WorldWideScience

Sample records for thermally induced dephasing

  1. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...

  2. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna (Austria)

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  3. Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes

    International Nuclear Information System (INIS)

    Burr, G.W.; Harris, Todd L.; Babbitt, Wm. Randall; Jefferson, C. Michael

    2004-01-01

    We describe the incorporation of excitation-induced dephasing (EID) into the Maxwell-Bloch numerical simulation of photon echoes. At each time step of the usual numerical integration, stochastic frequency jumps of ions--caused by excitation of neighboring ions--is modeled by convolving each Bloch vector with the Bloch vectors of nearby frequency detunings. The width of this convolution kernel follows the instantaneous change in overall population, integrated over the simulated bandwidth. This approach is validated by extensive comparison against published and original experimental results. The enhanced numerical model is then used to investigate the accuracy of experiments designed to extrapolate to the intrinsic dephasing time T 2 from data taken in the presence of EID. Such a modeling capability offers improved understanding of experimental results, and should allow quantitative analysis of engineering tradeoffs in realistic optical coherent transient applications

  4. Exceptionally slow rise in differential reflectivity spectra of excitons in GaN: effect of excitation-induced dephasing

    International Nuclear Information System (INIS)

    Stanton, C.J.; Kenrow, J.; El Sayed, K.; Jho, Y.D.; Kim, D.S.; Song, J.J.; Fischer, Arthur Joseph

    2004-01-01

    Femtosecond differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found only for positive time delay in both DRS and FWM experiments. The rise time at negative time delay for the DRS was much slower than the FWM signal or differential transmission spectroscopy at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing, that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.

  5. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    Science.gov (United States)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  6. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  7. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  8. Universal dephasing control during quantum computation

    International Nuclear Information System (INIS)

    Gordon, Goren; Kurizki, Gershon

    2007-01-01

    Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity

  9. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  10. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  11. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons......, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have...

  12. Quantum correlation of high dimensional system in a dephasing environment

    Science.gov (United States)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  13. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  14. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  15. Dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Mørk, Jesper

    1999-01-01

    The room-temperature dephasing in InAs/GaAs self-assembled quantum dots is measured using two independent methods: spectal-hole burning and four-wave mixing. Dephasing times weakly dependent on the excitation density are found, with a low density value of 290+/-80 fs from spectal-hole burning...

  16. Thermally induced delamination of multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.

    1998-01-01

    Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...

  17. Dephasing of optically generated electron spins in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2010-01-01

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  18. Dephasing of optically generated electron spins in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2010-09-13

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-{mu}s and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  19. Many-Particle Dephasing after a Quench

    Science.gov (United States)

    Kiendl, Thomas; Marquardt, Florian

    2017-03-01

    After a quench in a quantum many-body system, expectation values tend to relax towards long-time averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the suppression of these fluctuations with increasing system size. The particularly important case of nonintegrable models has been addressed so far only by numerics and conjectures based on analytical bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a dynamical regime of "many-particle dephasing," where quasiparticles do not yet relax but fluctuations are nonetheless suppressed exponentially by weak integrability breaking.

  20. Quantum capacity of dephasing channels with memory

    International Nuclear Information System (INIS)

    D'Arrigo, A; Benenti, G; Falci, G

    2007-01-01

    We show that the amount of coherent quantum information that can be reliably transmitted down a dephasing channel with memory is maximized by separable input states. In particular, we model the channel as a Markov chain or a multimode environment of oscillators. While in the first model, the maximization is achieved for the maximally mixed input state, in the latter it is convenient to exploit the presence of a decoherence-protected subspace generated by memory effects. We explicitly compute the quantum channel capacity for the first model while numerical simulations suggest a lower bound for the latter. In both cases memory effects enhance the coherent information. We present results valid for arbitrary input size

  1. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  2. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  3. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  4. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  5. Prisoners' dilemma in the presence of collective dephasing

    International Nuclear Information System (INIS)

    Nawaz, Ahmad

    2012-01-01

    We quantize prisoners' dilemma in the presence of collective dephasing with a dephasing rate γ. It is shown that for a two-parameter set of strategies, Q⊗Q is Nash equilibrium below a cut-off value of time. Beyond this cut-off it bifurcates into two new Nash equilibria Q⊗D and D⊗Q. Furthermore, for the maximum value of decoherence C⊗D and D⊗C also become Nash equilibria. At this stage the game has four Nash equilibria. On the other hand, for a three-parameter set of strategies, there is no pure strategy Nash equilibrium; however, there is a mixed strategy (non-unique) Nash equilibrium that is not affected by collective dephasing. (paper)

  6. Magneto-exciton dephasing in a single quantum dot

    Science.gov (United States)

    Rodriguez, F. J.; Reyes, A.; Olaya-Castro, A.; Quiroga, L.

    2001-03-01

    Ultrafast spectroscopy experiments on single quantum dot (SQD) in magnetic fields provide a variety of unexpected results, one of them being the recently reported entanglement of exciton states. In order to explore the entanglement robustness, dephasing mechanisms must be considered. By calculating the non-linear time resolved optical spectrum of a SQD, we present a theoretical study on the exciton-exciton scattering contribution to the magneto-exciton dephasing time. Our results show that the time evolution of \\chi^(3) presents, under non-steady-state condition, a beating between the bound biexciton and the first unbound biexciton state in the strong confinement regime. The contribution coming from both left and right polarized emitted photons allows us to predict the creation of exciton entanglement, in agreement with recent experimental results. Previous theoretical works have only addressed the stationary optical response. By contrast, our results based on a full time dependent calculation show new features specially for the fast dephasing case.

  7. Reducing pure dephasing of quantum bits by collective encoding in quantum dot arrays

    International Nuclear Information System (INIS)

    Grodecka, A; Machnikowski, P; Jacak, L

    2006-01-01

    We show that phonon-induced pure dephasing of an excitonic (charge) quantum bit in a quantum dot (QD) may be reduced by collective encoding of logical qubits in QD arrays. We define the logical qubit on an array of 2, 4 and 8 QDs, connecting the logical 0) state with the presence of excitons in the appropriately chosen half of dots and the logical 1) state with the other half of the dots occupied. We give quantitative estimates of the resulting total error of a single qubit operation for an InAs/GaAs system

  8. A comparative study of two phenomenological models of dephasing in series and parallel resistors

    International Nuclear Information System (INIS)

    Bandopadhyay, Swarnali; Chaudhuri, Debasish; Jayannavar, Arun M.

    2010-01-01

    We compare two recent phenomenological models of dephasing using a double barrier and a quantum ring geometry. While the stochastic absorption model generates controlled dephasing leading to Ohm's law for large dephasing strengths, a Gaussian random phase based statistical model shows many inconsistencies.

  9. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  10. Wave attenuation model for dephasing and measurement of ...

    Indian Academy of Sciences (India)

    There are different ways to model dephasing in mesoscopic systems. An interesting method is to attach a voltage probe [3] to the sample as in the inset of figure 1 (Buttiker's model). In this model, an electron captured by a voltage probe is injected back with an uncorrelated phase leading to irreversible loss of phase memory ...

  11. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  12. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  13. Induced thermal resistance in the mouse ear

    International Nuclear Information System (INIS)

    Law, M.P.; Coultas, P.G.; Field, S.B.

    1979-01-01

    The mouse ear (pinna) was used to investigate the effect of two hyperthermic treatments. Heating was by immersion in hot water at 43.5 0 C. A single treatment of about 50 minutes was required to cause necrosis in 50% of the ears treated. When heat treatment was given in two equal fractions the total heating time had to be increased if the interval between fractions was greater than four hours. By 24 hours a total treatment of about 100 minutes was required, indicating almost complete recovery from the first heating. Priming treatments at 43.5 0 C induced thermal resistance to a second heat treatment at 43.5 0 C. Maximum resistance was observed one day after a 20 minute priming and two days after a 40 minute priming, when the heating time had to be increased to 120 minutes, an increase by a factor of 2.4. Shorter priming treatments induced less resistance, the minimum heating time to produce an effect being two minutes. In all cases the effect decreased during the next four to five days. These results indicate that the reduced response of tissues to fractionated hyperthermia is due both to the repair of sublethal heat damage and induction of thermal resistance. (author)

  14. Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well

    International Nuclear Information System (INIS)

    Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui

    2014-01-01

    The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW

  15. Interaction and dephasing of center-of-mass quantized excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Maier, R.

    1998-01-01

    We investigate the interaction and dephasing of the excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells by spectrally resolved, femtosecond four-wave mixing (FWM). Polarization-dependent measurements indicate that excitation-induced dephasing is the dominant FWM process. The biexcitons of the center...... repulsion for coherent excitons. The exciton interaction rates with acoustic and optical phonons are deduced by their temperature dependencies. The acoustic-phonon scattering is found to be strongly reduced in the investigated wide wells due to the reduced accessible phonon wave vector....

  16. Biexciton dephasing in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.

    2001-01-01

    the heavy-hole (HH) vacuum Rabi splitting is 3.6 meV, more than three times larger than the biexciton binding energy in the bare QW (1.1 meV). Due to the narrow linewidth of the polariton resonances, a well-resolved pump-induced optical absorption associated with biexcitons was observed. In this work we...

  17. Thermally induced lensing determination from the coefficient of defocus aberration

    CSIR Research Space (South Africa)

    Bell, Teboho

    2014-07-01

    Full Text Available The effects of a temperature gradient in a laser crystal in an end-pumped configuration in a solid-state laser resonator results in thermally induced aberrations. Of particular interest we measure the thermally induced lens from the coefficient...

  18. Carbon Nanotubes as Thermally Induced Water Pumps

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Megaridis, Constantine M

    2017-01-01

    Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry...

  19. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses.

    Science.gov (United States)

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-08

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  20. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char......We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate...

  1. Dephasing in self-organized InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, K.; Birkedal, Dan; Hvam, Jørn Märcher

    2002-01-01

    We report the first direct measurements of dephasing in III-V semiconductor quantum dots at low temperature using degenerate four-wave mixing. At OK, the coherence time is limited by the population lifetime whereas pure dephasing due to exciton-phonon interactions appears only at finite temperatu......We report the first direct measurements of dephasing in III-V semiconductor quantum dots at low temperature using degenerate four-wave mixing. At OK, the coherence time is limited by the population lifetime whereas pure dephasing due to exciton-phonon interactions appears only at finite...

  2. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    DEFF Research Database (Denmark)

    Uskov, A. V.; Jauho, Antti-Pekka; Tromborg, Bjarne

    2000-01-01

    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in Q......: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing....

  3. Thermally induced structural changes in Nomex fibres

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thermally aged Nomex fibres manifest several residual effects viz. reduction in X-ray crystallinity, weight loss and deterioration in tensile characteristics. Surface damages in the form of longi- tudinal openings, holes, material deposits etc have also been observed. Based on the data from thermally exposed fibres ...

  4. Dephasing in coherent communication with weak signal states

    International Nuclear Information System (INIS)

    Jarzyna, Marcin; Banaszek, Konrad; Demkowicz-Dobrzański, Rafał

    2014-01-01

    We analyse the ultimate quantum limit on the accessible information for an optical communication scheme when time bins carry coherent light pulses prepared in one of several orthogonal modes and the phase undergoes diffusion after each channel use. This scheme, an example of a quantum memory channel, can be viewed as noisy pulse position modulation (PPM) keying with phase fluctuations occurring between consecutive PPM symbols. We derive a general expression for the output states in the Fock basis and implement a numerical procedure to calculate the Holevo quantity. Using asymptotic properties of Toeplitz matrices, we also present an analytic expression for the Holevo quantity valid for very weak signals and sufficiently strong dephasing when the dominant contribution comes from the single-photon sector in the Hilbert space of signal states. Based on numerical results we conjecture an inequality for contributions to the Holevo quantity from multiphoton sectors which implies that in the asymptotic limit of weak signals, for arbitrarily small dephasing the accessible information scales linearly with the average number of photons contained in the pulse. Such behaviour presents a qualitative departure from the fully coherent case. (paper)

  5. Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire

    NARCIS (Netherlands)

    Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.

    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields

  6. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...

  7. Exciton dephasing and biexciton binding in CdSe/ZnSe islands

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Tranitz, H.-P.; Preis, H

    1999-01-01

    The dephasing of excitons and the formation of biexcitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of exciton-exciton scattering efficiencies and dephasing times in the range of 0.5-10 ps...

  8. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  9. Thermally Induced Magnetite-Haematite Transformation

    International Nuclear Information System (INIS)

    Mazo-Zuluaga, J.; Barrero, C. A.; Diaz-Teran, J.; Jerez, A.

    2003-01-01

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800 o C at several heating rates. Samples treated at 520 o C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350 o C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  10. Thermally Induced Magnetite-Haematite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J.; Barrero, C. A. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Diaz-Teran, J.; Jerez, A. [Universidad Nacional de Educacion a Distancia UNED, Po Senda del Rey 9, Departamento de Quimica Inorganica y Quimica Tecnica (Spain)

    2003-06-15

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800{sup o}C at several heating rates. Samples treated at 520{sup o}C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350{sup o}C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  11. Thermally induced phase transformation of pearl powder

    International Nuclear Information System (INIS)

    Zhang, Guoqing; Guo, Yili; Ao, Ju; Yang, Jing; Lv, Guanglie; Shih, Kaimin

    2013-01-01

    The polymorphic phase transformation of thermally treated pearl powder was investigated by X-ray diffraction and thermoanalytical techniques. The phase transformation was based on quantification of the calcite content at various temperatures using Rietveld refinement analysis. The results show that the phase transformation of pearl aragonite occurred within a temperature range of 360–410 °C, which is 50–100 °C lower than the range for non-biomineralized aragonite. These thermoanalytical results suggest that the phase transformation of pearl aragonite may occur immediately after the thermal decomposition of the organic matrix in the pearl powder. An important finding is that decomposition of the organic matrix may greatly facilitate such transformation by releasing additional space for an easier structural reconstruction during the phase transformation process. - Highlights: ► Providing a new method to describe the polymorphic transition of pearl powder ► The phase transition sketch was exhibited by XRD phase quantitative analysis. ► There are dozens of degrees in advance comparing to natural aragonite. ► The phase transition occurs following the thermal decomposition of organism

  12. Temporal fluctuations after a quantum quench: Many-particle dephasing

    Science.gov (United States)

    Marquardt, Florian; Kiendl, Thomas

    After a quantum quench, the expectation values of observables continue to fluctuate in time. In the thermodynamic limit, one expects such fluctuations to decrease to zero, in order for standard statistical physics to hold. However, it is a challenge to determine analytically how the fluctuations decay as a function of system size. So far, there have been analytical predictions for integrable models (which are, naturally, somewhat special), analytical bounds for arbitrary systems, and numerical results for moderate-size systems. We have discovered a dynamical regime where the decrease of fluctuations is driven by many-particle dephasing, instead of a redistribution of occupation numbers. On the basis of this insight, we are able to provide exact analytical expressions for a model with weak integrability breaking (transverse Ising chain with additional terms). These predictions explicitly show how fluctuations are exponentially suppressed with system size.

  13. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  14. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    Science.gov (United States)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  15. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  16. Constraints on dephasing widths and shifts in three-level quantum systems

    International Nuclear Information System (INIS)

    Berman, P.R.; O'Connell, Ross C.

    2005-01-01

    It is shown that the density matrix equations for a three-level quantum system interacting with external radiation fields can lead to negative populations if arbitrary dephasing rates and shifts are included in these equations. To guarantee non-negative populations, the equations themselves impose certain restrictions on the dephasing widths and shifts. The constraints on the widths are shown to be identical to those that can be derived from a model of Markovian dephasing events, independent of any atom-field interaction

  17. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  18. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  19. Shear deformation-induced anisotropic thermal conductivity of graphene.

    Science.gov (United States)

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  20. Chronic vitamin C administration induces thermal hyperalgesia in ...

    African Journals Online (AJOL)

    Against a backdrop of neurological effects, the effects of acute and chronic administration of vitamin C (600mg/kg) on pain processing were investigated in male rats. Chronic administration of vitamin C induced significant thermal hyperalgesia while acute administration had no effect. In addition, the intraperitoneal ...

  1. Transitional free convection flows induced by thermal line sources

    NARCIS (Netherlands)

    Bastiaans, R.J.M.

    1993-01-01

    In the present study the usefullness of a large eddy simulation for transition is examined. Numerical results of such simulations are presented from a study to determine the characteristics of a flow induced by a thermal line source. The first bifurcation to time dependent motion and the route to

  2. Feedback controlled dephasing and population relaxation in a two-level system

    International Nuclear Information System (INIS)

    Wang Jin

    2009-01-01

    This Letter presents the maximum achievable stability and purity that can be obtained in a two-level system with both dephasing and population relaxation processes by using homodyne-mediated feedback control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-state is also presented. Experimental examples are used to show the importance of controlling the dephasing process.

  3. distributions for the thermal neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2016-01-01

    In addition, the analysis of thermal neutron induced fission of 234U(n,f will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f. Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  4. Thermal Effects Induced by Laser Irradiation of Solids

    International Nuclear Information System (INIS)

    Galovic, S.

    2004-01-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  5. Thermally-induced bowing of CANDU fuel elements

    International Nuclear Information System (INIS)

    Suk, H.C.; Sim, K.S.; Park, J.H.; Park, G.S.

    1995-01-01

    Considering only the thermally-induced bending moments which are generated both within the sheath and between the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element, a generalized and explicit analytical formula for the thermally-induced bending is developed in this paper, based on the cases of 1) the bending of an empty tube treated by neglecting of the fuel/sheath mechanical interaction and 2) the fuel/sheath interaction due to the pellet and sheath temperature variations. In each of the cases, the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. Investigating the relative importance of the various parameters affecting fuel element bowing, the element bowing is found to be greatly affected with the variations of element length, sheath diameter, pellet/sheath mechanical interaction and neutron flux depression factors, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient, and sheath and pellet thermal conductivities. Also, the element bowing of the standard 37-element bundle and CANFLEX 43-element bundle for the use in CANDU-6 reactors was analyzed with the formula, which could help to demonstrate the integrity of the fuel. All the required input data for the analyses were generated in terms of the reactor operation conditions on the reactor physics, thermal hydraulics and fuel performance by using various CANDU computer codes. The analysis results indicate that the CANFLEX 43-element

  6. On the analogy between thermally and irradiation induced creep

    International Nuclear Information System (INIS)

    Cozzarelli, F.A.; Huang, S.

    1977-01-01

    Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail. (Auth.)

  7. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  8. Dynamics of electronic dephasing in the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Hayes, Dugan; Panitchayangkoon, Gitt; Fransted, Kelly A; Caram, Justin R; Freed, Karl F; Engel, Gregory S; Wen Jianzhong

    2010-01-01

    Electronic coherence has been shown to persist in the Fenna-Matthews-Olson (FMO) antenna complex from green sulfur bacteria at 77 K for at least 660 fs, several times longer than the typical lifetime of a coherence in a dynamic environment at this temperature. Such long-lived coherence was proposed to improve energy transfer efficiency in photosynthetic systems by allowing an excitation to follow a quantum random walk as it approaches the reaction centre. Here we present a model for bath-induced electronic transitions, demonstrating that the protein matrix protects coherences by globally correlating fluctuations in transition energies. We also quantify the dephasing rates for two particular electronic coherences in the FMO complex at 77 K using two-dimensional Fourier transform electronic spectroscopy and find that the lifetimes of individual coherences are distinct. Within the framework of noise-assisted transport, this result suggests that the FMO complex has been locally tuned by natural selection to optimize transfer efficiency by exploiting quantum coherence.

  9. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  10. Transient thermal stresses and stress intensity factors induced by thermal stratification in feedwater lines

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Pardo, E.

    1985-01-01

    General analytical solutions for the thermal stresses and circumferential crack propagation in piping branches of nuclear power plants, that connect two circuits of the same fluid at different temperatures, are presented in this paper. Under certain conditions, two regions of the fluid possessing both temperatures with a separating layer of small thickness are formed ('flow stratification'). Dimensionless analytical expressions for the steady state temperature distribution in the pipe wall and the corresponding thermal stress are here derived, in terms of the basic geometrical and physical parameters. The position and thickness of the separating layer are considered as data of the model. Stress intensity ranges at any point of the tube wall are then determined. Finally, thermally induced stress intensity factors are calculated for hipothetically inside surface cracks. (orig.)

  11. Thermalization as an Invisibility Cloak for Fragile Quantum Superpositions

    OpenAIRE

    Hahn, Walter; Fine, Boris V.

    2017-01-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time reversal manipulation known as Loschmidt echo. The thermalization dynamics makes t...

  12. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  13. Factors affecting the effectiveness of a projection dephaser in 2D gradient-echo imaging

    International Nuclear Information System (INIS)

    Bakker, Chris J G; Peters, Nicky H G M; Vincken, Koen L; Bom, Martijn van der; Seppenwoolde, Jan-Henry

    2007-01-01

    Projection dephasers are often used for background suppression and dynamic range improvement in thick-slab 2D imaging in order to promote the visibility of subslice structures, e.g., blood vessels and interventional devices. In this study, we explored the factors that govern the effectiveness of a projection dephaser by simulations and phantom experiments. This was done for the ideal case of a single subslice hyper- or hypointensity against a uniform background in the absence of susceptibility effects. Simulations and experiments revealed a pronounced influence of the slice profile, the nominal flip angle and the TE and TR of the acquisition, the size, intraslice position and MR properties of the subslice structure, and T 1 of the background. The complexity of the ideal case points to the necessity of additional explorations when considering the use of projection dephasers under less ideal conditions, e.g., in the presence of tissue heterogeneities and susceptibility gradients

  14. Compensation for thermally induced birefringence in polycrystalline ceramic active elements

    International Nuclear Information System (INIS)

    Kagan, M A; Khazanov, E A

    2003-01-01

    Polycrystalline ceramics differ significantly from single crystals in that the crystallographic axes (and hence of the axes of thermally induced birefringence) are oriented randomly in each granule of the ceramic. The quaternion formalism is employed to calculate the depolarisation in the ceramics and the efficiency of its compensation. The obtained analytic expressions are in good agreement with the numerical relations. It is shown that the larger the ratio of the sample length to the granule size, the closer the properties of the ceramics to those of a single crystal with the [111] orientation (in particular, the uncompensated depolarisation is inversely proportional to this ratio). (active media)

  15. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  16. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  17. Crack propagation under thermal cycling loading inducing a thermal gradient in the specimen thickness

    International Nuclear Information System (INIS)

    Le, H.N.

