfactant sodium dodecyl sulfate (SDS) and the ‘Azole’ derivative antifungal drug fluconazole (FLZ) have been studied at four temperatures in different hydro-ethanolic solutions. The critical micelle concentration (CMC) was determined by specific conductance techniques and the experimental data was used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Early micellization was found with critical micelle concentration shifting towards lower concentration (CMC) than the standard concentration of SDS in water at 25 °C suggesting that drug and the solvent system facilitates the micellization process. In addition, the transport properties were examined by employing controlled approaches likely, apparent molar volume (ϕ v ), apparent molar adiabatic compression (ϕ k ), and isentropic compression (κ s ) of SDS in presence of FLZ. These parameters revealed the existence of intermolecular interactions within the molecules. Therefore, this study would cast light on utilizing surfactant immobilized FLZ system for better topical biological action

  10. Ground source thermo-pumps for individual residential houses; Les thermopompes a capteur enterres dans les residences individuelles

    Energy Technology Data Exchange (ETDEWEB)

    Ossant, G. [Societe Syrec (France)

    1997-12-31

    The main principles, performances and constraints of the various types of ground source thermo-pumps for individual houses, i.e. ground/ground thermo-pumps, glycol water/water thermo-pumps and ground/water thermo-pumps are reviewed, and their energy consumptions are discussed. The design and operating conditions of a reverse ground source thermo-pump (Syrec) for space heating and air conditioning through a hot and cold floor system and a Syrec ground source thermo-pump for water heating, are presented

  11. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.; Garcí a, M.; Santamarina, Carlos

    2015-01-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  12. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.

    2015-09-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  13. Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC

    Directory of Open Access Journals (Sweden)

    Ruixiong Li

    2016-12-01

    Full Text Available The compressed air energy storage (CAES system, considered as one method for peaking shaving and load-levelling of the electricity system, has excellent characteristics of energy storage and utilization. However, due to the waste heat existing in compressed air during the charge stage and exhaust gas during the discharge stage, the efficient operation of the conventional CAES system has been greatly restricted. The Kalina cycle (KC and organic Rankine cycle (ORC have been proven to be two worthwhile technologies to fulfill the different residual heat recovery for energy systems. To capture and reuse the waste heat from the CAES system, two systems (the CAES system combined with KC and ORC, respectively are proposed in this paper. The sensitivity analysis shows the effect of the compression ratio and the temperature of the exhaust on the system performance: the KC-CAES system can achieve more efficient operation than the ORC-CAES system under the same temperature of exhaust gas; meanwhile, the larger compression ratio can lead to the higher efficiency for the KC-CAES system than that of ORC-CAES with the constant temperature of the exhaust gas. In addition, the evolutionary multi-objective algorithm is conducted between the thermodynamic and economic performances to find the optimal parameters of the two systems. The optimum results indicate that the solutions with an exergy efficiency of around 59.74% and 53.56% are promising for KC-CAES and ORC-CAES system practical designs, respectively.

  14. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Xia, Jiaxi; Wang, Jiangfeng; Lou, Juwei; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A combined cooling and power system was proposed for engine waste heat recovery. • Effects of key parameters on thermodynamic performance of the system were studied. • Exergoeconomic parameter analysis was performed for the system. • A single-objective optimization by means of genetic algorithm was carried out. - Abstract: A combined cooling and power (CCP) system is developed, which comprises a CO 2 Brayton cycle (BC), an organic Rankine cycle (ORC) and an ejector refrigeration cycle for the cascade utilization of waste heat from an internal combustion engine. By establishing mathematical model to simulate the overall system, thermodynamic analysis and exergoeconomic analysis are conducted to examine the effects of five key parameters including the compressor pressure ratio, the compressor inlet temperature, the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure on system performance. What’s more, a single-objective optimization by means of genetic algorithm (GA) is carried out to search the optimal system performance from viewpoint of exergoeconomic. Results show that the increases of the BC turbine inlet temperature, the ORC turbine inlet pressure and the ejector primary flow pressure are benefit to both thermodynamic and exergoeconimic performances of the CCP system. However, the rises in compressor pressure ratio and compressor inlet temperature will lead to worse system performances. By the single-objective optimization, the lowest average cost per unit of exergy product for the overall system is obtained.

  15. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  16. Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube

    Energy Technology Data Exchange (ETDEWEB)

    Requerey, Iker S.; Cobo, B. Ruiz [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada (Spain); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: iker@iac.es [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.

  17. Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE)

    International Nuclear Information System (INIS)

    Alanne, Kari; Saari, Kari; Kuosa, Maunu; Jokisalo, Juha; Martin, Andrew R.

    2012-01-01

    A rotary steam engine (RSE) is a simple, small, quiet and lubricant-free option for micro-cogeneration. It is capable of exploiting versatile thermal sources and steam temperatures of 150–180 °C, which allow operational pressures less than 10 bar for electrical power ranges of 1–20 kW e . An RSE can be easily integrated in commercially available biomass-fired household boilers. In this paper, we characterize the boiler-integrated RSE micro-cogeneration system and specify a two-control-volume thermodynamic model to conduct performance analyses in residential applications. Our computational analysis suggests that an RSE integrated with a 17 kW th pellet-fueled boiler can obtain an electrical output of 1.925 kW e, in the design temperature of 150 °C, the electrical efficiency being 9% (based on the lower heating value of the fuel, LHV) and the thermal efficiency 77% (LHV). In a single-family house in Finland, the above system would operate up to 1274 h/y, meeting 31% of the house's electrical demand. The amount of electricity delivered into the grid is 989 kW h/y. An economic analysis suggests that incremental costs not exceeding € 1500 are justifiable at payback periods less than five years, when compared to standard boilers. - Highlights: ► We characterize and model a micro-cogeneration system based on a rotary steam engine. ► We assess the performance of the above system in a residential building in Finland. ► The above system is capable of meeting 31% of the building's annual electrical demand. ► The above system may cost at most € 1500 more than a standard boiler system.

  18. Two Examples of Exergy Optimization Regarding the “Thermo-Frigopump” and Combined Heat and Power Systems

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2013-02-01

    Full Text Available In a recent review an optimal thermodynamics and associated new upper bounds have been proposed, but it was only relative to power delivered by engines. In fact, it appears that for systems and processes with more than one utility (mainly mechanical or electrical power, energy conservation (First Law is limited for representing their efficiency. Consequently, exergy analysis combining the First and Second Law seems essential for optimization of systems or processes situated in their environment. For thermomechanical systems recent papers report on comparisons between energy and exergy analysis and corresponding optimization, but the proposed models mainly use heat transfer conductance modelling, except for internal combustion engine. Here we propose to reconsider direct and inverse configurations of Carnot machines, with two examples. The first example is concerned with “thermofrigo-pump” where the two utilities are hot and cold thermal exergies due to the difference in the temperature level compared to the ambient one. The second one is relative to a “combined heat and power” (CHP system. In the two cases, the model is developed based on the Carnot approach, and use of the efficiency-NTU method to characterize the heat exchangers. Obtained results are original thermodynamics optima, that represent exergy upper bounds for these two cases. Extension of the proposed method to other systems and processes is examined, with added technical constraints or not.

  19. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy

    Science.gov (United States)

    Zhang, Qi; Liu, Jian; Yuan, Kunjie; Zhang, Zhengguo; Zhang, Xiaowen; Fang, Xiaoming

    2017-10-01

    Herein a novel multi-controlled drug release system for doxorubicin (DOX) was developed, in which monodisperse mesoporous Fe3O4 nanoparticles were combined with a phase change material (PCM) and polyethylene glycol 2000 (PEG2000). It is found that the PCM/PEG/DOX mixture containing 20% PEG could be dissolved into water at 42 °C. The mesoporous Fe3O4 nanoparticles prepared by the solvothermal method had sizes of around 25 nm and exhibited a mesoporous microstructure. A simple solvent evaporation process was employed to load the PCM/PEG/DOX mixture on the mesoporous Fe3O4 nanoparticles completely. In the Fe3O4@PCM/PEG/DOX system, the pores of the Fe3O4 nanoparticles were observed to be filled with the mixture of PCM/PEG/DOX. The Fe3O4@PCM/PEG/DOX system showed a saturation magnetization value of 50.0 emu g-1, lower than 71.1 emu g-1 of the mesoporous Fe3O4 nanoparticles, but it was still high enough for magnetic targeting and hyperthermia application. The evaluation on drug release performance indicated that the Fe3O4@PCM/PEG/DOX system achieved nearly zero release of DOX in vitro in body temperature, while around 80% of DOX could be released within 1.5 h at the therapeutic threshold of 42 °C or under the NIR laser irradiation for about 4 h. And a very rapid release of DOX was achieved by this system when applying an alternating magnetic field. By comparing the systems with and without PEG2000, it is revealed that the presence of PEG2000 makes DOX easy to be released from 1-tetradecanol to water, owing to its functions of increasing the solubility of DOX in 1-tetradecanol as well as decreasing the surface tension between water and 1-tetradecanol. The novel drug release system shows great potential for the development of thermo-chemotherapy of cancer treatment.

  20. Hygro-thermo-aeraulic modeling of multi-zone buildings. Proposal of a strategy for the resolution of the coupled system; Modelisation hygro-thermo-aeraulique des batiments multizones. Proposition d'une strategie de resolution du systeme couple

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn-Vallon, M.

    1999-11-01

    hygroscopic materials. Experimental conditions are simulated using the proposed model. A good overall performance of the model can be sent, if the vapour absorbed and released by building materials is represented. We are interested in a dynamic system described by a set of algebro-diffeential equations. To start the time integration of the differential equations, we need to fix a starting point. The best choice is given by the solution of the set of non-linear algebraic equations corresponding to initial stationary date. However, the resolution of this set is often found impossible. To face the numerical resolution of our problems, we called on block methods. The idea is to divide judiciously the system of equations, in such a way as to get an easy solution for each block. The physical interactions between blocks are then numerically ensured by successive global interations. After analysing our system, three principal blocks are identified: airflow block, describing inter-zonal air movements; energy block, describing temperatures in each zone; moisture block, describing air moisture content in each zone. The airflow block has a special role; it determines moisture and energy transport. A strategy to update the values of variables is also adapted to physical interaction among systems and allows rapid convergence. The proposed strategy is validated on a set of benchmark tests designed by CLIM2000 users. (author)

  1. Experimental studies of thermo-hydraulic processes during passive safety systems operation in new WWER NPP projects

    International Nuclear Information System (INIS)

    Morozov, A.V.; Remizov, O.V.; Kalyakin, D.S.

    2014-01-01

    The results of experimental study of thermal-hydraulic processes during operation of the passive safety systems of WWER reactors of new generation are given. The interaction processes of counter flows of saturated steam and cold water in vertical steam-line of the auxiliary passive core reflood system from secondary hydraulic accumulator are studied. The peculiarities of undeveloped boiling on single horizontal tube heating by steam and steam-gas mixture, which is character for WWER steam generator condensing mode, are investigated [ru

  2. ThermoGIS - An integrated web-based information system for geothermal exploration and governmental decision support for M

    NARCIS (Netherlands)

    Kramers, L.; Wees, J.D.A.M. van; Mijnlieff, H.F.; Kronimus, R.A.

    2010-01-01

    The use of geothermal energy through implementation of low enthalpy geothermal production systems for both electricity and heating has been growing rapidly in Europe. Geothermal activities can take considerable advantage of a wealth of existing oil and gas data. It is a major challenge to put this

  3. Energy and exergy analysis of multi-effects distillation with thermo vapour compressor (MED-TVC) desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Saffari, A.; Sayyaadi, H. [Khaje Nasir Toosi Univ. of Technology, Tehran (Iran, Islamic Republic of). Faculty of Mechanical Engineering, Energy Division; Alishiri, M. [Fan Niroo Co., Tehran (Iran, Islamic Republic of). Desalination and Water Solutions

    2008-07-01

    Countries around the world have a significant need for high-quality water. The desalination industry is especially important in ensuring the supply of high-quality water, especially the countries around the Persian Gulf such as Iran. A multiple-effect distiller (MED) with thermal vapor compression (TVC) system is more attractive than other thermal systems due to its effectiveness, easier operation and maintenance, and good economics. This paper presented a heat and mass balance relation and comprehensive exergy analysis of a typical MED with a thermal vapour compression desalination system. The purpose of the study was to provide a cost-effective tool that could be applied in the design, development and optimization of thermal desalination plants. The paper discussed the energy simulation, with particular reference to the temperatures for each effect; the condenser, gain output ratio, distillate production rate, brine outlet and feed water rates for each effect; steam consumption; coolant sea water and total sea water inlet rate; pressure distribution in the evaporators; and the entertained vapour rate at TVC. Exergy analysis revealed that the steam ejector and evaporators are the main sources of exergy destruction. It was also shown that lowering the temperature difference can minimize exergy losses. 21 refs., 4 tabs., 16 figs.

  4. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  5. Development of testing system for the thermo-mechanical fatigue crack analysis of nuclear power plant pipes

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Kim, Maan Won; Lee, Bong Sang

    2003-12-01

    Fatigue crack growth analysis plays an important role in the structural integrity assessment or the service life calculation of the nuclear power plant pipes. To obtain the material properties as a basic data to achieve an accurate crack growth analysis, a lot of tests and numerical crack growth simulations have been done for decades. The BS 7910 or the ASME Boiler and Pressure Vessel Code Section XI, generally used to evaluate crack growth behavior, were made under the based on simple stress states or at the evaluated isothermal temperature. It is well known that the ASME code could sometimes give so conservative results in some cases of which the cracked components are experiencing with cyclic thermal shock. In this report, we suggested a method for the life assessment of a crack embedded in nuclear power plant pipes under the thermal-mechanical fatigue loads. We here use the numerical method to get the temperature history for thermal- mechanical fatigue crack growth test. And then we can calculate the remaining life time of the pipe by using the fracture mechanics and the test results together. For this purpose, we constructed a thermal-mechanical fatigue crack growth testing system. We also gave a lot of review about recent researches in the experimental field of thermal-mechanical fatigue analysis

  6. Thermo-energetic design of machine tools a systemic approach to solve the conflict between power efficiency, accuracy and productivity demonstrated at the example of machining production

    CERN Document Server

    2015-01-01

    The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining. In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions:   1.  Providing the modelling fundamentals to calculate the heat fluxes and the resulti...

  7. Method of controlling thermo-catalytic explosion alarms in mine monitoring systems. Verfahren zur Kontrolle von thermokatalytischen Schlagwetteranzeiger in Bergwerks-Ueberwachungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, E F; Birenberg, I E; Basovsky, B I; Popov, V V

    1979-09-06

    The test procedure for thermo-catalytic explosion alarms for the remote measurement of the methane concentration was changed, so that the readiness of the explosion alarm to operate or faults in it could be measured remotely above ground, without the use of named gas mixtures or master gas analysis equipment. The maximum output signal of indicators is determined simultaneously with switching on the indicators and applying the voltage to the sensors, and its dynamic response characteristic is then measured.

  8. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-01

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  9. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-24

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  10. The wound response in the siphonous alga Caulerpa simpliciuscula C.Ag.:

    International Nuclear Information System (INIS)

    Hawthorne, D.B.; Dreher, T.W.; Grant, B.R.

    1981-01-01

    Following on from a previous study on changes in cytology and fine structure during the wound response in the siphonous green alga Caulerpa simpliciuscula (Dreher, Grant and Wetherbee 1978), changes in the carbon metabolism during in this wound response have been studied. There was a decrease in the rate of photosynthesis and an increase in the rate of respiration immediately on wounding, but rates of both photosynthesis and respiration returned to those of unwounded tissues within 6 hours. Wounding depressed the rate of starch synthesis and sucrose synthesis but increased the rate of synthesis of soluble 1,3 β-glucan, lipid and sulphated polysaccharide. When the flow of carbon from these various compounds was studied by means of pulse chase experiments, it was found that only sucrose and sulphated polysaccharide showed different kinetics in control and wounded tissue. The changes which were observed are consistent with direct involvement of sulphated polysaccharides in the formation of structures formed during the wound healing process. (author)

  11. A determination of discharge head of the Cherepnov water lifter with siphon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Soo; Rhee, Kyoung Hoon [Chonnam National Univ., Kwangju (Korea, Republic of); Park, Sung Chun [Dongshin University, Naju (Korea, Republic of); Jeong, Byoung Kyen [Sunchon Technical Junior College, Sunchon (Korea, Republic of)

    1996-02-29

    This paper presents an experimental study on the discharge head of Cherepnov water lifter that was continuously operated with the aid of the siphon. The energy used by the Cherepnov water lifter is derived from the potential energy of the water itself. The lifter consists of three interconnected tanks and five pipes, one of which is open and two others are hermetically sealed. The effects of varying operating parameters such as the tank and pipe size, the ratio between head of discharge and drop height were analyzed. As a result, factors that can maximize the efficiency and increase the average delivery rate were identified. When the ratio between head of discharge and drop height is about 0.5, the efficiency of Cherepnov water lifter is maximized. In order to design the efficient Cherepnov water lifter, the discharge head of the Cherepnov water lifter should be assigned to be twice as much as the drop height. The effect of tank size on the efficiency is less than 5%, while the effect of the pipe size is not negligible. The larger the pipe size is, the more the efficiency increases. (author). 13 refs., 4 tabs., 8 figs.

  12. Host specificity and coevolution of Flavobacteriaceae endosymbionts within the siphonous green seaweed Bryopsis.

    Science.gov (United States)

    Hollants, Joke; Leliaert, Frederik; Verbruggen, Heroen; De Clerck, Olivier; Willems, Anne

    2013-06-01

    The siphonous green seaweed Bryopsis harbors complex intracellular bacterial communities. Previous studies demonstrated that certain species form close, obligate associations with Flavobacteriaceae. A predominant imprint of host evolutionary history on the presence of these bacteria suggests a highly specialized association. In this study we elaborate on previous results by expanding the taxon sampling and testing for host-symbiont coevolution Therefore, we optimized a PCR protocol to directly and specifically amplify Flavobacteriaceae endosymbiont 16S rRNA gene sequences, which allowed us to screen a large number of algal samples without the need for cultivation or surface sterilization. We analyzed 146 Bryopsis samples, and 92 additional samples belonging to the Bryopsidales and other orders within the class Ulvophyceae. Results indicate that the Flavobacteriaceae endosymbionts are restricted to Bryopsis, and only occur within specific, warm-temperate and tropical clades of the genus. Statistical analyses (AMOVA) demonstrate a significant non-random host-symbiont association. Comparison of bacterial 16S rRNA and Bryopsis rbcL phylogenies, however, reveal complex host-symbiont evolutionary associations, whereby closely related hosts predominantly harbor genetically similar endosymbionts. Bacterial genotypes are rarely confined to a single Bryopsis species and most Bryopsis species harbored several Flavobacteriaceae, obscuring a clear pattern of coevolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Thermos process heat reactor

    International Nuclear Information System (INIS)

    Lerouge, Bernard

    1979-01-01

    The THERMOS process heat reactor was born from the following idea: the hot water energy vector is widely used for heating purposes in cities, so why not save on traditional fossil fuels by simply substituting a nuclear boiler of comparable power for the classical boiler installed in the same place. The French Atomic Energy Commission has techniques for heating in the big French cities which provide better guarantees for national independence and for the environment. This THERMOS technique would result in a saving of 40,000 to 80,000 tons of oil per year [fr

  14. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  15. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  16. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System.

    Science.gov (United States)

    Qi, Jia; Ma, Nan; Ma, Xiaochen; Adelung, Rainer; Yang, Ya

    2018-04-25

    Ferroelectric materials can be utilized for fabricating photodetectors because of the photovoltaic effect. Enhancing the photovoltaic performance of ferroelectric materials is still a challenge. Here, a self-powered ultraviolet (UV) photodetector is designed based on the ferroelectric BiFeO 3 (BFO) material, exhibiting a high current/voltage response to 365 nm light in heating/cooling states. The photovoltaic performance of the BFO-based device can be well modulated by applying different temperature variations, where the output current and voltage can be enhanced by 60 and 75% in heating and cooling states, respectively. The enhancement mechanism of the photocurrent is associated with both temperature effect and thermo-phototronic effect in the photovoltaic process. Moreover, a 4 × 4 matrix photodetector array has been designed for detecting the 365 nm light distribution in the cooling state by utilizing photovoltage signals. This study clarifies the role of the temperature effect and the thermo-phototronic effect in the photovoltaic process of the BFO material and provides a feasible route for pushing forward practical applications of self-powered UV photodetectors.

  17. Radiographic evaluation of acute distal radius fracture stability: A comparative cadaveric study between a thermo-formable bracing system and traditional fiberglass casting.

    Science.gov (United States)

    Santoni, Brandon G; Aira, Jazmine R; Diaz, Miguel A; Kyle Stoops, T; Simon, Peter

    2017-08-01

    Distal radius fractures are common musculoskeletal injuries and many can be treated non-operatively with cast immobilization. A thermo-formable brace has been developed for management of such fractures, but no data exist regarding its comparative stabilizing efficacy to fiberglass casting. A worst-case distal radius fracture was created in 6 cadaveric forearms. A radiolucent loading fixture was created to apply cantilever bending/compression loads ranging from 4.5N to 66.7N across the simulated fracture in the: (1) non-stabilized, (2) braced; and (3) casted forearms, each forearm serving as its own control. Fracture fragment translations and rotations were measured radiographically using orthogonal radiographs and a 2D-3D, CT-based transformation methodology. Under 4.5N of load in the non-stabilized condition, average sagittal plane rotation and 3D center of mass translation of the fracture fragment were 12.3° and 5.3mm, respectively. At the 4.5N load step, fragment rotation with the brace (avg. 0.0°) and cast (0.1°) reduced sagittal plane rotation compared to the non-stabilized forearm (Pthermo-formable brace stabilized the fracture in a manner that was not radiographically or biomechanically different from traditional fiberglass casting. Study results support the use of the thermo-formable brace clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-01-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  19. High Frequency Data Acquisition System for Modelling the Impact of Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa di Diana (Ostia Antica, Italy Case Study

    Directory of Open Access Journals (Sweden)

    Paloma Merello

    2018-01-01

    Full Text Available The characterization of the microclimatic conditions is fundamental for the preventive conservation of archaeological sites. In this context, the identification of the factors that influence the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration. In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica, Italy is carried out analyzing the data of temperature and relative humidity recorded by a system of sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns, was used. Furthermore, the influence of human impact (visitors is evaluated through a multiple linear regression model and a logistic regression model. The visitors do not affect the environmental humidity as it is very high and constant all the year. The results show a significant influence of the visitors in the upset of the thermal balance. When a tourist guide takes place, the probability that the hourly temperature variation reaches values higher than its monthly average is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar radiation or ventilation.

  20. High Frequency Data Acquisition System for Modelling the Impact of Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa di Diana (Ostia Antica, Italy) Case Study.

    Science.gov (United States)

    Merello, Paloma; García-Diego, Fernando-Juan; Beltrán, Pedro; Scatigno, Claudia

    2018-01-25

    The characterization of the microclimatic conditions is fundamental for the preventive conservation of archaeological sites. In this context, the identification of the factors that influence the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration. In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica, Italy) is carried out analyzing the data of temperature and relative humidity recorded by a system of sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns, was used. Furthermore, the influence of human impact (visitors) is evaluated through a multiple linear regression model and a logistic regression model. The visitors do not affect the environmental humidity as it is very high and constant all the year. The results show a significant influence of the visitors in the upset of the thermal balance. When a tourist guide takes place, the probability that the hourly temperature variation reaches values higher than its monthly average is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar radiation or ventilation.

  1. Treatment of carotid-siphon aneurysms by using willis stent-graft: an angiographic and histopathologic study in dogs

    International Nuclear Information System (INIS)

    Zhu Yueqi; Li Minghua; Xie Jian; Tan Huaqiao; Cheng Yingsheng; Wang Jianbo

    2010-01-01

    Objective: To establish a carotid siphon aneurysm model in dogs in order to test the mechanical features of a newly-designed Willis covered stent-graft and to investigate the histological reaction of the stent-implanted vessel during a follow-up period of 12 months. Methods: Twenty-four saccular sidewall aneurysms were surgically created in twelve dogs (group A) and 12 carotid siphon aneurysms in another twelve dogs (group B). A Willis stent-graft was implanted in each aneurysm. Angiography was performed immediately after the procedure and 1, 3, 6 and 12 months after the implantation to investigate the aneurysm isolation, endoleak, stent angulation, and the patency or restenosis of the parent artery. Light and scanning electronic microscopy were used to identify aneurysmal sac thrombi, intima hyperplasia and endothelial progress of the stent-loaded arterial segment. Results: In group B, postoperative immediate angiography demonstrated that two aneurysms had mild endoleak and three stents became angulated. Follow-up exam 12 months after the procedure revealed that all previous endoleaks disappeared, one parent artery became occluded and three parent arteries developed mild stenosis (< 50%). In group A, occlusion of parent artery was seen in one and mild stenosis (< 50%) in 2 cases. Electronic microscopy revealed new intima formation in all stents, and all aneurysmal sacs were filled with thrombi. In group B, the endothelialization process was not completed until 12 months after the stent implantation, and a marked correlation existed between endothelial cell arrangement and the hemodynamic orientation. Conclusion: It is feasible to treat carotid-siphon aneurysm in dog with a Willis stent-graft. The complete endothelialization of the covered stent in tortuous vessel takes longer time than that in rather straight vessel. (authors)

  2. Athermalization of resonant optical devices via thermo-mechanical feedback

    Science.gov (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  3. Preparation of thermo-responsive membranes. II.

    Science.gov (United States)

    Nozawa, I; Suzuki, Y; Sato, S; Sugibayashi, K; Morimoto, Y

    1991-05-01

    Two types of liquid crystal (LC)-immobilized membranes were prepared by a soaking method and sandwich method to control the permeation of indomethacin, as a model drug, in response to local and systemic fever. Monooxyethylene trimethylolpropane tristearate (MTTS) was used as a model LC because it has a gel-liquid crystal phase transition temperature near the body temperature, 39-40 degrees C in phosphate buffered saline (pH 7.4). Two porous polypropylene (PP) membranes were soaked into 20% MTTS chloroform solution in the soaking method, and two PP membranes were poured with the melted MTTS and pressed in the sandwich method. Thermo-response efficacy of the soaked membrane was dependent upon the content of MTTS in MTTS membrane, and the MTTS content above the void volume of PP membrane (38%) was needed for high efficacy. On the other hand, the sandwich membrane exhibited higher thermo-response efficacy than the soaked membrane, because more LC was embedded in the pores of sandwich membrane than that of the soaked membrane. The sandwich membrane permeation of indomethacin was sharply controlled by temperature changes between 32 and 38 degrees C.

  4. Well Installation and Sampling Report for Monitoring Wells TCM6 TCM7, and TNX 28D - 40D and GeoSiphon Cell TGSC-2

    International Nuclear Information System (INIS)

    Nichols, R.L.

    1999-01-01

    The shallow groundwater and sediments beneath the TNX Area are contaminated with both dissolved and residual chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE), carbon tetrachloride and perchloroethylene (PCE). The Savannah River Technology Center (SRTC) is studying a new technology for remediating CVOCs known as GeoSiphon

  5. Determination of the thermo-mechanical properties in starch and starch/gluten systems at low moisture content - a comparison of DSC and TMA.

    Science.gov (United States)

    Homer, Stephen; Kelly, Michael; Day, Li

    2014-08-08

    The impact of heating rate on the glass transition (Tg) and melting transitions observed by differential scanning calorimetry (DSC) on starch and a starch/gluten blend (80:20 ratio) at low moisture content was examined. The results were compared to those determined by thermo-mechanical analysis (TMA). Comparison with dynamic mechanical thermal analysis (DMTA) and phase transition analysis (PTA) is also discussed. Higher heating rates increased the determined Tg as well as the melting peak temperatures in both starch and the starch/gluten blend. A heating rate of 5°C/min gave the most precise value of Tg while still being clearly observed above the baseline. Tg values determined from the first and second DSC scans were found to differ significantly and retrogradation of starch biopolymers may be responsible. Tg values of starch determined by TMA showed good agreement with DSC results where the Tg was below 80°C. However, moisture loss led to inaccurate Tg determination for TMA analyses at temperatures above 80°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Experimental Investigation Into Thermal Siphon Used as an Intermediate Circuit of an Integrated Cooling System Reactor

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Gabaraev, B.A.; Solovjev, S.L.; Shpansky, S.B.

    2002-01-01

    In the paper the results of study in heat transfer capacity of the thermosyphon mock-up which is considered as an intermediate circuit of the reactor under design, are presented. The mock-up design, the test rig and the experimental results are described. It is shown that the simplest mathematical model describes the processes of power transfer by the thermosyphon under certain conditions. (authors)

  7. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    Science.gov (United States)

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  8. Thermo Wigner operator in thermo field dynamics: its introduction and application

    International Nuclear Information System (INIS)

    Fan Hongyi; Jiang Nianquan

    2008-01-01

    Because in thermo-field dynamics (TFD) the thermo-operator has a neat expression in the thermo-entangled state representation, we need to introduce the thermo-Wigner operator (THWO) in the same representation. We derive the THWO in a direct way, which brings much conveniece to calculating the Wigner functions of thermo states in TFD. We also discuss the condition for existence of a wavefunction corresponding to a given Wigner function in the context of TFD by using the explicit form of the THWO.

  9. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out

  10. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  11. Thermo-elastic optical coherence tomography

    NARCIS (Netherlands)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, A.F.W.; Huber, Robert; Van Soest, Gijs

    2017-01-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive

  12. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... delivery, nano-surgeries and thermo-transportations. Apart from generating well-controlled temperature increase in functional thermo-plasmonic devices, thermo-plasmonics can also be used in understanding complex phenomena in thermodynamics by creating drastic temperature gradients which are not accessible...... using conventional techniques. In this thesis, we present novel experimental and numerical tools to characterize thermo-plasmonic devices in a biologically relevant environment, and explore the thermodiffusion properties and measure thermophoretic forces for particles in temperature gradients ranging...

  13. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    Science.gov (United States)

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thermo-sensitive intelligent track membrane

    International Nuclear Information System (INIS)

    Pang Deling; Ren Lihua; Qian Zhilin; Huang Gang; Zhang Jinhua

    1999-01-01

    Using N-isopropylacryl-amide (NIP AAm) thermo-sensitive function material as monomer and nuclear track microporous membrane (NTMM) as baseline material, a thermo-sensitive intelligent track membrane (TsITM) has been prepared by the over-oxidization and pre-irradiation grafting techniques. The TsITM can be used to make a micro-switch controlled by temperature and to adjust particle screening and osmosis. To obtain sub-micron responsive grafted track pores only a very thin thermo-sensitive layer is needed. The TsITM pores are capable of swelling and shrinking rapidly and respond more sensitively to temperature

  15. Black Holes Versus Firewalls and Thermo-Field Dynamics

    Science.gov (United States)

    Chowdhury, Borun D.

    2013-09-01

    In this paper, we examine the implications of the ongoing black holes versus firewalls debate for the thermo-field dynamics of black holes by analyzing a conformal field theory (CFT) in a thermal state in the context of anti-de Sitter/CFT. We argue that the thermo-field doubled copy of the thermal CFT should be thought of not as a fictitious system, but as the image of the CFT in the heat bath. In case of strong coupling between the CFT and the heat bath, this image allows for free infall through the horizon and the system is described by a black hole. Conversely, firewalls are the appropriate dual description in case of weak interaction of the CFT with its heat bath.

  16. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  17. Explaining low rates of sustained use of siphon water filter: evidence from follow-up of a randomised controlled trial in Bangladesh.

    Science.gov (United States)

    Najnin, Nusrat; Arman, Shaila; Abedin, Jaynal; Unicomb, Leanne; Levine, David I; Mahmud, Minhaj; Leder, Karin; Yeasmin, Farzana; Luoto, Jill E; Albert, Jeff; Luby, Stephen P

    2015-04-01

    To assess sustained siphon filter usage among a low-income population in Bangladesh and study relevant motivators and barriers. After a randomised control trial in Bangladesh during 2009, 191 households received a siphon water filter along with educational messages. Researchers revisited households after 3 and 6 months to assess filter usage and determine relevant motivators and barriers. Regular users were defined as those who reported using the filter most of the time and were observed to be using the filter at follow-up visits. Integrated behavioural model for water, sanitation and hygiene (IBM-WASH) was used to explain factors associated with regular filter use. Regular filter usage was 28% at the 3-month follow-up and 21% at the 6-month follow-up. Regular filter users had better quality water at the 6-month, but not at the 3-month visit. Positive predictors of regular filter usage explained through IBM-WASH at both times were willingness to pay >US$1 for filters, and positive attitude towards filter use (technology dimension at individual level); reporting boiling drinking water at baseline (psychosocial dimension at habitual level); and Bengali ethnicity (contextual dimension at individual level). Frequently reported barriers to regular filter use were as follows: considering filter use an additional task, filter breakage and time required for water filtering (technology dimension at individual level). The technological, psychosocial and contextual dimensions of IBM-WASH contributed to understanding the factors related to sustained use of siphon filter. Given the low regular usage rate and the hardware-related problems reported, the contribution of siphon filters to improving water quality in low-income urban communities in Bangladesh is likely to be minimal. © 2014 John Wiley & Sons Ltd.

  18. NRC wants plant-specific responses on Thermo-Lag

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Dissatisfied with recent industry-backed efforts to assure fire safety at nuclear power plants, the Nuclear Regulatory Commission announced on November 24 that it would direct all nuclear plant owners to specify the actions they would take to assure that the use of the Thermo-Lag 330 fire barrier material would not lead to insufficient protection of electrical cables connected to safe-shutdown systems. Previously, the NRC had been content to let the matter wait until tests sponsored by the Nuclear Management and Resources Council (Numarc) could show whether Thermo-Lag, used and installed in certain ways, would provide sufficient protection, but the NRC and Numarc have disagreed over the test methodology, and the Numarc tests are now considered to be several months behind schedule

  19. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T

    2008-01-15

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  20. Optimisation of a vehicle cooling system during instationary operation based upon the requirements of thermo-management. Instationary cooling system optimisation - interim report; Optimierung eines Fahrzeugkuehlsystems im instationaeren Betrieb aufgrund der Anforderungen des Thermomanagements. Instationaere Kuehlsystemoptimierung - Zwischenbericht

    Energy Technology Data Exchange (ETDEWEB)

    Genger, M.; Hoffmann, R. [Ford Werke AG, Koeln (Germany)

    2003-07-01

    Modern diesel engines with direct injection currently present the most efficient propulsion system with a realised efficiency of 42%. Due to efficiency improvements, which have been achieved during the last years, considerably less waste heat generated by the engine can be made use of. In order to warm up the engine and the interior of the vehicle in an optimal manner, despite the reduced heat supply during the warm-up phase an extensive thermo-management is necessary. This is of special importance because in Germany more than half of all kilometres are driven on distances of less than 15 kilometres where the engine is generally operated far under its optimal operating temperature. Efficiency improvements of modern diesel engines further cause that it takes very long until the passenger room is heated up, when the outer temperatures are low. The heat that is transferred into the coolant in partial-load operation (.e.g. city drive) does not even suffice to reach the temperature comfort area. Therefore highly efficient diesel engines with direct injection need additional heating measures. The concepts, which are currently available on the market (e.g. fuel heater or electric heater) cause an increase in fuel consumption and thus have a counter effect on the target to minimise consumption. The aim must be to use the available waste heat of the engine in a most efficient manner. In the frame of this research project, several optimisation possibilities of the cooling system are supposed to be investigated by means of measurements and simulation models in order to reduce fuel consumption on the one hand and to increase the passenger comfort on the other hand. (orig.) [German] Moderne Dieselmotoren mit Direkteinspritzung repraesentieren den zur Zeit effizientesten Fahrzeugantrieb mit effektiven Wirkungsgraden von bis zu 42%. Durch die in den letzten Jahren erzielten Wirkungsgradverbesserungen faellt jedoch deutlich weniger nutzbare Abwaerme vom Motor her an. Um sowohl den

  1. Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, Surendra Singh; Patel, Bhavesh

    2016-01-01

    Highlights: • It addresses multi-objective optimization study on cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • NSGA-II technique is used for multi-objective optimization. • Total annual product cost and irreversibility rate are simultaneously optimized. - Abstract: Present work optimizes the performance of 170 kW vapor compression–absorption cascaded refrigeration system (VCACRS) based on combined thermodynamic, economic and environmental parameters using Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Two objective functions including the total irreversibility rate (as a thermodynamic criterion) and the total product cost (as an economic criterion) of the system are considered simultaneously for multi-objective optimization of VCACRS. The capital and maintenance costs of the system components, the operational cost, and the penalty cost due to CO_2 emission are included in the total product cost of the system. Three optimized systems including a single-objective thermodynamic optimized, a single-objective economic optimized and a multi-objective optimized are analyzed and compared. The results showed that the multi-objective design considers the combined thermodynamic and total product cost criteria better than the two individual single-objective thermodynamic and total product cost optimized designs.

  2. Treatment of carotid siphon aneurysms by use of the Willis stent graft: an angiographic and histopathological study

    International Nuclear Information System (INIS)

    Zhu, Yue-Qi; Li, Ming-Hua; Xie, Jian; Tan, Hua-Qiao; Wang, Jian-Bo; Cheng, Ying-Sheng

    2010-01-01

    We designed a carotid siphon (CS) aneurysm model in dogs to test a new stent graft (the Willis covered stent) and compared tissue reaction over 12-month follow-up versus a comparison group with stents implanted in straight vessels. Twenty-four saccular sidewall aneurysms (group A) and 12 CS aneurysms (group B) were created surgically. A Willis stent graft was implanted in each aneurysm. Angiography was performed immediately and at 1-, 3-, 6- and 12-month post-implantation to investigate aneurysm isolation, endoleak, stent angulation, parent artery (PA) patency and restenosis. Light and scanning electron microscopy were used to identify aneurysmal sac thrombi, intima hyperplasia and endothelial progress. Immediate angiography demonstrated mild endoleak in two aneurysms and three stent angulations in group B. Follow-up at 12 months revealed resolved endoleaks, occlusion in one PA and mild stenosis in three in group B. In group A, occlusion occurred in one PA and mild stenosis in two. Light microscopy revealed new intima, and all aneurysm sacs were filled with thrombi. In group B, endothelial progress was complete at 12 months, and closely correlated with haemodynamic changes. Application of a Willis stent graft is a feasible method of treating CS aneurysms, and it exhibits a prolonged endothelial progress compared with that in straight vessels. (orig.)

  3. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  4. A new experimental carotid siphon aneurysm model in canine based on the MR angiography and rapid prototyping technology

    International Nuclear Information System (INIS)

    Xie Jian; Li Minghua; Tan Huaqiao; Zhu Yueqi; Hu Dingjun; Qiao Ruihua; Fan Chunhua

    2009-01-01

    Objective: The aim of the experiment is to make an intracranial aneurysm model in canine. Methods: A digital tube was made based on raw magnetic resonance images of the human intracranial carotid artery. Then 6 tubes were made in the 3D rapid prototyping machine and coated with silicone. Finally we isolated the common carotid arteries of 6 canines and made them go through the tubes and anastomosed them end-to-side to get the aneurysm model. Six stents were implanted after one week. Results: Six aneurysm models were successfully made in canines. The parent artery had similar geometry of the human carotid siphon. All the aneurysms and parent arteries were patent in one week's follow-up. One canine died of excessive anesthesia after stenting. Two vascular models kept patent in one month without stenosis. The other 3 had some stenosis on the bends of the vessel. Conclusions: The aneurysm model in the experiment has high flexibility and reliability. The model provides an effective tool for research and testing neurovascular devices. It's also a useful device to train the neuroradiologists and interventional physicians. (authors)

  5. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Makida, Yasuhiro, E-mail: yasuhiro.makida@kek.jp [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan); Shintomi, Takakazu [Nihon University, Chiyoda-ku, Tokyo 102-8251 (Japan); Asami, Takuya; Suzuki, Goro; Takao, Tomoaki [Sophia University, Chiyoda-ku, Tokyo 102-8554 (Japan); Hamajima, Takataro [Hachinohe Institutue of Technology, Hachinohe, Aomori 031-8501 (Japan); Tsuda, Makoto; Miyagi, Daisuke [Tohoku University, Aoba-ku, Sendai 980-8579 (Japan); Munakata, Kouhei; Kajiwara, Masataka [Iwatani Corp., Minato-ku, Tokyo 104-8058 (Japan)

    2013-11-15

    Highlights: •Advanced Superconducting Power Conditioning System is composed of SMES, FC–EL, H{sub 2} storage. •The ASPCS is proposed to be built beside a LH{sub 2} storage of a vehicle station to effectively use the cooling capability of liquid hydrogen. •The SMES coil, which is made from an MgB{sub 2} conductor, is indirectly cooled by LH{sub 2} through its own conduction. -- Abstract: From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB{sub 2} conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  6. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    International Nuclear Information System (INIS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-01-01

    Highlights: •Advanced Superconducting Power Conditioning System is composed of SMES, FC–EL, H 2 storage. •The ASPCS is proposed to be built beside a LH 2 storage of a vehicle station to effectively use the cooling capability of liquid hydrogen. •The SMES coil, which is made from an MgB 2 conductor, is indirectly cooled by LH 2 through its own conduction. -- Abstract: From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB 2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented

  7. Thermo-controlled rheology of electro-assembled polyanionic polysaccharide (alginate) and polycationic thermo-sensitive polymers.

    Science.gov (United States)

    Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc

    2016-03-30

    Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  9. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    International Nuclear Information System (INIS)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travère, J. M.; Thellier, C.; Fermé, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-01-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  10. ThermoGIS: An integrated web-based information system for geothermal exploration and governmental decision support for mature oil and gas basins

    NARCIS (Netherlands)

    Wees, J.-D. van; Juez-Larre, J.; Mijnlieff, H.; Kronimus, A.; Gessel, S. van; Kramers, L.; Obdam, A.; Verweij, H.; Bonté, D.

    2009-01-01

    In the recent years the use of geothermal energy through implementation of low enthalpy geothermal production systems for both electricity and heating have been growing rapidly in north-western Europe. Geothermal exploration and production takes largely place in sedimentary basins at depths from 2

  11. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  12. On nonlinear thermo-electro-elasticity.

    Science.gov (United States)

    Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul

    2016-06-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

  13. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    Pintado, X.; Rautioaho, E.

    2013-09-01

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODE B RIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  14. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    Science.gov (United States)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  15. THERMOS, district central heating nuclear reactors

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    In order to expand the penetration of uranium in the national energy balance sheet, the C.E.A. has been studying nuclear reactors for several years now, that are capable of providing heat at favourable economic conditions. In this paper the THERMOS model is introduced. After showing the attraction of direct town heating by nuclear energy, the author describes the THERMOS project, defines the potential market, notably in France, and applies the lay-out study to the Grenoble Nuclear Study Centre site with district communal heating in mind. The economic aspects of the scheme are briefly mentioned [fr

  16. Thermo-power in Brazil: diagnosis of control and monitoring of gas emissions

    International Nuclear Information System (INIS)

    Xavier, E.E.; Magrini, Alessandra; Rosa, L.P.; Santos, M.A. dos

    2004-01-01

    In parallel to Brazil's recent supply crisis, the privatization process of its power sector has drastically reshaped the nation's energy matrix. From a profile based mainly on hydro-power generation, this sector is being reshaped through a thermo-power plant construction program whose environmental repercussions will certainly be felt over the next few years. This paper offers a description of the thermo-power segment currently in operation, under construction and on the drawing board in Brazil, followed by the results of a diagnosis of the control and monitoring of the gas emissions by this segment. The methodology used for the exploratory analysis and to prepare the diagnosis consists of surveys through questionnaires completed by companies owning the thermo-power plants. After consolidating, processing and analyzing the findings reached through the replies sent in by the companies, it is concluded that thermo-power plants currently in operation lack control systems that would help reduce atmospheric pollution, and are not equipped with monitoring systems for these emissions. The thermo-power plants currently under construction and on the drawing board indicate a trend towards including these systems in their project designs, due to more stringent licensing processes

  17. Thermo-mechanical design and testing of a microbalance for space applications

    Science.gov (United States)

    Scaccabarozzi, Diego; Saggin, Bortolino; Tarabini, Marco; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2014-12-01

    This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.

  18. Thermo-electro-chemical storage (TECS) of solar energy

    International Nuclear Information System (INIS)

    Wenger, Erez; Epstein, Michael; Kribus, Abraham

    2017-01-01

    Highlights: • A solar plant with thermally regenerative battery unifies energy conversion and storage. • Storage is a flow battery with thermo-chemical charging and electro-chemical discharging. • Sodium-sulfur and zinc-air systems are investigated as candidate storage materials. • Theoretical solar to electricity efficiencies of over 60% are predicted. • Charging temperature can be lowered with hybrid carbothermic reduction. - Abstract: A new approach for solar electricity generation and storage is proposed, based on the concept of thermally regenerative batteries. Concentrated sunlight is used for external thermo-chemical charging of a flow battery, and electricity is produced by conventional electro-chemical discharge of the battery. The battery replaces the steam turbine, currently used in commercial concentrated solar power (CSP) plants, potentially leading to much higher conversion efficiency. This approach offers potential performance, cost and operational advantages compared to existing solar technologies, and to existing storage solutions for management of an electrical grid with a significant contribution of intermittent solar electricity generation. Here we analyze the theoretical conversion efficiency for new thermo-electro-chemical storage (TECS) plant schemes based on the electro-chemical systems of sodium-sulfur (Na-S) and zinc-air. The thermodynamic upper limit of solar to electricity conversion efficiency for an ideal TECS cycle is about 60% for Na-S at reactor temperature of 1550 K, and 65% for the zinc-air system at 1750 K, both under sunlight concentration of 3000. A hybrid process with carbothermic reduction in the zinc-air system reaches 60% theoretical efficiency at the more practical conditions of reaction temperature <1200 K and concentration <1000. Practical TECS plant efficiency, estimated from these upper limits, may then be much higher compared to existing solar electricity technologies. The technical and economical

  19. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  20. Thermo-elektrische materialen : Peltier energy harvesting

    NARCIS (Netherlands)

    Beurden, K.M.M. (Karin); Goselink, E.A. (Erik)

    2013-01-01

    Thermo-elektrische materialen zijn al sinds de 19e eeuw bekend. In 1834 ontdekte de Franse natuurkundige Jean Peltier dat er warmte wordt getransporteerd van de overgang tussen twee metalen wanneer er een elektrische stroom vloeit door het grensvlak. Het grote voordeel van Peltier elementen is dat

  1. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  2. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Sanchez, M.; Arson, C.

    2012-01-01

    Document available in extended abstract form only. The hydraulic gradient is the main physical phenomenon influencing the movement of water in permeable porous media. It is, however, not the only one. Figure 1 presents the main kinds of flow that can occur in a porous media alongside with the corresponding gradient responsible for the movements. The word 'law' is generally used for the diagonal terms associated with the direct flow phenomena, and the name 'effect' is reserved to the non-diagonal ones, called also 'coupled processes'. Lippmann (1907) discovered and named the phenomenon of thermo-osmosis. He discovered it experimentally by separating a volume of water into two parts by means of a membrane. Different temperatures were held in the two regions of the system. The thermal gradient caused a flow of water through the membrane from the cold to the hot side. In permeable reservoirs, the non-diagonal coefficients are relatively small and negligible compared to the diagonal terms. That is the reason why the coupled processes are generally ignored when analyzing problems in aquifers. However, in non-isothermal problems involving low permeability media and/or low hydraulic gradients thermo-osmosis may play a more influential role. Srivastava and Avasthi (1975) and Horseman and McEwen (1996) showed that water flux due to thermo-osmosis can easily exceed Darcy flux in low permeability clays. The 'phenomenological coefficient' that links each flow with the corresponding driving gradient must be measured experimentally. Accounting for thermo-osmosis is assuming that the transport of heat may modify the transport of fluids. The counterpart phenomenon of thermo-osmosis is thermo-filtration, which reflects the influence of a pressure gradient on heat flow. Thermo-osmosis and thermo-filtration are generally formulated as reciprocal relations, so that the coupled conductivity terms related to each phenomenon are set equal. Thermo-osmotic effects have been studied in the

  3. A water heating system analysis for rural residences, using solar energy; Analise de um sistema de aquecimento de agua para residencias rurais, utilizando energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz H.; Souza, Samuel N.M. de; Siqueira, Jair A.C.; Nogueira, Carlos E.C.; Santos, Reginaldo F. [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Programa de Pos-Graduacao em Engenharia Agricola], emails: melegsouza@yahoo.com, ssouza@unioeste.br, jairsiqueira@unioeste.br, cecn1@yahoo.com.br, rfsantos@unioeste.br

    2010-01-15

    The awareness of the importance of the environment has stimulated the study of new renewed energy sources and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of agricultural residential water heating, can complement the economy of electric energy, base of the Brazilian energy matrix. Knowing the factors that influence the operation of a system of water heating by solar energy is important in determining their technical viabilities targeting their distribution in agricultural residences. To evaluate equipment of water heating for solar energy, a prototype was constructed in the campus of Assis Gurgacz College, in Cascavel,State of Parana, Brazil, with similar characteristics to equipment used in residences for two inhabitants, to function with natural circulation or thermo siphon and without help of a complementary heating system. The equipment revealed technical viability, reaching the minimum temperature for shower, of 35 deg C, whenever the solar radiation was above the 3,500 Wh m{sup -2}, for the majority of the studied days. (author)

  4. Thermo-stimulated current and dielectric loss in composite materials

    International Nuclear Information System (INIS)

    Nishijima, S.; Hagihara, T.; Okada, T.