    2009-05-01

    This study aims to figure out the crack growth phenomenon by thermal fatigue induced by thermal gradient through thickness of specimen. Firstly, an experimental facility has been developed: a rectangular parallelepiped specimen is subjected to thermal cycling between 350 C and 100 C; the specimen is freed to expand and contract. Two semi-circular notches (0,1 mm depth and 4 mm length) have been machined on the surface of the specimen. A series of interrupted tests has been carried out to characterize and quantify the crack growth in depth and surface of the pre-existing crack. Next, a three-dimensional crack growth simulation has been implemented in ABAQUS. Automation using Python was used to simulate the propagation of a crack under thermal cycling, with re-meshing at crack front after each calculation step. No assumption has been taken on the crack front during the crack propagation. A comparison with test results showed very good agreement on the evolution of crack front shape and on the kinetics of propagation on the edge and the heart of pre-existing crack. An analytical approach was also developed based on the calculation of stress intensity factors (SIC). A two-dimensional approach was first introduced enabling us to better understand the influence of various thermal and geometric parameters. Finally, a three dimensional approach, with an elliptical assumption crack shape during the propagation, leading to a prediction of crack growth on the surface and in depth which is very similar to that obtained numerically, but with computational time much lower. (author)

  18. TOLERANCE TIME OF EXPERIMENTAL THERMAL PAIN (COLD INDUCED) IN VOLUNTEERS.

    Science.gov (United States)

    Vaid, V N; Wilkhoo, N S; Jain, A K

    1998-10-01

    Perception of thermal pain (cold induced) was studied in 106 volunteers from troops and civilians deployed in J & K. Thermal stimulus devised was "holding ice". Tolerance time of holding ice was taken to be a measure of thermal sensitivity, volunteers were classified based on their native areas, addiction habits and socio-economic status, out of 106 volunteers, 81 could & 25 could not hold ice over 10 min. Sixteen out of 40 from coastline States and 9 out of 66 from non-coast line States failed to hold ice over 10 min. In "below average" "average" and "high average" socio-economic groups, three out of 27, 19 out of 73 and 03 out of 6 failed to hold ice over 10 min respectively. Fifteen out of 64 from "addiction habit group" and 10 out of 42 from "no addiction habit group" failed to hold ice over 10 min. Statistically no classification used in the study revealed significant difference in "tolerance times" of volunteers except the one based on coastline and non-coastline States.

  19. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  20. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  1. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  2. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    Science.gov (United States)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  3. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  4. Time-dependent analytical thermal model to investigate thermally induced stresses in quasi-CW-pumped laser rods

    CSIR Research Space (South Africa)

    Bernhardi, EH

    2008-01-01

    Full Text Available that determines the temperature and the thermally induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown that it can also be used to accurately estimate the thermal effects in anisotropic rods...

  5. Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing

    DEFF Research Database (Denmark)

    Schuh, K.; Jahnke, F.; Lorke, Michael

    2011-01-01

    Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition...... to describe carrier scattering and dephasing in the corresponding simulations and allow to quantify the conditions to simultaneously invert an ensamble of quantum dots....

  6. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  7. Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.

    Science.gov (United States)

    Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G

    2018-06-01

    To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Assessing thermally induced errors of machine tools by 3D length measurements

    NARCIS (Netherlands)

    Florussen, G.H.J.; Delbressine, F.L.M.; Schellekens, P.H.J.

    2003-01-01

    A new measurement technique is proposed for the assessment of thermally induced errors of machine tools. The basic idea is to measure changes of length by a telescopic double ball bar (TDEB) at multiple locations in the machine's workspace while the machine is thermally excited. In addition thermal

  9. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain

  10. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    Science.gov (United States)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  11. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  12. Time evolution of damage in thermally induced creep rupture

    KAUST Repository

    Yoshioka, N.

    2012-01-01

    We investigate the time evolution of a bundle of fibers subject to a constant external load. Breaking events are initiated by thermally induced stress fluctuations followed by load redistribution which subsequently leads to an avalanche of breakings. We compare analytic results obtained in the mean-field limit to the computer simulations of localized load redistribution to reveal the effect of the range of interaction on the time evolution. Focusing on the waiting times between consecutive bursts we show that the time evolution has two distinct forms: at high load values the breaking process continuously accelerates towards macroscopic failure, however, for low loads and high enough temperatures the acceleration is preceded by a slow-down. Analyzing the structural entropy and the location of consecutive bursts we show that in the presence of stress concentration the early acceleration is the consequence of damage localization. The distribution of waiting times has a power law form with an exponent switching between 1 and 2 as the load and temperature are varied.

  13. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  14. Effects of thermal motion on electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-01-01

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  15. Raman study of vibrational dephasing in liquid CH3CN and CD3CN

    International Nuclear Information System (INIS)

    Schroeder, J.; Schiemann, V.H.; Sharko, P.T.; Jonas, J.

    1977-01-01

    The Raman line shapes of the ν 1 (a 1 ) C--H and C--D fundamentals in liquid acetonitrile and acetonitrile-d 3 have been measured as a function of pressure up to 4 kbar within the temperature interval 30--120 degreeC. Densities have also been determined. From the isotropic component of the vibrational Raman band shape the vibrational relaxation times have been obtained as a function of temperature and pressure (density). The experimental results can be summarized as follows: (i) as T increases at constant density rho, the vibrational relaxation rate (tau/sub vib/) -1 increases; (ii) at constant T as density is raised tau/sub vib/ -1 increases; (iii) at constant pressure the T increase produces higher tau/sub vib/ -1 , however, the change is more pronounced for the CD 3 CN liquid. Isotopic dilution studies of the CH 3 CN/CD 3 CN mixtures shows no significant effect on (tau/sub vib/ -1 ). The experimental data are interpreted in terms of the Kubo stochastic line shape theory and the dephasing model of Fischer and Laubereau. The results based on Kubo formalism indicate that dephasing is the dominant relaxation mechanism and that the modulation is fast. The isolated binary collision model proposed by Fischer and Laubereau for vibrational dephasing reproduces the essential features of the density and temperature dependence of the (tau/sub vib/) -1 and suggests that pure dephasing is the dominant broadening mechanism for the isotropic line shapes studied. In the calculation the elastic collision times were approximated by the Enskog relaxation times

  16. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    International Nuclear Information System (INIS)

    Paz-Silva, Gerardo A; Lee, Seung-Woo; Green, Todd J; Viola, Lorenza

    2016-01-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols. (paper)

  17. Quantum Metrology beyond the Classical Limit under the Effect of Dephasing

    Science.gov (United States)

    Matsuzaki, Yuichiro; Benjamin, Simon; Nakayama, Shojun; Saito, Shiro; Munro, William J.

    2018-04-01

    Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T . On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1 /T . However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1 /T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1 /T for an arbitrary time scale under the effect of dephasing. We use one-way quantum-computing-based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.

  18. Some aspects of thermally induced martensite in Fe-30% Ni-5% Cu alloy

    International Nuclear Information System (INIS)

    Guener, M.; Gueler, E.; Yasar, E.; Aktas, H.

    2007-01-01

    Kinetical, morphological, crystallographical and several thermal properties of thermally induced martensite in the austenite phase of Fe-30% Ni-5% Cu alloy were investigated. Scanning electron microscope (SEM), transmission electron microscope (TEM) and differential scanning calorimetry (DSC) techniques were used during study. Kinetics of the transformation was found to be as athermal type. SEM and TEM observations revealed α' (BCC) martensite formation in the austenite phase of alloy by thermal effect. These thermally induced α' martensites exhibited a thin plate-like morphology with twinnings

  19. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  20. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2008-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigenfunction series and the simple approximate one by the temperature profile method. Furthermore, thermal stress shell solutions were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay coefficient. The thermal stress shell solutions are described by two parameters. One is the ratio between the temperature decay coefficient and the load decay coefficient. Another is the nondimensional width of stratification. These solutions are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  1. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2007-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigen-function series and the simple approximate one by the temperature profile method. Furthermore, shell solutions of thermal stress were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay factor. The shell solutions of thermal stress are described by two parameters. One is the ratio between the temperature decay factor and the local decay factor. Another is the non-dimensional width of stratification. These solution are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  2. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    NARCIS (Netherlands)

    Tilstra, Arjen; Wijgerde, Tim; Dini-Andreote, Francisco; Eriksson, Britas Klemens; Salles, Joana Falcão; Pen, Ido; Osinga, Ronald; Wild, Christian

    2017-01-01

    Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal

  3. Thermal Strain-Induced Temperature Compensation of Diode Lasers

    National Research Council Canada - National Science Library

    Coldren, L

    2000-01-01

    .... The hybrid approach that we will describe makes use of a submount of dimensions comparable to those used on standard laser manufacturing, but made from a material chosen for a specific thermal...

  4. Thermal Strain Induced Temperature Compensation of Diode Lasers

    National Research Council Canada - National Science Library

    Coldren, L

    2000-01-01

    .... The hybrid approach that we will describe makes use of a submount of laser manufacturing, but made from a material chosen for a specific thermal expansion coefficient, either high or low compared...

  5. Charge transport and magnetoresistance of G4-DNA molecular device modulated by counter ions and dephasing effect

    International Nuclear Information System (INIS)

    Kang, Da-wei; Sun, Meng-le; Zuo, Zheng-wei; Wang, Hui-xian; Lv, Shi-jie; Li, Xin-zhong; Li, Li-ben

    2016-01-01

    The charge transport properties of the G4-DNA molecular device in the presence of counter ions and dephasing effect are investigated based on the Green function method and Landauer–Büttiker theory. The currents through the G4-DNA molecular device depend on the interference patterns at different coupling configurations. There is an effective electrostatic interaction between the counter ions and the G4-DNA molecule which introduces disorder into the on-site energies of G bases. The current through the device can be enhanced by the small disorder which avoids the strong interference of electrons at the same energy in some coupling configurations, however the diagonal disorder can suppress the overall current due to the Anderson localization of charge carriers when the disorder is large. In the presence of dephasing effect the current through the device at all coupling configurations can be enhanced as a result of the phase coherence losing of electron. As for the magnetic field response, the magnetoresistance of the device is always suppressed by the counter ions and dephasing effect. - Highlights: • The counter ions can some times enhance the current through G4-DNA molecule. • The dephasing effect can enhance the current of the device at all four coupling configurations. • The magnetoresistance is always suppressed by the counter ions and dephasing effect.

  6. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  7. Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems

    Science.gov (United States)

    Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki

    1989-10-01

    Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.

  8. Histological and Physiological Alterations Induced by Thermal Neutron Fluxes in Male Swiss Albino Mice

    International Nuclear Information System (INIS)

    Alzergy, A.A.; Emara, N.M.; Abd El-Latif, A.A.; El-Saady, S.M.M.; Emara, N.M.; Abd El-Latif, A.A.

    2010-01-01

    This work was performed to investigate the biological effects of different thermal neutron fluxes (0.27x10 8 , 0.52X10 8 , 1.089X10 8 , 2.16X10 8 and 4.32X10 8 ) on liver and kidney of male mice using neutron irradiation cell with Ra-Be(α,n) 3 mCi neutron source Leybold (55930). Exposed to various fluxes of thermal neutron induced a dramatic alterations in hepatic and renal functions as indicated by biochemical estimation of several parameters (bilirubin, SGT, and alkaline phosphate .Urea , total protein, and albumin) and confirmed by histological examinations Thermal neutron exposure induces marked increase in the serum activities of total bilirubin, alanine amino transaminase (ALT or GPT), and alkaline phosphate, whereas, urea, total protein and albumin showed marked decline as compared to control group. The physiological changes induced in thermal neutron fluxes dependent manner. Histopathological results revealed mild to severe type of necrosis, and degenerative changes in liver and kidney of male mice exposed to thermal neutron fluxes. Also it was found that the histopathological alterations induced in thermal neutron fluxes dependent manner. It was found that exposed to thermal neutron fluxes irradiation plays prominent role in the development of the physiological alterations in male Swiss albino mice. The Former up normalities as a result of the sequence events followed interaction of radiation with the former biological mater (liver and kidney) of male Swiss albino mice, which are, physical, physicochemical, chemical, and biological stages.

  9. Semiclassical Monte Carlo simulation studies of spin dephasing in InP and InSb nanowires

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2012-03-01

    Full Text Available We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSb nanowires. D’yakonov-Perel (DP relaxation and Elliott-Yafet (EY relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction and structural inversion asymmetry (Rashba spin-orbit interaction. The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSb nanowires. The steady state spin distribution also shows a difference between the two III-V nanowires.

  10. Magnetic islands in tokamaks induced by thermal filamentation

    International Nuclear Information System (INIS)

    Dubois, M.A.; Mohamed-Benkadda, M.S.

    1991-11-01

    The thermal instability of filamentation is revisited in the fully nonlinear regime of a system of cool magnetic island chains, taking into account: the different transport processes inside and outside island cores, and a realistic temperature dependence of radiative losses. This mechanism is found to be a plausible candidate to explain the anomalous electron energy transport

  11. Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    International Nuclear Information System (INIS)

    Hodgson, Thomas E.; D'Amico, Irene; Viola, Lorenza

    2010-01-01

    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform versus nonuniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a different representation of the controlled qubit evolution, where the decoherence behavior after an arbitrary number of pulses is directly expressed in terms of the uncontrolled decoherence function. In particular, analytical expressions are obtained for approximation of the long- and short-term coherence behavior for both Ohmic and supra-Ohmic environments. By focusing on the realistic case of pure dephasing in an excitonic qubit, we quantitatively assess the impact of physical constraints on achievable pulse separations, and show that little advantage of high-level decoupling schemes based on concatenated or optimal design may be expected if pulses cannot be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic-echo protocols can offer significantly improved coherence preservation in realistic parameter regimes. We expect similar conclusions to be relevant to other constrained qubit devices exposed to quantum or classical phase noise.

  12. Harvesting thermal fluctuations: Activation process induced by a nonlinear chain in thermal equilibrium

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Romero, Aldo H.; Sancho, J. M.; Lindenberg, Katja

    2000-01-01

    We present a model in which the immediate environment of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin form. The molecular chain consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs and leads to different transition dynamics for the activated process. Thus, all else (temperature, damping, coupling parameters between the chain and the bistable system) being the same, the hard chain may provide an environment described as diffusion-limited and more effective in the activation process, while the soft chain may provide an environment described as energy-limited and less effective. The importance of a detailed understanding of the thermal environment toward the understanding of the activation process itself is thus highlighted. (c) 2000 American Institute of Physics

  13. Thermal induced structural transformation of bimetallic AuPd nanoparticles

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2014-01-01

    High Angle Annular Dark Field Scanning Transmission Electron Microscope (HAADF-STEM) has been employed for the study of thermal effects of structural transformation of AuPd nanoparticles produced by physical vapour deposition. Depending on the duration of annealing at a temperature of 500 K, atomic resolved imaging analysis reveals the formation of various structure morphologies from the ordered L1 2 superlattice to the core-shell structure. The effects of Pd-oxides are also discussed

  14. Thermalization as an invisibility cloak for fragile quantum superpositions

    Science.gov (United States)

    Hahn, Walter; Fine, Boris V.

    2017-07-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.

  15. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi

    2017-11-01

    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  16. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    Science.gov (United States)

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  17. Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1982-04-01

    The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.

  18. Alpha-induced instabilities in tandem thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    A major premise in the operation of Tandem Mirror reactors is that the fusion reactions take place in the central cell only. The alpha particles generated by the Deuterium-Tritium (DT) fusions, along with other ions, will however pass from the central cell to the thermal barriers and return to the central cell as a result of reflection by the potential hills that exist by the plugs' side of these barriers. This streaming motion gives rise to electrostatic and electomagnetic instabilities which could detract from the barrier's function as a thermal insulator. The number density and streaming velocity of these passing particles are dictated by the electrostatic potential variation and the magnetic field structure in these regions. It is shown that, in the absence of alphas, barriers with deep potential depression are less susceptible to electrostatic instabilities while particularly vulnerable to unstable electromagnetic modes. In the presence of alphas, especially the fast alphas whose mean energy is significantly larger than the barrier potentials they see, (which is twice as high as that seen by the ions) both types of modes become unstable.

  19. Quantum fields on manifolds: PCT and gravitationally induced thermal states

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1982-01-01

    We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field

  20. Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization.

    Science.gov (United States)

    Agustin, Melissa B; Nakatsubo, Fumiaki; Yano, Hiroyuki

    2017-05-15

    The study demonstrated the improvement in the resistance of nanocellulose against thermally-induced depolymerization by esterification with benzoyl (BNZ) and pivaloyl (PIV). The change in the degree of polymerization (DP) and molecular weight distribution (MWD) after thermal treatment in nitrogen and in air was investigated using viscometry and gel permeation chromatography. BNZ and PIV nanocellulose esters without α-hydrogens gave higher DP and narrower MWD than pure bacterial cellulose; and the acetyl and myristoyl esters, which possess α-hydrogens. Results also showed that when depolymerization is suppressed, thermal discoloration is also reduced. Resistance against depolymerization inhibits the formation of reducing ends which can be active sites for thermal discoloration. Finally, the findings suggest that benzoylation and pivaloylation can be an excellent modification technique to improve the thermal stability of nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  2. Time-Resolved Speckle Analysis: A New Approach to Coherence and Dephasing of Optical Excitations in Solids

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Zimmermann, R.

    1999-01-01

    ). This method determines the decays of intensity and coherence separately, thus distinguishing lifetime from pure dephasing. The secondary emission of excitons in semiconductor quantum wells is investigated. Here the combination of static disorder and inelastic scattering leads to a partially coherent emission....... The temperature dependence is well explained by phonon scattering....

  3. Stability of thermally induced copper precipitates under neutron irradiation

    International Nuclear Information System (INIS)

    Phythian, W.J.; Dumbill, S.; Brown, P.; Sinclair, R.

    1993-01-01

    Model Fe 1.3%Cu and Fe 1.3%Cu 1.1%Ni alloys have been thermally aged at 550 C for 2 hours (peak) and 10 hours prior to irradiation at 288 C to a dose of 5.10 22 n/m 2 . Results of a microstructural investigation using dedicated field emission gun scanning transmission electron microscopy (FEGSTEM) and small angle neutron scattering (SANS) to assess precipitate stability in the binary alloy, are presented. These data are then used to predict a hardness change as a result of copper precipitation for comparison with the measured values obtained using standard 5 kg Vickers hardness tests on the SANS samples. Implications of these data to the re-embrittlement of the RPV by subsequent copper precipitation is discussed. (authors). 16 refs., 5 figs., 5 tabs

  4. Stability of thermally induced copper precipitates under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Phythian, W J; Dumbill, S; Brown, P; Sinclair, R [AEA Technology, Harwell (United Kingdom)

    1994-12-31

    Model Fe 1.3%Cu and Fe 1.3%Cu 1.1%Ni alloys have been thermally aged at 550 C for 2 hours (peak) and 10 hours prior to irradiation at 288 C to a dose of 5.10{sup 22} n/m{sup 2}. Results of a microstructural investigation using dedicated field emission gun scanning transmission electron microscopy (FEGSTEM) and small angle neutron scattering (SANS) to assess precipitate stability in the binary alloy, are presented. These data are then used to predict a hardness change as a result of copper precipitation for comparison with the measured values obtained using standard 5 kg Vickers hardness tests on the SANS samples. Implications of these data to the re-embrittlement of the RPV by subsequent copper precipitation is discussed. (authors). 16 refs., 5 figs., 5 tabs.

  5. Thermal-hydraulic analyses of pressurized-thermal-shock-induced vessel ruptures

    International Nuclear Information System (INIS)

    Dobranich, D.

    1982-05-01

    A severe overcooling transient was postulated to produce vessel wall temperatures below the nil-ductility transition temperature which in conjunction with system repressurization, led to vessel rupture at the core midplane. Such transients are referred to as pressurized-thermal-shock transients. A wide range of vessel rupture sizes were investigated to assess the emergency system's ability to cool the fuel rods. Ruptures greater than approximately 0.015 m 2 produced flows greater than those of the emergency system and resulted in core uncovery and subsequent core damage

  6. Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs

    Science.gov (United States)

    Vallée, F.; Ganikhanov, F.; Bogani, F.

    1997-11-01

    The relaxation dynamics of coherent phononlike LO-phonon-plasmon hybrid modes is investigated in n-doped GaAs using an infrared time-resolved coherent anti-Stokes Raman scattering technique. Measurements performed for different crystal temperatures in the range 10-300 K as a function of the electron density injected by doping show a large reduction of the hybrid mode dephasing time compared to the bare LO-phonon one for densities larger than 1016 cm-3. The results are interpreted in terms of coherent decay of the LO-phonon-plasmon mixed mode in the weak-coupling regime and yield information on the plasmon and electron relaxation. The estimated average electron momentum relaxation times are smaller than those deduced from Hall mobility measurements, as expected from our theoretical model.

  7. Interactions, Disorder and Dephasing in Superconducting Films and Quantum Hall Systems

    International Nuclear Information System (INIS)

    Auerbach, A.

    1999-01-01

    It is shown that a large class of two dimensional Superconductor to Insulator (SC-I), and (Quantum Hall to Insulator (QH-I) transitions can be understood by assuming that the thermodynamic transition in the clean system is first order. The finite correlation lengths at that transition yield a natural separation of the disorder into short and long wavelengths which are then straightforward to incorporate perturbatively and semi classically respectively. This approach reduces problems of disorder+interactions to puddle network models, whose studies have already yielded insight into experiments of QH-I and SC-I. For the CQH-I, the difference between Landauer-Buttiker and Boltzman theories highlights effects of dephasing

  8. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    Science.gov (United States)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  9. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  10. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  11. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  12. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    Science.gov (United States)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  13. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  14. Period doubling induced by thermal noise amplification in genetic circuits

    KAUST Repository

    Ruocco, G.

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  15. Thermal and radiation induced polymerisation of carbon sub-oxide

    International Nuclear Information System (INIS)

    Schmidt, Michel

    1964-03-01

    This research thesis addresses the study of the polymerisation of carbon sub-oxide (C 3 O 2 ) in gaseous phase. As this work is related to other researches dealing with the reactions of the graphite-CO 2 system which occur in graphite-moderated nuclear reactors, a first intention was to study the behaviour of C 3 O 2 when submitted to radiations. Preliminary tests showed that the most remarkable result of this action was the formation of a polymer. It was also noticed that the polymerisation of this gas was spontaneous however slower at room temperature. The research thus focused on this polymerisation, and on the formula of the obtained polymer. After some generalities, the author reports the preparation, purification and storage and conservation of the carbon sub-oxide. The next parts report the kinetic study of thermal polymerisation, the study of polymerisation under γ rays, the study of the obtained polymer by using visible, UV and infrared spectroscopy, electronic paramagnetic resonance, and semi-conductivity measurements [fr

  16. Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb

    Science.gov (United States)

    Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.

    2007-12-01

    A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.

  17. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  18. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  19. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers

    International Nuclear Information System (INIS)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 μm laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 μm excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 μm excitation than for 10 μm excitation, reflecting bottlenecking in the discrete region of 10 μm excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF 6 caused by vibrational self-quenching. Between 1000-3000 cm -1 of energy is removed from SF 6 excited to approx. > 60 kcal/mole by collision with a cold SF 6 molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF 4 as absorbing gas for the CO 2 laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail

  20. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation

    NARCIS (Netherlands)

    Heijkants, R. G. J. C.; van Calck, R. V.; van Tienen, T. G.; de Groot, J. H.; Pennings, A. J.; Buma, P.; Veth, R. P. H.; Schouten, A. J.