    1986-01-01

    Thermo-stimulated current and dielectric loss measurements have been performed on five kinds of commercially available composite materials in order to study the electric properties of composite materials at low temperatures. Thermo-stimulated current measurements have been made on the composite materials in which the matrix quality was changed intentionally. The changes in the matrices were introduced by gamma irradiation or different curing conditions. Thermo-stimulated current and dielectric loss measurements revealed the number and the molecular weight of dipolar molecules. The different features of thermo-stimulated current and dielectric losses were determined for different composite materials. The gamma irradiation and the curing conditions especially affect the thermo-stimulated current features. The changes in macroscopic mechanical properties reflect those of thermo-stimulated current. It was found that the change in quality and/or degradation of the composite materials could be detected by means of thermo-stimulated current and/or dielectric loss measurements

  5. From chemical mapping to pressure temperature deformation micro-cartography: mineralogical evolution and mass transport in thermo-mechanic disequilibrium systems: application to meta-pelites and confinement nuclear waste materials

    International Nuclear Information System (INIS)

    Andrade, V. de

    2006-03-01

    The mineralogical composition of metamorphic rocks or industrial materials evolves when they are submitted to thermomechanical disequilibria, i.e. a spatial or temporal pressure and temperature evolution, or chemical disequilibria as variations in redox conditions, pH... For example, during low temperature metamorphic processes, rocks re-equilibrate only partially, and thus record locally thermodynamic equilibria increasing so the spatial chemical heterogeneities. Understanding the P-T evolution of such systems and deciphering modalities of their mineralogical transformation imply to recognize and characterize the size of these local 'paleo-equilibria', and so to have a spatial chemical information at least in 2 dimensions. In order to get this information, microprobe X-ray fluorescence maps have been used. Computer codes have been developed with Matlab to quantify these maps in view of thermo-barometric estimations. In this way, P-T maps of mineral crystallisation were produced using the multi-equilibria thermodynamic technique. Applications on two meta-pelites from the Sambagawa blue-schist belt (Japan) and from the Caledonian eclogitic zone in Spitsbergen, show that quantitative chemical maps are a powerful tool to retrieve the metamorphic history of rocks. From these chemical maps have been derived maps of P-T-time-redox-deformation that allow to characterize P-T conditions of minerals formation, and so, the P-T path of the sample, the oxidation state of iron in the chlorite phase. As a result, we underline the relation between deformation and crystallisation, and propose a relative chronology of minerals crystallisation and deformations. The Fe 3+ content map in chlorite calculated by thermodynamic has also been validated by a μ-XANES mapping at the iron K-edge measured at the ESRF (ID24) using an innovative method. Another application relates to an experimental study of clay materials, main components of an analogical model of a nuclear waste storage site

  6. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  7. The thermo-technical optimization in the evaporator by a targeted selection of refractory systems. Calculations and evaluation, installation of a tailor-made refractory system, results from the practice; Waermetechnische Optimierung im Dampferzeuger durch gezielte Auswahl von Feuerfestsystemen. Berechnungen und Bewertungen, Installation des massgeschneiderten Feuerfestsystems, Ergebnisse aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Karl-Ulrich [Mokesa AG, Birsfelden (Switzerland). Marketing/Verkauf; Hofmans, Erik [ISVAG, Wilrijk (Belgium). Technischer Dienst/Instandhaltung; Kern, Tobias [Mokesa AG, Birsfelden (Switzerland); Hoeff, Jos van der [Mokesa Benelux B.V., Limmen (Netherlands)

    2013-03-01

    The thermo-technical optimization of existing incinerator boilers with the benefit of a stabilised combustion and a low consumption of fossil fuels in order to meet the rules at a temperature of 850 Celsius for a time period of two seconds even at partial load and low-calorific fuel (waste) is state of the art by means of CFD modelling and its successful transformation into the practice with proven and tailor-made refractory systems. The direct, straight and sustainable economical use is in an enhanced throughput of waste materials, a reduced consumption of fuels and thus a conservation of CO{sub 2}. The stabile combustion control is with a poor readjustment is an important and assuring advantage for the operations manager.

  8. Examination of the Thermo-mechanical Properties of E-Glass/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Hande Sezgin

    2017-12-01

    Full Text Available Eight-ply E-glass, carbon and E-glass/carbon fabric-reinforced polyester based hybrid composites were manufactured in this study. A vacuum infusion system was used as the production method. Dynamic mechanical analysis, thermogravimetric analysis and differential scanning calorimetry analysis were conducted to examine the thermo-mechanical properties of composite samples. The effect of reinforcement type and different stacking sequences of fabric plies on the thermo-mechanical properties of composite samples were also investigated. Results showed that the type and alignment of reinforcement material has a signifi cant effect on the dynamic mechanical properties of composite samples.

  9. Magnetic resonance guided focalized ultrasound thermo-ablation: A promising oncologic local therapy

    International Nuclear Information System (INIS)

    Iannessi, A.; Doyen, J.; Leysalle, A.; Thyss, A.

    2014-01-01

    Pain management of bone metastases is usually made using systemic and local therapy. Even though radiations are nowadays the gold standard for painful metastases, innovations regarding minimally invasive treatment approaches have been developed because of the existing non-responder patients [1]. Indeed, cementoplasty and thermo-ablations like radiofrequency or cryotherapy have shown to be efficient on pain [2-4]. Among thermo-therapy, magnetic resonance guided focalized ultrasound is now a new non-invasive weapon for bone pain palliation. (authors)

  10. Detailed measurements and modelling of thermo active components using a room size test facility

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    measurements in an office sized test facility with thermo active ceiling and floor as well as modelling of similar conditions in a computer program designed for analysis of building integrated heating and cooling systems. A method for characterizing the cooling capacity of thermo active components is described...... typically within 1-2K of the measured results. The simulation model, whose room model splits up the radiative and convective heat transfer between room and surfaces, can also be used to predict the dynamical conditions, where especially the temperature rise during the day is important for designing...

  11. Experimental fast reactor JOYO MK-III functional test. Primary auxiliary cooling system test

    International Nuclear Information System (INIS)

    Karube, Koji; Akagi, Shinji; Terano, Toshihiro; Onuki, Osamu; Ito, Hideaki; Aoki, Hiroshi; Odo, Toshihiro

    2004-03-01

    This paper describes the results of primary auxiliary cooling system, which were done as a part of JOYO MK-III function test. The aim of the tests was to confirm the operational performance of primary auxiliary EMP and the protection system including siphon breaker of primary auxiliary cooling system. The items of the tests were: (Test No.): (Test item). 1) SKS-117: EMP start up test. 2) SKS-118-1: EMP start up test when pony motor running. 3) SKS-121: Function test of siphon breaker. The results of the tests satisfied the required performance, and demonstrated successful operation of primary auxiliary cooling system. (author)

  12. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.

    2013-01-01

    Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation

  13. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories

    International Nuclear Information System (INIS)

    Li Mengnan; Zheng Guanghong; Wang Lei; Xiao Wei; Fu Xiaohua; Le Yiquan; Ren Daming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or 'gene pollution'. Heating at 100 deg. C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 deg. C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 deg. C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion

  14. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories.

    Science.gov (United States)

    Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.

  15. Nonequilibrium statistical averages and thermo field dynamics

    International Nuclear Information System (INIS)

    Marinaro, A.; Scarpetta, Q.

    1984-01-01

    An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles

  16. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  17. Characterization of a siphonal flow electro-coagulation reactor for the water de-pollution; Caracterisation d'un reacteur d'electrocoagulation a ecoulement siphoide pour la depollution des eaux

    Energy Technology Data Exchange (ETDEWEB)

    Deffontaines, B.; Deffontaines-Fourez, M.; Thivel, P.X. [Unversite du Littoral - Cote d' Opale, Centre Universitaire Descartes, Lab. d' Etude en Genie Industriel et Management Environnemental, 62 - Longuenesse (France)

    2001-07-01

    The aim of this study is the establishment of a global quantitative relation between the kinetic and the hydrodynamic of a siphonal flow reactor. First results of the application in dyeing effluents recycling illustrate the reactor performance on the MES abatement and the turbidity of the recycling waters in the production cycle. (A.L.B.)

  18. Determination and Scaling of Thermo Acoustic Characteristics of Premixed Flames

    Directory of Open Access Journals (Sweden)

    P. R. Alemela

    2010-06-01

    Full Text Available The paper investigates the determination and the scaling of thermo acoustical characteristics of lean premixed flames as used in gas turbine combustion systems. In the first part, alternative methods to characterize experimentally the flame dynamics are outlined and are compared on the example of a scaled model of an industrial gas turbine burner. Transfer matrix results from the most general direct method are contrasted with data obtained from the hybrid method, which is based on Rankine-Hugoniot relations and the experimental flame transfer function obtained from OH*-chemiluminescence measurements. Also the new network model based regression method is assessed, which is based on a n – τ – σ dynamic flame model. The results indicate very good consistency between the three techniques, providing a global check of the methods/tools used for analyzing the thermo acoustic mechanisms of flames. In the second part, scaling rules are developed that allow to calculate the dynamic flame characteristics at different operation points. Towards this a geometric flame length model is formulated. Together with the other operational data of the flame it provides the dynamic flame model parameters at these points. The comparison between the measured and modeled flame lengths as well as the n – τ – σ parameters shows an excellent agreement.

  19. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    Science.gov (United States)

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  20. A Mathematical Model of the Thermo-Anemometric Flowmeter.

    Science.gov (United States)

    Korobiichuk, Igor; Bezvesilna, Olena; Ilchenko, Andriі; Shadura, Valentina; Nowicki, Michał; Szewczyk, Roman

    2015-09-11

    A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed.

  1. Thermo Techno Modern Analytical Equipment for Research and Industrial Laboratories

    Directory of Open Access Journals (Sweden)

    Khokhlov, S.V.

    2014-03-01

    Full Text Available A brief overview of some models of Thermo Techno analytical equipment and possible areas of their application is given. Thermo Techno Company was created in 2000 as a part of representative office of international corporation Thermo Fisher Scientific — world leader in manufacturing analytical equipments. Thermo Techno is a unique company in its integrated approach in solving the problems of the user, which includes a series of steps: setting the analytical task, selection of effective analysis methods, sample delivery and preparation as well as data transmitting and archiving.

  2. Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.R.; Matera, R.; Roedig, M.; Smith, J.J.; Janev, R.K.

    1991-03-01

    This Report contains the proceedings, results and conclusions of the work done and the analysis performed during the IAEA Consultants' Meeting on ''Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials'', convened on December 17-21, 1990, at the IAEA Headquarters in Vienna. Although the prime objective of the meeting was to critically assess the available thermo-mechanical properties data for certain types of carbon-based fusion relevant materials, the work of the meeting went well beyond this task. The meeting participants discussed in depth the scope and structure of the IAEA material properties database, the format of data presentation, the most appropriate computerized system for data storage, retrieval, exchange and management. The existing IAEA ALADDIN system was adopted as a convenient tool for this purpose and specific ALADDIN labelling schemes and dictionaries were established for the material properties data. An ALADDIN formatted test-file for the thermo-physical and thermo-mechanical properties of pyrolytic graphite is appended to this Report for illustrative purposes. (author)

  3. Thermo field theory versus imaginary time formalism

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Nishino, H.; Grigjanis, R.

    1983-11-01

    We calculate a two-loop diagram at finite temperature to compare Thermo Field Theory (=Th.F.Th.) with the conventional imaginary time formalism (=Im.T.F.). The summation over the Matsubara frequency in Im.T.F. is carried out at two-loop level, and the result is shown to coincide with that of Th.F.Th. We confirm that in Im.T.F. the temperature dependent divergences cancel out at least in the calculation of effective potential of phi 4 theory, as in Th.F.Th. (author)

  4. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  5. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  6. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cooling e...

  7. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    - The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cool...

  8. A conjugate thermo-electric model for a composite medium.

    Directory of Open Access Journals (Sweden)

    Oscar Chávez

    Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.

  9. Investigation of Thermo-regulating Properties of Multilayer Textile Package

    Directory of Open Access Journals (Sweden)

    Julija Baltušnikaitė

    2015-09-01

    Full Text Available Thermal comfort of a clothing system is one of the important goals of the developer that require an engineering approach. In this research work a thermo-regulating textile packages were developed and a wearing comfort of protective clothing consisting from those packages was improved. The microcapsules were added on the fabric surface using pad-dry-cure method. The thermal properties and stabilities were measured using differential scanning calorimetry. The results suggest that higher values of thermal resistance were obtained after incorporation of fabric, coated by PCMs, into inert layer of multilayer textile package. DOI: http://dx.doi.org/10.5755/j01.ms.21.3.6920

  10. On the general theory of thermo-elastic friction

    NARCIS (Netherlands)

    Alblas, J.B.

    1961-01-01

    A theory of the thermo-elastic dissipation in vibrating bodies is developed, starting from the three-dimensional thermo-elastic equations. After a discussion of the basic thermodynamical foundations, some general considerations on the problem of the conversion of mechanical energy into heat are

  11. Diagonalization of propagators in thermo field dynamics for relativistic quantum fields

    International Nuclear Information System (INIS)

    Henning, P.A.; Umezawa, H.

    1992-09-01

    Two-point functions for interacting quantum fields in statistical systems can be diagnolized by matrix transformations. It is shown, that within the framework of time-dependent Thermo Field Dynamics this diagonalization can be understood as a thermal Bogoliubov transformation to non-interacting statistical quasi-particles. The condition for their unperturbed propagation relates these states to the thermodynamic properties of the system: It requires global equilibrium for stationary situations, or specifies the time evolution according to a kinetic equation. (orig.)

  12. Investigation on thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing in scramjet cooling channel based on wavelet entropy method

    Science.gov (United States)

    Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen

    2018-06-01

    As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.

  13. Thermo-responsive hydrogels for intravitreal injection and biomolecule release

    Science.gov (United States)

    Drapala, Pawel

    In this dissertation, we develop an injectable polymer system to enable localized and prolonged release of therapeutic biomolecules for improved treatment of Age-Related Macular Degeneration (AMD). Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and cross-linked with poly(ethylene glycol) (PEG) poly(L-Lactic acid) (PLLA) copolymer were synthesized via free-radical polymerization. These materials were investigated for (a) phase change behavior, (b) in-vitro degradation, (c) capacity for controlled drug delivery, and (d) biocompatibility. The volume-phase transition temperature (VPTT) of the PNIPAAm- co-PEG-b-PLLA hydrogels was adjusted using hydrophilic and hydrophobic moieties so that it is ca. 33°C. These hydrogels did not initially show evidence of degradation at 37°C due to physical cross-links of collapsed PNIPAAm. Only after addition of glutathione chain transfer agents (CTA)s to the precursor did the collapsed hydrogels become fully soluble at 37°C. CTAs significantly affected the release kinetics of biomolecules; addition of 1.0 mg/mL glutathione to 3 mM cross-linker accelerated hydrogel degradation, resulting in 100% release in less than 2 days. This work also explored the effect of PEGylation in order to tether biomolecules to the polymer matrix. It was demonstrated that non-site-specific PEGylation can postpone the burst release of solutes (up to 10 days in hydrogels with 0.5 mg/mL glutathione). Cell viability assays showed that at least two 20-minute buffer extraction steps were needed to remove cytotoxic elements from the hydrogels. Clinically-used therapeutic biomolecules LucentisRTM and AvastinRTM were demonstrated to be both stable and bioactive after release form PNIPAAm-co-PEG-b-PLLA hydrogels. The thermo-responsive hydrogels presented here offer a promising platform for the localized delivery of proteins such as recombinant antibodies.

  14. Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol

    International Nuclear Information System (INIS)

    Peduzzi, Emanuela; Tock, Laurence; Boissonnet, Guillaume; Maréchal, François

    2013-01-01

    In a carbon and resources constrained world, thermo-chemical conversion of lignocellulosic biomass into fuels and chemicals is regarded as a promising alternative to fossil resources derived products. Methanol is one potential product which can be used for the synthesis of various chemicals or as a fuel in fuel cells and internal combustion engines. This study focuses on the evaluation and optimization of the thermodynamic and economic performance of methanol production from biomass by applying process integration and optimization techniques. Results reveal the importance of the energy integration and in particular of the cogeneration of electricity for the efficient use of biomass. - Highlights: • A thermo-economic model for biomass conversion into methanol is developed. • Process integration and multi-objective optimization techniques are applied. • Results reveal the importance of energy integration for electricity co-generation

  15. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Outline report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Shiozaki, Isao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  16. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Result report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe 60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  17. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)

    2015-01-15

    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  18. REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA

    International Nuclear Information System (INIS)

    Murao, Yoshio; Okubo, Tsutomu; Sugimoto, Jun; Iguchi, Tadashi; Sudoh, Takashi.

    1985-02-01

    This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)

  19. Artificial phototropism based on a photo-thermo-responsive hydrogel

    Science.gov (United States)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  20. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1989-01-01

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  1. Thermo-driven microcrawlers fabricated via a microfluidic approach

    International Nuclear Information System (INIS)

    Wang Wei; Yao Chen; Zhang Maojie; Ju Xiaojie; Xie Rui; Chu Liangyin

    2013-01-01

    A novel thermo-driven microcrawler that can transform thermal stimuli into directional mechanical motion is developed by a simple microfluidic approach together with emulsion-template synthesis. The microcrawler is designed with a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel body and a bell-like structure with an eccentric cavity. The asymmetric shrinking–swelling circulation of the microcrawlers enables a thermo-driven locomotion responding to repeated temperature changes, which provides a novel model with symmetry breaking principle for designing biomimetic soft microrobots. The microfluidic approach offers a novel and promising platform for design and fabrication of biomimetic soft microrobots. (paper)

  2. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of conju......Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability...... of conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....

  3. Assessment of core thermo-hydrodynamic models of REFLA-1D with CCTF data

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Murao, Yoshio

    1983-07-01

    In order to assess the core thermo-hydrodynamic models of REFLA-1D/MODE3, which is the latest version of REFLA-1D, several calculations of the core thermo-hydrodynamics have been performed for the CCTF Core-I series tests. The measured initial and boundary conditions were used for these calculations. The calculational results showed that the water accumulation model of Case 2 could predict the CCTF results fairly well as it could for the JAERI small scale facility. The calculated results for the base case and the EM tests were in good agreement with the CCTF data. The parameter effects, such as system pressure, initial clad temperature, Acc injection rate, LPCI injection rate and initial down-comer wall temperature, were predicted correctly, except for the high system pressure and the high LPCI injection rate tests. (author)

  4. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  5. Clinical application of transcatheter arterial thermo-chemotherapy and thermo-lipiodol embolization in treatment of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang Xuan; Chen Xiaofei; Dong Weihua

    2007-01-01

    Objective: To evaluate the clinical efficacy of thermo-chemotherapy and thermo-lipiodol embolization in treatment of primary hepatocellular carcinoma(PHC). Methods: One hundred and sixteen cases of PHC were divided into three groups. Group A (38 cases)was treated with normal temperature chemotherapy and normal temperature lipiodol, Group B(40 cases)with thermo-chemotherapy and normal temperature lipiodol and group C (38 cases)with thermo-chemotherapy and thermo-lipiodol. Group B and group C were called the thermotherapy group. Results: In the thermotherapy groups, the rates of tumor size reduction were significantly greater than those in the normal group. There were no significant different in the hepatic function tests among the three groups. The 6-, 12-, 18-, and 24- month survival rates of the normal group and thermotherapy groups were 97%, 58%, 39% and 18%, versus 99%, 79%, 57% and 36%, respectively. No significant differences were found in the rates of reduction of tumor size and survival rates between group B and group C. Conclusion: Thermo-chemotherapy and thermo-embolization possess significant effect on PHC but without conspicuous damage to liver function. (authors)

  6. Preliminary study of the thermo-hydraulic behaviour of the binary breeder reactor

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Ferreira, W.J.

    1984-06-01

    Continuing the development of the Binary Breeder Reactor, its physical configuration and the advantages of differents types of spacers are analysed. In order to simulate the thermo-hydraulic behaviour and obtain data for a preliminary evaluation of the core geometry, the COBRA III C code was used to study the effects of the lenght and diameter of the fuel element, the coolant inlet temperature, the system pressure, helicoidal pitch and the pitch to diameter ratio. (Author) [pt

  7. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    International Nuclear Information System (INIS)

    Kobayashi, Michiyuki; Aya, Izuo; Inasaka, Fujio; Murata, Hiroyuki; Odano, Naoteru; Shiozaki, Koki

    1998-01-01

    A research project from 1995-1999 had a plan to make experimental studies on (1) safety of nuclear ship loaded with an integral ship propulsion reactor (2) effects of pulsating flow on the thermo-hydraulic characteristics of ship propulsion reactor and (3) thermo-hydraulic behaviors of the reactor container at the time of accident in a passively safe ship propulsion reactor. Development of a data base for ship propulsion reactor was attempted using previous experimental data on the thermo-hydraulic characteristics of the reactor in the institute in addition to the present results aiming to make general analytical evaluation for the safety of the engineering-simulation system for nuclear ship. A general data base was obtained by integrating the data list and the analytical program for static characteristics. A test equipment which allows to visualize the pulsating flow was produced and visualization experiments have started. (M.N.)

  8. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files.

    Science.gov (United States)

    Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart

    2011-08-05

    The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at http://thermo-msf-parser.googlecode.com.

  9. Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells.

    Science.gov (United States)

    Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng

    2017-07-13

    Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.

  10. Wigner Function of Thermo-Invariant Coherent State

    International Nuclear Information System (INIS)

    Xue-Fen, Xu; Shi-Qun, Zhu

    2008-01-01

    By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ) representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z,ℵ> is derived. The nonclassical properties of state |z,ℵ> is discussed based on the negativity of the Wigner function. (general)

  11. Library of neutron cross sections of the Thermos code

    International Nuclear Information System (INIS)

    Alonso V, G.; Hernandez L, H.

    1991-10-01

    The present work is the complement of the IT.SN/DFR-017 report in which the structure and the generation of the library of the Thermos code is described. In this report the comparison among the values of the cross sections that has the current library of the Thermos code and those generated by means of the ENDF-B/NJOY it is shown. (Author)

  12. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  13. Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids

    Directory of Open Access Journals (Sweden)

    Mahesh Suresh Patil

    2016-10-01

    Full Text Available Nanofluids are suspended nano-sized particles in a base fluid. With increasing demand for more high efficiency thermal systems, nanofluids seem to be a promising option for researchers. As a result, numerous investigations have been undertaken to understand the behaviors of nanofluids. Since their discovery, the thermo-physical properties of nanofluids have been under intense research. Inadequate understanding of the mechanisms involved in the heat transfer of nanofluids has been the major obstacle for the development of sophisticated nanofluids with the desired properties. In this comprehensive review paper, investigations on synthesis, thermo-physical properties, and heat transfer mechanisms of nanofluids have been reviewed and presented. Results show that the thermal conductivity of nanofluids increases with the increase of the operating temperature. This can potentially be used for the efficiency enhancement of thermal systems under higher operating temperatures. In addition, this paper also provides details concerning dependency of the thermo-physical properties as well as synthesis and the heat transfer mechanism of the nanofluids.

  14. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  15. Thermo-pneumatic canning; Le gainage thermopneumatique

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In the thermo-pneumatic canning, the fuel is enclosed in its can with a clearance that must be reduced by external heated gas pressure. The principal applications are: a) binding magnesium cans on to uranium in fuel elements of reactors cooled by CO{sub 2} under pressure, b) application of a can to a hollow bar of uranium too thin to resist the pressure of cold hydraulic canning, c) application of an aluminium can to a bar, with an initial diametrical clearance between uranium and can too great to sustain cold hydraulic canning without buckling, d) detection of major leakage in the slugs. (author) [French] Ce procede consiste a appliquer une gaine sur une barre d'uranium par pression hydrostatique d'un gaz chaud. Les principales applications sont: a) le frettage des gaines de magnesium des elements combustibles des piles refroidies au CO{sub 2} sous pression, b) le gainage d'un barreau creux qui serait ecrase a froid, c) le gainage avec un jeu initial trop fort pour etre effectue a froid sans plisser, d) la detection des fuites de cartouches. (auteur)

  16. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A.; Blokzijl, M. M.; Mouser, V. H. M.; Marica, P.; Malda, J.; Hennink, W. E.; Vermonden, T.

    2016-01-01

    The aim ofthis study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  17. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A|info:eu-repo/dai/nl/369480376; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J|info:eu-repo/dai/nl/412461099; Hennink, W E|info:eu-repo/dai/nl/070880409; Vermonden, T|info:eu-repo/dai/nl/275124517

    2016-01-01

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  18. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  19. Library of neutron cross sections of the Thermos code; Biblioteca de secciones eficaces de neutrones del codigo Thermos

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G; Hernandez L, H [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1991-10-15

    The present work is the complement of the IT.SN/DFR-017 report in which the structure and the generation of the library of the Thermos code is described. In this report the comparison among the values of the cross sections that has the current library of the Thermos code and those generated by means of the ENDF-B/NJOY it is shown. (Author)

  20. Transcatheter hepatic arterial thermo-chemotherapy and thermo-lipiodol embolization for the treatment of hepatic metastases from colorectal carcinoma

    International Nuclear Information System (INIS)

    Wang Xuan; Chen Xiaofei

    2009-01-01

    Objective: To evaluate the clinical efficacy of transcatheter hepatic arterial thermo-chemotherapy and thermo-lipiodol embolization in the treatment of hepatic metastases from colorectal carcinoma. Methods: Sixty-eight cases with hepatic metastases from colorectal carcinoma were equally and randomly divided into two groups. The patients in study group were treated with transcatheter hepatic arterial thermo-chemotherapy and thermo-lipiodol embolization, while the patients in control group were treated with conventional (normal temperature) transcatheter hepatic arterial chemotherapy lipiodol embolization. Results: The effective rate of study group and control group was 65%(22/34) and 32%(11/34) respectively, the difference between two groups was statistically significant (P<0.05). No significant difference in the postoperative changes of hepatic function tests was found between the two groups. The survival rate at 6,12,18 and 24 months after the treatment was 100%, 82%, 44% and 18% respectively in study group, while it was 91%, 47%, 15% and 6% respectively in control group. Conclusion: Transcatheter hepatic arterial thermo-chemotherapy and thermo-lipiodol embolization is an effective and safe treatment for the hepatic metastases from colorectal carcinoma and has no obvious damage to the hepatic function. (authors)

  1. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  2. A study of thermo-mechanical stress and its impact on through-silicon vias

    International Nuclear Information System (INIS)

    Ranganathan, N; Balasubramanian, N; Prasad, K; Pey, K L

    2008-01-01

    The BOSCH etch process, which is commonly used in microelectromechanical system fabrication, has been extensively investigated in this work for implementation in through-silicon via (TSV) technology for 3D-microsystems packaging. The present work focuses on thermo-mechanical stresses caused by thermal loading due to post-TSV processes and their impact on the electrical performance of through-silicon copper interconnects. A test vehicle with deep silicon copper-plated comb structure was designed to study and evaluate different deep silicon via etch processes and its effect on the electrical leakage characteristics under various electrical and thermal stress conditions. It has been shown that the leakage current between the comb interconnect structures increases with an increase in sidewall roughness and that it can be significantly lowered by smoothening the sidewalls. It was also shown that by tailoring a non-BOSCH etch process with the normal BOSCH process, a similar leakage current reduction can be achieved. It was also shown through thermo-mechanical simulation studies that there is a clear correlation between high leakage current behavior due to non-uniform Ta barrier deposition over the rough sidewalls and the thermo-mechanical stress induced by post-TSV processes

  3. Fuel element thermo-mechanical analysis during transient events using the FMS and FETMA codes

    International Nuclear Information System (INIS)

    Hernandez Lopez Hector; Hernandez Martinez Jose Luis; Ortiz Villafuerte Javier

    2005-01-01

    In the Instituto Nacional de Investigaciones Nucleares of Mexico, the Fuel Management System (FMS) software package has been used for long time to simulate the operation of a BWR nuclear power plant in steady state, as well as in transient events. To evaluate the fuel element thermo-mechanical performance during transient events, an interface between the FMS codes and our own Fuel Element Thermo Mechanical Analysis (FETMA) code is currently being developed and implemented. In this work, the results of the thermo-mechanical behavior of fuel rods in the hot channel during the simulation of transient events of a BWR nuclear power plant are shown. The transient events considered for this work are a load rejection and a feedwater control failure, which among the most important events that can occur in a BWR. The results showed that conditions leading to fuel rod failure at no time appeared for both events. Also, it is shown that a transient due load rejection is more demanding on terms of safety that the failure of a controller of the feedwater. (authors)

  4. Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator

    Science.gov (United States)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2017-02-01

    A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.

  5. Thermo economical optimization of sugar plants with environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, Mauricio; Mele, Fernando Daniel; Hernandez, Maria Rosa [Universidad Nacional de Tucuman (UNT), Tucuman (Argentina). Facultad de Ciencias Exactas y Tecnologia], Email: macolombo@herrera.unt.edu.ar; Gatica, Jorge [Cleveland State University (CSU), Cleveland, OH (United States). Dept. of Chemical and Biomedical Engineering], Email: j.gatica@csuohio.edu; Silveira, Jose Luz [Universidade Estadual Paulista (FEG/UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia], Email: joseluz@feg.unesp.br

    2009-07-01

    This paper highlights the need for analysis and optimization techniques which can be applied to new energy systems and include considerations for environmental issues. These techniques have proven indispensable in dealing with the constrained optimization problem of finite natural resources and growing demands of energy. Within this framework, thermo economical optimization has gradually been brought to the forefront as a powerful tool in assisting the decision-making process. This work uses the technique of Life Cycle Analysis (LCA) as a means to include environmental indexes in the optimization process. While most of the environmental approaches formulate the optimization problem aiming to reduce residue generation without assessing the impact of this reduction on related processes, LCA considers environmental issues as an integral part of the optimization problem. A sugar cane processing plant located in Tucuman (Argentina) is selected as a case study. This example serves to highlight the importance of formulating solutions that ensure an efficient use of a common fuel to meet useful heat, shaft power, and electricity demands. (author)

  6. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  7. An Extensive Unified Thermo-Electric Module Characterization Method

    Science.gov (United States)

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-01-01

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575

  8. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  9. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    Science.gov (United States)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  10. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.

    Science.gov (United States)

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-06-20

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

  11. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  12. Optimisation de l'ensemble convertisseur-générateur-commande intégré à un système de micro-cogénération thermo-mécano-électrique

    OpenAIRE

    Dang , Thu Thuy

    2013-01-01

    The work of this thesis aims to study a system of micro-cogeneration innovative structure powered by a free piston Stirling engine "double effect." This system is characterized by a strong coupling between the thermo-mechanical parts and the mechanico-electrical part, provided by a linear induction generator tubular solid mover. In fact, the compression piston also acts as the mover of the electrical machine. The non-linear thermo-mechanical model of the Stirling engine "double effect" allowe...

  13. Preparation of nano-aluminum and studies on thermo-reaction properties

    International Nuclear Information System (INIS)

    Wei Sheng; Wang Chaoyang; Huang Yong; Wu Weidong; Tang Yongjian; Wei Jianjun

    2002-01-01

    The author presents the fabrication of nano-aluminum powders by evaporation-condensation method. The thermo gravimetric-differential scanning calorimetry technique is used to characterize the thermo-reaction properties between nano-aluminum powders and N 2 or Ar. The experiment results confirm the different thermo-reaction properties between block- and nano-aluminum

  14. Complex investigation of thermo-technical parameters of Ruskov andesite

    Directory of Open Access Journals (Sweden)

    František Krepelka

    2006-12-01

    Full Text Available The research of thermo-technical parameters of Ruskov andesite was made as a part of the complex research of its properties as well as of rock disintegration by the action of chemical flame on the rock surface, i.e. thermal spalling in particular. Thermal spalling is a process in which thermal stresses are induced in the surface layer of rock whose surface is thereby disintegrated into small parts, the so called spalls, by the brittle manner. The evaluation of thermo-technical properties of the studied rocks is necessary for the qualification and quantification of the thermal spalling process. The measured and evaluated parameters were the coefficient of linear thermal expansion, the coefficient of thermal conductivity, the specific heat capacity and the coefficient of thermal diffusivity. Andesite from the Ruskov locality was chosen as a basic experimental material for the investigation of thermal spalling upon preliminary experiments. The estimated thermo-technical parameters were analyzed regarding the application of thermal spalling for the disintegration of the Ruskov andesite. The outcome as that the values of determine thermo-technical parameters established an expectation for its successful application.

  15. Enhanced thermo-mechanical performance and strain-induced ...

    Indian Academy of Sciences (India)

    Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films ... School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea ...

  16. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  17. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  18. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  19. Prediction of thermo-mechanical reliability of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; van Driel, W.D.; Hoofman, R.J.O.M.; Ernst, L.J.

    2004-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  20. Prediction of thermo-mechanical integrity of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; Hoofman, R.J.O.M.; Ernst, L.J.; Ernst, L.J.

    2003-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  1. Effect of Blend Ratio on Thermo-Physical and Sensory ...

    African Journals Online (AJOL)

    Thermo-physical properties of bread made from wheat, cassava and soybean blends were investigated. During investigation, the organoleptic acceptance of the composite wheat, cassava and soy bread was determined. All the blend ratios were exposed to equal heating rate during baking at set temperature of 230oC. The ...

  2. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from ...

  3. Thermo-aerobic bacteria from geothermal springs in Saudi Arabia ...

    African Journals Online (AJOL)

    Fifteen isolates of thermo-aerobic bacteria were found. Bacillus cereus, B. licheniformis, B. thermoamylovorans, Pseudomonas sp., Pseudomonas aeruginosa and Enterobacter sp. were dominant in hot springs. Genetic relatedness indicated that eleven Bacillus spp. grouped together formed several clusters within one main ...

  4. ThermoDex An index of selected thermodynamic data handbooks

    CERN Document Server

    This database contains records for printed handbooks and compilations of thermodynamic and thermophysical data for chemical compounds and other substances. You can enter both a type of compound and a property, and ThermoDex will return a list of hand

  5. Quantum electron transfer processes induced by thermo-coherent ...

    Indian Academy of Sciences (India)

    WINTEC

    Thermo-coherent state; electron transfer; quantum rate. 1. Introduction. The study ... two surfaces,16 namely, one electron two-centered exchange problem,7–10 many ... temperature classical regime for the single and the two-mode cases have ...

  6. Electric Boiler and Heat Pump Thermo-Electrical Models for Demand Side Management Analysis in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte; Chen, Zhe

    2013-01-01

    The last fifteen years many European countries have integrated large percentage of renewable energy on their electricity generation mix. In Denmark the 21.3% of the electricity consumed nowadays is produced by the wind, and it has planned to be the 50% by 2025. In order to front future challenges...... on the power system control and operation, created by this unstable way of generation, Demand Side Management turns to be a promising solution. The storage capacity from thermo-electric units, like electric boilers and heat pumps, allows operating them with certain freedom. Hence they can be employed under...... certain coordination, to actively respond to the power system fluctuations. The following paper presents two simple thermo-electrical models of an electrical boiler and an air-source CO2 heat pump system. The purpose is using them in low voltage grids analysis to assess their capacity and flexibility...

  7. SciLab Based Remote Control of Thermo-Optical Plant

    Directory of Open Access Journals (Sweden)

    Miroslav Jano

    2011-11-01

    Full Text Available The paper deals with the web-based implementation of the control system of a thermo-optical plant. The control of the plant is based on the SciLab software which originally is not designed for web-based applications. The paper shows a possible way to circumvent this limitation. The ultimate goal is to enable remote controlled experiment using SciLab. The paper also describes possible tools for communication and control of the real plant and visualization of results.

  8. Thermo-electric transport in gauge/gravity models with momentum dissipation

    Science.gov (United States)

    Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele

    2014-09-01

    We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.

  9. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  10. The role of nonequilibrium thermo-mechanical statistics in modern technologies and industrial processes: an overview

    OpenAIRE

    Rodrigues, Clóves G.; Silva, Antônio A. P.; Silva, Carlos A. B.; Vasconcellos, Áurea R.; Ramos, J. Galvão; Luzzi, Roberto

    2010-01-01

    The nowadays notable development of all the modern technology, fundamental for the progress and well being of world society, imposes a great deal of stress in the realm of basic Physics, more precisely on Thermo-Statistics. We do face situations in electronics and optoelectronics involving physical-chemical systems far-removed-from equilibrium, where ultrafast (in pico- and femto-second scale) and non-linear processes are present. Further, we need to be aware of the rapid unfolding of nano-te...

  11. Did Life Emerge in Thermo-Acidic Conditions?

    Science.gov (United States)

    Holmes, D. S.

    2017-12-01

    There is widespread, but not unanimous, agreement that life emerged in hot conditions by exploiting redox and pH disequilibria found on early earth. Although there are several hypotheses to explain the postulated pH disequilibria, few of these consider that life evolved at very low pH (biological evolution. This presentation will evaluate the pros and cons of the hypothesis that the early evolution of life occurred in thermo-acidic conditions. Such environments are thought to have been abundant on early earth and were probably rich in hydrogen and soluble metals including iron and sulfur that could have served as sources and sinks of electrons. Extant thermo-acidophiles thrive in such conditions. Low pH environments are rich in protons that are the major drivers of energy conservation by coupling to phosphorylation in virtually all organisms on earth; this may be a "biochemical fossil" reflecting the use of protons (low pH) in primitive energy conservation. It has also been proposed that acidic conditions favored the evolution of an RNA world with expanded catalytic activities. On the other hand, the idea that life emerged in thermo-acidic conditions can be challenged because of the proposed difficulties of folding and stabilizing proteins simultaneously exposed to high temperature and low pH. In addition, although thermo-acidophiles root to the base of the phylogenetic tree of life, consistent with the proposition that they evolved early, yet there are problems of interpretation of their subsequent evolution that cloud this simplistic phylogenetic view. We propose solutions to these problems and hypothesize that life evolved in thermo-acidic conditions.

  12. Thermo-hydraulic analysis of the generic equatorial port plug design

    International Nuclear Information System (INIS)

    Rodríguez, E.; Guirao, J.; Ordieres, J.; Cortizo, J.L.; Iglesias, S.

    2012-01-01

    Highlights: ► Thermo-hydraulic transient performance evaluation and optimization of the GEPP structure cooling/heating system under neutronic heating and baking conditions. ► The optimization of the GEPP box structure's cooling system includes positioning and minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions. - Abstract: The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.

  13. Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator

    International Nuclear Information System (INIS)

    Qin Xiaoyong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples

  14. Experimental study on thermo-hydraulic instability on reduced-moderation natural circulation BWR concept

    International Nuclear Information System (INIS)

    Watanabe, Noriyuki; Subki, M.H.; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Reduced-moderation natural circulation BWR has been promoted to solve the recent challenges in BWR nuclear power technology problems as one of advanced small and medium-sized reactors equipped with the passive safety features in conformity with the natural law. However, the elimination of recirculation pumps and a high-density core due to the increase of conversion ratio could cause various thermo-hydraulic instabilities especially during the start-up stage. The occurrences of the thermo-hydraulic instabilities are not desirable and it is one of the main challenges in establishing reduced-moderation natural circulation BWR as a commercial reactor. The purpose of this present study is to experimentally investigate the driving mechanism of the thermo-hydraulic instabilities and the effect of system pressure on the unstable flow patterns. Hence, as the fundamental research for this study, a natural circulation loop that carries boiling fluid with parallel boiling channel has been constructed. Channel gap that has been set at 2 mm in order to simulate reduced-moderation reactor core. Pressure ranges of 0.1 up to 0.7 MPa, input heat flux range of 0 ou to 577 kW/m 2 , and inlet subcooling temperatures of 5, 10, and 15 K respectively, are imposed in the experiments. This experiment clarifies that changes in unstable flow patterns with increase in heat flux can be classified into two in response to system pressure range. In case of atmospheric pressure, unstable flow patters has been classified in beyond order, (1) in-phase geysering, (2) transition oscillation combined with both features of in-phase geysering and natural circulation oscillation, (3) natural circulation oscillation induced by hydrostatic head fluctuation, (4) density wave oscillation, and finally (5) stable boiling two-phase flow. On the other hand, in the system pressure range from 0.2 to 0.7 MPa, unstable patters have been dramatically changed in the following order (1) out-of-phase geysering, (2

  15. Thermo-hydro-mechanical behavior of argillite

    International Nuclear Information System (INIS)

    Tran, Duy Thuong; Dormieux, Luc; Lemarchand, Eric; Skoczylas, Frederic

    2012-01-01

    Document available in extended abstract form only. Argillite is a very low permeability geo-material widely encountered: that is the reason why it is an excellent candidate for the storage of long-term nuclear waste depositories. This study focuses on argillites from Meuse-Haute-Marne (East of France) which forms a geological layer located approximately 400 m and 500 m depth. We know that this material is made up of a mixture of shale, quartz and calcite phases. The multi-scale definition of this material suggests the derivation of micro-mechanics reasonings in order to better account for the mechanisms occurring at the local (nano and micro-) scale and controlling the macroscopic mechanical behavior. In this work, up-scaling techniques are used in the context of thermo-hydro-mechanical couplings. The first step consists in clarifying the morphology of the microstructure at the relevant scales (particles arrangement, pore size distribution) and identifying the mechanisms that take place at those scales. These local informations provide the input data of micro-mechanics based models. Schematic picture of the microstructure where the argillite material behaves as a dual-porosity, with liquid in both micro-pores and interlayer space in between clay solid platelets, seems a reasonable starting point for this micro-mechanical modelling of clay. This allows us to link the physical phenomena (swelling clays) and the mechanical properties (elastic moduli, Poisson's ratio). At the pressure applied by the fluid on the solid platelets appears as the sum of the uniform pressure in the micro-pores and of a swelling overpressure depending on the distance between platelets and on the ion concentration in the micro-pores. The latter is proved to be responsible for a local elastic modulus of physical origin. This additional elastic component may strongly be influenced by both relative humidity and temperature. A first contribution of this study is to analysing this local elastic

  16. HELOKA facility: thermo-hydrodynamic model and control

    International Nuclear Information System (INIS)

    Ghidersa, B.E.; Ihli, T.; Marchese, V.; Ionescu-Bujor, M.

    2007-01-01

    This paper presents the thermo-hydrodynamic model used to simulate the behaviour of the HELOKA (Helium Loop Karlsruhe) facility and describes the mechanism used to control various loop parameters. This test facility, which is under construction at the Forschungszentrum Karlsruhe (FZK), is designed for testing of various components for nuclear fusion such as the Helium-Cooled Pebble Bed blanket (HCPB) and the heliumcooled- divertor for the DEMO power reactor. Besides the individual testing of the blanket and divertor modules, the understanding of the behaviour of their cooling systems in conditions relevant for ITER operation is mandatory. An important aspect in the operation of these cooling loops is the accurate control, via feedback, of the flow parameters at the inlet of the test module. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HELOKA is essential to ensure the adequacy of safety features. Systems analysis codes, such as RELAP5-3D, are suited to this task. However, the application of these models to HELOKA design must be later validated by experimental measurements, while the basic physical models have been proven for light water reactors. The control of the test section inlet parameters is one of the most important issues. In particular, the start-up phase, when the test section temperature is increased from ambient temperature up to 300 C, requires special attention. As a first step, the HELOKA open loop thermal transient was computed using the RELAP model. The data obtained have been used for the identification of the power-temperature transfer function needed to compute the parameters of the feedback controller (PID) using MATLAB and SIMULINK. An accurate control of the temperature during the start-up and flat top phases is achieved solely by controlling the heater power. The adopted solution reduces the harmonic distortions when operating at reduced power while keeping the investment cost low. This

  17. Development of data acquisition system for test circuit for the Thermo-Hydraulic Laboratory of CDTN; Desenvolvimento de sistema de aquisicao de dados para circuito de testes do Laboratorio de Termo-Hidraulica do CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Corrade, Thales Jose Rodrigues; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos, E-mail: thalescorrade@hotmail.com, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2013-07-01

    The Circuit Water-Air (CWA), present in the Laboratorio de Termo-Hidraulica of the Centro de Desenvolvimento da Tecnologia Nuclear/Comissao Nacional de Energia Nuclear (CDTN / CNEN), has been used to evaluate devices present in nuclear fuel elements of a PWR (Pressurized Water Reactor). Currently, a segment of 5x5 beam simulators grids with spacer bars is being tested, serving one of the activities under the Project FUJB / FINEP / INB - 'Development of New Generation of Nuclear Fuel Element '. For the measurements of pressure drop along this beam, a system of data acquisition based on Basic language was created. Although this system is efficient and robust, their resources are very limited. Therefore, it was decided to use the software LabVIEW® implementing a more versatile and modern system. This article describes the new data acquisition system, and presents some results. The main parameters are monitored: temperature, density, dynamic viscosity, Reynolds number. The values of standard deviation, mean and uncertainty of an arbitrary channel are calculated. The system was installed and tested in the circuit under experimental conditions and showed satisfactory results.

  18. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  19. Achievement report on research and development in the Sunshine Project in fiscal 1980. Research on a hydrogen manufacturing technology by using thermo-chemical method. (Research on equipment materials for iodine system cycle); 1980 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu seika hokokusho. Yosokei cycle no sochi zairyo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes research on materials of equipment for the second stage reaction in relation with development on a hydrogen manufacturing technology by using the iodine system cycle in the thermo-chemical method. The second stage reaction produces MgO, I{sub 2} and O{sub 2} by decomposition of Mg(IO{sub 3}){sub 2} at 600 to 650 degrees C. Corrosion tests were carried out by using 25Cr-20Ni steel and Ni-50Cr alloy having shown relatively high corrosion resistance in the researches to date, which were added with trace amount of different alloy elements. The tests were performed in gas mixture of I{sub 2}, O{sub 2} and H{sub 2}O at 600 to 700 degrees C for 48 to 192 hours. The average corrosion rate of 25Cr-20Ni steel was reduced by adding Y(0.2%), Ca (0.2%) or Si+Al (1%Si+1%Al), by which relatively uniform corrosion pattern was shown, and the corrosion resistance was improved remarkably. The average corrosion rate of 25Cr-20Ni steel showed a trend of increasing by adding Si and Nb, and non-uniform corrosion like pitting has occurred, revealing that it is not preferable from the aspect of corrosion resistance. The average corrosion rates of the tested materials tended to become somewhat greater under heat insulated condition than under continuously heating condition. Effect of Mg(IO{sub 3}){sub 2} deposition is very small. (NEDO)

  20. Pyrolysis of Waste Castor Seed Cake: A Thermo-Kinetics Study

    Directory of Open Access Journals (Sweden)

    Abdullahi Muhammad Sokoto

    2018-03-01

    Full Text Available Biomass pyrolysis is a thermo-chemical conversion process that is of both industrial and ecological importance. The efficient chemical transformation of waste biomass to numerous products via pyrolysis reactions depends on process kinetic rates; hence the need for kinetic models to best design and operate the pyrolysis. Also, for an efficient design of an environmentally sustainable pyrolysis process of a specific lignocellulosic waste, a proper understanding of its thermo-kinetic behavior is imperative. Thus, pyrolysis kinetics of castor seed de-oiled cake (Ricinus communis using thermogravimetric technique was studied. The decomposition of the cake was carried out in a nitrogen atmosphere with a flow rate of 100mL min-1 from ambient temperature to 900 °C. The results of the thermal profile showed moisture removal and devolatilization stages, and maximum decomposition of the cake occurred at a temperature of 200-400 °C. The kinetic parameters such as apparent activation energy, pre-exponential factor, and order of reaction were determined using Friedman (FD, Kissinger-Akahira-Sunose (KAS, and Flynn-Wall-Ozawa (FWO kinetic models. The average apparent activation energy values of 124.61, 126.95 and 129.80 kJmol-1 were calculated from the slopes of the respective models. The apparent activation energy values obtained depends on conversion, which is an evidence of multi-step kinetic process during the pyrolytic decomposition of the cake. The kinetic data would be of immense benefit to model, design and develop a suitable thermo-chemical system for the conversion of waste de-oil cake to energy carrier.