    2008-01-01

    Porous scaffolds have been made from two polyurethanes based on thermally induced phase separation of polymer dissolved in a DMSO/water mixture in combination with salt leaching. It is possible to obtain very porous foams with a very high interconnectivity. A major advantage of this method is that

  1. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  2. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  3. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  4. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  5. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  6. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Z., E-mail: pscientific5@aec.org.sy [Scientific Service Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Chemistry Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic)

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  7. Transient, heat-induced thermal resistance in the small intestine of mouse

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1980-01-01

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44 0 C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5 0 C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0 0 C for 60 min) was followed at varying intervals by a test treatment at 43.0 0 C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D 0 and a decrease in n compared with curves from previously unheated intestine

  8. Thermal effects induced by laser ablation in non-homogeneous limestone covered by an impurity layer

    Science.gov (United States)

    Cocean, Alexandru; Pelin, Vasile; Cazacu, Marius Mihai; Cocean, Iuliana; Sandu, Ion; Gurlui, Silviu; Iacomi, Felicia

    2017-12-01

    This paper reports preliminary results concerning thermal effects induced by urban/industrial air pollutants deposited on a limestone rock when heated by pulsed laser in the cleaning process. The process of laser cleaning treatment of the crust is simulated using COMSOL Multiphysics 4.4, finite element analysis software. Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy and Laser Induced Breakdown Spectroscopy techniques have been used to analyze the chemical composition of the samples. Two elements found as being present into the dust and in the crust, such as iron and magnesium particles are used for simulation in COMSOL. Therefore, the profiles heat evolutions on the crust surface and inside limestone are obtained as thermal interactions between the three components (iron, magnesium and limestone), simulating the non-homogeneous materials. It has been observed that iron impurities caused by the dust deposition may damage the limestone through a process of overheating, as a consequence of a high thermal conduction phenomenon, recorded for the region with iron impurities and sizes of micrometric order are localized. The thermal contact between the three components results in plots that reflect their thermal interactions.

  9. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  10. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  11. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    Science.gov (United States)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  12. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  13. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    International Nuclear Information System (INIS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-01-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe_2O_3, Fe_3O_4, NiO and Co_3O_4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe_3O_4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe_3O_4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co_3O_4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  14. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_cim@rediffmail.com [Research and Innovation Centre (DRDO), Indian Institute of Technology Madras Research Park, Chennai 600 113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Dhar, Purbarun, E-mail: purbarun@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Nandi, Tandra, E-mail: tandra_n@rediffmail.com [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208 013 (India); Das, Sarit K., E-mail: skdas@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, NiO and Co{sub 3}O{sub 4} dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe{sub 3}O{sub 4}/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe{sub 3}O{sub 4}/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co{sub 3}O{sub 4} nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  15. Acoustic phonon dephasing in shallow GaAs/Ga 1- xAl xAs single quantum wells

    Science.gov (United States)

    Cassabois, G.; Meccherini, S.; Roussignol, Ph.; Bogani, F.; Gurioli, M.; Colocci, M.; Planel, R.; Thierry-Mieg, V.

    1998-07-01

    The intermediate dimensionality regime is studied on a set of shallow GaAs/Ga 1- xAl xAs single quantum wells. Such heterostructures exhibit 2D strong excitonic electroabsorption together with near 3D fast transport properties. We report dephasing time measurements ( T2) of the heavy-hole exciton and we show that the acoustic phonon contribution decreases with x to a value in good agreement with theoretical predictions for GaAs bulk.

  16. Oscillation and decay of particle current due to a quench and dephasing in an interacting fermionic system

    OpenAIRE

    Choo, Kenny; Bissbort, Ulf; Poletti, Dario

    2017-01-01

    We study the response of a particle current to dissipative dephasing in an interacting, few-body fermionic lattice system. The particles are prepared in the ground state in presence of an artificial magnetic gauge field, which is subsequently quenched to zero. The initial current decays non-trivially in the dissipative environment and we explore the emerging dynamics and its dependence on various system parameters.

  17. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans

    DEFF Research Database (Denmark)

    Rasmussen, V M; Borgen, A E; Jansen, E C

    2015-01-01

    BACKGROUND: Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. METHODS...... was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). CONCLUSIONS: The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury......, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment....

  18. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  19. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  20. Hot colors: the nature and specificity of color-induced nasal thermal sensations.

    Science.gov (United States)

    Michael, George A; Galich, Hélène; Relland, Solveig; Prud'hon, Sabine

    2010-03-05

    The nature of the recently discovered color-induced nasal thermal sensations was investigated in four Experiments. Subjects were required to fixate a bottle containing a red or green solution presented centrally (Exp1 and Exp4) or laterally (Exp2) and to sniff another bottle, always the same one, but which they were not allowed to see, containing 10 ml of a colorless, odorless and trigeminal-free solution. Each nostril was tested separately, and subjects were asked whether the sniffed solution induced warming or cooling sensations (plus an ambient sensation in Exp4) in the nasal cavity. The results of Experiments 1 and 2 confirmed the warming/left nostril-cooling/right nostril dissociation, suggesting the existence of different lateralized processes for thermal processing. However, Experiment 2 failed to demonstrate dominance of warming responses when subjects' eyes were directed to the left or cooling responses when they were directed to the right. Nor did gaze direction interact with the tested nostril. This suggests that the color-induced thermal sensations are specifically related to the nasal trigeminal system, rather than a general process related to general hemispheric activity. When the exposed bottles were colorless (Exp3), no lateralized patterns were observed, suggesting, in combination with the results of Experiments 1 and 2, that both color cues and nasal stimulations are necessary for lateralized patterns to arise. Rendering the temperature judgment even more difficult (Exp4), made the lateralized patterns shift towards the associated (i.e., ambient) responses. The results are discussed in a general framework which considers that, even in the absence of real thermal stimulus, preparing to process thermal stimuli in the nasal cavity may activate the underlying lateralized neural mechanisms, and that those mechanisms are reflected in the responses. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Arjen Tilstra

    2017-10-01

    Full Text Available Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1 for 31 days, followed by artificially induced heat stress (∼33.4 °C. We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

  2. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Directory of Open Access Journals (Sweden)

    Pauza Mary E

    2008-03-01

    Full Text Available Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN. The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ-induced and transgene-mediated murine models of type 1 diabetes (T1D, we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1 expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL. An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG, and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.

  3. Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier

    International Nuclear Information System (INIS)

    Vyatkin, A G; Khazanov, Efim A

    2009-01-01

    Taking into account the temperature dependences of the heat conductivity, the refractive index, and the thermal expansion coefficient, we calculated the temperature, elastic stresses, a thermally induced lens and depolarisation of a beam in a cryogenic disk amplifier (an Yb:YAG disk placed between a copper cylinder and a sapphire disk cooled by liquid nitrogen). When the active element (the thickness is 0.6 mm, the orientation is [001], the atomic concentration of Yb is 10%) is pumped by radiation from a diode laser (the beam diameter is 6 mm), the temperature does not exceed 140 K for the heat release power of 100 W. In this case, elastic stresses in the active element are six times lower than the maximum permissible value. The focal distance of the thermally induced lens is 5.5 m and the depolarisation rate is 0.038% per two passes through the active element. Although the heat conductivity of the active element rapidly decreases with temperature, the thermal load can be increased by 1.5-2 times when the dimensions of the active element remain constant. (active media)

  4. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom

    Science.gov (United States)

    Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai

    2017-12-01

    The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.

  5. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    Science.gov (United States)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  6. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection

    DEFF Research Database (Denmark)

    Calum, H.; Moser, C.; Jensen, P. O.

    2009-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6% third-degree burn...... injury was induced in mice with a hot-air blower. The third-degree burn was confirmed histologically. The mice were allocated into five groups: control, shave, burn, infection and burn infection group. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group...... of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization...

  7. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  8. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  9. Stem and stripe rust resistance in wheat induced by gamma rays and thermal neutrons

    International Nuclear Information System (INIS)

    Skorda, E.A.

    1977-01-01

    Attempts were made to produce rust-resistant mutants in wheat cultivars. Seeds of G-38290 and G-58383 (T. aestivum), Methoni and Ilectra (T. durum) varieties were irradiated with different doses of γ-rays (3.5, 5, 8, 11, 15 and 21 krad) and thermal neutrons (1.7, 4, 5.5, 7.5, 10.5 and 12.5x10 12 ) and the M 1 plants were grown under isolation in the field. The objective was mainly to induce stripe, leaf and stem rust resistance in G-38290, Methoni and Ilectra varieties and leaf rust resistance in G-58383. Mutations for rust resistance were detected by using the ''chimera method'' under natural and artificial field epiphytotic conditions in M 2 and successive generations. The mutants detected were tested for resistance to a broad spectrum of available races. Mutants resistant or moderately resistant to stripe and stem rusts but not to leaf rust, were selected from G-38290. From the other three varieties tested no rust-resistant mutants were detected. The frequency of resistant mutants obtained increased with increased γ-ray dose-rate, but not with increased thermal neutron doses. Some mutants proved to be resistant or moderately resistant to both rusts and others to one of them. Twenty of these mutants were evaluated for yield from M 5 to M 8 . Some of them have reached the final stage of regional yield trials and one, induced by thermal neutrons, was released this year. (author)

  10. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  11. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    Science.gov (United States)

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  12. Factors influencing the thermally-induced strength degradation of B/Al composites

    Science.gov (United States)

    Dicarlo, J. A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed. Previously announced in STAR as N82-24297

  13. Factors influencing the thermally-induced strength degradation of B/Al composites

    International Nuclear Information System (INIS)

    Dicarlo, J.A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed

  14. Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.

    Science.gov (United States)

    Mullaney, Benjamin R; Goux-Capes, Laurence; Price, David J; Chastanet, Guillaume; Létard, Jean-François; Kepert, Cameron J

    2017-10-20

    External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.

  15. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  16. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  17. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  18. Thermally induced outdiffusion studies of deuterium in ceramic breeder blanket materials after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    González, Maria, E-mail: maria.gonzalez@ciemat.es [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Carella, Elisabetta; Moroño, Alejandro [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), Karlsruhe (Germany)

    2015-10-15

    Highlights: • Surface defects in Lithium-based ceramics are acting as trapping centres for deuterium. • Ionizing radiation affects the deuterium sorption and desorption processes. • By extension, the release of the tritium produced in a fusion breeder will be effective. - Abstract: Based on a KIT–CIEMAT collaboration on the radiation damage effects of light ions sorption/desorption in ceramic breeder materials, candidate materials for the ITER EU TBM were tested for their outgassing behavior as a function of temperature and radiation. Lithium orthosilicate based pebbles with different metatitanate contents and pellets of the individual oxide components were exposed to a deuterium atmosphere at room temperature. Then the thermally induced release of deuterium gas was registered up to 800 °C. This as-received behavior was studied in comparison with that after exposing the deuterium-treated samples to 4 MGy total dose of gamma radiation. The thermal desorption spectra reveal differences in deuterium sorption/desorption behavior depending on the composition and the induced ionizing damage. In these breeder candidates, strong desorption rate at approx. 300 °C takes place, which slightly increases with increasing amount of the titanate second phase. For all studied materials, ionizing radiation induces electronic changes disabling a number of trapping centers for D{sub 2} adsorption.

  19. Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers

    Science.gov (United States)

    Lima, V.; Hossain, U. H.; Walbert, T.; Seidl, T.; Ensinger, W.

    2018-03-01

    The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.

  20. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  1. ESR Study Applied To Thermal Stability Of Radiation-Induced Species Of Solid Ketoprofen

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Katusin-Razem, B.; Razem, D.

    2015-01-01

    Ketoprofen [2-(3-benzoylphenyl) propionic acid] is a non-steroidal anti-inflammatory drug. It has been widely used in human and veterinary medicine. Radiation processing of drugs and its ingredients is recognized as a safe and effective method among the existing technologies for sterilization and protocols that can be found in ISO 11137-1. Radiosterilization of drugs or other medical products by a suitable dose of ionizing radiation conducted in an appropriate environment ensures sterile conditions by destroying or removing vegetative and sporulating microbes from the ingredients or environment. In earlier studies the effects of gamma radiation was evaluated by selected physico-chemical methods and the observations showed that solid ketoprofen is relatively stable toward ionizing irradiation and that radiosterilization might be a suitable method for the sterilization of solid ketoprofen. The studies reported in this work were undertaken to analyse thermal stability of free radicals by accelerated aging method with a view to the determination of shelf-life. The expiration date (shelf-life) of a product is based on evaluation of both, thermal stability of free radicals, as well as on the time evolution of stable radiolysis products. Namely, storage time is determined by the time required by any degradation product in the dosage form to achieve a sufficient level to represent a risk to the patient. This work shows that ESR spectroscopy provides means for determination of thermal stability of radicals induced by gamma-irradiation in solid drugs. Therefore, despite the complex mixture of individual free radicals induced by gamma-irradiation in solid ketoprofen, the overall lifetime of free radicals could be determined by using isothermal and isochronal annealing. This study shows that radicals induced by gamma-irradiation in solid ketoprofen are stable for at least about 6 months. (author).

  2. Thermal injury lowers the threshold for radiation-induced neuroinflammation and cognitive dysfunction.

    Science.gov (United States)

    Cherry, Jonathan D; Williams, Jacqueline P; O'Banion, M Kerry; Olschowka, John A

    2013-10-01

    The consequences of radiation exposure alone are relatively well understood, but in the wake of events such as the World War II nuclear detonations and accidents such as Chernobyl, other critical factors have emerged that can substantially affect patient outcome. For example, ~70% of radiation victims from Hiroshima and Nagasaki received some sort of additional traumatic injury, the most common being thermal burn. Animal data has shown that the addition of thermal insult to radiation results in increased morbidity and mortality. To explore possible synergism between thermal injury and radiation on brain, C57BL/6J female mice were exposed to either 0 or 5 Gy whole-body gamma irradiation. Irradiation was immediately followed by a 10% total-body surface area full thickness thermal burn. Mice were sacrificed 6 h, 1 week or 6 month post-injury and brains and plasma were harvested for histology, mRNA analysis and cytokine ELISA. Plasma analysis revealed that combined injury synergistically upregulates IL-6 at acute time points. Additionally, at 6 h, combined injury resulted in a greater upregulation of the vascular marker, ICAM-1 and TNF-α mRNA. Enhanced activation of glial cells was also observed by CD68 and Iba1 immunohistochemistry at all time points. Additionally, doublecortin staining at 6 months showed reduced neurogenesis in all injury conditions. Finally, using a novel object recognition test, we observed that only mice with combined injury had significant learning and memory deficits. These results demonstrate that thermal injury lowers the threshold for radiation-induced neuroinflammation and long-term cognitive dysfunction.

  3. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  4. The effect of thermal treatment on radiation-induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Vorona, I.P.; Ishchenko, S.S.; Baran, N.P.

    2005-01-01

    The effect of thermal treatment on the radiation-induced EPR spectrum of tooth enamel was studied. Annealing before sample irradiation was found to increase enamel radiation sensitivity by more than 40%. Depending on the annealing conditions the EPR signals of three supplementary radiation radicals were observed in addition to the main signal caused by CO 2 - radicals. It was found that the presence of these signals in the enamel EPR spectra provides evidence of sample annealing. The possibility of obtaining information about sample history by studying the additional EPR signals is discussed. It can be important to EPR dating and EPR dosimetry

  5. Thermally induced motion of marine sediments resulting from disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Chavez, P.F.; Dawson, P.R.

    1981-01-01

    Coupled creep and heat transfer calculations have been performed to assess the sensitivity of heat load, viscosity, and canister density on the motion of waste canisters buried in marine sediments. Results indicate that no upward movement is predicted for heat loads remaining within the metallurgical and geochemical constraints placed on the temperature of sediments near the canister for the times analyzed. Upward movement of the canister is again not observed in calculations involving reasonable variations of the sediment viscosity and canister density. Maximum effective deviatoric stress levels due to thermally induced differential body forces are significantly less than the sediment's short term peak strength

  6. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    Science.gov (United States)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  7. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  8. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  9. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Quang Cong [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France); Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi (Viet Nam); Nguyen, Dam Thuy Trang; Do, Minh Thanh; Luong, Mai Hoang; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep, E-mail: nlai@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan (France)

    2016-05-02

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  10. Spectroscopic Evidence for Exceptional Thermal Contribution to Electron-Beam Induced Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Marissa A.; Haynor, Ben; Aloni, Shaul; Ogletree, D. Frank; Wong, H.-S. Philip; Urban, Jeffrey J.; Milliron, Delia J.

    2010-11-16

    While electron beam induced fragmentation (EBIF) has been reported to result in the formation of nanocrystals of various compositions, the physical forces driving this phenomenon are still poorly understood. We report EBIF to be a much more general phenomenon than previously appreciated, operative across a wide variety of metals, semiconductors and insulators. In addition, we leverage the temperature dependent bandgap of several semiconductors to quantify -- using in situ cathodoluminescence spectroscopy -- the thermal contribution to EBIF, and find extreme temperature rises upwards of 1000K.

  11. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A.

    1997-01-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  12. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A.

    1999-01-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  13. UV induced photoluminescence and thermally stimulated luminescence of ThO2:Tb3+ phosphor

    International Nuclear Information System (INIS)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G.

    2000-01-01

    Thorium oxide doped with trivalent terbium ions offers itself as a novel phosphor with its photo- and thermally-stimulated luminescence (PL and TSL) characteristics showing a marked change on sustained exposure to 254 and 365 nm ultraviolet (UV) radiation. The reduction in luminescence intensity of Tb 3+ ions, on irradiation with 254 nm photons and subsequent restoration on exposure to 365 nm, has been correlated with the complimentary behaviour in UV-induced TSL. These changes are, in turn, ascribed to inter-configurational (f-d) transitions and e-h formation and recombination processes. UV radiation induced TSL output increases linearly with incident UV radiant energy at a constant radiation flux; however, for a fixed exposure, TSL output increases with increase in radiant flux

  14. Thermal stability and practical applications of UV induced index changes in silica glasses

    DEFF Research Database (Denmark)

    Rathje, Jacob

    2000-01-01

    This thesis represents the partial fulfilment of the requirements for the danish ph.d. degree. I have been involved in both basic research of UV induced refractive index changes in silica glasses and in concrete applications. I have performed work on the thermal stability of UV-induced index...... the asymmetry showed good agreement with the obeserved data. The results were used to make a direction sensitive bend sensor of only one fiber. The sensor has further the advantage that it is insensitve to cross sensitivity from temperature, strin, and other external factors. Finally, an investigation of Nragg...... changes in silica glasses where a new continuous isochronal annealing method was introduced. The method was applied to gratings written in D2-loaded fibers and non-loaded fibers. For the non-loaded fibers the obtained results are in good agreement with what has previously been observed. For the D2-loaded...

  15. Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Lu, Yunyou; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-12-01

    In this work, we attempt to reveal the underlying mechanisms of divergent V{sub TH}-thermal-stabilities in III-nitride metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) and MOS-Channel-HEMT (MOSC-HEMT). In marked contrast to MOSC-HEMT featuring temperature-independent V{sub TH}, MIS-HEMT with the same high-quality gate-dielectric/III-nitride interface and similar interface trap distribution exhibits manifest thermally induced V{sub TH} shift. The temperature-dependent V{sub TH} of MIS-HEMT is attributed to the polarized III-nitride barrier layer, which spatially separates the critical gate-dielectric/III-nitride interface from the channel and allows “deeper” interface trap levels emerging above the Fermi level at pinch-off. This model is further experimentally validated by distinct V{sub G}-driven Fermi level movements at the critical interfaces in MIS-HEMT and MOSC-HEMT. The mechanisms of polarized III-nitride barrier layer in influencing V{sub TH}-thermal-stability provide guidelines for the optimization of insulated-gate III-nitride power switching devices.

  16. Colour centre recovery in yttria-stabilised zirconia: photo-induced versus thermal processes

    Science.gov (United States)

    Costantini, Jean-Marc; Touati, Nadia; Binet, Laurent; Lelong, Gérald; Guillaumet, Maxime; Beuneu, François

    2018-05-01

    The photo-annealing of colour centres in yttria-stabilised zirconia (YSZ) was studied by electron paramagnetic resonance spectroscopy upon UV-ray or laser light illumination, and compared to thermal annealing. Stable hole centres (HCs) were produced in as-grown YSZ single crystals by UV-ray irradiation at room temperature (RT). The HCs produced by 200-MeV Au ion irradiation, as well as the F+-type centres (? centres involving oxygen vacancies) were left unchanged upon UV illumination. In contrast, a significant photo-annealing of the latter point defects was achieved in 1.4-MeV electron-irradiated YSZ by 553-nm laser light irradiation at RT. Almost complete photo-bleaching was achieved by laser irradiation inside the absorption band of ? centres centred at a wavelength 550 nm. Thermal annealing of these colour centres was also followed by UV-visible absorption spectroscopy showing full bleaching at 523 K. Colour-centre evolutions by photo-induced and thermally activated processes are discussed on the basis of charge exchange processes between point defects.

  17. Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors

    International Nuclear Information System (INIS)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Lu, Yunyou; Chen, Kevin J.

    2014-01-01

    In this work, we attempt to reveal the underlying mechanisms of divergent V TH -thermal-stabilities in III-nitride metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) and MOS-Channel-HEMT (MOSC-HEMT). In marked contrast to MOSC-HEMT featuring temperature-independent V TH , MIS-HEMT with the same high-quality gate-dielectric/III-nitride interface and similar interface trap distribution exhibits manifest thermally induced V TH shift. The temperature-dependent V TH of MIS-HEMT is attributed to the polarized III-nitride barrier layer, which spatially separates the critical gate-dielectric/III-nitride interface from the channel and allows “deeper” interface trap levels emerging above the Fermi level at pinch-off. This model is further experimentally validated by distinct V G -driven Fermi level movements at the critical interfaces in MIS-HEMT and MOSC-HEMT. The mechanisms of polarized III-nitride barrier layer in influencing V TH -thermal-stability provide guidelines for the optimization of insulated-gate III-nitride power switching devices

  18. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  19. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vy, Nguyen Duy, E-mail: nguyenduyvy@tdt.edu.vn [Theoretical Physics Research Group, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Tri Dat, Le [Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 748355 (Viet Nam); Iida, Takuya [Department of Physical Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5–10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  20. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  1. The analgesic effect of different antidepressants combined with aspirin on thermally induced pain in Albino mice

    Directory of Open Access Journals (Sweden)

    Abdalla S. Elhwuegi

    2012-04-01

    Full Text Available Background:Combination analgesics provide more effective pain relief for a broader spectrum of pain. This research examines the possible potentiation of the analgesic effect of different classes of antidepressants when combined with aspirin in thermal model of pain using Albino mice.Methods:Different groups of six animals each were injected intraperitoneally by different doses of aspirin (50, 100, or 200 mg/kg, imipramine (2.5, 7.5, 15 or 30 mg/kg, fluoxetine (1.25, 2.5, 5 or 7.5 mg/kg, mirtazapine (1.25, 2.5, or 5 mg/kg and a combination of a fixed dose of aspirin (100 mg/kg with the different doses of the three antidepressants. One hour later the analgesic effect of these treatments were evaluated against thermally induced pain. All data were subjected to statistical analysis using unpaired Student's t-test.Results:Aspirin had no analgesic effect in thermally induced pain. The three selected antidepressants produced dose dependent analgesia. The addition of a fixed dose of aspirin to imipramine significantly increased the reaction time (RT of the lowest dose (by 23% and the highest dose (by 20%. The addition of the fixed dose of aspirin to fluoxetine significantly increased RT by 13% of the dose 2.5 mg/Kg. Finally, the addition of the fixed dose of aspirin significantly potentiated the antinociceptive effect of the different doses of mirtazapine (RT was increased by 24, 54 and 38% respectively.Conclusion:Combination of aspirin with an antidepressant might produce better analgesia, increasing the efficacy of pain management and reduces side effects by using smaller doses of each drug.

  2. Thermally induced structural modifications and O2 trapping in highly porous silica nanoparticles

    International Nuclear Information System (INIS)

    Alessi, A.; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-01-01

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m 2 /g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm −1 . In addition, after annealing at 900 and 1000 °C we noted the appearance of the O 2 emission at 1272 nm, absent in the not treated samples. The measure of the O 2 emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO · 2 radicals to investigate the O 2 content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O 2 molecules per mass units than nonporous silica supporting a model by which O 2 trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O 2 emission and HO · 2 electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O 2 molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica

  3. Thermally induced structural modifications and O{sub 2} trapping in highly porous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: antonino.alessi@unipa.it; Agnello, S.; Iovino, G.; Buscarino, G.; Melodia, E.G.; Cannas, M.; Gelardi, F.M.

    2014-12-15

    In this work we investigate by Raman spectroscopy the effect of isochronal (2 h) thermal treatments in air in the temperature range 200–1000 °C of amorphous silicon dioxide porous nanoparticles with diameters ranging from 5 up to 15 nm and specific surface 590–690 m{sup 2}/g. Our results indicate that the amorphous structure changes similarly to other porous systems previously investigated, in fact superficial SiOH groups are removed, Si–O–Si linkages are created and the ring statistic is modified, furthermore these data evidence that the three membered rings do not contribute significantly to the Raman signal detected at about 495 cm{sup −1}. In addition, after annealing at 900 and 1000 °C we noted the appearance of the O{sub 2} emission at 1272 nm, absent in the not treated samples. The measure of the O{sub 2} emission has been combined with electron paramagnetic resonance measurements of the γ irradiation induced HO{sup ·}{sub 2} radicals to investigate the O{sub 2} content per mass unit of thin layers of silica. Our data reveal that the porous nanoparticles have a much lower ability to trap O{sub 2} molecules per mass units than nonporous silica supporting a model by which O{sub 2} trapping inside a surface layer of about 1 nm of silica is always limited. - Highlights: • O{sub 2} emission and HO{sup ·}{sub 2} electron paramagnetic resonance signals are investigated. • Silica surface ability to trap O{sub 2} molecules is explored by thermal treatments. • Raman study of thermally induced structural changes in porous silica nanoparticles. • Raman signal attributable to the three membered rings in silica.

  4. Investigation on seasonal variation of thermal-induced strain in flexible pavements based on field and laboratory measurements

    Directory of Open Access Journals (Sweden)

    Simita Biswas

    2016-09-01

    Full Text Available Pavement temperature variation has a large influence on the structural response of flexible pavements. Daily and seasonal temperature fluctuation causes expansion and contraction of pavement material, which then leads to the generation of thermal strain. In this study, field observation and laboratory tests were conducted to investigate seasonal variation of thermal-induced strain in flexible pavement. Field observations were conducted at the Integrated Road Research Facility (IRRF’s test road in Edmonton, Alberta, Canada, which is fully equipped with structural and environmental monitoring instruments. The main objective of the field study was to compare the variation of thermal-induced strain in warm and cold seasons. Field results indicated that thermal-induced strain is 1.4–2.0 times greater in cold seasons than in warm seasons following the same pavement temperature variations; however, strain generation rate was greater in warm seasons. Laboratory testing of asphalt slab and cylindrical samples produced comparable ratios. Moreover, field observation and laboratory testing showed a similar trend of temperature and thermal strain variations. Keywords: Thermal-induced strain, Asphalt strain gauge, Field observation, Flexible pavement, Laboratory testing, Seasonal variation

  5. Contrast-enhanced three-dimensional MR angiography of neck vessels: does dephasing effect alter diagnostic accuracy?

    International Nuclear Information System (INIS)

    Cosottini, M.; Calabrese, R.; Murri, L.; Puglioli, M.; Zampa, V.; Michelassi, M.C.; Ortori, S.; Bartolozzi, C.

    2003-01-01

    The aim of this study was to evaluate diagnostic accuracy of contrast-enhanced MRA (CEMRA) compared with digital subtraction angiography (DSA) in studying neck vessels of 48 patients. In three groups of patients, we used three MRA protocols differing for voxel size to assess if intravoxel dephasing effects could modify accuracy of CEMRA. Accuracy and correlation with DSA results were calculated in all patients and separately in the three groups. A qualitative analysis of the likeness between morphology of the stenosis in CEMRA and DSA images was also assessed. In all patients accuracy and agreement with DSA were 96% and k=0.85 in subclavian arteries, 96% and k=0.84 in vertebral artery, 97% and k=0.88 in common carotid arteries, and 94% and k=0.86 in internal carotid arteries. In the three groups accuracy and agreement with DSA did not show any significant difference. Qualitative analysis of CEMRA and DSA images revealed a better agreement in depicting the morphology of stenosis using a smaller voxel size. The CEMRA represents a powerful tool for the non-invasive evaluation of neck vessels. Overestimation trend of CEMRA is confirmed and the reduction of voxel size, decreasing the dephasing intravoxel effect, allows to have a better overlapping of stenosis morphology on CEMRA compared with DSA, but it does not yield diagnostic gain in the stenosis grading. (orig.)

  6. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    Science.gov (United States)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  7. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    International Nuclear Information System (INIS)

    Roy, Chiranjeeb; John, Sajeev

    2010-01-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the ''colored'' electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  8. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  9. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  10. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  11. Pulse laser induced change in thermal radiation from a single spherical particle on thermally bad conducting surface : an analytical solution

    International Nuclear Information System (INIS)

    Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.

    1996-01-01

    A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle

  12. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  13. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  14. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance

    Science.gov (United States)

    Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.

    2018-06-01

    Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6  ×  9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.

  15. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  16. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  17. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    Czech Academy of Sciences Publication Activity Database

    Slezák, Ondřej; Yasuhara, R.; Lucianetti, Antonio; Vojna, David; Mocek, Tomáš

    2015-01-01

    Roč. 17, č. 6 (2015), s. 1-8, č. článku 065610. ISSN 2040-8978 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : stress-induced birefringence * thermal depolarization * high-power lasers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.847, year: 2015

  18. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  19. Thermally induced self-healing epoxy/glass laminates with porous layers containing crystallized healing agent

    Directory of Open Access Journals (Sweden)

    T. Szmechtyk

    2018-07-01

    Full Text Available Porous glass fiber and paper layers were tested for application in thermally induced self healing epoxy laminates as healing porous layers. Both types of layers were impregnated using high purity bisphenol A diglycidyl ether (BADGE epoxy with ability to crystallize during storage under 25 °C. Absorption capacity of porous layers was evaluated. Differential scanning calorimetry was used to investigate BADGE healing agent recrystallization process. Healing porous glass layers (HPGL were selected for further tests. Liquid chromatography and Fourier transform infrared (FT IR spectroscopy provided information about average molecular mass of embedded healing agent and functional groups in HPGL layers. Self-healing efficiency of three different laminates with HPGL layers was calculated based on the results of three-point bending test and Charpy impact test. Also, flexural properties and impact strength of laminates were evaluated. The obtained results confirm competitive self healing ability of composites with HPGL.

  20. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser-induced time-resolved spectrofluorometry and thermal lensing: applications in the nuclear industry

    International Nuclear Information System (INIS)

    Decambox, P.; Delorme, N.; Mauchien, P.; Moulin, C.

    1989-01-01

    Sensitive spectroscopic methods for the determination of actinides and lanthanides in various media are required in the nuclear industry. Laser-Induced Time-Resolved Spectrofluorometry (LITRS) for several actinides and lanthanides at very low levels and thermal lensing (TL) for oxidation state characterization allow these determinations. The set-up of LITRS is presented. Spectra, limit of detections and lifetimes obtained for U, Cm, Am, Eu, Gd, Tb, Dy, Ce, Sm, Tm are shown. Detection limit as low as 5.10 -12 M can be achieved. Examples of matrices encountered for the determination of uranium are given as well as comparison with mass spectrometry and alpha counting. The set-up of TL and performances obtained on plutonium as well as future developments are presented

  2. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Science.gov (United States)

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  3. Thermally induced pressure locking of gate valves: A survey of valve bonnet pressurization rates

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Moore, W.E.

    1996-01-01

    Closed, water filled gate valves run the risk of becoming pressurized due to heat input from the environment or from adjacent connected piping. Thermal pressurization of gate valve bonnets may lead to the valves failing to open on demand and can even induce structural failure of valves. This paper presents an analytical prediction of the pressurization rate of a closed pressure vessel subject to uniform heating which may be considered as an upper bound to the pressurization rate that may occur in the field. Then actual valve experiences described in the literature are reviewed to determine the expected pressurization rate in existing hardware designs. A statistical approach is applied to reconcile the differing pressurization rates reported in the literature and determine a rate that can be applied in valve evaluations. The limitations of the reconciled rate are discussed

  4. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  5. Comparative measurements of independent yields of 239Pu fission fragments induced by thermal and resonance neutrons

    International Nuclear Information System (INIS)

    Gundorin, N.A.; Kopach, Y.N.; Telezhnikov, S.A.

    1994-01-01

    The independent yields of 239 Pu fission fragments by means of gamma-spectroscopy method were measured for light and heavy groups on the IBR-30 reactor in Dubna. Comparative analysis of experimental data for fission induced by thermal and resonance neutrons was performed. The possibilities to increase the measurement's precision consist of the employment of a HPGe detector with high efficiency and its open-quotes activeclose quotes shielding in the gamma spectrometer, as well as a high speed electronics system. In this way the number of identified fragments will be increased and independent yields will be measured to a precision of 1-3%. Measurements at the source with shorter neutron pulse duration to increase neutron energy resolution will be possible after the reconstruction of a modern neutron source in Dubna in accordance with the IREN project

  6. Electromagnetically induced transparency in thermal Rydberg atoms: superatom model with finite Doppler broadening

    Science.gov (United States)

    Bai, Si-Yin; Bao, Qian-Qian; Tian, Xue-Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2018-04-01

    We study the steady optical responses of a cold atomic ensemble driven into the three-level ladder configuration involving a Rydberg state at finite temperatures. By improving the superatom model with thermal movement included, we calculate relevant atomic coherence effects and find that the residual Doppler broadening at the mK-K temperatures will weaken the nonclassical properties of transmitted probe photons. Furthermore, propagation directions of the probe and coupling fields have a great influence on various properties related to electromagnetically induced transparency. That is, the residual Doppler effect is more destructive to relevant atomic coherence effects in the co-propagation case but can be partially eliminated in the counter-propagation case.

  7. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    Science.gov (United States)

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  8. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  9. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  10. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  11. Oriented heat release in asphalt pavement induced by high-thermal-conductivity rods

    International Nuclear Information System (INIS)

    Du, Yinfei; Wang, Shengyue

    2015-01-01

    In this paper, a new principle of using aligned high-thermal-conductivity rods to enhance the oriented heat conduction in asphalt pavement was proposed. The results showed that the designed structure absorbed more heat during the day. The heat flow in the designed structure presented a non-uniform horizontal distribution. At the depth of 4 cm, the horizontal and vertical heat fluxes through steel rods were thirteen and ten times higher than those through asphalt mixture, respectively. The maximum temperature of the designed structure reduced by 3.6 °C–6.5 °C at the depth of 4 cm. The results of indoor irradiation test showed a trend consistent with those of numerical simulation. After 500 thousand times of standard axis load were applied, the rutting depth of the designed structure reduced by 43.4%. The principle proposed is expected to be used to induce an oriented heat release accumulated in asphalt pavement and reduce pavement temperature and rutting. - Highlights: • Steel rods were inserted in the middle and bottom layers to build thermal channels. • Steel rods absorbed heat from asphalt mixture and rapidly released them to subgrade. • The heat flux through asphalt mixture decreased and pavement temperature reduced.

  12. Bandgap tuning with thermal residual stresses induced in a quantum dot.

    Science.gov (United States)

    Kong, Eui-Hyun; Joo, Soo-Hyun; Park, Hyun-Jin; Song, Seungwoo; Chang, Yong-June; Kim, Hyoung Seop; Jang, Hyun Myung

    2014-09-24

    Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4-nm-sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD-sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.

    Science.gov (United States)

    Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai

    2017-11-22

    The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.

  14. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    Science.gov (United States)

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  15. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    Science.gov (United States)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  16. Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment

    International Nuclear Information System (INIS)

    Ou, H H; Lo, S L; Liou, Y H

    2007-01-01

    This study attempts to survey the influence of microwave irradiation on the characterizations of titanate nanotubes (TNTs) synthesized by microwave hydrothermal treatment (M-H treatment). Based on the performance of specific surface areas determined by the classic Brunauer-Emmett-Teller method (S BET ), TNTs synthesized at 130 deg. C for 1.5 h with and without 400 W irradiation presented S BET values of 256 and 76 m 2 g -1 , respectively. The result indicates that the formation kinetics of TNTs is significantly enhanced by M-H treatment. The microwave-induced TNTs are preferentially assigned for Na x H 2-x Ti 3 O 7 structure and the Na/H ratio appreciably increases with higher irradiation power. Regarding the behaviour of TNTs after thermal treatment, TNTs synthesized under 70 W presented anatase phase at 500 deg. C through rearrangement and restacking of [TiO 6 ]. Anatase-to-rutile transformation subsequently occurred at 700 deg. C. TNTs synthesized under 400 and 700 W presented a rod shape at 700 deg. C. The rod shape mainly comprise of Na 2 Ti 6 O 13 of which the (Ti 3 O 7 ) 2- layers with the topotactical connection proceed to form (Ti 6 O 13 ) 2- along the [110] direction during the thermal process

  17. Dose rate effect on the yield of radiation induced response with thermal fading

    International Nuclear Information System (INIS)

    Chernov, V.; Rogalev, B.; Barboza-Flores, M.

    2005-01-01

    A model describing the dependences of the accumulation of thermally unstable radiation induced defects on the dose and dose rate is proposed. The model directly takes into account the track nature of the ionizing radiation represented as accumulation processes of defects in tracks averaged over a crystal volume considering various degrees of overlapping in space and time. The accumulation of the defects in the tracks is phenomenologically described. General expressions are obtained that allows radiation yield simulation of defects involving known creation and transformation processes. The cases considered, of linear accumulation (constant increment of the defects in tracks) and accumulation with saturation (complete saturation of the defects in one track), lead to a set of linear dose dependences with saturation, which are routinely used in luminescence and ESR dating. The accumulation, with increase of sensitivity in regions overlapped by two or more tracks, gave a set of dose dependences, from linear-sublinear-linear-saturation, distinctive of quartz up to linear-supralinear-linear-saturation. It is shown that the effect of the dose rate on dose dependences is determined by a dimensionless parameter a=Pτ/D0, where P is the dose rate, τ is the defect lifetime and D0 is the track dose. At a-bar 1 the dose rate influences basically the accumulation of thermally unstable defects. In the reverse case the dose dependences did not seems to be influenced by the dose rate

  18. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    International Nuclear Information System (INIS)

    Mahmoud, Ahmed M; Ding, Xuan; Dutta, Debaditya; Kim, Kang; Singh, Vijay P

    2014-01-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5–14 MHz) for both imaging and heating and a high-frequency (13–24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼3 s and ∼9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (−0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (−0.124

  19. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Science.gov (United States)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  20. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D{sub 2}O ice greater than that of H{sub 2}O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born–Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid

  1. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.

    Science.gov (United States)

    Anumalla, Bramhini; Prabhu, N Prakash

    2018-01-25

    -state transitions during chemical denaturation. The extent of stability exerted by Glu is higher for RNase A at higher temperature, whereas it provides more stability for α-LA at lower temperature. Thus, the experiments indicate that Glu induces a thermal equilibrium intermediate and increases the thermodynamic stability of proteins irrespective of their surface charges. The extent of stability varies between the proteins in a temperature-dependent manner.

  2. Opposite patterns of change in perception of imagined and physically induced pain over the course of repeated thermal stimulations.

    Science.gov (United States)

    Gács, B; Szolcsányi, T; Csathó, Á

    2017-08-01

    Individuals frequently show habituation to repeated noxious heat. However, given the defensive function of human pain processing, it is reasonable to assume that individuals anticipate that they would become increasingly sensitive to repeated thermal pain stimuli. No previous studies have, however, been addressed to this assumption. Therefore, in the current study, we investigated how healthy human individuals imagine the intensity of repeated thermal pain stimulations, and compared this with the intensity ratings given after physically induced thermal pain trials. Healthy participants (N = 20) gave pain intensity ratings in two conditions: imagined and real thermal pain. In the real pain condition, thermal pain stimuli of two intensities (minimal and moderate pain) were delivered in four consecutive trials. The duration of the peak temperature was 20 s, and stimulation was always delivered to the same location. In each trial, participants rated the pain intensity twice, 5 and 15 s after the onset of the peak temperature. In the imagined pain condition, participants were subjected to a reference pain stimulus and then asked to imagine and rate the same sequence of stimulations as in the induced pain condition. Ratings of imagined pain and physically induced pain followed opposite courses over repeated stimulations: Ratings of imagined pain indicated sensitization, whereas ratings for physically induced pain indicated habituation. The findings were similar for minimal and moderate pain intensities. The findings suggest that, rather than habituating to pain, healthy individuals imagine that they would become increasingly sensitive to repeated thermal pain stimuli. This study identified opposite patterns of change in perception of imagined pain (sensitization) and physically induced pain (habituation). The findings show that individuals anticipate that they would become increasingly sensitive to repeated pain stimuli, which might also have clinical implications.

  3. Suppressed spin dephasing for two-dimensional and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    NARCIS (Netherlands)

    Denega, S.Z.; Last, Thorsten; Liu, J.; Slachter, A.; Rizo, P.J.; Loosdrecht, P.H.M. van; Wees, B.J. van; Reuter, D.; Wieck, A.D.; Wal, C.H. van der

    2010-01-01

    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the

  4. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells.

    Science.gov (United States)

    Zhang, Ying-Tao; Song, Juntao; Sun, Qing-Feng

    2014-02-26

    Using the Landauer-Büttiker formula, we study the effect of dephasing on the transport properties of the HgTe/CdTe p-n junction. It is found that in the HgTe/CdTe p-n junction the topologically protected gapless helical edge states manifest a quantized 2e²/h plateau robust against dephasing, in sharp contrast to the case for the normal HgTe/CdTe quantum well. This robustness of the transport properties of the edge states against dephasing should be attributed to the special construction of the HgTe/CdTe p-n junction, which limits the gapless helical edge states to a very narrow region and thus weakens the influence of the dephasing on the gapless edge states to a large extent. Our results demonstrate that the p-n junction could be a substitute device for use in experimentally observing the robust edge states and quantized plateau. Finally, we present a feasible scheme based on current experimental methods.

  5. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  6. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  7. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  8. CFD analysis of thermally induced thermodynamic losses in the reciprocating compression and expansion of real gases

    Science.gov (United States)

    Taleb, Aly I.; Sapin, Paul; Barfuß, Christoph; Fabris, Drazen; Markides, Christos N.

    2017-03-01

    The efficiency of expanders is of prime importance in determining the overall performance of a variety of thermodynamic power systems, with reciprocating-piston expanders favoured at intermediate-scales of application (typically 10-100 kW). Once the mechanical losses in reciprocating machines are minimized (e.g. through careful valve design and operation), losses due to the unsteady thermal-energy exchange between the working fluid and the solid walls of the containing device can become the dominant loss mechanism. In this work, gas-spring devices are investigated numerically in order to focus explicitly on the thermodynamic losses that arise due to this unsteady heat transfer. The specific aim of the study is to investigate the behaviour of real gases in gas springs and to compare this to that of ideal gases in order to attain a better understanding of the impact of real-gas effects on the thermally induced losses in reciprocating expanders and compressors. A CFD-model of a gas spring is developed in OpenFOAM. Three different fluid models are compared: (1) an ideal-gas model with constant thermodynamic and transport properties; (2) an ideal-gas model with temperature-dependent properties; and (3) a real-gas model using the Peng-Robinson equation-of-state with temperature and pressure-dependent properties. Results indicate that, for simple, mono- and diatomic gases, like helium or nitrogen, there is a negligible difference in the pressure and temperature oscillations over a cycle between the ideal and real-gas models. However, when considering heavier (organic) molecules, such as propane, the ideal-gas model tends to overestimate the pressure compared to the real-gas model, especially if the temperature and pressure dependency of the thermodynamic properties is not taken into account. In fact, the ideal-gas model predicts higher pressures by as much as 25% (compared to the real-gas model). Additionally, both ideal-gas models underestimate the thermally induced loss

  9. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

    Science.gov (United States)

    MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-08-18

    Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.

  10. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation

    International Nuclear Information System (INIS)

    Ma, Haiyun; Xue, Li

    2015-01-01

    In tissue engineering, porous nanocomposite scaffolds can potentially mimic aspects of the nanoscale architecture of the extra-cellular matrix, as well as enhance the mechanical properties required for successful weight-bearing implants. In this paper, we demonstrate that highly porous thermoplastic poly(L-lactide) nanocomposite scaffolds containing different types of functionalized multi-walled carbon nanotubes (CNTs). The nanocomposite scaffolds were manufactured by a thermally induced phase separation method. This experiment produced an uniform distribution of CNTs throughout the scaffold without obvious aggregations for funtionalized CNTs filled scaffolds by scanning electron microscope observation. The CNTs were frequently located on the pore surface, forming rough, hairy nano-textures. The pore size was reduced with the increasing of CNT loading. Parts of PLLA matrix was induced into nanofibrous structures from solid-walled state, which reduced the crystallinity of the PLLA characterized by DSC measurement. The CNT incorporation significantly improved the compression modulus of the nanocomposite scaffolds, especially the functionalized CNTs. The capacity of protein adsorption is significantly improved when the concentration of the CNTs was higher than 1.0 wt.% and the cell attachment was also enhanced by the addition of CNTs, especially N-CNT. (paper)

  11. Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering.

    Science.gov (United States)

    Biswas, D P; Tran, P A; Tallon, C; O'Connor, A J

    2017-02-01

    In this paper, a novel foaming methodology consisting of turbulent mixing and thermally induced phase separation (TIPS) was used to generate scaffolds for tissue engineering. Air bubbles were mechanically introduced into a chitosan solution which forms the continuous polymer/liquid phase in the foam created. The air bubbles entrained in the foam act as a template for the macroporous architecture of the final scaffolds. Wet foams were crosslinked via glutaraldehyde and frozen at -20 °C to induce TIPS in order to limit film drainage, bubble coalescence and Ostwald ripening. The effects of production parameters, including mixing speed, surfactant concentration and chitosan concentration, on foaming are explored. Using this method, hydrogel scaffolds were successfully produced with up to 80% porosity, average pore sizes of 120 μm and readily tuneable compressive modulus in the range of 2.6 to 25 kPa relevant to soft tissue engineering applications. These scaffolds supported 3T3 fibroblast cell proliferation and penetration and therefore show significant potential for application in soft tissue engineering.

  12. Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats.