  1. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor

    International Nuclear Information System (INIS)

    Salazar C, J.H.; Nunez C, A.; Chavez M, C.

    2004-01-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  2. The low fault HTSL-SQUID cooling system. Final report; Stoerarmes HTSL-SQUID-Kuehlsystem. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binneberg, A.; Spoerl, G.; Buschmann, H.

    1997-03-01

    In the context of the research project, work was done for HTSL-SQUID on (1) the development of a thermo-siphon cooler (low fault and continuously working) and (2) the development of a latent storage cooler (low fault and discontinuously working). Two development versions of the latent storage cooler were followed up, the development of a spherical latent storage cooler and the development of an annular vessel latent storage cooler. A further precondition for the construction of the cooler was the use of split Stirling refrigerators as units producing the cold. The experimental sample was built up with refrigerators which could produce a nominal cooling output of 1.2 W at 80 K. Two samples of the thermo-siphon cooler were built, tested and improved. The second sample was developed further as a demonstration model, introduced at meetings and prepared for testing the cooling of HTSL-SQUIDs. The thermo-siphon cooler can be designed for cooling output up to about 2 W at 80 K and can be used controlled for a temperature range of 90 K to 66 K. (orig./MM) [Deutsch] Im Rahmen des Forschungsvorhabens wurde fuer HTSL-SQUID`s an der (1) Entwicklung eines Thermosiphon-Kuehlers (stoerarm und kontinuierlich arbeitend) und (2) Entwicklung eines Latentspeicher-Kuehlers (stoerfrei und diskontinuierlich arbeitend) gearbeitet. Bei dem Latentspeicher-Kuehler wurden zwei Entwicklungsversionen verfolgt, und zwar Entwicklung eines Kugel-Latentspeicher-Kuehlers und Entwicklung eines Ringgefaess-Latentspeicher-Kuehlers. Eine weitere Praemisse zum Aufbau der Kuehler war der Einsatz von Split-Stirling-Kaeltemaschinen als kaelteerzeugende Baugruppe. Die Versuchsmuster wurden mit Kaeltemaschinen aufgebaut, die eine Nennkuehlleistung von 1,2 W bei 80 K erzeugen konnten. Der Thermosiphon-Kuehler wurde in zwei Musterexemplaren aufgebaut, erprobt und verbessert. Das Zweitmuster wurde als Demonstrator weiterentwickelt, zu Fachtagungen vorgestellt und zur Testung der Kuehlung von HTSL

  3. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    International Nuclear Information System (INIS)

    Li Yuanpei; Pan Shirong; Zhang Wei; Du Zhuo

    2009-01-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 deg. C) and that used in local hyperthermia (about 43 deg. C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 deg.C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  4. Nuclear, thermo-mechanical and tritium release analysis of ITER breeding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Miki, Nobuharu; Akiba, Masato

    2003-06-01

    The design of the breeding blanket in ITER applies pebble bed breeder in tube (BIT) surrounded by multiplier pebble bed. It is assumed to use the same module support mechanism and coolant manifolds and coolant system as the shielding blankets. This work focuses on the verification of the design of the breeding blanket, from the viewpoints which is especially unique to the pebble bed type breeding blanket, such as, tritium breeding performance, tritium inventory and release behavior and thermo-mechanical performance of the ITER breeding blanket. With respect to the neutronics analysis, the detailed analyses of the distribution of the nuclear heating rate and TBR have been performed in 2D model using MCNP to clarify the input data for the tritium inventory and release rate analyses and thermo-mechanical analyses. With respect to the tritium inventory and release behavior analysis, the parametric analyses for selection of purge gas flow rate were carried out from the view point of pressure drop and the tritium inventory/release performance for Li 2 TiO 3 breeder. The analysis result concluded that purge gas flow rate can be set to conventional flow rate setting (88 l/min per module) to 1/10 of that to save the purge gas flow and minimize the size of purge gas pipe. However, it is necessary to note that more tritium is transformed to HTO (chemical form of water) in case of Li 2 TiO 3 compared to other breeder materials. With respect to the thermo-mechanical analyses of the pebble bed blanket structure, the analyses have been performed by ABAQUS with 2D model derived from one of eight facets of a blanket module, based on the reference design. Analyses were performed to identify the temperature distribution incorporating the pebble bed mechanical simulation and influence of mechanical behavior to the thermal behavior. The result showed that the maximum temperature in the breeding material was 617degC in the first row of breeding rods and the minimum temperature was 328

  5. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  6. Thermo-cured glass ionomer cements in restorative dentistry.

    Science.gov (United States)

    Gorseta, Kristina; Glavina, Domagoj

    2017-01-01

    Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  7. Dynamic thermo-hydraulic model of district cooling networks

    International Nuclear Information System (INIS)

    Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd

    2016-01-01

    Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.

  8. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    International Nuclear Information System (INIS)

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-01-01

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  9. High-coercive garnet films for thermo-magnetic recording

    International Nuclear Information System (INIS)

    Berzhansky, V N; Danishevskaya, Y V; Nedviga, A S; Milyukova, H T

    2016-01-01

    The possibility of using high-coercive of garnet films for thermo-magnetic recording is related with the presence of the metastable domain structure, which arises due to a significant mismatch of the lattice parameters of the film and the substrate. In the work the connection between facet crystal structure of elastically strained ferrite garnets films and the domain structure in them is established by methods of phase contrast and polarization microscopy. (paper)

  10. Thermo-Mechanical Fatigue Crack Growth of RR1000

    OpenAIRE

    Christopher John Pretty; Mark Thomas Whitaker; Steve John Williams

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechan...

  11. The thermo-electric nature of the Debye temperature

    Directory of Open Access Journals (Sweden)

    Mithun Bhowmick

    2018-05-01

    Full Text Available The Debye temperature is typically associated with the heat capacity of a solid and the cut-off of the possible lattice vibrations, but not necessarily to the electric conductivity of the material. By investigating III-V and II-VI compound semiconductors, we reveal that the Debye temperature represents a thermo-electric material parameter, connecting the thermal and electronic properties of a solid via a distinct power law.

  12. Thermo-ecological optimization of a solar collector

    International Nuclear Information System (INIS)

    Szargut, J.; Stanek, W.

    2007-01-01

    The depletion of non-renewable natural exergy resources (the thermo-ecological cost) has been accepted as the objective function for thermo-ecological optimization. Its general formulation has been cited. A detailed form of the objective function has been formulated for a solar collector producing hot water for household needs. The following design parameters have been accepted as the decision variables: the collector area per unit of the heat demand, the diameter of collector pipes, the distance of the pipe axes in the collector plate. The design parameters of the internal installation (the pipes, the hot water receiver) have not been taken into account, because they are very individual. The accumulation ability of hot water comprising one day has been assumed. The objective function contains the following components: the thermo-ecological cost of copper plate, copper pipes, glass plate, steel box, thermal insulation, heat transfer liquid, electricity for driving the pump of liquid, fuel for the peak boiler. The duration curves of the flux of solar radiation and absorbed heat have been elaborated according to meteorological data and used in the calculations. The objective function for economic optimization may have a similar form, only the cost values would be different

  13. Fundamental topics for thermo-elastic stress analyses

    International Nuclear Information System (INIS)

    Biermann, M.

    1989-01-01

    This paper delivers a consistent collection of theoretical fundamentals needed to perform rather sound experimental stress analyses on thermo-elastic materials. An exposition of important concepts of symmetry and so-called peer groups, yielding the very base for a rational description of materials, goes ahead and is followed by an introduction to the constitutive theory of simple materials. Neat distinction is made between stress contributions determined by deformational and thermal impressions, on the one part, and stress constraints not accessible to strain gauging, on the other part. The mathematical formalism required for establishing constitutive equations is coherently developed from scratch and aided, albeit not subrogated, by intuition. The main intention goes to turning some of the recent advances in the nonlinear field theories of thermomechanics to practical account. A full success therein, obviously, results under the restriction to thermo-elasticity. In adverting to more particular subjects, the elementary static effects of nonlinear isotropic elasticity are pointed out. Due allowance is made for thermal effects likely to occur in heat conducting materials also beyond the isothermal or isentropic limit cases. Linearization of the constitutive equations for anisotropic thermo-elastic materials is then shown to entail the formulas of the classical theory. (orig./MM) [de

  14. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 2. Result report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Tanaka, Yumiko

    2003-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code. (1) We have developed coupling analysis system to manage coupling analysis and to control coupling process automatically for THAMES (thermo-hydro-mechanical analysis code), Dtransu (mass transport analysis code) and phreeqe60 (geochemical analysis code). (2) Some supporting module, which includes transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), was prepared as a functional expansion. And in order to treat multi-chemical elements, we have codified mass transport analysis code. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqe60 and hydraulic conductivity module were installed in the COUPLYS, sensitivity analysis was carried out to check basic operation. (4) In order to confirm the applicability of the developed THMC analysis code, we have carried out case analysis on 1-dimensional and 3-dimensional model which including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  15. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    Science.gov (United States)

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade, E-mail: rezanejad@pnu.ac.ir; Hooshyar, Zari; Farsi, Maryam; Mobini, Akram; Sang, Golnaz

    2017-03-01

    Nanogels (NGs) are three-dimensional water soluble cross-linked hydrogel materials in the nanoscale size range with a high loading capacity for guest molecules and act as drug carrier systems. In the present work, a new type of thermo/pH sensitive NG comprising salep modified graphene oxide (SMGO) with branched N-isopropylacrylamide (NIPAM) and acrylic acid (AA) was prepared. The SMGO/P(NIPAM-co-AA) NGs exhibited nanoporous structure and spherical particles with diameters about 82 nm as characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The samples were also characterized by Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA) to further confirm about the formation of NGs. Doxorubicin (DOX) loaded SMGO/P(NIPAM-co-AA) NGs showed thermo/pH dependent releasing behavior: slow drug release at neutral pH and lower temperature but increased significantly in acidic pH and higher temperature, without any burst release. In addition, the NGs exhibited no effect on the cell viability in the tested concentration range up to 410 μg/mL and drug release systems enhanced toxicity to HeLa cells when compared to the equivalent dose of the free drug. Overall, our results put forth NGs as potential candidates in the development of a new nanocarrier for anti-cancer drug delivery. - Highlights: • A novel thermo/pH sensitive nanogels (NGs) was successfully synthesized. • NGs showed high loading capacity for DOX drug and slow drug release at neutral pH. • NGs exhibited no effect on the cell viability in the tested concentration range.

  17. Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release

    International Nuclear Information System (INIS)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari; Farsi, Maryam; Mobini, Akram; Sang, Golnaz

    2017-01-01

    Nanogels (NGs) are three-dimensional water soluble cross-linked hydrogel materials in the nanoscale size range with a high loading capacity for guest molecules and act as drug carrier systems. In the present work, a new type of thermo/pH sensitive NG comprising salep modified graphene oxide (SMGO) with branched N-isopropylacrylamide (NIPAM) and acrylic acid (AA) was prepared. The SMGO/P(NIPAM-co-AA) NGs exhibited nanoporous structure and spherical particles with diameters about 82 nm as characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The samples were also characterized by Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA) to further confirm about the formation of NGs. Doxorubicin (DOX) loaded SMGO/P(NIPAM-co-AA) NGs showed thermo/pH dependent releasing behavior: slow drug release at neutral pH and lower temperature but increased significantly in acidic pH and higher temperature, without any burst release. In addition, the NGs exhibited no effect on the cell viability in the tested concentration range up to 410 μg/mL and drug release systems enhanced toxicity to HeLa cells when compared to the equivalent dose of the free drug. Overall, our results put forth NGs as potential candidates in the development of a new nanocarrier for anti-cancer drug delivery. - Highlights: • A novel thermo/pH sensitive nanogels (NGs) was successfully synthesized. • NGs showed high loading capacity for DOX drug and slow drug release at neutral pH. • NGs exhibited no effect on the cell viability in the tested concentration range.

  18. Global well-posedness and asymptotic behavior of the solutions to non-classical thermo(visco)elastic models

    CERN Document Server

    Qin, Yuming

    2016-01-01

    This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.

  19. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  20. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  1. THERMOS, Space-Dependent Thermal Flux in 1-D Slab or Cylinder

    International Nuclear Information System (INIS)

    Honeck, Henry C.

    2001-01-01

    1 - Nature of physical problem solved: Computes the scalar thermal neutron spectrum as function of position in a one-dimensional slab (THERMOS-1) or cylindrical cell (THERMOS-2). Isotropic neutron scattering in the laboratory system is assumed. The slowing down source is computed from elastic scattering of the neutrons in a 1/E epithermal flux. Either a reflecting or vacuum boundary can be chosen. 2 - Method of solution: The velocity and space variables are replaced by discrete values. Scattering and collision probability matrices are computed and the neutron balance equation is solved by iterative techniques. A combination of a Gauss iteration, renormalization and extrapolation is used to accelerate convergence. 3 - Restrictions on the complexity of the problem: Maximum 30 velocity groups, 20 space points, 5 mixtures (assigned arbitrarily to the space points) composed of maximum 10 isotopes. An additional 10 isotopes can be specified for activation calculations and cross section averaging. The Library has received the 7090 version of this programme through the CETIS programmotheque. The 7040 version was written by the Universite libre de Bruxelles. ALGOL version was offered by Delft (Reactor Instituut Delft, Netherlands). A version for ICL computer was received from Central Research Institute for Physics of the Hungarian Academy of Sciences Budapest, Hungary

  2. Thermo-hydrodynamical modelling of a flooded deep mine reservoir - Case of the Lorraine Coal Basin

    International Nuclear Information System (INIS)

    Reichart, Guillaume

    2015-01-01

    Since 2006, cessation of dewatering in Lorraine Coal Basin (France) led to the flooding of abandoned mines, resulting in a new hydrodynamic balance in the area. Recent researches concerning geothermal exploitation of flooded reservoirs raised new questions, which we propose to answer. Our work aimed to understand the thermos-hydrodynamic behaviour of mine water in a flooding or flooded system. Firstly, we synthesized the geographical, geological and hydrogeological contexts of the Lorraine Coal Basin, and we chose a specific area for our studies. Secondly, temperature and electric conductivity log profiles were measured in old pits of the Lorraine Coal Basin, giving a better understanding of the water behaviour at a deep mine shaft scale. We were able to build a thermos-hydrodynamic model and simulate water behaviour at this scale. Flow regime stability is also studied. Thirdly, a hydrodynamic spatialized meshed model was realized to study the hydrodynamic behaviour of a mine reservoir as a whole. Observed water-table rise was correctly reproduced: moreover, the model can be used in a predictive way after the flooding. Several tools were tested, improved or developed to ease the study of flooded reservoirs, as three-dimensional up-scaling of hydraulic conductivities and a coupled spatialized meshed model with a pipe network. (author) [fr

  3. THERMLIB, Generator and Edit of Program THERMOS-OTA Library. THERLIB, Library Generated for THERMOS from FACEL Library

    International Nuclear Information System (INIS)

    Rastas, A.

    1985-01-01

    1 - Description of problem or function: THERMLIB is a code that generates, revises and expands the input data library to the lattice cell code THERMOS-OTA. It can be used to: - create an entirely new library; - modify the data of library materials, remove materials, add materials; - list the library. 2 - Restrictions on the complexity of the problem: Max. of 30 materials may be modified or removed. Max. of 30 new materials may be created. Max. of 50 velocity groups

  4. Thermo-mechanical behavior of power electronic packaging assemblies: From characterization to predictive simulation of lifetimes

    Science.gov (United States)

    Dalverny, O.; Alexis, J.

    2018-02-01

    This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.

  5. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    International Nuclear Information System (INIS)

    Mata, Pablo; Lew, Adrian J.

    2014-01-01

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples

  6. On the Optimal Thermal Management of Hybrid-Electric Vehicles with Heat Recovery Systems Sur le thermo-management optimal d’un véhicule électrique hybride avec un système de récupération de chaleur

    Directory of Open Access Journals (Sweden)

    Merz F.

    2012-09-01

    Full Text Available A general framework to combine optimal energy management (powertrain supervisory control and thermal management in Hybrid Electric Vehicles (HEV is presented. A HEV system with engine exhaust aftertreatment and exhaust heat recovery system is simulated under various scenarios, including warm and cold start. Optimal strategies are derived from Pontryagin Minimum Principle (PMP. The concept of fuel equivalent of thermal energy variations – similar to the equivalence factors for battery energy of standard Equivalent Consumption Minimization Strategy (ECMS – is introduced. The PMP-based strategies are compared with a heuristic, rule-based strategy. The benefits in fuel economy and reduction of pollutant emissions that are obtained for several scenarios are very promising. Une approche généralisée pour combiner la gestion de l’énergie (supervision du groupe motopropulseur et le thermo-management dans les véhicules hybrides électriques est proposée. Un système hybride incluant le post-traitement des polluants et un système de récupération de la chaleur à l’échappement du moteur thermique est simulé pour plusieurs scénarii, y compris le cas de départ à froid. Des stratégies de gestion de l’énergie optimales sont dérivées à partir du Principe de Minimum de Pontriaguine (PMP. Inspirée par les facteurs d’équivalence pour la consommation électrique que l’on retrouve dans la stratégie ECMS, la notion d’équivalent en carburant des flux d’énergie thermique est introduite. Les stratégies dérivées du PMP sont comparées avec une stratégie heuristique basée sur des règles. Les bénéfices en termes d’économies de carburant et réduction des émissions polluantes que l’on trouve pour différents scénarii sont encourageantes.

  7. Integration of thermo-vapor compressor with multiple-effect evaporator

    International Nuclear Information System (INIS)

    Sharan, Prashant; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in

  8. Thermo-responsive mesoporous silica/lipid bilayer hybrid nanoparticles for doxorubicin on-demand delivery and reduced premature release.

    Science.gov (United States)

    Zhang, Qing; Chen, Xuanxuan; Shi, Huihui; Dong, Gaoqiu; Zhou, Meiling; Wang, Tianji; Xin, Hongliang

    2017-12-01

    Hybrid nanocarriers based on mesoporous silica nanoparticles (MSNs) and supported lipid bilayer (SLB) have been studied as drug delivery system. It still remains challenges to develop these nanocarriers (SLB-MSNs) with on-demand drug release profile for chemotherapy. Here, we reported the biocompatible SLB-MSNs with high drug loading, which could release doxorubicin (DOX) in response to hyperthermia and reduce premature release. After synthesis of MSNs via a sol-gel procedure, the thermo-responsive SLB was deposited on the MSNs by sonication to completely seal the mesopores. The obtained SLB-MSNs consisted of 50 nm-sized MSN cores and 6.3 nm-thick SLB shells. Due to the big surface and pore volume of MSNs, the high drug loading content (7.30±0.02%) and encapsulation efficiency (91.16±0.28%) were achieved. The SLB blocking the mesopores reduced 50% of premature release and achieved on-demand release in a thermo-responsive manner. Moreover, SLB-MSNs showed good hemocompatibility at any tested concentration (25-700μg/mL), while bare MSNs caused 100% of hemolysis at concentration larger than 325μg/mL. In addition, in vitro U251 cell uptake experiment demonstrated that compared with uncapped MSNs, SLB-MSNs could prevent untargeted cellular uptake of DOX owing to reduced premature release and steric hindrance of PEG, which would be beneficial to minimize toxicity for healthy tissues. These results indicated that SLB-MSNs with thermo-responsive release capacity possessed great potential in future synergistic thermo-chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    Science.gov (United States)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  10. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    International Nuclear Information System (INIS)

    Kobayashi, Michiyuki; Murata, Hiroyuki; Sawada, Kenichi; Inasaka, Fujio; Aya, Izuo; Shiozaki, Koki

    1999-01-01

    By inputting the experimental data, information and others on thermo-hydraulic characteristics of integrated ship propulsion reactor accumulated hitherto by the Ship Research Institute and some recent cooperation results into the nuclear ship engineering simulation system, it was conducted not only to contribute an improvement study on next ship reactor by executing general analysis and evaluation on motion characteristics under ship body motion conditions, safety at accidents, and others of the integrated ship reactor but also to investigate and prepare some measures to apply fundamental experiment results based on obtained here information to safety countermeasure of the nuclear ships. In 1997 fiscal year, on safety of the integrated ship propulsion reactor loading nuclear ship, by adding experimental data on unstable flow analysis and information on all around of the analysis to general data base fundamental program, development to intellectual data base program was intended; on effect of pulsation flow on thermo-hydraulic characteristics of ship propulsion reactor; after pulsation flow visualization experiment, experimental equipment was reconstructed into heat transfer type to conduct numerical analysis of pulsation flow by confirming validity of numerical analysis code under comparison with the visualization experiment results; and on thermo-hydraulic behavior in storage container at accident of active safety type ship propulsion reactor; a flashing vibration test using new apparatus finished on its higher pressurization at last fiscal year to examine effects of each parameter such as radius and length of exhausting nozzle and pool water temperature. (G.K.)

  11. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships

    International Nuclear Information System (INIS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2016-01-01

    Dislocation mobility in a solid solution was studied using atomistic simulations of an Mg/Al system. The critical resolved shear stress (CRSS) for the dislocations on the basal plane was calculated at temperatures from 0 K to 500 K with solute concentrations from 0 to 7 at%, and with four different strain rates. Solute hardening of the CRSS is decomposed into two contributions: one scales with c 2/3 , where c is the solute concentration, and the other scales with c 1 . The former was consistent with the Labusch model for local solute obstacles, and the latter was related to the athermal plateau stress due to the long range solute effect. A thermo-mechanical model was then used to analyze the temperature and strain rate dependences of the CRSS, and it yielded self-consistent and realistic results. The scaling laws were confirmed and the thermo-mechanical model was successfully parameterized using experimental measurements of the CRSS for Mg/Al alloys under quasi-static conditions. The predicted strain rate sensitivity from the experimental measurements of the CRSS is in reasonable agreement with separate mechanical tests. The concentration scaling and the thermo-mechanical relationships provide a potential tool to analytically relate the structural and thermodynamic parameters on the microscopic level with the macroscopic mechanical properties arising from dislocation mediated deformation.

  12. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  13. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    Science.gov (United States)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  14. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  15. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  16. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  17. Power Generator with Thermo-Differential Modules

    Science.gov (United States)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  18. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  19. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures.

    Science.gov (United States)

    Zimoch, Jakub; Padial, Joan Simó; Klar, Agnes S; Vallmajo-Martin, Queralt; Meuli, Martin; Biedermann, Thomas; Wilson, Christopher J; Rowan, Alan; Reichmann, Ernst

    2018-04-01

    Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst. It can be tailored to meet various demands of cells by modulating its stiffness and through the decoration of the polymer with short GRGDS peptides using copper free click chemistry. These peptides make the hydrogels biocompatible by mimicking the binding sites of certain integrins. This study focuses on the optimization of the PIC polymer properties for efficient cell, tissue and organ development. Screening for the optimal stiffness of the hydrogel and the ideal concentration of the GRGDS ligand conjugated with the polymer, enabled cell proliferation, migration and differentiation of various primary cell types of human origin. We demonstrate that fibroblasts, endothelial cells, adipose-derived stem cells and melanoma cells, do survive, thrive and differentiate in optimized PIC hydrogels. Importantly, these hydrogels support the spontaneous formation of complex structures like blood capillaries in vitro. Additionally, we utilized the thermo-responsive properties of the hydrogels for a rapid and gentle recovery of viable cells. Finally, we show that organotypic structures of human origin grown in PIC hydrogels can be successfully transplanted subcutaneously onto immune-compromised rats, on which they survive and integrate into the surrounding tissue. Molecular and mechanical interactions with the surrounding environment are essential for cell functions. Although 2D culture systems greatly contributed to our understanding of complex biological phenomena, they cannot substitute for crucial

  20. The Thermos program for nuclear reactors specialized in district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1976-01-01

    Many studies have been made in France on the use of nuclear heat for district heating. After a brief account of the problems raised by the use of thermal waste from big nuclear power stations, the quantitative and qualitative needs of heating networks are analyzed and the Thermos project described. This is a very robust reactor of the pool type, with an output of 100MW, supplying low-pressure water at 100 deg C. The advantages from the aspects of safety and economy are described, and the present state of the project and its possible developments summarized [fr

  1. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  2. Prediction of thermo-physical properties of liquid formulated products

    DEFF Research Database (Denmark)

    Mattei, Michele; Conte, Elisa; Kontogeorgis, Georgios

    2013-01-01

    The objective of this chapter is to give an overview of the models, methods and tools that may be used for the estimation of liquid formulated products. First a classification of the products is given and the thermo-physical properties needed to represent their functions are listed. For each...... property, a collection of the available models are presented according to the property type and the model type. It should be noted, however, that the property models considered or highlighted in this chapter are only examples and are not necessarily the best and most accurate for the corresponding property....