    Science.gov (United States)

    Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Adachi, Lauren Naomi Spezia; de Macedo, Isabel Cristina; Cioato, Stefania Giotti; de Freitas, Joice S; de Souza, Andressa; Quevedo, Alexandre; Caumo, Wolnei; Torres, Iraci Lucena da Silva

    2016-10-01

    Melatonin is a neuroendocrine hormone that presents a wide range of physiological functions including regulating circadian rhythms and sleep, enhancing immune function, sleep improvement, and antioxidant effects. In addition, melatonin has received special attention in pain treatment since it is effective and presents few adverse effects. In this study, we evaluated the effect of acute dose of melatonin upon hyperalgesia induced by complete Freund's adjuvant in a chronic orofacial pain model in Sprague-Dawley rats. Nociceptive behavior was assessed by facial Von Frey and the hot plate tests at baseline and thereafter 30, 60, and 120 min, 24 h, and 7 days after melatonin treatment. We demonstrated that acute melatonin administration alters mechanical and thermal hyperalgesia induced by an orofacial pain model (TMD), highlighting that the melatonin effect upon mechanical hyperalgesia remained until 7 days after its administration. Besides, we observed specific tissue profiles of neuroimmunomodulators linked to pain conditions and/or melatonin effect (brain-derived neurotrophic factor, nerve growth factor, and interleukins 6 and 10) in the brainstem levels, and its effects were state-dependent of the baseline of these animals.

  13. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  14. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    Science.gov (United States)

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  15. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  16. A diffusive thermal phase shifter; Dephaseur thermique diffusif

    Energy Technology Data Exchange (ETDEWEB)

    Lachal, B; Hollmuller, P; Zgraggen, J -M [Universite de Geneve, Centre universitaire d' etude des problemes de l' energie(CUEPE), Geneva (Switzerland)

    2004-07-01

    The investigations carried out in this project show that dephasing a thermal oscillation carried by an air flow by utilizing the heat exchange with a diffusive heat store made of thin layers, is possible without any significant damping of the oscillation. The practical application of this phenomenon, with a time shift of 8 to 12 hours, looks particularly attractive for space cooling of buildings during summertime or in hot climates. The possibilities of dephasing completely a thermal wave (i.e. by a half period) carried by a stream of air have been investigated both theoretically by model calculations and experimentally by building two prototypes. Promising results have been obtained for the case of a daily phase shift. In the case of a summer-winter shift the required volumes and lengths seem too large to enable such a storage system becoming cost effective.

  17. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    Science.gov (United States)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  18. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  19. Small quartz silica spheres induced disorder in octylcyanobiphenyl (8CB) liquid crystals: A thermal study

    International Nuclear Information System (INIS)

    Marinelli, M.; Ghosh, A. K.; Mercuri, F.

    2001-01-01

    A photopyroelectric technique has been applied to the study of specific heat and thermal conductivity of homeotropically aligned mixtures of small quartz spheres (aerosil) and octylcyanobiphenyl (8CB) with concentration 0≤ρ s ≤0.04g/cm 3 . Thermal conductivity data show that, even at these very low concentrations, an annealing of the disorder introduced by the aerosil takes place on cooling at the smectic-A - nematic (Sm-A - N) phase transition and not only at the nematic-isotropic (N-I) one. This means that there is some elastic strain in the nematic phase of the sample which is not quenched. Accordingly the suppression of the N-I transition temperature as a function of ρ s does not fit a random field with a random dilution model that accounts for random quenched disorder only. High resolution specific heat measurements at the A-N and N-I transition show the effect of the aerosil is not the same. While in the first case its peak is suppressed with increasing concentration, in the second case there are some indications that outside the two-phase coexistence region it is enhanced. The effect of surface-induced alignment is also discussed to explain some discrepancies between our data and the ones reported in literature. It is concluded that the amount of disorder in the sample does not depend on ρ s only, but also on other variables such as external fields. Finally, a relaxation phenomenon in the aerosil network that partially compensate the disordering effect of the particles is suggested to explain the concentration dependence of the transition temperatures

  20. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    Science.gov (United States)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  1. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  2. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  3. Experiments on intrinsic and thermally induced chaos in an rf-driven Josephson junction

    DEFF Research Database (Denmark)

    Davidson, A.; Dueholm, B.; Beasley, M. R.

    1986-01-01

    We report detailed measurements of low-frequency noise due to microwaves applied to a real Josephson tunnel junction. An intrinsically chaotic region is apparently identified, but the effects of thermal noise are shown to be significant. In particular we show experimental data that we interpret a...... as evidence for thermally activated hopping and thermally affected chaos. The data are only in qualitative accord with recent ideas regarding the effect of thermal noise on intermittent chaos....

  4. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    OpenAIRE

    Jinlong Zhu; Jianzhong Zhang; Hongwu Xu; Sven C. Vogel; Changqing Jin; Johannes Frantti; Yusheng Zhao

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal P...

  5. Integral analyses of fission product retention at mitigated thermally-induced SGTR using ARTIST experimental data

    International Nuclear Information System (INIS)

    Rýdl, Adolf; Lind, Terttaliisa; Birchley, Jonathan

    2016-01-01

    Highlights: • Source term analyses in a PWR of mitigated thermally-induced SGTR scenario performed. • Experimental ARTIST program results on aerosol scrubbing efficiency used in analyses. • Results demonstrate enhanced aerosol retention in a flooded steam generator. • High aerosol retention cannot be predicted by current theoretical scrubbing models. - Abstract: Integral source-term analyses are performed using MELCOR for a PWR Station Blackout (SBO) sequence leading to induced steam generator tube rupture (SGTR). In the absence of any mitigation measures, such a sequence can result in a containment bypass where the radioactive materials can be released directly to the environment. In some SGTR scenarios flooding of the faulted SG secondary side with water can mitigate the accident escalation and also the release of aerosol-borne and volatile radioactive materials. Data on the efficiency of aerosol scrubbing in an SG tube bundle were obtained in the international ARTIST project. In this paper ARTIST data are used directly with parametric MELCOR analyses of a mitigated SGTR sequence to provide more realistic estimates of the releases to environment in such a type of scenario or similar. Comparison is made with predictions using the default scrubbing model in MELCOR, as a representative of the aerosol scrubbing models in current integral codes. Specifically, simulations are performed for an unmitigated sequence and 2 cases where the SG secondary was refilled at different times after the tube rupture. The results, reflecting the experimental observations from ARTIST, demonstrate enhanced aerosol retention in the highly turbulent two-phase flow conditions caused by the complex geometry of the SG secondary side. This effect is not captured by any of the models currently available. The underlying physics remains only partly understood, indicating need for further studies to support a more mechanistic treatment of the retention process.

  6. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Science.gov (United States)

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  7. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  8. Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3-Sb2S3 glassy films

    Science.gov (United States)

    Avila, L. F.; Pradel, A.; Ribeiro, S. J. L.; Messaddeq, Y.; Nalin, M.

    2015-02-01

    The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb2O3-Sb2S3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458 nm solid state laser. It is shown, for the first time, the use of holographic technique to measure "in situ", simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed "in situ" using a laser coupled to a micro-Raman equipment. Results showed that Sb2S3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb2O3 phase. Photo and thermal induced effects on films were studied using UV-Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

  9. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. The influence of core NA and the V-parameter on MI has been investigated numerically. It shows that core NA has a larger influence on MI for fibers with a smaller core-cladding-ratio, and the influence of core NA on the threshold is more obvious when the amplifiers are pumped at 915 nm. The dependence of the threshold on the V-parameter revealed that the threshold increases linearly as the V-parameter decreases when the V-parameter is larger than 3.5, and the threshold shows an exponential increase as the V-parameter decreases when the V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for a linewidth smaller than 1 nm when the fiber core NA is smaller than 0.07 and the fiber length is shorter than 20 m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions. (letter)

  10. Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    Science.gov (United States)

    Majidi, Danial; Faez, Rahim

    2017-02-01

    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in the high temperature we can obtain polarized spin up current. In addition, we show an acceptable spin current around the room temperature for ZGeNR. The transmission peaks in ZGeNR which are closer to the Fermi level rather than Zigzag Graphene Nanoribbon (ZGNRS) which causes ZGeNR to have spin current at higher temperatures. Finally, it is indicated that by tuning the back gate voltage, the spin current can be completely modulated and polarized. Simulation results verify the Zigzag Germanene Nanoribbon as a promising candidate for spin caloritronics devices, which can be applied in future low power consumption technology.

  11. Comprehensive structural analysis of the HCPB demo blanket under thermal, mechanical, electromagnetic and radiation induced loads

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Norajitra, P.; Ruatto, P.; Scaffidi-Argentina, F.

    1998-01-01

    For the helium-cooled pebble bed (HCPB) blanket, which is one of the two reference concepts studied within the European Demo Development Program, a comprehensive finite element (FEM) structural analysis has been performed. The analysis refers to the steady-state operating conditions of an outboard blanket segment. On the basis of a three-dimensional model of radial-toroidal sections of the segment box, thermal stresses caused by the temperature gradients in the blanket structure have been calculated. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions as well as an accidental over-pressurization of the blanket box have been accounted for. The stresses caused by a central plasma major disruption from an initial current of 20 MA to zero in 20 ms have been also taken into account. Radiation-induced dimensional changes of breeder and multiplier material caused by both helium production and neutron damage, have also been evaluated and discussed. All the above loads have been combined as input for a FEM stress analysis and the resulting stress distribution has been evaluated according to the American Society of Mechanical Engineers (ASME) norms. (orig.)

  12. Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels.

    Science.gov (United States)

    Clark, A H; Saunderson, D H; Suggett, A

    1981-03-01

    Infrared and laser-Raman spectroscopy have been used to follow secondary structure changes during the heat-set gelation of a number of aqueous (D2O) globular protein solutions. Measurements of the infrared Amide I' absorption band around 1650 cm-1, for BSA gels of varying clarity and texture, have shown that the very considerable variations in network structure underlying these materials are not reflected in obvious differences in secondary structure. In all cases aggregation is accompanied by development of beta-sheet of a kind common in fibrous protein systems, but for BSA at least this does not appear to vary significantly in amount from one gel type to another. Infrared studies of gels formed from other protein systems have confirmed this tendency for beta-sheet to develop during aggregation, and the tendency is further substantiated by laser-Raman evidence which provides the extra information that in most of the examples studied alpha-helix content simultaneously falls. From these, and other observations, some generalisations are made about the thermally-induced sol-to-gel transformations of globular proteins.

  13. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    International Nuclear Information System (INIS)

    Mu Lijun; Zhao Wenzhen

    2009-01-01

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm 2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  14. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  15. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  16. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  17. Mechanisms of thermal induced gallium removal (TIGR) from plutonium dioxide. Revision 1

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1998-01-01

    This study was initiated in order to determine the advantages of using a mixed-bed rather than a fixed-bed reactor (i.e. furnace) for separation of gallium from PuO 2 by the Thermal Induced Gallium Removal (TIGR) process. The TIGR process is based upon vaporization of gallium suboxide (Ga 2 O). from essentially nonvolatile PuO 2 . The gallium suboxide is formed by passing a reducing gas (i.e. hydrogen) over the PuO 2 particles. Several mechanisms are involved in the reduction and convective vaporization of the gallium suboxide. If the mass transfer of the gallium suboxide across the solid to gas interface significantly affects the processing time, it may be advantageous to use a mixed-bed reactor rather than a fixed-bed reactor. However, due to the difficulty of handling PuO 2 powder, a mixed-bed reactor should be used only if significant advantages can be demonstrated. Based on available data, the results of this study provide strong evidence that a mixed-bed reactor (i.e. furnace) would provide little advantage over a fixed-bed reactor. This is due to the conclusion that the mechanism of internal gallium diffusion within the particle has the predominant affect on the processing time. This is an important conclusion since the use of a mixed-bed would require development of more complex hardware than for a fixed-bed

  18. Influence of gamma-irradiation on thermally-induced mesoscopic gelation of degalactosylated xyloglucans

    International Nuclear Information System (INIS)

    Todaro, S.; Sabatino, M.A.; Walo, M.; Mangione, M.R.; Bulone, D.; Dispenza, C.

    2014-01-01

    Thermoresponsive degalactosylated xyloglucans have been already proposed as in situ gelling scaffolds for tissue engineering, due to their reversible macroscopic thermal gelation at body temperature and biodegradability. The highly branched, hydroxyl group-rich molecular structure renders xyloglucans interesting raw materials also in the form of micro/nanoparticles for application as nanoscalar drug delivery devices in cosmetic and pharmaceutical formulations. Owing to their natural source, xyloglucans show high average molecular weight, broad molecular weight distribution and poor water solubility, as large and compact aggregates usually form via inter-molecular hydrogen bonding. 60 Co γ-irradiation has been here applied to reduce the molecular weight. The aqueous solutions of irradiated xyloglucan were characterized by dynamic light scattering measurements and gel filtration chromatography. The aggregation kinetics at 37 °C were studied by dynamic light scattering measurements to confirm the temperature-responsive behavior of this polymer even when dispersed in water at low concentration after γ-irradiation. Irradiation dose–molecular properties relationship has been sought. - Highlights: • Influence of γ-irradiation on a partially degalactosylated xyloglucan is investigated. • Molecular weight reduction is observed in the investigated dose range. • Modification of the temperature-induced mesoscopic gelation kinetics is evidenced

  19. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    Energy Technology Data Exchange (ETDEWEB)

    Mu Lijun, E-mail: l.j.mu@hotmail.com [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao Wenzhen [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-30

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 {mu}g/cm{sup 2} was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  20. Thermal process induced change of conductivity in As-doped ZnO

    Science.gov (United States)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  1. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  2. Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The effect of thermally induced porosity on the mechanical properties of an as-hot-isostatically pressed and heat-treated pressing made from low carbon Astroloy is examined. Tensile, stress-rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressing has a porosity gradient from the rim to the bore with the bore having 1-1/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538 C and time for 0.1% creep at 704 C. It is also found that the strength, ductility, and rupture life of the rim are slightly inferior to those of the rim of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engines, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings.

  3. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  4. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    Science.gov (United States)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  5. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  6. Comparison of thermally induced and naturally occurring water-borne leakages from hard rock depositories for radioactive waste

    International Nuclear Information System (INIS)

    Bourke, P.J.; Robinson, P.C.

    1981-01-01

    The relative importance of thermally induced and naturally occurring flows of water as causes of leakage from hard rock depositories for radioactive wastes is assessed. Separate analyses are presented for involatile, high level waste from reprocessing of fuel and for plutonium contaminated waste from fabrication of fuel. The effects of varying the quantities of wastes, pre-burial storage and the shapes and depths of depositories are considered. It is concluded that for representative values of these variables, thermal flow will remain the major cause of leakage for long times after the burial of both types of waste. (Auth.)

  7. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    different materials. Since the calculated values of Γ give an upper estimate, liquid-like structures are most likely to form in thermal plasma. Based on the results of the analysis, it is stated that an increase in the parameter Γ and, accordingly, the formation of plasma-crystal structures in thermal plasma can only occur for positively charged grains. We provide theoretical analysis and experimental measurements of the photoemission charging of dust grains. In our experiments, the photoemission is induced by Ar-eximer lamp. We obtained the charge of isolated grains in vacuum. The particles tested are conducting and non-conducting and 1-15 microns in diameter. The method of grain charge determination is based on analysis of grain trajectories in the known electric field. In our experiment, the trapping of positive dust grains in the anode region of the abnormal DC glow discharge was observed. A conjecture is made that the grains have a positive charge due to photoemission and secondary electron emission. We provide an estimate of the particle charge taking in to account the photoemission and secondary electron emission. The value obtained. Z p =8600e was in good agreement with the value obtained from the probe measurements. The dynamics of the formation of ordered structures of dust grains charged by photoemission under the action of solar radiation under microgravity conditions without the use of electrostatic traps to confine the grains, has been studied experimentally and theoretically. The behaviour of an ensemble of dust under the effect of solar radiation is observed experimentally on board the Mir space station. An analysis and comparison of the results of the experimental and theoretical investigations permit conclusions regarding the possibility of the existence of extended ordered formations of the dust grains charged by photoemission in interplanelary space

  8. A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy

    Science.gov (United States)

    Garg, Hemanshul; Soti, Atul K.; Bhardwaj, Rajneesh

    2018-02-01

    We report the development of an in-house fluid-structure interaction solver and its application to vortex-induced vibration (VIV) of an elastically mounted cylinder in the presence of thermal buoyancy. The flow solver utilizes a sharp interface immersed boundary method, and in the present work, we extend it to account for the thermal buoyancy using Boussinesq approximation and couple it with a spring-mass system of the VIV. The one-way coupling utilizes an explicit time integration scheme and is computationally efficient. We present benchmark code verifications of the solver for natural convection, mixed convection, and VIV. In addition, we verify a coupled VIV-thermal buoyancy problem at a Reynolds number, Re = 150. We numerically demonstrate the onset of the VIV in the presence of the thermal buoyancy for an insulated cylinder at low Re. The buoyancy is induced by two parallel plates, kept in the direction of flow and symmetrically placed around the cylinder. The plates are maintained at the hot and cold temperature to the same degree relative to the ambient. In the absence of the thermal buoyancy (i.e., the plates are at ambient temperature), the VIV does not occur for Re ≤ 20 due to stable shear layers. By contrast, the thermal buoyancy induces flow instability and the vortex shedding helps us to achieve the VIV at Re ≤ 20, lower than the critical value of Re (≈21.7), reported in the literature, for a self-sustained VIV in the absence of the thermal buoyancy. The present simulations show that the lowest Re to achieve VIV in the presence of the thermal buoyancy is around Re ≈ 3, at Richardson number, Ri = 1. We examine the effect of the reduced velocity (UR), mass ratio (m), Prandtl number (Pr), Richardson number (Ri) on the displacement of the cylinder, lift coefficient, oscillation frequency, the phase difference between displacement and lift force, and wake structures. We obtain a significantly larger vibration amplitude of the cylinder over a wide

  9. Changes in thermal nociceptive responses in dairy cows following experimentally induced Escherichia coli mastitis

    Directory of Open Access Journals (Sweden)

    Klaas Ilka C

    2011-05-01

    Full Text Available Abstract Background Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables. Methods Seven Danish Holstein-Friesian cows were kept in tie-stalls, where the E. coli associated mastitis was induced and laser stimulations were conducted. Measurements of rectal temperature, somatic cell counts, white blood cell counts and E. coli counts were conducted. Furthermore, scores were given for anorexia, local udder inflammation and milk appearance to quantify the local and systemic disease response. In order to quantify the nociceptive threshold, behavioral responses toward cutaneous NLS applied to six skin areas at the tarsus/metatarsus and udder hind quarters were registered at evening milking on day 0 (control and days 1, 2, 3, 6 and 10 after experimental induction of mastitis. Results All clinical and paraclinical variables were affected by the induced mastitis. All cows were clinically ill on days 1 and 2. The cows responded behaviorally toward the NLS. For hind leg stimulation, the proportion of cows responding by stepping was higher on day 0 than days 3 and 6, and the frequency of leg movements after laser stimulation tended to decrease on day 1 compared to the other days. After udder stimulation, the proportion of cows responding by stepping was higher on day 1 than on all other days of testing. Significant correlations between the clinical and paraclinical variables of disease and the behavioral responses toward nociceptive stimulation were found. Conclusions Changes in behavioral responses coincide with peaks in local and systemic signs of E

  10. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  11. SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy

    International Nuclear Information System (INIS)

    Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT

    2014-01-01

    Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physics model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, μ-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for μ-eff were 1470 m −1 mean, 1360 m −1 median, 369 m −1 standard deviation, 933 m −1 minimum and 2260 m −1 maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This investigation

  12. Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments

    International Nuclear Information System (INIS)

    Ferrari, Jose A.; Perciante, Cesar D.

    2008-01-01

    The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present a series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories

  13. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation

    Science.gov (United States)

    Li, Yajie; Pu, Hongting

    2018-04-01

    Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.

  14. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  15. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  16. Preparation of multishell ICF target plastic-foam cushion materials by thermally induced phase-inversion processes

    International Nuclear Information System (INIS)

    Young, A.T.; Moreno, D.K.; Marsters, R.G.

    1981-01-01

    Homogenous, low-density plastic foams for ICF targets have been prepared by thermally induced phase inversion processes. Uniform, open cell foams have been obtained by the rapid freezing of water solutions of modified cellulose polymers with densities in the range of 5 mg/cm 3 to 0.7 mg/cm 3 and respective average cell sizes of 2 to 40 micrometers. In addition, low-density, microcellular foams have been prepared from the hydrocarbon polymer poly(4-methyl-l-pentene) via a similar phase inversion process using homogenous solutions in organic solvents. These foams have densities from 2 to 5 mg/cm 3 and average cell sizes of 20 micrometers. The physical-chemical aspects of the thermally induced phase inversion process is presented

  17. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  18. The demonstration of nonlinear analytic model for the strain field induced by thermal copper filled TSVs (through silicon via

    Directory of Open Access Journals (Sweden)

    M. H. Liao

    2013-08-01

    Full Text Available The thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/ °C and silicon (∼2.8 ppm/ °C when the structure is exposed to a thermal ramp budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to introduce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to have large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and the analysis of the Mohr's circle. The characteristics of stress are also measured by the atomic force microscope-raman technique with nanometer level space resolution. The change of the electron mobility with the consideration of this nonlinear stress model for the strong interactions between TSVs is ∼2–6% smaller in comparison with those from the consideration of the linear stress superposition principle only.

  19. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  20. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Zhihua Yi

    2018-06-01

    Full Text Available Aim: In this study, we investigated whether andrographolide (Andro can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action.Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R, interleukin-1β (IL-1β, IL-10, phospho-extracellular regulated protein kinases (ERK (p-ERK in the L4–L6 dorsal root ganglia (DRG were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7 receptor.Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4–L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4–L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4–L6 DRG on 14th day after surgery.Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.

  1. Magneto-optical effects induced in a magnetic-fluid layer by thermally released supermassive magnetic monopoles

    International Nuclear Information System (INIS)

    Sofonea, V.; Vekas, L.; Hegedues, E.

    1993-01-01

    The number of photons in the optical pulse induced via magneto-optical effects by a thermally released (e.g., from old iron ores) supermassive magnetic monopole traversing a thin magnetic-fluid layer is evaluated on the basis of phenomenological models. In certain monopole search experiments, these effects could give a detectable signal of the order of tens of photons and thus it may serve as a basis for a new magnetic-monopole detection method. (orig.)

  2. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta M.; Rypáček, František

    2016-01-01

    Roč. 11, č. 1 (2016), 015002_1-015002_13 ISSN 1748-6041 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : tissue engineering * porous scaffolds * thermally induced phase separation Subject RIV: CE - Biochemistry Impact factor: 2.469, year: 2016

  3. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  4. Thermally-induced amphibole reaction rim development: EBSD insights into microlite orientation

    Science.gov (United States)

    De Angelis, Sarah; Lavallée, Yan; Larsen, Jessica; Mariani, Elisabetta

    2014-05-01

    Amphibole is an important mineral present in many calc-alkaline volcanic deposits. A hydrous phase, volcanic amphibole is only stable at pressures greater than 100 MPa (approx. 4 km), temperature less than ~860-870 oC, and in melts containing at least 4 wt % H2O. When removed from their thermal and barometric stability field, amphiboles decompose to form aggregate rims of anhydrous minerals. The thickness, texture, and mineralogy of these rims are thought to be reflective of the process driving amphibole disequilibrium (e.g. heating, decompression, etc). However, significant overlap in rim thicknesses and microlite textures means that distinguishing between processes it not simple. This study employed backscatter diffraction (EBSD) to examine both experimental heating-indced amphibole reaction rims and natural amphibole reaction rim from Augustine Volcano. We collected crystal orientation maps of amphibole reaction rims to investigate if different types of disequilibrium produce different patterns of microlite orientation. We identified two types of reaction rim: Type 1- reaction rim microlites are generally oriented at random and share little or no systematic relationship with the crystallographic orientation of the host amphibole, and; Type 2- reaction rim microlites exhibit a topotactic relationship with the host amphibole (they share the same crystallographic orientation). Experimentally produced heating reaction rims are without exception Type 2. However the natural reaction rims are evenly distributed between Types 1 and 2. Further experimental data on decompression induced reaction rim formation is needed to investigate if Type 1 reaction rims resemble the breakdown of amphibole due to decompression. If so, reaction rim microlite orientation could provide a clear method for distinguishing between heating and decompression processes in amphibole bearing magmas.

  5. Magnetism and thermal induced characteristics of Fe{sub 2}O{sub 3} content bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Shiang; Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Hsu, Fang-Chi, E-mail: fangchi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Wang, Moo-Chin [Department of Fragrance and Cosmetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Yung-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 803, Taiwan (China)

    2012-11-15

    Magnetic properties of Li{sub 2}O-MnO{sub 2}-CaO-P{sub 2}O{sub 5}-SiO{sub 2} (LMCPS) glasses doped with various amounts of Fe{sub 2}O{sub 3} were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe{sub 2}O{sub 3} and crystallized at 850 Degree-Sign C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe{sub 2}O{sub 3} exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe{sub 2}O{sub 3} content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe{sub 2}O{sub 3} content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics. - Highlights: Black-Right-Pointing-Pointer Presence of Fe{sub 2}O{sub 3} in LMCPS glass ceramic promotes the growth of (Li, Mn)ferrite. Black-Right-Pointing-Pointer The amount of Fe{sub 2}O{sub 3} determines the size of (Li,Mn)ferrite particles. Black-Right-Pointing-Pointer Room temperature superparamagnetism was obtained at 4 at% of Fe{sub 2}O{sub 3} addition. Black-Right-Pointing-Pointer In addition, Li(Mn, Fe)ferrite phase contributes to the magnetic energy loss. Black-Right-Pointing-Pointer The largest energy loss is the trade-off between the ferrite content and Mn/Fe ratio.

  6. Preparation and Characterization of HDPE/EVA Flat Sheet Membranes by Thermally Induced Phase Separation Method

    Directory of Open Access Journals (Sweden)

    Zahra Shoeyb

    2015-06-01

    Full Text Available The adjustment of material composition in fabrication of modified polymeric membrane has been considered the most efficient and easiest method. For this purpose blended membranes of high density polyethylene (HDPE–ethylene vinyl acetate (EVA were prepared by thermally induced phase separation method. The impact of EVA in the presence of diluent on the crystalization temperature was assessed using differential scanning calorimetry (DSC. The obtained results showed that EVA has no significant effect on the crystalization temperature of HDPE. The absorption frequencies at 1248 and 1749 cm-1, respectively, due to C-O and C=O streching vibrations of EVA functional groups, confirmed the existence of EVA in HDPE membrane. The pure water permeability of HDPE/EVA blend was measured and compared with that of neat HDPE membrane. The results showed that an EVA content up to 2.5 wt% raised water permeability considerably and the leafy structure of the membranes contracted and the pure water permeation dropped with higher EVA content. The results of porosity measurement and scanning electronic microscopic (SEM analysis also confirmed these findings. Contact angel measurements and atomic force microscopy (AFM examinations and static absorption of collagen protein on the membrane surfaces revealed that EVA content up to 5 wt% lowered the hydrophobicity of the membrane. By EVA content above 10 wt%, due to the structural alteration on the membrane surface, the contact angel and the collagen absorption on the surface of membrane increased. The measurement of tensile strength showed that with increasing EVA content the mechanical properties of the membranes improved due to interactions of polar groups in EVA.

  7. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    Science.gov (United States)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  8. Thermal-Neutron-Induced Fission of U235, U233 and Pu239

    International Nuclear Information System (INIS)

    Thomas, T.D.; Gibson, W.M.; Safford, G.J.

    1965-01-01

    We have used solid-state detectors to measure the kinetic energies of the coincident fission fragments in the thermal-neutron-induced fission of U 235 , U 233 and Pu 239 . Special care has been taken to eliminate spurious-events near symmetry to give an accurate measure of such quantities as the average total kinetic energy at symmetry. For each fissioning system over 10 6 events were recorded. As a result the statistics are good enough to see definite evidence for fine structure over a wide range of masses and energies. The data have been analysed to give mass yield curves, average kinetic energies as a function of mass, and other quantities of interest. For each fissioning system the average total kinetic energy goes through a maximum for a heavy fragment mass of about 132 and for the corresponding light fragment mass. There is a pronounced minimum at symmetry, although not as deep as that found in time-of-flight experiments. The difference between the maximum average kinetic energy and that at symmetry is about 32 MeV for U 235 , 18 MeV for U 233 and 20 MeV for Pu 239 . The dispersion of kinetic energies at symmetry is also smaller than that found in time-of-flight experiments. Fine structure is apparent in two different representations of the data. The energy spectrum of heavy fragments in coincidence with light fragment energies is greater than the most probable value. This structure becomes more pronounced as the light fragment energy increases. The mass yield curves for a given total kinetic energy show a structure suggesting a preference for fission fragments with masses ∼134, ∼140 and ∼145 (and their light fragment partners). Much of the structure observed can be understood by considering a semi-empirical mass surface and a simple model for the nuclear configuration at the saddle point. (author) [fr

  9. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  10. Morphological changes induced by thermal treatment and gamma irradiation on the males' hind legs of Spodoptera littoralis (Noctuidae; Lepidoptera

    Directory of Open Access Journals (Sweden)

    Mai S. EL-Degwi

    2015-10-01

    Full Text Available External morphology of males' hind legs of Spodoptera littoralis subjected to thermal treatment (33 °C and 37 °C or/and irradiated with substerilizing doses of gamma radiation (75, 100 and 150 Gy were studied using scanning electron microscopy (SEM in the parental generation. Five types of sensilla have been distinguished; three types of trichoid sensilla (T1,T2 and T3, sensilla basiconica and sensilla auricillica, which are considered as olfactory chemoreceptors. Moreover, sensilla chaetica are contact chemoreceptors, whereas sensilla styloconica are thermo–hygro/gustatory mechanoreceptors. The impact of thermal treatment or/and gamma irradiation reflect a clear morphological change in S. littoralis legs'sensilla, claws, spurs and scales. Otherwise, the degree of deformity was thermal and dose dependent, as it increased with an increase of the degree of temperature and dose of irradiation applied. Substerilizing doses 75 and 100 Gy, either alone or combined with thermal treatment 33 °C, have low undesirable effects on the hind legs with successful mobility or courtship behavior. Consequently, synergistic effect of gamma radiation and thermal stress induced successful application in the integrated pest management program for controlling S. littoralis.

  11. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  12. Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences

    Science.gov (United States)

    Roszak, Katarzyna; Cywiński, Łukasz

    2018-01-01

    We find that when a qubit initialized in a pure state experiences pure dephasing due to interaction with an environment, separable qubit-environment states generated during the evolution also have zero quantum discord with respect to the environment. What follows is that the set of separable states which can be reached during the evolution has zero volume, and hence, such effects as sudden death of qubit-environment entanglement are very unlikely. In the case of the discord with respect to the qubit, a vast majority of qubit-environment separable states is discordant, but in specific situations zero-discord states are possible. This is conceptually important since there is a connection between the discordance with respect to a given subsystem and the possibility of describing the evolution of this subsystem using completely positive maps. Finally, we use the formalism to find an exemplary evolution of an entangled state of two qubits that is completely positive, and occurs solely due to interaction of only one of the qubits with its environment (so one could guess that it corresponds to a local operation, since it is local in a physical sense), but which nevertheless causes the enhancement of entanglement between the qubits. While this simply means that the considered evolution is completely positive, but does not belong to local operations and classical communication, it shows how much caution has to be exercised when identifying evolution channels that belong to that class.

  13. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    Science.gov (United States)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  14. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  15. Laser-induced thermal damage of skin. Final report, September 1976--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Takata, A.N.; Zaneveld, L.; Richter, W.

    1977-12-01

    A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage produced in pig skin by carbon dioxide and ruby lasers. (Author)

  16. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  17. Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    S. Stevens Negus

    2012-01-01

    Full Text Available Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+-4-[(αR-α-((2S,5R-4-allyl-2,5-dimethyl-1-piperazinyl-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine. Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg. SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception.

  18. Non linear thermal behaviour induced by damage of ceramic matrix composite

    International Nuclear Information System (INIS)

    El-Yagoubi, J.

    2011-10-01

    In this work the relationship between the evolution of damage and the loss of thermal properties of Ceramic Matrix Composites is investigated by a multi-scale approach. Research are conducted both experimentally and theoretically. The implemented approach is to consider two significant scales (micro and meso) where different damage mechanisms are operating and then assess the effect on the effective thermal properties by homogenization techniques. Particular attention has been given to the development of a thorough experimental work combining various characterization tools (mechanical, thermal and microstructural). At the two aforementioned scales, an experimental setup was designed to perform thermal measurements on CMC under tensile test. Thermal diffusivity of mini-composites is estimated using Lock-in thermography. Also, transverse diffusivity mapping as well as global in-plane diffusivity of woven CMC are determined by suitable rear face flash methods. The evolution of damage is then derived from acoustic emission activity along with postmortem microstructural observations. Experimental results are systematically compared to simulations. At microscale, a micromechanical-based model is used to simulate the loss of thermal conductivity of a mini-composite under tensile test. At mesoscale, a multi-scale Finite Element Model is proposed to compute the effect of damage on thermal properties of woven CMC. (author) [fr

  19. Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene.

    Science.gov (United States)

    Stolle, Achim; Ondruschka, Bernd; Findeisen, Matthias

    2008-11-07

    The thermal rearrangement of alpha-pinene (1) is interesting from mechanistic as well as kinetic point of view. Carrier gas pyrolyses with 1 and its acyclic isomers ocimene (2) and alloocimene (3) were performed to investigate the thermal network of these hydrocarbons. Kinetic analysis of the major reaction steps allows for a deeper insight in the reaction mechanism. Thus it was possible to explain the racemization of 1, the formation of racemic limonene (4), and the absence of the primary pyrolysis product 2 in the reaction mixture resulting from thermal rearrangement of 1. Results supported the conclusion that the reactions starting with 1 involve biradical transition states.

  20. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  1. Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect

    Science.gov (United States)

    Nozariasbmarz, Amin; Dsouza, Kelvin; Vashaee, Daryoosh

    2018-02-01

    It is rather strange and not fully understood that some materials decrystallize when exposed to microwave radiation, and it is still debatable if such a transformation is a thermal or non-thermal effect. We hereby report experimental evidences that weight the latter effect. First, a single crystal silicon wafer exposed to microwaves showed strong decrystallization at high temperature. Second, when some areas of the wafer were masked with metal coating, only the exposed areas underwent decrystallization. Transmission electron microscopy analysis, x-ray diffraction data, and thermal conductivity measurements all indicated strong decrystallization, which occurred in the bulk of the material and was not a surface effect. These observations favor the existence of a non-thermal microwave effect.

  2. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  3. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  4. Effect of a two-dimensional potential on the rate of thermally induced escape over the potential barrier

    International Nuclear Information System (INIS)

    Han, S.; Lapointe, J.; Lukens, J.E.

    1992-01-01

    The thermally induced escape rate of a particle trapped in a two-dimensional (2D) potential well has been investigated through experiment and numerical simulations. The measurements were performed on a special type of superconducting quantum interference device (SQUID) which has 2 degrees of freedom. The energies associated with the motion perpendicular to (transverse) and along (longitudinal) the escape direction are quite different: the ratio between the transverse and longitudinal small oscillation frequencies is ω t /ω l ∼7. The SQUID's parameters, which were used to determine the potential shape and energy scales were all independently determined. All data were obtained under conditions for which the 2D thermal activation (TA) model is expected to be valid. The results were found in good agreement with the theoretical prediction. The measured thermal activation energy is found to be the same as the barrier height calculated from the independently determined potential parameters. No evidence of apparent potential barrier enhancement recently reported in a similar system was found. In addition, the results of our numerical simulations suggest that the region in which the 2D thermal activation model is applicable may be extended to barriers as low as ΔU∼k BT

  5. Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Institut fuer Theoretische Physik, Berlin (Germany); E-mail schroer@cbpf.br

    2003-02-01

    Modular theory of operator algebras and the associated K MS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of light front holography reveals that the vacuum polarization on wedge horizons is compressed into the light ray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Banknotes-) behavior of entropy-like measures which reveal the loss of purity due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior. (author)

  6. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  7. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  8. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells.

    Science.gov (United States)

    Li, Wei; Yu, K N; Ma, Jie; Shen, Jie; Cheng, Cheng; Zhou, Fangjian; Cai, Zhiming; Han, Wei

    2017-11-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. Although increasing evidence suggests that NTP selectively induces apoptosis in some types of tumor cells, the molecular mechanisms underlying this phenomenon remain unclear. In this study, we further investigated possible molecular mechanisms for NTP-induced apoptosis of HeLa cells. The results showed that NTP exposure significantly inhibited the growth and viability of HeLa cells. Morphological observation and flow cytometry analysis demonstrated that NTP exposure induced HeLa cell apoptosis. NTP exposure also activated caspase-9 and caspase-3, which subsequently cleaved poly (ADP- ribose) polymerase. Furthermore, NTP exposure suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c. Further studies showed that NTP treatment led to ROS generation, whereas blockade of ROS generation by N-acetyl-l-cysteine (NAC, ROS scavengers) significantly prevented NTP-induced mitochondrial alteration and subsequent apoptosis of HeLa cells via suppressing Bax translocation, cytochrome c and caspase-3 activation. Taken together, our results indicated that NTP exposure induced mitochondria-mediated intrinsic apoptosis of HeLa cells was activated by ROS generation. These findings provide insights to the therapeutic potential and clinical research of NTP as a novel tool in cervical cancer treatment. Copyright © 2017. Published by Elsevier Inc.

  9. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  10. The effect of radiation induced electrical conductivity (RIC) on the thermal conductivity

    International Nuclear Information System (INIS)

    White, D.P.

    1993-01-01

    Microwave heating of plasmas in fusion reactors requires the development of microwave windows through which the microwaves can pass without great losses. The degradation of the thermal conductivity of alumina in a radiation environment is an important consideration in reliability studies of these microwave windows. Several recent papers have addressed this question at higher temperatures and at low temperatures. The current paper extends the low temperature calculations to determine the effect of phonon-electron scattering on the thermal conductivity at 77 K due to RIC. These low temperature calculations are of interest because the successful application of high power (>1 MW) windows for electron cyclotron heating systems in fusion reactors will most likely require cryogenic cooling to take advantage of the low loss tangent and higher thermal conductivity of candidate window materials at these temperatures

  11. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  12. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  13. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  14. Simulation of thermal-neutron-induced single-event upset using particle and heavy-ion transport code system

    International Nuclear Information System (INIS)

    Arita, Yutaka; Kihara, Yuji; Mitsuhasi, Junichi; Niita, Koji; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi; Yoshihara, Tsutomu

    2007-01-01

    The simulation of a thermal-neutron-induced single-event upset (SEU) was performed on a 0.4-μm-design-rule 4 Mbit static random access memory (SRAM) using particle and heavy-ion transport code system (PHITS): The SEU rates obtained by the simulation were in very good agreement with the result of experiments. PHITS is a useful tool for simulating SEUs in semiconductor devices. To further improve the accuracy of the simulation, additional methods for tallying the energy deposition are required for PHITS. (author)

  15. Extreme Thermal Sensitivity and Pain-Induced Sensitization in a Fibromyalgia Patient

    Directory of Open Access Journals (Sweden)

    Fong Wong

    2010-01-01

    Full Text Available During the course of a psychophysical study of fibromyalgia syndrome (FMS, one of the subjects with a long history of headache and facial pain displayed an extraordinarily severe thermal allodynia. Her stimulus-response function for ratings of cutaneous heat pain revealed a sensitivity clearly beyond that of normal controls and most FMS subjects. Specially designed psychophysical methods showed that heat sensitivity sometimes increased dramatically within a series of stimuli. Prior exposure to moderate heat pain served as a trigger for allodynic ratings of series of normally neutral thermal stimulation. These observations document a case of breakthrough pain sensitivity with implications for mechanisms of FMS pain.

  16. Dispersion of gold nanoclusters in TMBPA-polycarbonate by a combination of thermal embedding and vapour-induced crystallization

    International Nuclear Information System (INIS)

    Kruse, J; Dolgner, K; Greve, H; Zaporojtchenko, V; Faupel, F

    2006-01-01

    Gold nanoclusters can be dispersed into the surface of a bisphenol-A polycarbonate film by acetone vapour induced crystallization, an effect which has been demonstrated in a previous publication of our group. Gold nanoclusters were deposited by physical vapour deposition on an amorphous thin film of polycarbonate. After vapour induced crystallization these clusters were detected by depth profiling to be embedded into the surface, with a concentration maximum in a depth of approximately 100 nm. In this work, we replaced the BPA by the modified tetramethyl bisphenol-A polycarbonate, which shows a slower crystallization kinetics. A strong enhancement of the dispersion depth has been achieved by thermal pre-embedding of the clusters into the surface. Surface analysis by means of atomic force microscopy reflects the rearrangement of polymer material in the course of crystallization

  17. UV induced photoluminescence and thermally stimulated luminescence of ThO{sub 2}:Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G. E-mail: agpage@magnum.barc.ernet.in

    2000-08-15

    Thorium oxide doped with trivalent terbium ions offers itself as a novel phosphor with its photo- and thermally-stimulated luminescence (PL and TSL) characteristics showing a marked change on sustained exposure to 254 and 365 nm ultraviolet (UV) radiation. The reduction in luminescence intensity of Tb{sup 3+} ions, on irradiation with 254 nm photons and subsequent restoration on exposure to 365 nm, has been correlated with the complimentary behaviour in UV-induced TSL. These changes are, in turn, ascribed to inter-configurational (f-d) transitions and e-h formation and recombination processes. UV radiation induced TSL output increases linearly with incident UV radiant energy at a constant radiation flux; however, for a fixed exposure, TSL output increases with increase in radiant flux.

  18. Cracking of GaN on sapphire from etch-process-induced nonuniformity in residual thermal stress

    International Nuclear Information System (INIS)

    Lacroix, Yves; Chung, Sung-Hoon; Sakai, Shiro

    2001-01-01

    An experiment was performed to explain the appearance of cracks along mesa structures during the processing of GaN device layers grown on sapphire substrates. Micro-Raman spectroscopy was used to measure the position-dependent stress in the GaN layer. We show evidence that the stress at the interface with the substrate may be larger along the mesa structures than that of the as-grown layer, and that this increase in stress can be enough to induce cracks along mesa structures during processing. We report on the formation of cracks that propagate guided by the nonuniformity of the stress induced by the formation of mesa structures in the GaN layer, independent of crystal direction. The understanding of cracking mechanisms has implications in GaN-based device structures that require heteroepitaxial growth of layers with different lattice size and thermal expansion coefficients. [copyright] 2001 American Institute of Physics

  19. Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.

    Science.gov (United States)

    Kim, Dong-Jun; Jeon, Chul-Yeon; Choi, Jong-Guk; Lee, Jae Wook; Surabhi, Srivathsava; Jeong, Jong-Ryul; Lee, Kyung-Jin; Park, Byong-Guk

    2017-11-09

    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

  20. Effects of Thermally Induced Microcracking on the Quasi Static and Dynamic Response of Salem Limestone

    Science.gov (United States)

    2017-06-30

    elastic material, e.g., a high strength steel. A third bar, the striker bar, is propelled (typically by a gas gun) into the end of the incident bar...Sciences 36:433-448. Ferrero, A. M., and P. Marini. 2001. Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock

  1. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, Eva; Dejneka, A.; Kubinová, Šárka

    2016-01-01

    Roč. 82, mar. (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : non-thermal plasma * bacteria * cytotoxicity Subject RIV: FP - Other Medical Disciplines Impact factor: 8.402, year: 2016

  2. Use of thermal time constant concept in the analysis of reactivity induced accidents with feedback

    International Nuclear Information System (INIS)

    Narain, R.

    1981-01-01

    A simple heat transfer model based on the thermal time constant concept which leads to significant reduction in fuel temperature computing time and gives a physical insight of the phenomena is presented. The fuel temperatures can be used to estimate the reactivity feedback using the measured or calculated Doppler coefficients. (E.G.) [pt

  3. Laser induced purely-thermal-wave interferometry (PTWI) using a novel photopyroelectric (PPE) instrument

    Science.gov (United States)

    Wang, Chinhua

    A novel purely thermal-wave interferometric technique and its applications to non-contact and non-destructive evaluation of Ti:sapphire laser crystals, high-precision measurement of thermal diffusivity of gases, and high- sensitivity gas (hydrogen) sensors have been successfully developed both theoretically and experimentally. A comprehensive theoretical and experimental analysis of the system noise and detectivity has been conducted to consolidate the basis of the technique. Unlike the conventional single-ended photopyroelectric(PPE) technique, different thermal-wave interference patterns can be obtained by adjusting two incident beams (relative intensity and phase shift) and two thermal-wave cavities on both sides of a pyroelectric detector. It is found that the large base-line signal and large optical noise, which are encountered in the single- ended PPE scheme, can be coherently and completely suppressed in the fully destructive interferometric measurement. Differential surface absorptance, differential and absolute bulk absorption coefficient of Ti:sapphire laser crystals have been separately measured using an extended PPE-interference (PPEI) theory. Unlike the single-ended PPE method, in which thermal contributions from several optical parameters are always coupled together, the destructive interferometric: method provides a unique method for extracting precise values of one of these coupled parameters, without the need of equally precise knowledge of the values of others. The comparison measurement of thermal diffusivity of air using the single-ended PPE method and the PPEI method shows that the PPEI method enhances the measuring precision by one significant figure when compared with the single-beam method. The conventionally used concept of ``thermal-wave reflection coefficient'' has been extended to a more general case that is sample- thickness dependent. A novel hydrogen gas sensor has been initialized and developed based on the PPEI technique. It is

  4. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  5. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  6. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    International Nuclear Information System (INIS)

    Arregui-Mena, José David; Margetts, Lee; Griffiths, D.V.; Lever, Louise; Hall, Graham; Mummery, Paul M.

    2015-01-01

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  7. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    Energy Technology Data Exchange (ETDEWEB)

    Arregui-Mena, José David, E-mail: jose.arreguimena@postgrad.manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Margetts, Lee, E-mail: lee.margetts@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Griffiths, D.V., E-mail: d.v.griffiths@mines.edu [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Lever, Louise, E-mail: louise.lever@manchester.ac.uk [Research Computing, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Hall, Graham, E-mail: graham.n.hall@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2015-10-15

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  8. PI3K-AKT signaling pathway is involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor.