  3. Role of redox homeostasis in thermo-tolerance under a climate change scenario

    Science.gov (United States)

    de Pinto, Maria Concetta; Locato, Vittoria; Paradiso, Annalisa; De Gara, Laura

    2015-01-01

    Background Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. Scope This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. Conclusions Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them. PMID:26034009

  4. Condition monitoring and thermo economic optimization of operation for a hybrid plant using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Mohsen; Fast, Magnus (Lund University, Dept. of Energy Sciences, Lund (Sweden))

    2008-05-15

    The project aim is to model the hybrid plant at Vaesthamnsverket in Helsingborg using artificial neural networks (ANN) and integrating the ANN models, for online condition monitoring and thermo economic optimization, on site. The definition of a hybrid plant is that it uses more than one fuel, in this case a natural gas fuelled gas turbine with heat recovery steam generator (HRSG) and a biomass fuelled steam boiler with steam turbine. The thermo economic optimization takes into account current electricity prices, taxes, fuel prices etc. and calculates the current production cost along with the 'predicted' production cost. The tool also has a built in feature of predicting when a compressor wash is economically beneficial. The user interface is developed together with co-workers at Vaesthamnsverket to ensure its usefulness. The user interface includes functions for warnings and alarms when possible deviations in operation occur and also includes a feature for plotting parameter trends (both measured and predicted values) in selected time intervals. The target group is the plant owners and the original equipment manufacturers (OEM). The power plant owners want to acquire a product for condition monitoring and thermo economic optimization of e.g. maintenance. The OEMs main interest lies in investigating the possibilities of delivering ANN models, for condition monitoring, along with their new gas turbines. The project has been carried out at Lund University, Department of Energy Sciences, with support from Vaesthamnsverket AB and Siemens Industrial Turbomachinery AB. Vaesthamnsverket has contributed with operational data from the plant as well as support in plant related questions. They have also been involved in the implementation of the ANN models in their computer system and the development of the user interface. Siemens have contributed with expert knowledge about their SGT800 gas turbine. The implementation of the ANN models, and the accompanying user

  5. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  6. Thermal analysis of thermo-gravimetric measurements of spent nuclear fuel oxidation rates

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1997-01-01

    A detailed thermal analysis was completed of the sample temperatures in the Thermo-Gravimetric Analysis (TGA) system used to measure irradiated N Reactor fuel oxidation rates. Sample temperatures during the oxidation process did not show the increase which was postulated as a result of the exothermic reactions. The analysis shows the axial conduction of heat in the sample holder effectively removes the added heat and only a very small, i.e., <10 C, increase in temperature is calculated. A room temperature evaporation test with water showed the sample thermocouple sensitivity to be more than adequate to account for a temperature change of approximately 5 C. Therefore, measured temperatures in the TGA are within approximately 10 C of the actual sample temperatures and no adjustments to reported data to account for the heat input from the oxidation process are necessary

  7. Photopyroelectric Techniques for thermo-optical characterization of gold nano-particles

    International Nuclear Information System (INIS)

    Chávez-Sandoval, B E; Balderas-López, J A; Padilla-Bernal, G; Moreno-Rivera, M A; Franco-Hernández, M O; Martínez-Jiménez, A; García-Franco, F

    2015-01-01

    Since the first methodology, proposed by Turkevich, to produce gold nanoparticles (AuNPs), improvements have been made as to allow better controllability in their size and shape. These two parameters play important role for application of gold nanoparticles since they determine their optical and thermal properties. Two photopyroelectric techniques for the measurement of the thermal diffusivity and the optical absorption coefficient for nano-particles are introduced. These thermo-physical properties were measured for the colloidal systems at different nano-particle's sizes and, for optical properties, at three different wavelengths (405 nm, 488 nm and 532 nm). No significant difference, on thermal properties, was found in the range of nano-particles' sizes studied in this work; in opposition optical properties shown more sensitive to this parameter

  8. Up to date cross sections library for Thermos and Record codes

    International Nuclear Information System (INIS)

    Hernandez Lopez, H.

    1993-01-01

    Reactor cell analysis is the first step in determining reactor core behavior and is required in the reload licensing process. For best results, reactor cell analysis should be carried out with libraries of up to date, accurate cross sections produced with well described methods from standard evaluated nuclear data. At first step in this work were determined the library structure for RECORD and THERMOS and were prepared the cross sections libraries using the NJOY nuclear data processing system and the ENDF-B/IV evaluated nuclear data. These libraries were used by the codes and some samples were perform, the result show some differences against the results obtained using the previous libraries. By other hand the libraries contain various adjustments to correct for deficiencies in nuclear data or analytical methods. These adjustments doesn't have any documentation, although some of them were identified in this work. (Author). 25 refs, 78 figs, 55 tabs

  9. Enhanced thermo-spin effects in iron-oxide/metal multilayers

    Science.gov (United States)

    Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Uchida, K.; Saitoh, E.; Ibarra, M. R.

    2018-06-01

    Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.

  10. Thermo-mechanical design of a CW sweep plate emittance scanner

    International Nuclear Information System (INIS)

    Rathke, J.; Peacock, M.; Sredniawski, J.

    1996-01-01

    A sweep plate emittance scanner for use with high power, continuous wave (CW) beams has been designed, fabricated and commissioned at Northrop Grumman. The design is capable of scanning beams of up to 20 kW beam power with a spot diameter as small as 2 cm. The scanner pod is mounted on a ball screw driven linear bearing table that is driven through the beam by a stepper motor at velocities up to 30 cm/sec. This paper presents the thermo-mechanical analysis of the pod moving through a gaussian beam and the details of the mechanical design of the pod and motion system. Analyses to determine scanner cooling schemes and structural materials are presented. (author)

  11. Effects of physical properties on thermo-fluids cavitating flows

    Science.gov (United States)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  12. Operating experience with the Harwell thermo-mechanical generators

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1980-06-01

    The Stirling-cycle thermo-mechanical generator (TMG) provides small amounts of electrical power continuously over long periods, while requiring much less fuel than other power sources running from hydrocarbon fuel or radio-isotopes. Two of these 25-watt generators, fuelled by propane, have been used to power the UK National Buoy on two successive missions. A total of more than three years experience at sea has now been accumulated. In addition, a 60-watt version has provided the power for a major lighthouse for more than a year. An early development version of the Thermo-mechanical Generator, adapted to run from the heat of a radio-isotope source, was loaded with strontium 90 titanate in October 1974 and has run continuously in the laboratory ever since. The improvements and changes found necessary in the course of 90,000 generator-hours of running time are described, and the improvements in operational performance and reliability which have resulted are outlined. (author)

  13. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  14. Development of thermo-plastic heating and compaction facility

    International Nuclear Information System (INIS)

    Ko, Dae Hak; Lim, Suk Nam

    1998-01-01

    Low- and intermediate-level radioactive wastes consist of spent resin, spent filter, concentrated waste and dry active waste(DAW) and they are solidified or packaged into drums or high integrated containers(HICs). DAWs occupy 50 percent of all low- and intermediate-level radioactive wastes generated from nuclear power plants in Korea. Incinerable wastes in the DAWs are about 60 percent. Therefore, it is very important for us to reduce the volume of incinerable wastes in DAWs. Experience of supercompaction turned out that thermo-plastic wastes have a swelling effect after supercompaction process due to their repulsive power. And the thermo-plastic heating and compaction facility has been developed by KEPCO. In conclusion, heating and compaction facility can reduce the volume of DAWs as well as upgrade the quality of treated wastes, because the swelling effect by repulsive power after compaction is removed, final wastes form the shape of block and they have no free-standing water in the wastes. Plan for practical use is that this facility will be installed in other nuclear power plants in Korea in 1999. (Cho, G. S.). 1 tab., 2 figs

  15. Thermo-Fluid Verification of Fuel Column with Crossflow Gap

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam Il; Kim, Min Hwan; Noh, Jae Man

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing thermal-hydraulic code to design a safe and effective VHTR. Core reliable Optimization and Network thermo-fluid Analysis (CORONA) is a code that solves the fluid region as 1-D and the solid domain as 3-D. The postulated event is modeled to secure safety during design process. The reactor core of VHTR is piled with multi-fuel block layers. The helium gas goes through coolant channel holes after distributed from upper plenum. The fuel blocks are irradiated during operation and there might be cross gaps between blocks. These cross gaps change the passage of coolant channels and could affect the temperature of fuel compact. Therefore, two types of single fuel assembly (i. e., standard and Reserved Shutdown Control (RSC) hole fuel assemblies) were investigated in this study. The CORONA, thermo-fluid analysis code, has been developing to compute the reactor core of VHTR. Crossflow model was applied to predict temperature and flow distribution between fuel blocks in this study. The calculated results are compared with the data of commercial software, CFX. The temperature variations along the axial direction well agree for both standard / RSC fuel assemblies. The flow redistribution due to crossflow matches well. The hot spot temperature and locations might differ depending on the cross gap size. This research will be done in detail for further study

  16. Dynamic of an intra-continental orogenic prism: thermo-chronologic (apatite fission tracks) and tectonic evolution of the axial zone and the piedmont of the west-central Pyrenees

    International Nuclear Information System (INIS)

    Meresse, F.

    2013-02-01

    This work illustrates the application of thermo chronology to the study of the following geologic issue: the tectonic evolution of the Pyrenean oncologic prism. Thermo-chronology gives information on the vertical movements at the scale of geological eras. Thermo-chronology is based on the following principle: the decay of a nucleus gives birth to a daughter nucleus. Above a specific temperature named closure temperature, the daughter element can diffuse outside the system while below the closure temperature, diffusion is not possible. Consequently thermo-chronology can be considered to date the moment when a mineral goes below a a specific closure temperature. Minerals have different closure temperatures and so by using a suite of thermo-chronometers on a single sample, its cooling path through the crust can be reconstructed. This work focuses on apatite fission track (AFT)analysis which is a low temperature thermo-chronometer. In apatites the temperature range between 60 and 120 Celsius degrees corresponds to the partial annealing zone. The spontaneous fission of one U 238 nucleus entails the formation of one fission track. The determination of the initial quantity of U 238 is based on the natural steady ratio U 238 /U 235 which equals 137.88. The initial quantity of U 235 is determined through the neutron irradiation of the sample. The knowledge of the initial quantity of U 238 and the number of tracks in the sample allows the dating of the sample. In this work we combine AFT thermo- chronology with a detailed structural analysis to describe vertical movements related to the thrusting system evolution, and to determine the influence of the latter on the sedimentation/burial/exhumation cycle of the syn-orogenic deposits of the southern fore-land basin

  17. Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits

    NARCIS (Netherlands)

    Elshaari, A.W.A.; Esmaeil Zadeh, I.; Jöns, K.D.; Zwiller, Val

    2016-01-01

    In this paper, we characterize the Thermo-optic properties of silicon nitride ring resonators between 18 and 300 K. The Thermo-optic coefficients of the silicon nitride core and the oxide cladding are measured by studying the temperature dependence of the resonance wavelengths. The resonant modes

  18. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices.

    Science.gov (United States)

    Liu, Yueqin; Zhang, Genli; Sun, Huan; Sun, Xiangying; Jiang, Nisi; Rasool, Aamir; Lin, Zhanglin; Li, Chun

    2014-10-01

    In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  20. Study of the structural integrity of thermo-wells. Application to Class I components

    International Nuclear Information System (INIS)

    Gavilan Moreno, C. J.

    2010-01-01

    This paper provides a methodology to determine a thermo-well failure. The practical application will be made on a thermo-well in Cofrentes Nuclear Power Plant. This will be designed by the existence of a spare one and it will be determined the eigenfrequencies, the vortex emission frequencies in the flow, the susceptibility to fatigue, the loads, etc.

  1. Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI

    Directory of Open Access Journals (Sweden)

    Ameer Khusro

    2016-07-01

    Conclusions: The cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.

  2. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    , and differential thermo-mechanical behavior at each layer. The combination of such factors can have a critical effect on the final shape and microstructure, and on the mechanical integrity. Thermo-mechanical properties and sintering mechanisms of important SOFC materials (CGO, YSZ, ScYSZ) were systematically...

  3. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    Science.gov (United States)

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading

    International Nuclear Information System (INIS)

    Kim, Young Bok; Min, Dae Hong; Lee, Deok Bo; Choi, Nak Sam

    2001-01-01

    An investigation on nondestructive evaluation of thermal stress-reduced damage in the composite laminates (3mm in thickness and [+45 6 /-45 6 ] S lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classify the thermo-AE as three different types to estimate the damage processes of the composites

  5. Thermo-emf of cermet films based on rare earth borides

    International Nuclear Information System (INIS)

    Islamgaliev, R.K.; Zyrin, A.V.; Shulishova, O.I.; Shcherbak, I.A

    1987-01-01

    Thermo-emf and electric conductivity of granulated films which contain a solid solution of europium and praseodymium borides Eu 0.5 Pr 0.5 B 6 as a conducting phase, and glass-crystal binder on the base of alummomagnesial fluosilicates as a dielectric phase are studied within the temperature range of 100-1100 K. Thermo-emf of films has a negative sign within the temperature range of 100-500 K and does not exceed 5 μkV/K according to the absolute value which is close to the value of the conducting phase thermo-emf. A negative sign and a small value of thermo-emf are indicative of the charge transfer in granulated films by electrons. Contribution of each of the components into the general thermo-emf is different at high temperatures in different temperature ranges and depends on the individual physico-chemical properties of the used materials

  6. Study of heat conductivity, electric conductivity and thermo-emf of BiSrCaCu2Ox and Bi1.82Sr1.73Ca1.73Ca1.25Cu2.2Ox systems

    International Nuclear Information System (INIS)

    Zhukova, T.B.; Parfen'eva, L.S.; Popov, V.V.; Melekh, B.T.; Smirnov, I.A.; Khalmedov, Kh.M.

    1991-01-01

    Phase compositions are determined and temperature dependences are measured of x-heat conductivity, ρ-electric resistance and α-thermo-emf of polycrystal, monophase, highly textured HTSC samples of BiSrCaCu 2 O x and Bi 1.82 Sr 1.73 Ca 1.25 Cu 2.2 O x produced through method of direct induction melting in the air in a cold container. Sample 'aging' after storage in the air and vacuum, leading to decrease in the number of foring phases and increase in the basic phase content as well as to change of x, ρ and α coefficients is identified

  7. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    Science.gov (United States)

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of

  8. Thermo-economic analysis of proton exchange membrane fuel cell fuelled with methanol and methane

    International Nuclear Information System (INIS)

    Suleiman, B.; Abdulkareem, A.S.; Musa, U.; Mohammed, I.A.; Olutoye, M.A.; Abdullahi, Y.I.

    2016-01-01

    Highlights: • Modified proton exchange membrane fuel cell was reported. • Thermolib software was used for the simulation of PEM fuel cell configurations. • Optimal operating parameters at 50 kW output of each process were determined. • Thermo-economic analysis is the most efficient way of process selection. • Methane system configuration has been identified as the best preferred PEM fuel cell. - Abstract: Exergy and economic analysis is often used to find and identify the most efficient process configuration for proton exchange membrane fuel cell from the thermo-economic point of view. This work gives an explicit account of the synergetic effect of exergetic and economic analysis of proton exchange membrane fuel cell (PEMFC) using methanol and methane as fuel sources. This was carried out through computer simulation using Thermolib simulation toolbox. Data generated from the simulated model were subsequently used for the thermodynamic and economic analysis. Analysis of energy requirement for the two selected processes revealed that the methane fuelled system requires the lower amount of energy (4.578 kJ/s) in comparison to the methanol fuelled configuration which requires 180.719 J/s. Energy analysis of both configurations showed that the principle of energy conservation was satisfied while the result of the exergy analysis showed high exergetic efficiency around major equipment (heat exchangers, compressors and pumps) of methane fuelled configuration. Higher irreversibility rate were observed around the burner, stack, and steam reformer. These trends of exergetic efficiency and irreversibility rate were observed around equipment in the methanol fuelled system but with lower performance when compared with the methane fuelled process configuration. On the basis of overall exergetic efficiency and lost work, the methanol system was more efficient with lower irreversibility rate of 547.27 kJ/s and exergetic efficiency of 34.44% in comparison with the methane

  9. REFLA-1D/MODE 1: a computer program for reflood thermo-hydrodynamic analysis during PWR-LOCA user's manual

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sugimoto, Jun; Okubo, Tsutomu

    1981-01-01

    This manual describes the REFLA-1D/MODE 1 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET phase A. This manual describes the REFLA-1D/MODE 1 models and provides application information required to utilize REFLA-1D/MODE 1. (author)

  10. On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media

    OpenAIRE

    Rozanova-Pierrat, Anna

    2009-01-01

    We consider the derivation of the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation from the nonlinear isentropic Navier-Stokes and Euler systems. The KZK equation is a mathematical model that describes the nonlinear propagation of a finite-amplitude sound pulse in a thermo-viscous medium. The derivation of the KZK equation has to date been based on the paraxial approximation of small perturbations around a given state of the Navier-Stokes system. However, this method does not ...

  11. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  12. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    Mohajerani, M.

    2011-01-01

    compression tests at elevated temperature (80 C): the effects of temperature on the behaviour of Clay-stone and thermal pressurization. A drained heating test under in-situ stress conditions evidenced, probably for first time, a plastic contractant response of the Clay-stone (like normally consolidated clays), a feature not considered in the presently conducted numerical modelling of deep disposal systems. Another new important observed feature is the increase in drained compressibility of the COx Clay-stone with temperature, not observed in clays. The investigation of thermal pressurization (caused by the low Clay-stone permeability and by the significant difference in thermal expansion between water and the solid phase) has been carried out by means of undrained heating tests, after a detailed analysis of the major effects of the measurement system (which should perhaps be also analyzed when performing in-situ measurements). The thermal pressurization coefficient appeared to be quite sensitive to changes in temperature and stress, it decreased between 0.14 and 0.1 MPa/C between 25 and 80 C. It is believed that the different thermo-hydro-mechanical volumetric responses obtained here allow a better interpretation and modelling of the behaviour of the Clay-stone formation around the galleries in areas that are mostly saturated, except close to the galleries (a few decimetres). (author)

  13. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  14. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  15. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  16. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  17. Measurement of water activity from shales through thermo hygrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)

    2004-07-01

    This paper presents a campaign of lab tests to obtain the water activity from shales and its pore fluid originated from offshore and onshore basin. The results of water activity from shales indicate that the values rang from 0.754 to 0.923 and for the pore fluid are between 0.987 and 0.940. The results show that the water activity of interstitial water can be obtained in 6 days and the rock in 10 days using the thermo hygrometer used. The degree of saturation, water content, kind and tenor of expansible and hydratable clay mineral, total and interconnected porosity, salinity of interstitial fluid and the capillary pressure of shale samples affected the results of water activity. (author)

  18. Geometric Optimization of Thermo-electric Coolers Using Simulated Annealing

    International Nuclear Information System (INIS)

    Khanh, D V K; Vasant, P M; Elamvazuthi, I; Dieu, V N

    2015-01-01

    The field of thermo-electric coolers (TECs) has grown drastically in recent years. In an extreme environment as thermal energy and gas drilling operations, TEC is an effective cooling mechanism for instrument. However, limitations such as the relatively low energy conversion efficiency and ability to dissipate only a limited amount of heat flux may seriously damage the lifetime and performance of the instrument. Until now, many researches were conducted to expand the efficiency of TECs. The material parameters are the most significant, but they are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of finding the optimal TECs design is to define a set of design parameters. In this paper, a new method of optimizing the dimension of TECs using simulated annealing (SA), to maximize the rate of refrigeration (ROR) was proposed. Equality constraint and inequality constraint were taken into consideration. This work reveals that SA shows better performance than Cheng's work. (paper)

  19. Contribution of thermo-fluid analyses to the LHC experiments

    CERN Document Server

    Gasser, G

    2003-01-01

    The big amount of electrical and electronic equipment that will be installed in the four LHC experiments will cause important heat dissipation into the detectors’ volumes. This is a major issue for the experimental groups, as temperature stability is often a fundamental requirement for the different sub-detectors to be able to provide a good measurement quality. The thermofluid analyses that are carried out in the ST/CV group are a very efficient tool to understand and predict the thermal behaviour of the detectors. These studies are undertaken according to the needs of the experimental groups; they aim at evaluate the thermal stability for a proposed design, or to compare different technical solutions in order to choose the best one for the final design. The usual approach to carry out these studies is first presented and then, some practical examples of thermo-fluid analyses are presented focusing on the main results in order to illustrate their contribution.

  20. Thermo-mechanical process for treatment of welds

    International Nuclear Information System (INIS)

    Malik, R.K.

    1980-03-01

    Benefits from thermo-mechanical processing (TMP) of austenitic stainless steel weldments, analogous to hot isostatic pressing (HIP) of castings, most likely result from compressive plastic deformation, enhanced diffusion, and/or increased dislocation density. TMP improves ultrasonic inspectability of austenitic stainless steel welds owing to: conversion of cast dendrites into equiaxed austenitic grains, reduction in size and number of stringers and inclusions, and reduction of delta ferrite content. TMP induces structural homogenization and healing of void-type defects and thus contributes to an increase in elongation, impact strength, and fracture toughness as well as a significant reduction in data scatter for these properties. An optimum temperature for TMP or HIP of welds is one which causes negligible grain growth and an acceptable reduction in yield strength, and permits healing of porosity

  1. Using homogenization, sonication and thermo-sonication to inactivate fungi

    Science.gov (United States)

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  2. Thermo-climatic cost of the domestic consumption products

    Energy Technology Data Exchange (ETDEWEB)

    Szargut, Jan; Stanek, Wojciech [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland)

    2010-02-15

    The thermo-climatic cost (TCC) expresses the cumulative emission of CO{sub 2} burdening all the steps of production processes connected with the fabrication of particular consumption products. The TCC of the considered product results from the consumption of semi-finished products and energy carriers. The TCC of hydrocarbon fuels contains three components: the immediate emission of CO{sub 2} resulting from the combustion of carbon, the TCC of delivery and processing and the TCC resulting from import of fuels. The TCC-component connected with import results from the TCC of the domestic products exported in order to gain the financial means for import. The values of the TCC can be used for the minimization of climatic damages by the selection of the production technology or the design and operation parameters of new processes. (author)

  3. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    Science.gov (United States)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  4. Experimental and theoretical studies of buoyant-thermo capillary flow

    International Nuclear Information System (INIS)

    Favre, E.; Blumenfeld, L.; Soubbaramayer

    1996-01-01

    In the AVLIS process, uranium metal is evaporated using a high power electron gun. We have prior discussed the power balance equation in the electron beam evaporation process and pointed out, among the loss terms, the importance of the power loss due to the convective flow in the molten pool driven by buoyancy and thermo capillarity. An empirical formula has been derived from model experiments with cerium, to estimate the latter power loss and that formula can be used practically in engineering calculations. In order to complete the empirical approach, a more fundamental research program of theoretical and experimental studies have been carried out in Cea-France, with the objective of understanding the basic phenomena (heat transport, flow instabilities, turbulence, etc.) occurring in a convective flow in a liquid layer locally heated on its free surface

  5. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah

    2015-09-01

    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  6. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  7. Thermo-hydrogenating treatments in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Guitar, A; Domizzi, G; Luppo, M.I; Vigna, G

    2006-01-01

    The production of components of Ti alloys, specifically Ti-6Al-4V, involves some difficulties in obtaining the final desired microstructure, producing decrease in the material's mechanical properties. In the specific case of materials to be used for surgical implants an equiaxial fine grain microstructure of α phase a with an homogenously precipitated β phase is needed. The modification of certain microstructural features is not possible based on simple thermal treatments. Thermomechanical treatments are effective for transforming the lamellar α phase into equiaxial α, but these methods include major deformations in the (α + β) two-phase field. In order to avoid this stage, thermo-hydrogenating processes were used (THP). The THP involve a treatment of β solubilization before, during or after the hydrogenation, a possible isothermal treatment below the β hydrogenated transus temperature and the final vacuum dehydrogenation. The development of treatments using hydrogen as a temporary alloying element creates a new class of microstructures, which are finer than equiaxial structures and respond well to resistance to traction and fatigue. Since the THP do not include the working of the material to control the microstructure, they are more appropriate for use with shaped components close to the end, like those obtained by powder metallurgy or smelting. Different thermo-hydrogenating treatments in Ti-6Al-4V to modify the microstructure were studied. Final microstructures of α fine phase and β disperse phase were obtained using THP in samples with initial lamellar α phase separated by thin sheets of β phase. The characterization of the initial material and of the transformed material was carried out using optic and scanning electron microscopy (CW)

  8. Siloxane removal and sludge disintegration using thermo-alkaline treatments with air stripping prior to anaerobic sludge digestion

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Fujime, Motochika; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2015-01-01

    Highlights: • Siloxanes hamper the energy-use of anaerobic digestion biogas. • D5 siloxane was considered as target compound in this study. • The treatment removed 80% of D5 in sewage sludge at 55 °C and 135 g-NaOH kg −1 -VTS. • D5 removal and the disintegration of VSS in the sludge were correlated. • At the optimal conditions, the costs of anaerobic digestion were notably diminished. - Abstract: A thermo-alkaline treatment with air stripping was applied before anaerobic sludge digestion for both siloxane removal and sludge disintegration. The treatment was expected to increase the amount of biogas produced and to reduce the amount of siloxane in the gas. Adding sodium hydroxide (NaOH) to the sludge improved the removal of siloxane from the sludge, with approximately 90% of the siloxane removed to the gas phase using a thermo-alkaline treatment. Over 80% of decamethylcyclopentasiloxane (D5) could be removed under the following conditions: 55 °C treatment temperature, 135 g-NaOH kg −1 volatile total solids (VTS), and 0.5 L min −1 air-stripping rate. The disintegration ratio of volatile suspended solids (VSS) in the sludge was correlated with the D5 removal ratio. Because most of the siloxane was adsorbed to, or was contained in the VSS, the siloxane removal ratio increased with VSS disintegration. Finally, the energy consumption and operational costs of this system were evaluated for several scenarios. Thermo-alkaline treatment at the indicated operational conditions had the lowest operating costs for a 400 m 3 day −1 anaerobic sludge digestion system

  9. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.