    Science.gov (United States)

    Sun, Yulong; Zhang, Xin; Wang, Guodong; Lin, Shi; Zeng, Xinyang; Wang, Yilei; Zhang, Ziping

    2016-12-01

    The PI3K-AKT signal pathway has been found to be involved in many important physiological and pathological processes of the innate immune system of vertebrates and invertebrates. In this study, the AKT (HdAKT) and PI3K (HdPI3K) gene of small abalone Haliotis diversicolor were cloned and characterized for the important status of PI3K and AKT protein in PI3K-AKT signaling pathway. The full length cDNAs of HdAKT and HdPI3K are 2126 bp and 6052 bp respectively, encoding proteins of 479 amino acids and 1097 amino acids, respectively. The mRNA expression level of fourteen genes in the PI3K-AKT signaling pathway were detected by quantitative real-time PCR. The results showed that all these fourteen genes were ubiquitously expressed in seven selected tissues. Meanwhile, HdAKT was expressed in haemocytes with the highest expression level (p abalone. The mRNA expression of these genes in gills, haemocytes and hepatopancreas was significantly down-regulated after the Vibrio parahaemolyticus stimulation with environment stimulation (thermal, hypoxia and thermal & hypoxia). These results indicate that the dual/multiple stresses defeat the immune system and lead to immunosuppression in abalone. PI3K-AKT signaling pathway may be involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between...... exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton...

  10. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    Science.gov (United States)

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  11. Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan

    International Nuclear Information System (INIS)

    Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

    1997-01-01

    This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99

  12. Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur)

    Energy Technology Data Exchange (ETDEWEB)

    Rombough, P J; Garside, E T

    1977-10-01

    Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.

  13. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  14. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  15. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  16. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    Science.gov (United States)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  17. Thermal Stability of Woolly Erionite-K and Considerations about the Heat-Induced Behaviour of the Erionite Group

    Directory of Open Access Journals (Sweden)

    Paolo Ballirano

    2018-01-01

    Full Text Available The thermal behavior of a woolly erionite-K sample (Lander County, NV, USA, chemical formula (Ca2.03Na0.73K2.52Mg0.26[Al8.22Si27.78O71.80]·35.94H2O, was investigated in the 303–1173 K thermal range by in situ X-ray powder diffraction. Present data suggest a general thermally-induced volume contraction whose magnitude increases as S i S i + A l ratio becomes smaller. An inverse correlation between S i S i + A l ratio and Tdehydr is observed because higher S i S i + A l ratio values are associated to lower dehydration temperatures. A positive dependence exists between S i S i + A l ratio and Tbreak. A higher Si content results in a greater thermal stability, in agreement with the general trend observed in zeolites. On the contrary, no correlation has been found between Tbreak and weighted ionic potential (Z/rwt as suggested by reference data. Heating produces a general depletion of the Ca1, Ca2, Ca3, and K1 sites, which is counterbalanced by an increase of the K2 site scattering, even though the latter is not populated at RT. No “internal ion exchange” mechanism was apparently acting in the present sample differently from other erionite samples analysed in the past. At 303 K approximately 20 e− allocated at the OW H2O sites might be assigned to (extra-framework EF cations. Such fraction increases due to their migration from the extra-framework cation sites following the same mechanism reported in reference data.

  18. Dynamics and thermalization in argon induced collisions around 30 MeV / nucleon

    International Nuclear Information System (INIS)

    Rivet, M.F.; Borderie, B.; Jouan, D.; Cabot, C.; Fuchs, H.; Gauvin, H.; Gardes, D.; Montoya, M.

    1991-01-01

    Through exclusive measurements between heavy residues and light charged particles or intermediate mass fragments, the dynamics of the different mechanisms involved in the 40 Ar + nat Ag at 27 MeV/nucleon are described. Primary masses of the fragments can then be calculated. The excitation energy partition between the two fragments is derived from the number of particles evaporated by each fragment, and thermalization times are deduced. Finally linear momentum, mass and Z balances are presented. (authors)

  19. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Roč. 4, NOV (2014), "7129-1"-"7129-11" ISSN 2045-2322 R&D Projects: GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:61389013 ; RVO:68378041 Keywords : cell death * non-thermal plasma * therapeutic perspectives Subject RIV: BO - Biophysics; FH - Neurology (UEM-P); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 5.578, year: 2014

  20. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  1. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    Science.gov (United States)

    2009-04-01

    11. Khokhlova, V.A., et al., Effects of nonlinear propagation, cavitation , and boiling in lesion formation by high intensity focused ultrasound in...intensity focused ultrasound (HIFU) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Concepts, Seattle, WA) operating at its fundamental frequency (1.1 MHz) or its third harmonics (3.3 MHz). The ultrasound imaging system was a 5/7

  2. Rapid thermal and swift heavy ion induced annealing of Co ion implanted GaN films

    International Nuclear Information System (INIS)

    Baranwal, V.; Pandey, A. C.; Gerlach, J. W.; Rauschenbach, B.; Karl, H.; Kanjilal, D.; Avasthi, D. K.

    2008-01-01

    Thin epitaxial GaN films grown on 6H-SiC(0001) substrates were implanted with 180 keV Co ions at three different fluences. As-implanted samples were characterized with secondary ion mass spectrometry and Rutherford backscattering spectrometry to obtain the Co depth profiles and the maximum Co concentrations. As-implanted samples were annealed applying two different techniques: rapid thermal annealing and annealing by swift heavy ion irradiation. Rapid thermal annealing was done at two temperatures: 1150 deg. C for 20 s and 700 deg. C for 5 min. 200 MeV Ag ions at two fluences were used for annealing by irradiation. Crystalline structure of the pristine, as-implanted, and annealed samples was investigated using x-ray diffraction, and the results were compared. Improvement of the crystalline quality was observed for rapid thermal annealed samples at the higher annealing temperature as confirmed with rocking curve measurements. The results indicate the presence of Co clusters in these annealed samples. Swift heavy ion irradiation with the parameters chosen for this study did not lead to a significant annealing

  3. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  4. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  5. Determining the nature of excitonic dephasing in high-quality GaN/AlGaN quantum wells through time-resolved and spectrally resolved four-wave mixing spectroscopy

    Science.gov (United States)

    Gallart, M.; Ziegler, M.; Crégut, O.; Feltin, E.; Carlin, J.-F.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P.

    2017-07-01

    Applying four-wave mixing spectroscopy to a high-quality GaN/AlGaN single quantum well, we report on the experimental determination of excitonic dephasing times at different temperatures and exciton densities in III-nitride heterostructures. By comparing the evolution with the temperature of the dephasing and the spin-relaxation rate, we conclude that both processes are related to the rate of excitonic collisions. When spin relaxation occurs in the motional-narrowing regime, it remains constant over a large temperature range as the spin-precession frequency increases linearly with temperature, hence compensating for the observed decrease in the dephasing time. From those measurements, a value of the electron-hole exchange interaction strength of 0.45 meV at T =10 K is inferred.

  6. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, E.; Dejneka, Alexandr; Kubinová, Šárka

    2016-01-01

    Roč. 82, Mar (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011026 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : non-thermal plasma * bacteria * cytotoxicity * apoptosis * bacterial inactivation * reactive oxygen species (ROS) Subject RIV: BO - Biophysics Impact factor: 8.402, year: 2016

  8. Dynamics and thermalization in argon induced collisions around 30 MeV/nucleon

    International Nuclear Information System (INIS)

    Rivet, M.F.; Borderie, B.; Jouan, D.; Cabot, C.; Fuchs, H.; Gauvin, H.; Gardes, D.; Montoya, M.

    1991-01-01

    Through exclusive measurements between heavy residues and light charged particles or intermediate mass fragments, the dynamics of the different mechanisms involved in the 40 Ar + nat Ag at 27 MeV/nucleon are described. Primary masses of the fragments can then be calculated. The excitation energy partition between the two fragments is derived from the number of particles evaporated by each fragment, and thermalization times are deduced. Finally, linear momentum, mass and Z-balances are presented. (author) 21 refs., 8 figs., 1 tab

  9. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  10. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  11. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  12. Does the thermal spike affect low energy ion-induced interfacial mixing?

    International Nuclear Information System (INIS)

    Suele, P.; Menyhard, M.; Nordlund, K.

    2003-01-01

    Molecular dynamics simulations have been used to obtain the three-dimensional distribution of interfacial mixing and cascade defects in Ti/Pt multilayer system due to single 1 keV Ar + impact at grazing angle of incidence. The Ti/Pt system was chosen because of its relatively high heat of mixing in the binary alloy and therefore a suitable candidate for testing the effect of heat of mixing on ion-beam mixing. However, the calculated mixing profile is not sensitive to the heat of mixing. Therefore the thermal spike model of mixing is not fully supported under these irradiation conditions. Instead we found that the majority of mixing occurs after the thermal spike during the relaxation process. These conclusions are supported by liquid, vacancy as well as adatom analysis. The interfacial mixing is in various aspects anomalous in this system: the time evolution of mixing is leading to a phase delay for Ti mixing, and Pt exhibits an unexpected double peaked mixing evolution. The reasons to these effects are discussed

  13. Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture

    Science.gov (United States)

    Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik

    2013-11-01

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.

  14. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Shahram; Van Opdenbosch, Daniel [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany); Fey, Tobias [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering 3: Glass and Ceramics, Martensstraße 5, D-91058 Erlangen (Germany); Koch, Marcus; Kraus, Tobias [INM, Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken (Germany); Guggenbichler, Josef Peter [AMiSTec GmbH & Co. KG, Leitweg 23, A-6345 Kössen (Austria); Zollfrank, Cordt, E-mail: cordt.zollfrank@tum.de [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany)

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. - Highlights: • Molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) and anhydrous MoO{sub 3} after calcination exhibit exceptional antimicrobial activities • Especially the orthorhombic samples with a large specific surface area show excellent antimicrobial properties. • The increased specific surface area is due to crack formation and to loss of hydrate water after calcination at 300 °C. • Increased a local acidity as a consequence of the augmented surface area is related to the antimicrobial characteristics.

  15. Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Rahul; Vogelsberger, Mark [Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge 02139, MA (United States); Pfrommer, Christoph; Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Puchwein, Ewald, E-mail: kannanr@mit.edu [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-03-10

    Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne out by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.

  16. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    Science.gov (United States)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  17. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  18. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems

    Science.gov (United States)

    Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova

    2006-01-01

    A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...

  19. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  20. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  1. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  2. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  3. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  4. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  5. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  6. An Electron Microscope Study of the Thermal Neutron Induced Loss in High Temperature Tensile Ductility of Nb Stabilized Austenitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R B

    1965-04-15

    Irradiated {approx}3 x 10{sup 19} n/cm{sup 2} (thermal), <3 x 10{sup 18} n/cm{sup 2} (> 1 MeV) at 40 deg C and the corresponding unirradiated control tensile specimens of a 20 % Cr, 25 % Ni, Nb stabilized steel tested at 650 deg C, 750 deg C and 800 deg C have been examined by transmission electron microscopy. The results indicate that the irradiation induced embrittlement of the tensile specimens at elevated temperatures is preceded by the formation of fine precipitates within the grains. These precipitates may restrict the deformation within the grains such that the stresses are concentrated at the grain boundaries thereby leading to premature failure. It is suggested that the main effect of the irradiation is to promote conditions necessary for the formation of these precipitates, namely, super saturation and fresh nucleation sites within the matrix through the energetic emission of He and Li atoms from boron as an impurity.

  7. Radiofrequency-induced thermal therapy: results of a European multicentre study of resistive ablation of incompetent truncal varicose veins.

    Science.gov (United States)

    Braithwaite, B; Hnatek, L; Zierau, U; Camci, M; Akkersdijk, Gjm; Nio, D; Sarlija, M; Ajduk, M; Santoro, P; Roche, E

    2013-02-01

    To investigate the effectiveness of bipolar radiofrequency-induced thermal therapy (RFITT) in a multicentre non-randomized study. Some 672 incompetent saphenous veins (85% great saphenous varicose vein, 15% short saphenous vein) in 462 patients (56.5% CEAP [clinical, aetiological, anatomical and pathological elements] class 3 or worse) were treated in eight European centres. Patients were assessed between 180 and 360 days postoperatively. Occlusion rates were determined by duplex ultrasound and compared with the power used for treatment, pull back rate and experience of the operating surgeon. Complete occlusion rates of 98.4% were achieved when treatments were performed by an experienced operator (more than 20 cases), when the maximum power setting on the RFITT generator was between 18 and 20 W and the applicator was withdrawn at a rate slower than 1.5 second/cm RFITT is efficacious, well tolerated by patients and has a low incidence of procedure-related post-operative complications.

  8. Thermal-Induced Non-linearity of Ag Nano-fluid Prepared using γ-Radiation Method

    International Nuclear Information System (INIS)

    Esmaeil Shahriari; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Elias Saion

    2011-01-01

    The non-linear refractive index of Ag nano-fluids prepared by γ-radiation method was investigated using a single beam z-scan technique. Under CW 532 nm laser excitation with power output of 40 mW, the Ag nano-fluids showed a large thermal-induced non-linear refractive index. In the present work it was determined that the non-linear refractive index for Ag nano-fluids is -4.80x10 -8 cm 2 / W. The value of Δn 0 was calculated to be -2.05x10 -4 . Our measurements also confirmed that the non-linear phenomenon was caused by the self-defocusing process making them good candidates for non linear optical devices. (author)

  9. Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin

    Science.gov (United States)

    Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-04-01

    We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.

  10. An Electron Microscope Study of the Thermal Neutron Induced Loss in High Temperature Tensile Ductility of Nb Stabilized Austenitic Steels

    International Nuclear Information System (INIS)

    Roy, R.B.

    1965-04-01

    Irradiated ∼3 x 10 19 n/cm 2 (thermal), 18 n/cm 2 (> 1 MeV) at 40 deg C and the corresponding unirradiated control tensile specimens of a 20 % Cr, 25 % Ni, Nb stabilized steel tested at 650 deg C, 750 deg C and 800 deg C have been examined by transmission electron microscopy. The results indicate that the irradiation induced embrittlement of the tensile specimens at elevated temperatures is preceded by the formation of fine precipitates within the grains. These precipitates may restrict the deformation within the grains such that the stresses are concentrated at the grain boundaries thereby leading to premature failure. It is suggested that the main effect of the irradiation is to promote conditions necessary for the formation of these precipitates, namely, super saturation and fresh nucleation sites within the matrix through the energetic emission of He and Li atoms from boron as an impurity

  11. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  12. Behaviour of a pressure vessel nozzle with thermo-sleeve under thermal loading induced by stratified flow

    International Nuclear Information System (INIS)

    Kussmaul, K.; Mayinger, W.; Diem, H.; Katzenmeier, G.

    1993-01-01

    Startup at low reactor power may give rise to stratified flow conditions in pipes of boiling water and pressurized water reactors. Stratified flow regimes cause a steep temperature gradient between the cold and the hot fluid layer. This temperature gradient produces high axial stresses which, in the case of intermittent feeding of cold water and an appropriate number of repetitions, in principle may initiate cracking in the feedwater pipe and close to the feeding nozzle. Thermosleeves have been installed in a number of reactors to mitigate thermally induced stresses; they reduce the intensity of thermal transients by means of an insulating fluid annulus developing between the sleeve and the nozzle, in order to measure the temperature and stress gradients occurring in the region of the nozzle edge, the so-called TEMS experiments were carried out under realistic operating conditions, and with different cold water levels within the framework of German research activities in the field of reactor safety at the HDR test facility. The experiments served to simulate the physics phenomena by means of a FE-program and to verify the computational approach by comparisons of measurements and calculations

  13. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan

    2017-08-02

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  14. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps.

    Science.gov (United States)

    Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D

    2017-08-15

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  16. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    Science.gov (United States)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  17. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  18. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  19. Laser-induced thermal coagulation enhances skin uptake of topically applied compounds

    DEFF Research Database (Denmark)

    Haak, C S; Hannibal, J; Paasch, U

    2017-01-01

    microchannels surrounded by CZ compared to channels with no CZ (CZ-20 and CZ-80>CZ-0).The thickness of CZ affected PEG distribution in skin. A thin CZ-20 favored significantly higher mean fluorescence intensities inside CZ areas compared to CZ-80 (PEG 350, 1,000, and 5,000; P ...BACKGROUND: Ablative fractional laser (AFL) generates microchannels in skin surrounded by a zone of thermally altered tissue, termed the coagulation zone (CZ). The thickness of CZ varies according to applied wavelength and laser settings. It is well-known that AFL channels facilitate uptake...... of topically applied compounds, but the importance of CZ is unknown. METHODS: Franz Cells were used to investigate skin uptake and permeation of fluorescent labeled polyethylene glycols (PEGs) with mean molecular weights (MW) of 350, 1,000, and 5,000 Da. Microchannels with CZ thicknesses ranging from 0 to 80...

  20. Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage.

    Science.gov (United States)

    Kong, Lingjun; Xie, Chen-Chao; Gu, Haichen; Wang, Chao-Peng; Zhou, Xianlong; Liu, Jian; Zhou, Zhen; Li, Zhao-Yang; Zhu, Jian; Bu, Xian-He

    2018-04-19

    Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO x /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO x /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Abou Taleb, W.M. [Alexandria Univ. (Egypt); Madi, N.K.; Kassem, M.E.; El-Khatib, A.M. [Alexandria Univ. (Egypt). Dept. of Physics

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10{sup 9} n/cm{sup 2}. The optical energy gap E{sub op} exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C{sub p} showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author).

  2. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    International Nuclear Information System (INIS)

    Abou Taleb, W.M.; Madi, N.K.; Kassem, M.E.; El-Khatib, A.M.

    1996-01-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 x 10 9 n/cm 2 . The optical energy gap E op exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure C p showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected. (author)

  3. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  4. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  5. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  6. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  7. Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers

    International Nuclear Information System (INIS)

    Hoechbauer, T.; Misra, A.; Nastasi, M.; Henttinen, K.; Suni, T.; Suni, I.; Lau, S.S.; Ensinger, W.

    2004-01-01

    Hydrogen ion-implantation into Si and subsequent heat treatment has been shown to be an effective means of cleaving thin layer of Si from its parent wafer. This process has been called Smart Cut TM or ion-cut. We investigated the cleavage process in H-implanted silicon samples, in which the ion-cut was provoked thermally and mechanically, respectively. A oriented p-type silicon wafer was irradiated at room temperature with 100 keV H 2 + -ions to a dose of 5 x 10 16 H 2 /cm 2 and subsequently joined to a handle wafer. Ion-cutting was achieved by two different methods: (1) thermally by annealing to 350 deg. C and (2) mechanically by insertion of a razor blade sidewise into the bonded wafers near the bond interface. The H-concentration and the crystal damage depth profiles before and after the ion-cut were investigated through the combined use of elastic recoil detection analysis and Rutherford backscattering spectroscopy (RBS). The location at which the ion-cut occurred was determined by RBS in channeling mode and cross-section transmission electron spectroscopy. The ion-cut depth was found to be independent on the cutting method. The gained knowledge was correlated to the depth distribution of the H-platelet density in the as-implanted sample, which contains two separate peaks in the implantation zone. The obtained results suggest that the ion-cut location coincides with the depth of the H-platelet density peak located at a larger depth

  8. Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts

    Science.gov (United States)

    Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff

    2006-01-01

    NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.

  9. Changes in thermal nociceptive responses in dairy cows following experimentally induced Esherichia coli mastitis

    DEFF Research Database (Denmark)

    Rasmussen, Ditte B.; Fogsgaard, Katrine; Røntved, Christine Maria

    2011-01-01

    Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS......) in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables....

  10. The use of radiolabelled milk proteins to study thermally-induced interactions in milk systems

    International Nuclear Information System (INIS)

    Noh, B.

    1988-01-01

    Heat induced complexes between milk proteins are of considerable importance in determining the heat stability and rennin clottability of milk products. Thiol-disulfide interchange reactions have been suggested as the principal reaction mechanism for complex formation. Studies to data have not adequately established the mechanism and stoichiometry of complex formation in situ in total milk system. Tracer amounts of 14 C-β-lactoglobulin and α-lactalbumin were heated under various conditions. After clotting with rennet, radioactivity retained in the curd was counted to estimate extent of interaction of β-lactoglobulin with casein. 14 C- and 3 H-Methyl labelled proteins were used for the preparation of radiolabelled artificial casein micelles. These micelles with radiolabelled whey proteins were heated and heat-induced complexes were separated on Sephacryl S-300 eluting with 6 M guanidine hydrochloride to break all non-covalent bonds. Further separation of the protein complexes was obtained using CPG-10 or Sephacryl S-1000. The ratios of 3 H to 14 C labelled proteins in the protein complexes suggested that the stoichiometries of k-, α s2 -casein, β-lactoglobulin and α-lactalbumin in the heat-induced complexes varied as a function of the heat treatment

  11. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  12. SU-F-BRCD-08: Uncertainty Quantification by Generalized Polynomial Chaos for MR-Guided Laser Induced Thermal Therapy.

    Science.gov (United States)

    Fahrenholtz, S; Fuentes, D; Stafford, R; Hazle, J

    2012-06-01

    Magnetic resonance-guided laser induced thermal therapy (MRgLITT) is a minimally invasive thermal treatment for metastatic brain lesions, offering an alternative to conventional surgery. The purpose of this investigation is to incorporate uncertainty quantification (UQ) into the biothermal parameters used in the Pennes bioheat transfer equation (BHT), in order to account for imprecise values available in the literature. The BHT is a partial differential equation commonly used in thermal therapy models. MRgLITT was performed on an in vivo canine brain in a previous investigation. The canine MRgLITT was modeled using the BHT. The BHT has four parameters'" microperfusion, conductivity, optical absorption, and optical scattering'"which lack precise measurements in living brain and tumor. The uncertainties in the parameters were expressed as probability distribution functions derived from literature values. A univariate generalized polynomial chaos (gPC) expansion was applied to the stochastic BHT. The gPC approach to UQ provides a novel methodology to calculate spatio-temporal voxel-wise means and variances of the predicted temperature distributions. The performance of the gPC predictions were evaluated retrospectively by comparison with MR thermal imaging (MRTI) acquired during the MRgLITT procedure in the canine model. The comparison was evaluated with root mean square difference (RMSD), isotherm contours, spatial profiles, and z-tests. The peak RMSD was ∼1.5 standard deviations for microperfusion, conductivity, and optical absorption, while optical scattering was ∼2.2 standard deviations. Isotherm contours and spatial profiles of the simulation's predicted mean plus or minus two standard deviations demonstrate the MRTI temperature was enclosed by the model's isotherm confidence interval predictions. An a = 0.01 z-test demonstrates agreement. The application of gPC for UQ is a potentially powerful means for providing predictive simulations despite poorly known

  13. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  14. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  15. DNA damage induced by radiation plasmodial mixed + gamma thermal neutrons in the presence and absence of free radical scavenger

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Gouveia, Andreia; Deppman, Airton

    2010-01-01

    In this work is quantified the damage in DNA plasmid induced by mixed radiation (thermal neutron and gamma rays) for first time. For the study was used the pBs KS+ plasmid of 2961 bp in aqueous solution of the 88 ng/μL with 0, 2 and 20 mmol/L of glycerol which acts as a free radicals scavenger. This plasmid changes its form of supercoiled to circular when a simple strand break is produced, and passes to a linear form when a double strand break is produced in the chain. Quantifying the fractions that exist in each of these forms is possible to estimate the effect of radiation on DNA. The irradiations were carried out in the radial channel 3 at IEA-R1 research reactor of the Instituto de Pesquisas Energeticas y Nucleares in Sao Paulo, Brazil. DNA forms were separated by agarose gel electrophoresis. For quantification the program GelAnalis was used. The values of the fractions of DNA in various forms were plotted as a function of dose and fitted to exponential and linear functions to obtaining the probabilities of simple and double strand breaks normalized by dose and molecular mass. The results showed the protective action of free radical scavenger against damage induced for radiation which corroborates the previous results found with other ionizing radiations. Yields of SSB and DSB will be of interest for the validation of the different models that attempt to reproduce the experimental results

  16. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  17. Field induced phase transition in layered honeycomb spin system α-RuCl3 studied by thermal conductivity

    Science.gov (United States)

    Leahy, Ian; Bornstein, Alex; Choi, Kwang-Yong; Lee, Minhyea

    α -RuCl3, a quasi -two-dimensional honeycomb lattice is known to be a candidate material to realize the Heisenberg-Kitaev spin model of a highly anisotropic bond-dependent exchange interaction. We investigate in-plane thermal conductivity (κ) as a function of temperature (T) and in-plane applied field (H). At H = 0 , the onset of a strong increase in κ marks the spontaneous long range ordering temperature, Tc = 6 . 5 K , corresponding to ``zigzag'' antiferromagnetic ordering. A broad peak appearing below Tc in κ was found to be suppressed significantly as H increases up to ~ 7 T , implying the system undergoes a field-induced transition from ordered to a new spin-disordered state analogous to the transverse-field Ising model. Further increasing H above 7 . 1 T , the large field seems to begin polarizing spins thus increasing the phonon mean free path, resulting in a significant rise in κ. This tendency is clearly shown in the field dependence of κ below Tc, which has a pronounced minimum at Hmin = 7 . 1 T . We will discuss our scaling analysis to characterize this field-induced phase transition and compare to the transverse-field Ising spin system. Work at the University of Colorado was supported by the US DOE Basic Energy Sciences under Award No. DE-SC0006888.