    Science.gov (United States)

    Kang, Hongki; Lee, Gu-Haeng; Jung, Hyunjun; Lee, Jee Woong; Nam, Yoonkey

    2018-02-27

    Localized heat generation by the thermo-plasmonic effect of metal nanoparticles has great potential in biomedical engineering research. Precise patterning of the nanoparticles using inkjet printing can enable the application of the thermo-plasmonic effect in a well-controlled way (shape and intensity). However, a universally applicable inkjet printing process that allows good control in patterning and assembly of nanoparticles with good biocompatibility is missing. Here we developed inkjet-printing-based biofunctional thermo-plasmonic interfaces that can modulate biological activities. We found that inkjet printing of plasmonic nanoparticles on a polyelectrolyte layer-by-layer substrate coating enables high-quality, biocompatible thermo-plasmonic interfaces across various substrates (rigid/flexible, hydrophobic/hydrophilic) by induced contact line pinning and electrostatically assisted nanoparticle assembly. We experimentally confirmed that the generated heat from the inkjet-printed thermo-plasmonic patterns can be applied in micrometer resolution over a large area. Lastly, we demonstrated that the patterned thermo-plasmonic effect from the inkjet-printed gold nanorods can selectively modulate neuronal network activities. This inkjet printing process therefore can be a universal method for biofunctional thermo-plasmonic interfaces in various bioengineering applications.

  10. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Zandarin, M.T.; Olivella, S.; Gens', A.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  11. Distribution of apparent activation energy counterparts during thermo - And thermo-oxidative degradation of Aronia melanocarpa (black chokeberry).

    Science.gov (United States)

    Janković, Bojan; Marinović-Cincović, Milena; Janković, Marija

    2017-09-01

    Kinetics of degradation for Aronia melanocarpa fresh fruits in argon and air atmospheres were investigated. The investigation was based on probability distributions of apparent activation energy of counterparts (ε a ). Isoconversional analysis results indicated that the degradation process in an inert atmosphere was governed by decomposition reactions of esterified compounds. Also, based on same kinetics approach, it was assumed that in an air atmosphere, the primary compound in degradation pathways could be anthocyanins, which undergo rapid chemical reactions. A new model of reactivity demonstrated that, under inert atmospheres, expectation values for ε a occured at levels of statistical probability. These values corresponded to decomposition processes in which polyphenolic compounds might be involved. ε a values obeyed laws of binomial distribution. It was established that, for thermo-oxidative degradation, Poisson distribution represented a very successful approximation for ε a values where there was additional mechanistic complexity and the binomial distribution was no longer valid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. From chemical mapping to pressure temperature deformation micro-cartography: mineralogical evolution and mass transport in thermo-mechanic disequilibrium systems: application to meta-pelites and confinement nuclear waste materials; De l'imagerie chimique a la micro-cartographie Pression-Temperature-Deformation: evolution mineralogique et transport de matiere dans des systemes en desequilibre thermomecanique. Applications aux metapelites et aux materiaux de stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, V. de

    2006-03-15

    The mineralogical composition of metamorphic rocks or industrial materials evolves when they are submitted to thermomechanical disequilibria, i.e. a spatial or temporal pressure and temperature evolution, or chemical disequilibria as variations in redox conditions, pH... For example, during low temperature metamorphic processes, rocks re-equilibrate only partially, and thus record locally thermodynamic equilibria increasing so the spatial chemical heterogeneities. Understanding the P-T evolution of such systems and deciphering modalities of their mineralogical transformation imply to recognize and characterize the size of these local 'paleo-equilibria', and so to have a spatial chemical information at least in 2 dimensions. In order to get this information, microprobe X-ray fluorescence maps have been used. Computer codes have been developed with Matlab to quantify these maps in view of thermo-barometric estimations. In this way, P-T maps of mineral crystallisation were produced using the multi-equilibria thermodynamic technique. Applications on two meta-pelites from the Sambagawa blue-schist belt (Japan) and from the Caledonian eclogitic zone in Spitsbergen, show that quantitative chemical maps are a powerful tool to retrieve the metamorphic history of rocks. From these chemical maps have been derived maps of P-T-time-redox-deformation that allow to characterize P-T conditions of minerals formation, and so, the P-T path of the sample, the oxidation state of iron in the chlorite phase. As a result, we underline the relation between deformation and crystallisation, and propose a relative chronology of minerals crystallisation and deformations. The Fe{sup 3+} content map in chlorite calculated by thermodynamic has also been validated by a {mu}-XANES mapping at the iron K-edge measured at the ESRF (ID24) using an innovative method. Another application relates to an experimental study of clay materials, main components of an analogical model of a nuclear

  13. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Chenxin [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Liu Xinye; Li Yao; Shi Yang; Zhang Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2011-03-15

    Research highlights: {yields} A responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. {yields} A combination of surface modification of CMK-3 and in situ internal polymerization of PNIPAM was used. {yields} The system exhibited a pronounced transition at around 20-25 deg. C. - Abstract: A novel responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. The polymer-functionalized CMK-3 was obtained by a combination of simple surface modification of CMK-3 and in situ internal polymerization of PNIPAM. The formation of the PNIPAM inside the CMK-3 was confirmed by thermal gravimetric analysis, Fourier transform-infrared spectroscopy, scanning and transmission electron microscopy and N{sub 2} adsorption/desorption measurements. Controlled drug release tests through the porous network of the PNIPAM functionalized CMK-3 were carried out by measuring the uptake and release of ibuprofen in vitro. The release profiles exhibited a pronounced transition at around 20-25 deg. C. This thermo-sensitive release property of this delivery system was further confirmed by temperature-variable hydrogen nuclear magnetic resonance analysis. The internal PNIPAM layers acted as a storage gate as well as a release switch in response to the stimuli of environment.

  14. Dynamics of a thermo-responsive microgel colloid near to the glass transition

    Science.gov (United States)

    Di, Xiaojun; Peng, Xiaoguang; McKenna, Gregory B.

    2014-02-01

    In a previous study, we used diffusing wave spectroscopy (DWS) to investigate the aging signatures of a thermo-sensitive colloidal glass and compared them with those of molecular glasses from the perspective of the Kovacs temperature-jump, volume recovery experiments [X. Di, K. Z. Win, G. B. McKenna, T. Narita, F. Lequeux, S. R. Pullela, and Z. Cheng, Phys. Rev. Lett. 106, 095701 (2011)]. In order to further look into the glassy behavior of colloidal systems, we have synthesized a new core/shell particle with lower temperature sensitivity and studied the aging signatures of concentrated systems, again following Kovacs' protocol. Similar signatures of aging to those observed previously were seen in this new system. Moreover, a systematic study of the temperature dependence of the dynamics of the new system for different weight concentrations was performed and the dynamic fragility index m was determined. We have also explored the use of the properties determined from the DWS measurements to obtain macroscopic rheological parameters - storage modulus G'(ω) and loss modulus G″(ω) - using a generalized Stokes-Einstein approach. The micro-rheological and macro-rheological values are in reasonable agreement.

  15. Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Ana Vieira

    2017-12-01

    Full Text Available Increasing use of the ground as a thermal reservoir is expected in the near future. Shallow geothermal energy (SGE systems have proved to be sustainable alternative solutions for buildings and infrastructure conditioning in many areas across the globe in the past decades. Recently novel solutions, including energy geostructures, where SGE systems are coupled with foundation heat exchangers, have also been developed. The performance of these systems is dependent on a series of factors, among which the thermal properties of the soil play a major role. The purpose of this paper is to present, in an integrated manner, the main methods and procedures to assess ground thermal properties for SGE systems and to carry out a critical review of the methods. In particular, laboratory testing through either steady-state or transient methods are discussed and a new synthesis comparing results for different techniques is presented. In situ testing including all variations of the thermal response test is presented in detail, including a first comparison between new and traditional approaches. The issue of different scales between laboratory and in situ measurements is then analysed in detail. Finally, the thermo-hydro-mechanical behaviour of soil is introduced and discussed. These coupled processes are important for confirming the structural integrity of energy geostructures, but routine methods for parameter determination are still lacking.

  16. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Falk, Matthias

    2007-01-01

    Lithium niobate crystals (LiNbO 3 ) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO 3 crystals this treatment leads to a nearly complete oxidization from Fe 2+ to Fe 3+ indicated by the disappearance of the absorption caused by Fe 2+ . During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe 2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10 -6 for oxidized crystals whereas it is about 10 -1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe 2+ . A microscopic shock-wave model is developed that explains the observed absorption front by

  17. Finite element implementation of a thermo-damage-viscoelastic constitutive model for hydroxyl-terminated polybutadiene composite propellant

    Science.gov (United States)

    Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng

    2017-11-01

    A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.

  18. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  19. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2015-12-01

    Full Text Available Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La complex were added as a filler to form natural rubber (NR composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR and thermogravimetric analysis (TGA, a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  20. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    Science.gov (United States)

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  1. Thermo-Plasmonics for Localized Graphitization and Welding of Polymeric Nanofibers

    Directory of Open Access Journals (Sweden)

    Ahnaf Usman Zillohu

    2014-01-01

    Full Text Available There is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs have played an important role to pave the way for a new branch of plasmonics, i.e., thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry. Here, we demonstrate the first proof of concept experiment of local chemistry and graphitization of metalized polymeric nanofibers through thermo-plasmonic effect. In particular, by tuning the plasmonic absorption of the nanohybrid through a change in the thickness of the deposited silver film on the fibers, the thermo-plasmonic effect can be adjusted in such a way that high enough temperature is generated enabling local welding and graphitization of the polymeric nanofibers.

  2. CAS-ATLID (co-alignment sensor of ATLID instrument) thermo-structural design and performance

    Science.gov (United States)

    Moreno, Javier; Serrano, Javier; González, David; Rodríguez, Gemma; Manjón, Andrés.; Vásquez, Eloi; Carretero, Carlos; Martínez, Berta

    2017-11-01

    This paper describes the main thermo-mechanical design features and performances of the Co-Alignment Sensor (CAS) developed by LIDAX and CRISA under ESA program with AIRBUS Defence and Space as industry prime.

  3. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    Science.gov (United States)

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  5. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    Science.gov (United States)

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  6. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  7. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental

  8. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting...... saturation-unsaturation compositions. The sensitivity analyses for non-reacting and reacting sprays were carried out against a total of 12 thermo-physical properties, at an ambient temperature of 900 K and density of 22.8 kg/m3. For the sensitivity analyses, all the thermo-physical properties were set...... as the baseline case and each property was individually replaced by that of diesel. The significance of individual thermo-physical property was determined based on the deviations found in predictions such as liquid penetration, ignition delay period and peak soot concentration when compared to those of baseline...

  9. Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibing [Nanjing Forestry Univ. (China); Georgia Inst. of Technology, Atlanta, GA (United States); Huang, Fang [Georgia Inst. of Technology, Atlanta, GA (United States); Pan, Shaobo [Georgia Inst. of Technology, Atlanta, GA (United States); Mu, Wei [Georgia Inst. of Technology, Atlanta, GA (United States); Meng, Xianzhi [Georgia Inst. of Technology, Atlanta, GA (United States); Yang, Haitao [Hubei Univ. of Technology, Wuhan (China); Xu, Zhaoyang [Nanjing Forestry Univ. (China); Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    Fluorescent and thermo-responsive cellulose nanocrystals (CNCs) with tuned polymer brushes were preparedviasurface initiated activators generated by electron transfer for atom transfer radical polymerization.

  10. Load sharing with a local thermal network fed by a microcogenerator: Thermo-economic optimization by means of dynamic simulations

    International Nuclear Information System (INIS)

    Angrisani, Giovanni; Canelli, Michele; Rosato, Antonio; Roselli, Carlo; Sasso, Maurizio; Sibilio, Sergio

    2014-01-01

    The cogeneration is the combined production of electric and/or mechanical and thermal energy starting by a single energy source; in particular in this paper the analysis will be focused on a cogeneration system with electric power lower than 15 kW (micro-cogeneration). The paper analyzes a system consisting of a natural gas-fired micro-cogeneration unit (MCHP), a heat storage and a peak boiler. The system provides thermal and electric energy to two end-users, the former is a tertiary building (office), where the generation system is located, and the latter is a residential building connected to the former through a district heating micro-grid. In order to analyze the influence of climatic conditions, two different geographical locations in Italy (Benevento and Milano) are considered, that are also characterized by different natural gas and electricity tariffs. Particular attention is paid to the choice of the users, in order to obtain more stable and continuous electric and thermal loads (load sharing approach) and to increase the operating hours per year of the MCHP unit. The operation of the MCHP is governed by a control system, aimed to optimize a thermo-economic objective function. The models representing the components, the thermo-economic objective function and the buildings have been implemented in a widely used commercial software for building simulations. The models are calibrated and validated through data obtained from experimental tests carried out in the laboratory of the University of Sannio (Benevento). The results of the simulations highlight the potential benefits of the thermal load sharing approach. In particular, this study shows that an MCHP unit connected by means of a thermal micro-grid to different users in “load sharing mode” can obtain a high number of operating hours as well as significant energy (Primary Energy Saving) and environmental (avoided CO 2 equivalent emissions) benefits with respect to an appropriate reference system

  11. Air condensation thermo-pumps for residential and small commercial buildings; Les thermopompes a condensation par air dans le residentiel et le petit tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, P. [Societe Airwell, (France)

    1997-12-31

    The advantages of recent air conditioning systems in terms of temperature control, air quality, air renewal, humidity control, air distribution, acoustic comfort, flexibility, are reviewed and some aspects concerning the evolution of the market in France are discussed (steady growth of the AC residential market). The different types of air conditioning systems are presented (direct expansion with the split-system, and cool water system); the characteristics, advantages and investment/operation costs of split-system and multi-splits thermo-pumps and hot water / cooled water production central units are described

  12. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  13. Thermo-hydro-mechanical tests of buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  14. Thermo-hydro-mechanical modelling of buffer, synthesis report

    International Nuclear Information System (INIS)

    Toprak, E.; Mokni, N.; Olivella, S.; Pintado, X.

    2013-08-01

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE B RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel repository in

  15. Thermo-hydro-mechanical tests of buffer material

    International Nuclear Information System (INIS)

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  16. Thermo-hydro-mechanical modelling of buffer, synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, E.; Mokni, N.; Olivella, S. [Universitat Politecnica de Catalunya, Barcelona (Spain); Pintado, X. [B and Tech Oy, Helsinki (Finland)

    2013-08-15

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE{sub B}RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel

  17. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  18. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  19. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  20. Simulation of thermo-mechanical effect in bulk-silicon FinFETs

    OpenAIRE

    Burenkov, Alex; Lorenz, Jürgen

    2016-01-01

    The thermo-mechanical effect in bulk-silicon FinFETs of the 14 nm CMOS technology node is studied by means of numerical simulation. The electrical performance of such devices is significantly enhanced by the intentional introduction of mechanical stress during the device processing. The thermo-mechanical effect modifies the mechanical stress distribution in active regions of the transistors when they are heated. This can lead to a modification of the electrical performance. Numerical simulati...

  1. Control of the wavelength dependent thermo-optic coefficients in structured fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Lægsgaard, Jesper

    2006-01-01

    By controlling the fibre geometry, the fraction of optical field within the holes and the inserted material of a photonic crystal fibre, we demonstrate that it is possible to engineer any arbitrary wavelength-dependent thermo-optic coefficient. The possibility of making a fibre with a zero temper...... temperature dependent thermo-optic coefficient, ideal for packaging of structured fibre gratings, is proposed and explored....

  2. Exergetic analysis of a thermo-generator for automotive application: A dynamic numerical approach

    Science.gov (United States)

    Glavatskaya, O.; Goupil, C.; Bakkali, A. El; Shonda, O.

    2012-06-01

    It is well known that, when using a passenger car with an ICE (Internal Combustion Engine), only a fraction of the burnt fuel energy actually contributes to drive the vehicle. Typical passenger vehicle engines run about 25% efficiency while a great part of the remaining energy (about 40%), is lost through the exhaust gases. This latter has a significant energy conversion potential since the temperature (more than 300°C) and the mass flow rate are high enough. Thus, direct conversion of heat into electricity is a credible option if the overall system is optimized. This point is crucial since the heat conversion into work process is very sensible to any mismatching of the different parts of the system, and very sensible significant to the possible varying working conditions. All these effects constitute irreversibility sources that degrade the overall efficiency. The exergetic analysis is known to be an efficient tool for finding the root causes of theses irreversible processes. In order to investigate the performance of our automotive thermo-generator we propose an analysis of the exergy flow through the system under dynamic conditions. Taking into account the different irreversible sources such as thermal conduction and Joule effect, we are able to localize and quantify the exergy losses. Then, in order to optimize the thermoelectric converter for a given vehicle, correct actions in term of design and working conditions can be proposed.

  3. Thermo-hydric characterization of partially saturated porous media; Caracterisation thermo-hydrique de milieux poreux partiellement satures d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Simon Salager; Frederic Jamin; Moulay Said El Youssoufi; Christian Saix [Laboratoire de Mecanique et Genie Civil, Universite Montpellier II, cc 048, Place Eugene Bataillon, 34095 Montpellier (France)

    2005-07-01

    We present a contribution to the thermo-hydric characterization of partially saturated porous media by water, through the characteristic curve. This curve defines the relation between suction and degree of saturation. Using this curve for a given temperature, a model is used to predict it for other temperatures. An experimental device called pressure cell was made in a thermo-regulated environment. The model was validated by several tests on a ceramic and silty clayey sand, at 20 and 60 C. The results obtained lead to a characteristic surface which can be considered as a generalization of the classical characteristic curve. (authors)

  4. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    2018-05-01

    Full Text Available Graphene oxide (GO, modified with anti-aging agent p-phenylenediamine (PPD, was added into nitrile rubber (NBR in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Raman, and X-ray diffraction (XRD. Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA show an increased storage modulus (G’ and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn–Wall–Ozawa (FWO equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical properties (tensile strength and elongation at break of both before and after aged NBR/GO–PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  5. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    Science.gov (United States)

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  6. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    Science.gov (United States)

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  7. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Directory of Open Access Journals (Sweden)

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  8. Hydro-thermo-mechanical response of a fractured rock block

    International Nuclear Information System (INIS)

    Kelkar, S.; Zyvoloski, G.

    1990-01-01

    Hydro-thermo-mechanical effects in fractured rocks are important in many engineering applications and geophysical processes. Modeling these effects is made difficult by the fact that the governing equations are nonlinear and coupled, and the problems to be solved are three dimensional. In this paper we describe a numerical code developed for this purpose. The code is finite element based to allow for complicated geometries, and the time differencing is implicit, allowing for large time steps. The use of state-of-the-art equation solvers has resulted in a practical code. The code is capable of fully three dimensional simulations, however, in this paper we consider only the case of two dimensional heat and mass flow coupled to one dimensional deformation. Partial verification of the code is obtained by comparison with published semianalytical results. Several examples are presented to demonstrate the effects of matrix expansion, due to pore pressure and heating, on fracture opening due to fluid injection. 16 refs., 11 figs

  9. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  10. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  11. Thermo-economic evaluation of ORCs for various working fluids

    International Nuclear Information System (INIS)

    Garg, Pardeep; Orosz, Matthew S.; Kumar, Pramod

    2016-01-01

    An inclusive component-level technical and economic assessment procedure for the general design and operating strategy of Organic Rankine Cycles (ORC) for use across major application categories (waste heat recovery, solar thermal, geothermal) and sub-MW scales can be an important tool for leveraging the cost-effective deployment of low and medium temperature power cycles. Previous analyses and design approaches tended to focus on thermodynamic efficiency rather than financial performance. To bridge this gap, a general thermo-economic optimization of sub 500 kWe ORCs is developed using a 7-dimensional design space with minimum investment cost per unit of nameplate electricity production as an objective function. Parameters used include working fluid, heat source temperature, pinch in condenser, boiler (HEX) and regenerator, expander inlet pressure and air cooled condenser area. Optimized power block configurations are presented for the application of ORCs with waste or “free” heat sources and solar heat input for power scales of 5, 50 and 500 kWe to facilitate rapid selection of design parameters across a wide range of thermal regimes. While R152a yields the lowest cost ORCs in the case of the former, isopentane is found to be more cost effective in the latter case for heat source temperatures between 125 and 275 °C.

  12. Ash fusion and thermo-mechanical (TMA) analyses

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-10-01

    Various tests and analytical techniques are used to evaluate the potential of coals to foul and slag furnace surfaces. This paper compares three thermo-mechanical analyses (TMA) techniques, the Australian Coal Industry Research Laboratories (ACIRL) `Improved Ash Fusion` test, the HRL Technologies Pty Ltd test, and the Commonwealth Scientific and Industrial Research Organisation test. The ACIRL test appears to the contender for becoming a standard test that will replace the ash fusibility temperatures test (AFT). The series of events which produce a fused mass is outlined from observations in the course of an experiment conducted by ACARP. The paper concludes that results from tests based on TMA quantify the extent of shrinkage and indicate temperatures at which rapid shrinkage occurs and which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. Temperatures corresponding to particular extents of shrinkage and the existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the TMA test, provide an alternative basis for defining ash fusibility temperatures. Shrinkage procedures provide alternatives to existing AFTs, as well as techniques for trouble-shooting problems in existing plant. (author). 1 fig., 10 refs.

  13. A thermo-elastic model for soft rocks considering structure

    International Nuclear Information System (INIS)

    He, Z.; Zhang, S.; Teng, J.; Xiong, Y.

    2017-01-01

    In the fields of nuclear waste geological deposit, geothermal energy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the super-loading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the super-loading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase. (authors)

  14. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  15. Dynamics of meso and thermo citrate synthases with implicit solvation

    Science.gov (United States)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  16. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  17. Gamma irradiation effect on thermo shrink polyethylene tube: Case study

    International Nuclear Information System (INIS)

    Naurah Mat Isa; Siti Zulaiha Hairaldin; Mohd Yusof Hamzah; Zulkafli Ghazali

    2010-01-01

    The production technology of heat shrinkable tubes is based on the industrial usage of so-called memory effect in some polymers. Many polymers can be rendered heat shrinkable, particularly polyolefins by introducing crosslinking in the polymer backbone. Heat shrinkable tubes and moulded parts provide mechanical and/or chemical and/or electrical protection. . In this work, irradiation from Co-60 was used to impart crosslinking in polymer and thus modify their mechanical and thermal properties. Heat shrinkable or thermo shrink polyethylene (PE) tube with diameter 6.4 mm was selected to evaluate crosslinking behaviour from the gamma irradiation exposure at 5 different doses (120, 140, 160, 200 and 220 kGy). The gel content (%), tensile properties and thermal behavior and stability of the tubes were measured using DSC and TGA. Tubes irradiated at 140 kGy and 160 kGy showed better tensile properties than those at 120, 200 and 220 kGy doses. Maximum percent of crystallization was observed at 160 kGy and temperature required to crystallize is lower than melting temperature due to changes in molecular orientation. Thermal decomposition of the irradiated tubes occurred at 430-450 degree Celsius which is lower than the unirradiated sample. Gel content analysis for samples irradiated at 180-220 kGy yield up to 30 to 40 % gel fraction. Although the gel fractions are higher than other dose, the samples are expected to experience chain scission presumably due to localized gel formation. (author)

  18. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  19. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  20. Thermo-hydro-mechanical behavior of fractured rock mass

    International Nuclear Information System (INIS)

    Coste, F.

    1997-12-01

    The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)

  1. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.

    Science.gov (United States)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T

    2016-09-20

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dual drug encapsulated thermo-sensitive fibrinogen-graft-poly (N-isopropyl acrylamide) nanogels for breast cancer therapy.

    Science.gov (United States)

    Rejinold, N Sanoj; Baby, Thejus; Chennazhi, K P; Jayakumar, R

    2014-02-01

    5-FU/Megestrol acetate loaded fibrinogen-graft-PNIPAAm Nanogels (5-FU/Meg-fib-graft-PNIPAAm NGs) were prepared for thermo responsive drug delivery toward α5β1-integrins expressing breast cancer cells in vitro (MCF-7 cells). The 60-100 nm sized fib-graft-PNIPAAm nanogels (LCST=35 °C) were prepared by CaCl2 cross-linker. 5-FU/Meg-fib-graft-PNIPAAm NGs showed particle size of 165-195 nm size. The drug loading efficiency with 5-FU was 60% and 70% for Meg. "Drug release was greater above the lower critical solution temperature (LCST). Above LCST, drug release system triggers apopotosis and enhance toxicity to MCF-7 cells when compared to the equivalent dose of the free drug. This effect was due to the greater uptake of the drug by MCF-7 cells". 5-FU/Meg-fib-graft-PNIPAAm NGs is portrayed here as a new combinatorial thermo-responsive drug delivery agent for breast cancer therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis

    International Nuclear Information System (INIS)

    Tock, Laurence; Gassner, Martin; Marechal, Francois

    2010-01-01

    A detailed thermo-economic model combining thermodynamics with economic analysis and considering different technological alternatives for the thermochemical production of liquid fuels from lignocellulosic biomass is presented. Energetic and economic models for the production of Fischer-Tropsch fuel (FT), methanol (MeOH) and dimethyl ether (DME) by means of biomass drying with steam or flue gas, directly or indirectly heated fluidized bed or entrained flow gasification, hot or cold gas cleaning, fuel synthesis and upgrading are reviewed and developed. The process is integrated and the optimal utility system is computed. The competitiveness of the different process options is compared systematically with regard to energetic, economic and environmental considerations. At several examples, it is highlighted that process integration is a key element that allows for considerably increasing the performance by optimal utility integration and energy conversion. The performance computations of some exemplary technology scenarios of integrated plants yield overall energy efficiencies of 59.8% (crude FT-fuel), 52.5% (MeOH) and 53.5% (DME), and production costs of 89, 128 and 113 Euro MWh -1 on fuel basis. The applied process design approach allows to evaluate the economic competitiveness compared to fossil fuels, to study the influence of the biomass and electricity price and to project for different plant capacities. Process integration reveals in particular potential energy savings and waste heat valorization. Based on this work, the most promising options for the polygeneration of fuel, power and heat will be determined in a future thermo-economic optimization.

  4. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  5. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  6. Thermo-hydraulic consequence of pressure suppression containment vessel during blowdown, 2

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki; Kobayashi, Michiyuki

    1980-01-01

    As a part of the safety research works for the integral-type marine reactor, an analytical code SUPPAC-2V was developed to simulate the thermo-hydraulic consequence of a pressure suppression containment system during blowdown and the code was applied to the Model Experimental Facility of the Safety of Integral Type Marine Reactors (explained already in Part 1). SUPPAC-2V is much different from existing codes in the following points. A nonhomogeneous model for the gaseous region in the drywell, a new correlation for condensing heat transfer coefficient at drywell wall based on existing data and approximation of air bubbles in wetwell water by one dimensional bubble rising model are adopted in this code. In comparing calculational results with experimental results, values of predominant input parameters were evaluated and discussed. Moreover, the new code was applied also to the NSR-7 marine reactor, conceptually designed at the Shipbuilding Research Association in Japan, of which suppression system had been already analysed by CONTEMPT-PS. (author)

  7. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  8. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates

    International Nuclear Information System (INIS)

    Roeb, M.; Monnerie, N.; Schmitz, M.; Sattler, C.; Konstandopoulos, A.G.; Agrafiotis, C.; Zaspalis, V.T.; Nalbandian, L.; Steele, A.; Stobbe, P.

    2006-01-01

    In the European project HYDROSOL a simple two-step thermo-chemical cycle process has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. If concentrated solar radiation is used as the heat source one has a promising method in hand to produce hydrogen without any environmentally critical emissions. The basic idea is to combine a support capable of achieving high temperatures when heated by concentrated solar radiation, with a redox pair system suitable for water dissociation and at the same time for regeneration at these temperatures, so that complete operation of the whole process could be achieved by a single solar energy converter. The feasibility of the process has proven possible in a mini-plant scale using concentrated sunlight provided by the solar furnace in Cologne. Suitable redox materials as coatings and a dedicated receiver-reactor have been developed to produce hydrogen with significant conversions by repeating several subsequent water splitting and regeneration steps. In a design study a possible way of operating the process in commercial scale is demonstrated. (authors)

  9. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  10. Thermo-optically induced interactions in photon Bose-Einstein Condensates

    Science.gov (United States)

    Alaeian, Hadiseh; Bartels, Clara; Weitz, Martin

    Bose-Einstein condensation (BEC), a new state of matter, emerges when the de Broglie wavelength of bosons becomes larger than the particle separation, leading to a macroscopic occupation of the system ground state. Followed by the first experimental demonstrations of BEC in cold atomic gases, this phase transition has been observed in other bosonic gases, as polaritons and phonons. The most recent one, photon BEC, is a promising candidate for a new generation of coherent photon sources. Due to their infancy, however, many of their properties are still unknown or only partly explored. In this talk I will present my latest results on the implications of photon interactions in photon BECs. In particular, I will investigate the effect of a thermo-optic non-linearity, leading to spatially non-local and delayed interactions. Starting from the steady state behavior, I will explore the spectrum of elementary excitations as a small perturbation. Moreover, I will discuss the resulting effective photon dispersion, manifesting various properties including possible superfluidity, as well as roton and maxon modes. The implications of physical parameters as absorption, number of photons in the condensate, and cavity trap on the dispersion will be discussed. The results of this study shed new light on the implication of interactions in photonic many-body systems. Hadiseh Alaeian acknowledges the generous support from Alexander von Humboldt Foundation.

  11. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  12. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  13. Inert gas narcosis has no influence on thermo-tactile sensation.

    Science.gov (United States)

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  14. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6–Cu mixture

    International Nuclear Information System (INIS)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-01-01

    SF 6 –Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF 6 –Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1–10 atm), non-equilibrium degrees (1–10), and copper molar proportions (0–50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF 6 –Cu system. This paper provides a more accurate database for computational fluid dynamic calculation. (paper)

  15. Seismo-thermo-mechanical modeling of subduction zone seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dinther van, Y.

    2013-07-01

    The catastrophic occurrence of the 2004 M9.2 Sumatra and 2011 M9.0 Tohoku earthquakes illustrated the disastrous impact of megathrust earthquakes on society. They also emphasized our limited understanding of where and when these 'big ones' may strike. The necessary improvement of long-term seismic hazard assessment requires a better physical understanding of the seismic cycle at these seismically active subduction zones. Models have the potential to overcome the restricted, direct observations in space and time. Currently, however, no model exists to explore the relation between long-term subduction dynamics and relating deformation and short-term seismogenesis. The development, validation and initial application of such a physically consistent seismo-thermo-mechanical numerical model is the main objective of this thesis. First, I present a novel analog modeling tool that simulates cycling of megathrust earthquakes in a visco-elastic gelatin wedge. A comparison with natural observations shows interseismic and coseismic physics are captured in a robust, albeit simplified, way. This tool is used to validate that a continuum-mechanics based, visco-elasto-plastic numerical approach, typically used for large-scale geodynamic problems, can be extended to study the short-term seismogenesis of megathrust earthquakes. To generate frictional instabilities and match laboratory source parameters, a local invariant implementation of a strongly slip rate-dependent friction formulation is required. The resulting continuum approach captures several interesting dynamic features, including inter-, co- and postseismic deformation that agrees qualitatively with GPS measurements and dynamic rupture features, including cracks, self-healing pulses and fault re-rupturing. To facilitate a comparison to natural settings, I consider a more realistic setup of the Southern Chilean margin in terms of geometry and physical processes. Results agree with seismological, geodetic and

  16. Seismo-thermo-mechanical modeling of subduction zone seismicity

    International Nuclear Information System (INIS)

    Dinther van, Y.

    2013-01-01

    The catastrophic occurrence of the 2004 M9.2 Sumatra and 2011 M9.0 Tohoku earthquakes illustrated the disastrous impact of megathrust earthquakes on society. They also emphasized our limited understanding of where and when these 'big ones' may strike. The necessary improvement of long-term seismic hazard assessment requires a better physical understanding of the seismic cycle at these seismically active subduction zones. Models have the potential to overcome the restricted, direct observations in space and time. Currently, however, no model exists to explore the relation between long-term subduction dynamics and relating deformation and short-term seismogenesis. The development, validation and initial application of such a physically consistent seismo-thermo-mechanical numerical model is the main objective of this thesis. First, I present a novel analog modeling tool that simulates cycling of megathrust earthquakes in a visco-elastic gelatin wedge. A comparison with natural observations shows interseismic and coseismic physics are captured in a robust, albeit simplified, way. This tool is used to validate that a continuum-mechanics based, visco-elasto-plastic numerical approach, typically used for large-scale geodynamic problems, can be extended to study the short-term seismogenesis of megathrust earthquakes. To generate frictional instabilities and match laboratory source parameters, a local invariant implementation of a strongly slip rate-dependent friction formulation is required. The resulting continuum approach captures several interesting dynamic features, including inter-, co- and postseismic deformation that agrees qualitatively with GPS measurements and dynamic rupture features, including cracks, self-healing pulses and fault re-rupturing. To facilitate a comparison to natural settings, I consider a more realistic setup of the Southern Chilean margin in terms of geometry and physical processes. Results agree with seismological, geodetic and geological

  17. Thermoelastic Damping in FGM Nano-Electromechanical System in Axial Vibration Based on Eringen Nonlocal Theory

    Science.gov (United States)

    Rahimi, Z.; Rashahmadi, S.

    2017-11-01

    The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.

  18. Thermo-Catalytic Reforming of municipal solid waste.

    Science.gov (United States)

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Iterative reconstruction methods for Thermo-acoustic Tomography

    International Nuclear Information System (INIS)

    Marinesque, Sebastien

    2012-01-01

    We define, study and implement various iterative reconstruction methods for Thermo-acoustic Tomography (TAT): the Back and Forth Nudging (BFN), easy to implement and to use, a variational technique (VT) and the Back and Forth SEEK (BF-SEEK), more sophisticated, and a coupling method between Kalman filter (KF) and Time Reversal (TR). A unified formulation is explained for the sequential techniques aforementioned that defines a new class of inverse problem methods: the Back and Forth Filters (BFF). In addition to existence and uniqueness (particularly for backward solutions), we study many frameworks that ensure and characterize the convergence of the algorithms. Thus we give a general theoretical framework for which the BFN is a well-posed problem. Then, in application to TAT, existence and uniqueness of its solutions and geometrical convergence of the algorithm are proved, and an explicit convergence rate and a description of its numerical behaviour are given. Next, theoretical and numerical studies of more general and realistic framework are led, namely different objects, speeds (with or without trapping), various sensor configurations and samplings, attenuated equations or external sources. Then optimal control and best estimate tools are used to characterize the BFN convergence and converging feedbacks for BFF, under observability assumptions. Finally, we compare the most flexible and efficient current techniques (TR and an iterative variant) with our various BFF and the VT in several experiments. Thus, robust, with different possible complexities and flexible, the methods that we propose are very interesting reconstruction techniques, particularly in TAT and when observations are degraded. (author) [fr

  20. Thermo-mechanical analysis of PWR bolts susceptible to IASCC

    International Nuclear Information System (INIS)

    Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.

    2015-01-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)

  1. Thermo-mineral waters from the Cerna Valley Basin (Romania

    Directory of Open Access Journals (Sweden)

    Ioan Povara

    2008-10-01

    Full Text Available In the south-west of the Southern Carpathians, upstream from the confluence of Cerna with Belareca, an aquifer complex has developed, strongly influenced by hydrogeothermal phenomena, acting within two major geological structures, the Cerna Syncline and the Cerna Graben. The complex consists mainly in Jurassic and Cretaceous carbonate rocks, as well as in the upper part of the Cerna Granite, highly fractured, tectonically sunken into the graben. As a result of the tectonic processes which occurred after the end of the Jurassic-Cretaceous sedimentation cycle, limestones may be encountered at 1100 m altitude in the Mehedinţi Mountains, at 150 ¬¬600 m in the Cerna Syncline or sunken into the Cerna Graben down to depths of 1075 m. In certain sections along Cerna, graben limestones outcrop in an intricate relationship with those of the slopes, facilitating the existence of very large scale uni- or bidirectional hydrodynamic links. The geothermal investigations have shown the existence of some areas with values of the geothermal gradient falling into the 110-200°C/km interval, and temperatures of 13.8-16°C at the depth of 30 m (VELICIU, 1978. The zone with the maximal flux intensity is situated between the Băile Herculane railway station and the Crucea Ghizelei Well, an area where 24 sources (10 wells and 14 springs are known. The geothermal anomaly is also extended to the south (Topleţ, north (Mehadia and north-east (Piatra Puşcată, a fact which is stressed by the existence of hypothermal springs with low mineralization. The physical-chemical parameters of the sources show a strong, north-south, variability. At the entire thermo-mineral reservoir scale, the temperature of the water sources, the total mineralization and the H2S quantity are increasing from the north to the south, and the pH and natural radioactivity are diminishing with the same trend.

  2. Thermo-mechanical design methodology for ITER cryo-distribution cold boxes

    International Nuclear Information System (INIS)

    Shukla, Vinit; Patel, Pratik; Vaghela, Hiten; Das, Jotirmoy; Shah, Nitin; Bhattacharya, Ritendra; Sarkar, Biswanath; Chang, Hyun-sik

    2015-01-01

    The ITER cryo-distribution system is in charge of the proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users namely; the superconducting magnets and cryopumps. The cryo-distribution also acts as a thermal buffer in order to run the cryo-plant as much as possible at a steady state condition. A typical cryo-distribution cold box is equipped with mainly liquid helium bath with heat exchangers, cryogenic valves, cold circulating pump and cold compressor. During the intended operation life of ITER, several loads on the cryo-distribution system are envisaged, these are, gravity/assembly loads, nominal pressure/temperature, test pressure/temperature, purge pressure, thermo-mechanical loads due to break of insulation vacuum, transport acceleration and seismic loads. Single loads or combinations of them can act on the cryo-distribution system and its components; therefore, it is very important to analyze the behavior of the system and components under the influence of these loads or combinations. Possible load combinations for the cryo-distribution system will be analyzed and will lead to the basis of the design. This paper will focus on the understanding of the nature of the loads and their combinations for the ITER cryo-distribution as well as their impacts on the design. A representative model of a cold box is considered on which the load combinations have been applied in order to understand their impacts on the design of the cryo-distribution. Also the worst-impact loads or their combination which drive the design of cryo-distribution cold boxes will be derived. (author)

  3. Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2018-03-01

    In this paper, a three-variable plate model is utilized to explore the wave propagation problem of smart sandwich nanoplates made of a magnetostrictive core and ceramic face sheets while subjected to thermo-magnetic loading. Herein, the magnetostriction effect is considered and controlled via a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak elastic substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small-scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations are derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of the propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of the presented model are verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

  4. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Xie, Shuhong [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan (China); Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong (China); Geary, Timothy C.; Adler, Stuart B. [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-28

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO{sub 4}, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  5. Study and optimization of thermo-physical parameters for a solar-still performance

    International Nuclear Information System (INIS)

    Kaabi, A.; Zaidi, H.

    2006-01-01

    The thermo-physical parameters of a static solar still with a greenhouse effect were studied. The simulation was conducted for each component of the still at the same initial temperature and time step. Analyzed parameters included the solar collector; brine; absorber; and insulator. The thermophysical changes of different still components were analyzed as well as their impacts on the solar still's output. The aim of the study was to enhance distilled water production. A Gauss-Seidel iterative method was used to solve thermophysical equations. Results of the study showed that maximum hourly production of distilled water was reached at 13:00 PM, when temperatures differences between the brine and the inner side of the still had a significant impact on system productivity. Three types of material were tested: copper, aluminum, and steel. Copper gave improved production, higher thermal conductivity; higher heat, and an improved coefficient of absorption. Production of distilled water increased when a black layer of nickel was added to the still. It was concluded that solar still efficiency increased when the absorber had a high thermal conductivity and a high specific heat. 14 refs., 6 figs

  6. Evaluation of Thermo-Fluid Performance of Compact Heat Exchanger with Corrugated Wall Channels

    International Nuclear Information System (INIS)

    Tak, Nam Il; Lee, Won Jae

    2006-01-01

    One of the key components of an indirect nuclear hydrogen production system is an intermediate heat exchanger (IHX). For the IHX, a printed circuit heat exchanger (PCHE) is known as one of the promising types due to its compactness and ability to operate at high temperatures and under high pressures. The PCHE is a relatively new heat exchanger. It has been commercially manufactured only since 1985 and solely by one British vendor, HeatricTM. Due to its short history and limited production, sufficient information about the PCHE is not available for the design of the IHX in open literatures. The predominant shape of flow channels of the PCHE is laterally corrugated. The flow in a corrugated wall channel is very interesting since a variety of flow phenomena can be considered by changing the amplitude-to-wavelength ratio. In the present paper, thermo-fluid performance of a heat exchanger with a typical PCHE geometry has been evaluated. Computational fluid dynamics (CFD) analysis was performed to analyze a gas flow behavior in a corrugated wall channel

  7. Thermo-structural modelling of a plasma discharge tube for electric propulsion

    International Nuclear Information System (INIS)

    Faoite, D. de; Browne, D.J.; Del Valle Gamboa, J.I.; Stanton, K.T.

    2016-01-01

    Highlights: • Thermo-structural analyses were performed for an electric propulsion space thruster. • Thermal stresses arise primarily from mismatches in thermal expansion coefficients. • Aluminium nitride is a suitable material for a plasma containment tube. • A design is presented allowing a thruster to operate at a power of at least 250 kW. - Abstract: Potential thermal management strategies for the plasma generation section of a VASIMR"® high-power electric propulsion space thruster are assessed. The plasma is generated in a discharge tube using helicon waves. The plasma generation process causes a significant thermal load on the plasma discharge tube and on neighbouring components, caused by cross-field particle diffusion and UV radiation. Four potential cooling system design strategies are assessed to deal with this thermal load. Four polycrystalline ceramics are evaluated for use as the plasma discharge tube material: alumina, aluminium nitride, beryllia, and silicon nitride. A finite element analysis (FEA) method was used to model the steady-state temperature and stress fields resulting from the plasma heat flux. Of the four materials assessed, aluminium nitride would result in the lowest plasma discharge tube temperatures and stresses. It was found that a design consisting of a monolithic ceramic plasma containment tube fabricated from aluminium nitride would be capable of operating up to a power level of at least 250 kW.

  8. Development of gas-cooled fast reactor and its thermo-hydraulics

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1977-10-01

    Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2. Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod. Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible. In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two. (auth.)

  9. Thermo-fluid-dynamic modelling of a cold store for cheese maturation

    Directory of Open Access Journals (Sweden)

    Ferruccio Giametta

    2013-03-01

    Full Text Available In this study, drying tests on fresh cheeses were carried out in a cold store equipped with a Munters MG90 dehumidifier that controls the humidity of the room air. In this system, the condensation/drainage stage is omitted since the humid room air is directed out of the cold store (process air and the dried air is introduced by the dehumidifier inside the cold store. Eight air temperature probes were introduced in the store; two probes (HOBO U12-012, 1 HOBO – Onset Computer Corporation, Cape Cod, MA, USA were also introduced and used to measure relative humidity and temperature together with an anemometer to analyse any changes in thermal and fluid dynamics in the cell environment. COMSOL multiphysics software (Comsol Group, Stockolm, Sweden was used to simulate the store environment based on the finite elements method. This allowed us to compare and discuss the experimental data collected and the results obtained by the thermo- fluid-dynamic simulation.

  10. AMTEC thermo-electric conversion. Final report; AMTEC termo-elektrisk konvertering. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1994-10-15

    The aim was to gain experience on how to produce Alkali Metal Thermo-Electric-Converter (AMTEC) cells, for the demonstration of their principles and potentials, as a basis for future commercialization. These cells should be able to present an efficient and direct conversion of thermal energy to electric energy. The system is based on an electro-chemical concentration cell built around a {beta}`` aluminium oxide membrane that separates the two chambers. This material is a good conductor of sodium and a bad conductor of electrons, and it is this property which is taken advantage of. In the two chambers of the cell is found saturated sodium vapour at two temperatures. The motive power is the expansion over the membrane where the sodium ions are transported through it whilst the electrons are forced through the outer cycle. This concept is described in detail in addition to the choice of materials, performance testing and results. It was found possible to produce AMTEC electrodes via serigraphic feeding. The strengths and weaknesses of the finished product are illuminated. (AB) (10 refs.)

  11. Analytical model for calculation of the thermo hydraulic parameters in a fuel rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cesna, B., E-mail: benas@mail.lei.l [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos g. 3, LT-44403 Kaunas (Lithuania)

    2010-11-15

    Research highlights: {yields} Proposed calculation model can be used for rapid calculation of the bundles with rods spaced by wire wrapping or honey type spacer grids. {yields} Model estimate three flow cross mixture mechanisms. {yields} Program DARS is enable to analyses experimental results. - Abstract: The paper presents the procedure of the cellular calculation of thermo hydraulic parameters of a single-phase gas flow in a fuel rod assembly. The procedure is implemented in the DARS program. The program is intended for calculation of the distribution of the gaseous coolant parameters and wall temperatures in case of arbitrary, geometrically specified, arrangement of the rods in fuel assembly and in case of arbitrary, functionally specified in space, heat release in the rods. In mathematical model the flow cross-section of the channel of intricate shape is conventionally divided to elementary cells formed by straight lines, which connect the centers of rods. Within the limits of a single cell the coolant parameters and the temperature of the corresponding part of the rod surface are assumed constant. The entire fuel assembly is viewed as a system of parallel interconnected channels. Program DARS is illustrated by calculation of a temperature mode of 85-rod assembly with spacers of wire wrapping on the rods.

  12. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Okano, Y.; Dost, S.

    2017-06-01

    A numerical simulation study was carried out to investigate the effect of thermo-solutal Marangoni convection on the flow patterns and the azimuthal wave number (m) in a liquid bridge under zero-gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. The physical properties of the silicon-germanium melt were used (Pr=6.37×10-3 and Sc=14.0, where Pr and Sc stand for the Prandtl number and the Schmidt number). The aspect ratio Asp was set to 0.5 (Asp= L/a, where L and a stand for the length of free surface and the radius of liquid bridge). Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the co-existence of thermal and solutal Marangoni convections significantly affects the azimuthal wave number m in the liquid bridge.

  13. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    Science.gov (United States)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  14. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  15. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  16. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  17. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.

    Science.gov (United States)

    Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar

    2017-09-01

    A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, L.; Gal, O.; Markovic, V.; Stannett, V.T.

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author)

  19. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene. 2. Combined antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, L; Gal, O; Markovic, V; Stannett, V T

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author).

  20. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)