  18. Position- and time-resolved Stark broadening diagnostics of a non-thermal laser-induced plasma

    International Nuclear Information System (INIS)

    Liu, Hao; Truscott, Benjamin S; Ashfold, Michael N R

    2016-01-01

    We present an analysis of the Stark-broadened line shapes of silicon ions in a laser-induced plasma using a model constructed, without assuming local thermodynamic equilibrium (LTE), using a Druyvesteyn electron energy distribution function (EEDF). The method is applied to temporally and spatially resolved measurements of Si 2+ and Si 3+ emissions from a transient plasma expanding into vacuum, produced by 1064 nm, nanosecond pulsed laser ablation of a Si (1 0 0) target. The best-fitting simulated line shapes and the corresponding electron number densities and temperatures (or equivalently, Druyvesteyn average energies) are compared with those returned assuming LTE (i.e. for a Maxwellian EEDF). Non-thermal behavior is found to dominate at all but the very earliest stages of expansion close to the target surface, consistent with McWhirter’s criterion for the establishment of LTE. The Druyvesteyn EEDF always yields an equivalent or better model of the experimental measurements, and the observed increasingly strong departure from the Maxwellian case with time and distance from the ablation event highlights the essential invalidity of the LTE assumption for moderate-power, nanosecond laser-induced plasma expanding in vacuo. (paper)

  19. The relationship between irradiation induced dimensional change and the coefficient of thermal expansion: A new look

    International Nuclear Information System (INIS)

    Hall, G.; Marsden, B.J.; Fok, A.; Smart, J.

    2002-01-01

    In the 1960s, J.H.W. Simmons derived a theoretical relationship between the coefficient of thermal expansion (CTE) and dimensional changes in irradiated graphite. At low irradiation dose, the theory was shown to be consistent with experimental observations. However, at higher doses the results diverge. Despite this, modified versions of this theory have been used as the basis of the design and life prediction calculations for graphite-moderated reactors. This paper revisits Simmons's theory, summarising the assumptions made in its derivation. The paper then modifies and applies the theory to the dimensional change and CTE change behaviour in isotropic nuclear graphite, making use of trends in irradiated behaviour recently derived using finite element analyses. The importance of these issues to present HTR technology is that the life of HTR graphite components is related to their irradiated dimensional change behaviour. A more in depth understanding of this behaviour will allow suitable graphite material to be selected or new graphite types to be developed. (author)

  20. Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.

    Science.gov (United States)

    Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio

    2007-10-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  1. Independent yields of Rb and Cs isotopes from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Decker, R.; Wollnik, H.; Wuensch, K.D.; Jung, G.; Koglin, E.; Siegert, G.

    1979-01-01

    The relative yields of Rb and Cs isotopes from thermal-neutron fission of 235 U have been redetermined using the mass separator OSTIS, on-line at a neutron guide of the High-Flux Beam Reactor at the Institut Laue-Langevin, Grenoble, France. The separator ion source was a hot oven containing 235 U in a graphite matrix. The neutron beam was pulsed. Alkali fission products diffused out of the graphite and were ionized, thus producing a stepwise increase in the analyzed ion beam proportional to the independent fission yield. The ion beam and the fissions in the source were monitored simultaneously. The diffusion of Rb and Cs from the source was exponential in time with half-lives ranging from 2.8 to 18 sec, depending upon the element and source temperature. The independent fission yields of Rb and Cs are normalized by equating their element yields to each other and to a value computed from the charge distributions observed with the recoil separator LOHENGRIN and well established mass yields. Fractional independent yields are deduced from the independent fission yields, and these compare very well with the EOZ model described by Wahl

  2. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  3. Thermal desorption and bombardment-induced release of deuterium implanted into stainless steels at low energy

    International Nuclear Information System (INIS)

    Farrell, G.; Donnelly, S.E.

    1978-01-01

    Thermal desorption spectra have been obtained for low energy (15-750 eV) deuterons implanted into types 321 and 304 stainless steel, to total fluences in the range 10 13 - 10 17 deuterons/cm 2 . In each case the spectra show a peak at about 350 K, but in the 321 steel there is a second peak in the region of 900 K, the population and peak temperature of which increase with energy. Activation energies of 0.99 and 2.39 eV and a rate constant of 7 x 10 15 /s have been derived for the peaks and it is thought that the first peak corresponds to release from sites close to the surface, while the second peak may be related to trapping at impurities such as Ti. Measurements have also been made of the release of deuterium resulting from post-implantation bombardment with hydrogen ions. It is found that depletion of the first peak in the 321 steel is the result of gas sputtering, but depletion of the second peak is the result of the formation of HD during desorption, while depletion of the peak in the 304 stainless steel also results from HD formation even though this peak is the same as the first peak in the 321 steel. Estimates have also been made of the deuterium self-sputtering cross section at various energies, which show a monotonic decrease as energy increases. (Auth.)

  4. Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines

    Science.gov (United States)

    Char, Kookheon

    2005-03-01

    Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.

  5. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  6. Thermally induced changes of optical and vital parameters in human cancer cells

    Science.gov (United States)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  7. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  8. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis

    Science.gov (United States)

    Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong

    2014-01-01

    This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces

  9. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    Science.gov (United States)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  10. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ∼550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3 VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  11. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  12. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    Science.gov (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  13. Thermal characterization of a flashing jet by planar laser-induced fluorescence

    Science.gov (United States)

    Vetrano, M. R.; Simonini, A.; Steelant, J.; Rambaud, P.

    2013-07-01

    Flash atomization can be observed when a pressurized fluid is released in an environment at lower pressure. This phenomenon plays an important role in the security management of chemical industries where liquefied gases can be accidentally released at atmosphere. In other applications, for example in propulsion systems, it can have some potential benefits as it is known to produce a fine spray with enhanced atomization. The experimental characterization of these kinds of atomization should be performed by means of non-intrusive measurement techniques since they are very sensitive to external perturbation. In this work, the planar laser-induced fluorescence technique is used to measure the liquid phase temperature of an ethanol superheated flashing jet. The feasibility of the technique is proved, measurements are taken for different superheat conditions, and an analysis of the measurement uncertainties is presented.

  14. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation-induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation-induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe-based alloys found that metalloids elements such as P, S, Si, Ge, Sn, etc., embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr-Ni-based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  15. Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-01-01

    Full Text Available A simple thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5) is reported. Phase crystallinity, pore characteristics and hydrogen storage capacities of the resulting crystals were investigated. It is shown...

  16. Development of the fabrication of ultra-low density ploy (4-methyl-1-pentene) (PMP) foams by thermal induced phase-inversion technique

    International Nuclear Information System (INIS)

    Zhang Lin; Wang Chaoyang; Luo Xuan; Du Kai; Tu Haiyan; Fan Hong; Luo Qing; Yuan Guanghui; Huang Lizhen

    2003-01-01

    By thermally induced phase-inversion technique, ploy (4-methyl-1-pentene) (PMP) foams are successfully prepared; the density and pore size are 3-80 mg/cm 3 and 1-20 μm respectively. Durene/naphthalene (60/40) is confirmed as the suitable solvent/nonsolvent binary system. The PMP's thermal properties are characterized by TG-DSC system. It is found that the foams thermal properties depend on the density. The thermal analysis method is utilized to measure the gelation of PMP in the binary solvent/nonsolvent system. The range of gelation temperature is preliminarily determined. The influence of mixture system composition and the cooling rate during the making of foams is discussed. TG-DSC is applied to determine the thermal properties of low-density PMP foams prepared in the laboratory. And the effect of density change on the thermal stability of foams are studied. The thermal analysis data play a great role in improving the foam quality. (authors)

  17. Laser-induced thermal coagulation enhances skin uptake of topically applied compounds.

    Science.gov (United States)

    Haak, C S; Hannibal, J; Paasch, U; Anderson, R R; Haedersdal, M

    2017-08-01

    Ablative fractional laser (AFL) generates microchannels in skin surrounded by a zone of thermally altered tissue, termed the coagulation zone (CZ). The thickness of CZ varies according to applied wavelength and laser settings. It is well-known that AFL channels facilitate uptake of topically applied compounds, but the importance of CZ is unknown. Franz Cells were used to investigate skin uptake and permeation of fluorescent labeled polyethylene glycols (PEGs) with mean molecular weights (MW) of 350, 1,000, and 5,000 Da. Microchannels with CZ thicknesses ranging from 0 to 80 μm were generated from micro-needles (0 μm, CZ-0), and AFL (10,600 nm) applied to -80°C deep frozen skin (20 μm, CZ-20) and skin equilibrated to room temperature (80 μm, CZ-80). Channels penetrated into similar mid-dermal skin depths of 600-700 μm, and number of channels per skin area was similar. At 4 hours incubation, skin uptake of PEGs into CZ and dermis was evaluated by fluorescence microscopy at specific skin depths of 150, 400, and 1,000 μm and the transcutaneous permeation was quantified by fluorescence of receptor fluids. Overall, the highest uptake of PEGs was reached through microchannels surrounded by CZ compared to channels with no CZ (CZ-20 and CZ-80>CZ-0).The thickness of CZ affected PEG distribution in skin. A thin CZ-20 favored significantly higher mean fluorescence intensities inside CZ areas compared to CZ-80 (PEG 350, 1,000, and 5,000; P channels was significantly higher than through CZ-80 and CZ-0 at all skin depths (PEG 350, 1,000 and 5,000, 150-1,000 μm; P distribution, with highest PEG uptake achieved from microchannels surrounded by a thin CZ. Lasers Surg. Med. 49:582-591, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Calculated thermally induced displacements and stresses for heater experiments at Stripa, Sweden. Linear thermoelastic models using constant material properties

    International Nuclear Information System (INIS)

    Chan, T.; Cook, N.G.W.

    1979-12-01

    Thermally induced displacements and stresses have been calculated by finite element analysis to guide the design, operation, and data interpretation of the in situ heating experiments in a granite formation at Stripa, Sweden. There are two full-scale tests with electrical heater canisters comparable in size and power to those envisaged for reprocessed high level waste canisters and a time-scaled test. To provide a simple theoretical basis for data analysis, linear thermoelasticity was assumed. Constant (temperature-independent) thermal and mechanical rock properties were used in the calculations. These properties were determined by conventional laboratory testing on small intact core specimens recovered from the Stripa test site. Two-dimensional axisymmetric models were used for the full-scale experiments, and three-dimensional models for the time-scaled experiment. Highest compressive axial and tangential stresses are expected at the wall of the heater borehole. For the 3.6 kW full-scale heated experiment, maximum compressive tangential stress was predicted to be below the unconfined compressive strength of Stripa granite, while for the 5 kW experiment, the maximum was approximately equal to the compressive strength before the concentric ring of eight 1 kW peripheral heaters was activated, but would exceed that soon afterwards. Three zones of tensile thermomechanical stresses will occur in each full-scale experiment. Maximum vertical displacements range from a fraction of a millimeter over most of the instrumented area of the time-scaled experiment to a few millimeters in the higher-power full-scale experiment. Radial displacements are typically half or less than vertical displacements. The predicted thermomechanical displacements and stresses have been stored in an on-site computer to facilitate instant graphic comparison with field data as the latter are collected

  19. Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and thermally-induced self-assembly

    Science.gov (United States)

    Wu, Jie; Li, Xin; Wu, Yang; Liao, Guoxing; Johnston, Priscilla; Topham, Paul D.; Wang, Linge

    2017-11-01

    An inherent problem that restricts the practical application of superhydrophobic materials is that the superhydrophobic property is not sustainable; it can be diminished, or even lost, when the surface is physically damaged. In this work, we present an efficient approach for the fabrication of superhydrophobic fibrous fabrics with great rinse-resistance where a block copolymer has been electrospun into a nanofibrous mesh while micro-sized beads have been subsequently electrosprayed to give a morphologically composite material. The intricate nano- and microstructure of the composite was then fixed by thermally annealing the block copolymer to induce self-assembly and interdigitation of the microphase separated domains. To demonstrate this approach, a polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) nanofibrous scaffold was produced by electrospinning before SEBS beads were electrosprayed into this mesh to form a hierarchical micro/nanostructure of beads and fibers. The effects of type and density of SEBS beads on the surface morphology and wetting properties of composite membranes were studied extensively. Compared with a neat SEBS fibrous mesh, the composite membrane had enhanced hydrophobic properties. The static water contact angle increased from 139° (±3°) to 156° (±1°), while the sliding angle decreased to 8° (±1°) from nearly 90°. In order to increase the rinse-resistance of the composite membrane, a thermal annealing step was applied to physically bind the fibers and beads. Importantly, after 200 h of water flushing, the hierarchical surface structure and superhydrophobicity of the composite membrane were well retained. This work provides a new route for the creation of superhydrophobic fabrics with potential in self-cleaning applications.

  20. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.

    Science.gov (United States)

    Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-09-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

  1. Effect of treatment duration on surface nanocrystallization induced by fast multiple rotation rolling and its thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chui Pengfei; Liu Yi; Liang Yanjie; Li Yang [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Fan Suhua [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Shandong Women' s University, Jinan 250300 (China); Sun Kangning, E-mail: sunkangning@sdu.edu.cn [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Effect of treatment time on surface nanocrystallization of a low carbon steel. Black-Right-Pointing-Pointer The grain size decreases gradually with the increase of treatment duration. Black-Right-Pointing-Pointer The microhardness of FMRR treated sample reaches 284 HV. Black-Right-Pointing-Pointer The nanocrystalline layer is stable during annealing treatment up to 400 Degree-Sign C. - Abstract: A nanocrystalline surface layer of low carbon steel induced by fast multiple rotation rolling (FMRR) was determined by optical microscopy and transmission electron microscopy. The results show that the grain size decreases gradually with the increase of treatment duration. Equiaxed nanocrystalline with the average grain size about 20 nm is obtained in the top surface layer after FMRR treatment for 30 min. With the increase of treatment duration (60 min), the average grain size further reduces to about 9 nm. At the same time, the microhardness of surface layer for treated sample is improved correspondingly owing to grain refinement and work-hardening. Compared with original sample, the microhardness of FMRR treated sample is increased by more than 200%. After annealing treatment, the investigation of thermal stability of nanocrystalline layer indicates that the grains begin to grow obviously at annealing for 400 Degree-Sign C, and abnormal grain growth also occurs in individual grains. Due to grain growth and stress relaxation during annealing, the microhardness slightly decreases at 400 Degree-Sign C. In spite of this, the majority of grains are still nanocrystalline, ranging from about 30 to 60 nm. It demonstrates that the nanocrystalline layer has high thermal stability.

  2. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction.

    Science.gov (United States)

    Beldade, Ricardo; Blandin, Agathe; O'Donnell, Rory; Mills, Suzanne C

    2017-10-10

    Organisms can behaviorally, physiologically, and morphologically adjust to environmental variation via integrative hormonal mechanisms, ultimately allowing animals to cope with environmental change. The stress response to environmental and social changes commonly promotes survival at the expense of reproduction. However, despite climate change impacts on population declines and diversity loss, few studies have attributed hormonal stress responses, or their regulatory effects, to climate change in the wild. Here, we report hormonal and fitness responses of individual wild fish to a recent large-scale sea warming event that caused widespread bleaching on coral reefs. This 14-month monitoring study shows a strong correlation between anemone bleaching (zooxanthellae loss), anemonefish stress response, and reproductive hormones that decreased fecundity by 73%. These findings suggest that hormone stress responses play a crucial role in changes to population demography following climate change and plasticity in hormonal responsiveness may be a key mechanism enabling individual acclimation to climate change.Elevated temperatures can cause anemones to bleach, with unknown effects on their associated symbiotic fish. Here, Beldade and colleagues show that climate-induced bleaching alters anemonefish hormonal stress response, resulting in decreased reproductive hormones and severely impacted reproduction.

  3. SHI induced modification in structural, optical, dielectric and thermal properties of poly ethylene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Gnansagar B.; Bhavsar, Shilpa [Department of Physics, The M.S. University of Baroda, Vadodara 390002 (India); Singh, N.L., E-mail: nl.singh-phy@msubaroda.ac.in [Department of Physics, The M.S. University of Baroda, Vadodara 390002 (India); Singh, F.; Kulriya, P.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-07-15

    Poly ethylene oxide (PEO) films were synthesized by solution cast method. These self-standing films were exposed with 60 MeV C{sup +5} ion and 100 MeV Ni{sup +7} ion at different fluences. SHI induced effect was investigated by employing various techniques. The crystalline size decreased upon irradiation as observed from XRD analysis. FTIR analysis reveals the decrement in the peak intensity upon irradiation. Tauc’s method was used to determine the optical band gap (E{sub g}), which shows decreasing trends with increase of fluence. The dielectric properties were investigated in the frequency range 10 Hz to 10 MHz for unirradiated and irradiated films. The dielectric constant remains same for the broad-spectrum of frequency and increases at lower frequency. The dielectric loss also moderately influence as a function of frequency due to irradiation. DSC analysis validated the results of XRD. Scanning electron microscopy (SEM) reveals that there is significant change in the surface morphology due to irradiation.

  4. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Science.gov (United States)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  5. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    International Nuclear Information System (INIS)

    Novakovic, M.; Zhang, K.; Popovic, M.; Bibic, N.; Hofsaess, H.; Lieb, K.P.

    2011-01-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 x 10 16 cm -2 . We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 o C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δσ 2 /Φ = 3.0(4) nm 4 , is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 o C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2 Si → CoSi → CoSi 2 .

  6. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Zhang, K. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Popovic, M.; Bibic, N. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Hofsaess, H. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Lieb, K.P., E-mail: plieb@gwdg.d [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe{sup +} ions at fluences of up to 3 x 10{sup 16} cm{sup -2}. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 {sup o}C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, {Delta}{sigma}{sup 2}/{Phi} = 3.0(4) nm{sup 4}, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 {sup o}C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co{sub 2}Si {yields} CoSi {yields} CoSi{sub 2}.

  7. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation.

    Science.gov (United States)

    Li, Jiahuang; Chen, Yuan; Yang, Jie; Hua, Zichun

    2015-05-01

    The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding. © 2014 Wiley Periodicals, Inc.

  8. Mechanical, Thermal, and Electrical Energy Storage in a Single Working Body: Electrification and Thermal Effects upon Pressure-Induced Water Intrusion-Extrusion in Nanoporous Solids.

    Science.gov (United States)

    Grosu, Yaroslav; Mierzwa, Michał; Eroshenko, Valentine A; Pawlus, Sebastian; Chorażewski, Mirosław; Nedelec, Jean-Marie; Grolier, Jean-Pierre E

    2017-03-01

    This paper presents the first experimental evidence of pronounced electrification effects upon reversible cycle of forced water intrusion-extrusion in nanoporous hydrophobic materials. Recorded generation of electricity combined with high-pressure calorimetric measurements improves the energy balance of {nanoporous solid + nonwetting liquid} systems by compensating mechanical and thermal energy hysteresis in the cycle. Revealed phenomena provide a novel way of "mechanical to electrical" and/or "thermal to electrical" energy transformation with unprecedented efficiency and additionally open a perspective to increase the efficiency of numerous energy applications based on such systems taking advantage of electricity generation during operational cycle.

  9. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  10. Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model

    Science.gov (United States)

    Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.

    2011-01-01

    A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.

  11. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  12. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  13. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  14. In-situ hybrid study of thermal behaviour of Znsbnd Ni and Znsbnd Nisbnd Al2O3 nanocrystallite thin films induced TEA/MEA by electrocodeposition

    Science.gov (United States)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.; Dodo, M. R.

    Our present investigation focuses on the thermal stability of already developed electroforms of Znsbnd Ni and Znsbnd Nisbnd Al2O3 thin films induced with triethylamine (TEA) and monoethylamine (MEA) as surfactant by electrocodeposition on mild steel substrate with the aim to re-examine its micro-hardness and degradation behaviour in static sodium chloride solution. In the event, the samples were thermally treated at 200 °C and air cooled. The results obtained showed that the developed composites are thermally stable with hardness value of the Znsbnd Nisbnd Al2O3 coated; 185 Hv increased to 190.5 Hv indicating a 2.89% improvement. Noticeably, in the Znsbnd Ni coatings, a decrease in the hardness with 26.67% was observed. The oxidation resistance was however favored for both composites.

  15. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  16. Synthesis of spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles via divergent, thermally induced tandem cyclization/migration of alkyne-tethered diazo compounds.

    Science.gov (United States)

    Zhang, Cheng; Dong, Shanliang; Zheng, Yang; He, Ciwang; Chen, Jiaolong; Zhen, Jingsen; Qiu, Lihua; Xu, Xinfang

    2018-01-31

    A thermally induced, substrate-dependent reaction of alkynyl diazo compounds has been developed. This transformation produces spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles in good to high yields from the corresponding alpha-cyano and alpha-sulfonyl diazo compounds. The salient features of this reaction include excellent chemoselectivity and atom-economy, mild reaction conditions, simple purification and potential for large scale production.

  17. Rhodium(II)-Catalyzed and Thermally Induced Intramolecular Migration of N-Sulfonyl-1,2,3-triazoles: New Approaches to 1,2-Dihydroisoquinolines and 1-Indanones.

    Science.gov (United States)

    Sun, Run; Jiang, Yu; Tang, Xiang-Ying; Shi, Min

    2016-04-11

    New rhodium(II)-catalyzed or thermally induced intramolecular alkoxy group migration of N-sulfonyl-1,2,3-triazoles has been developed, affording divergent synthesis of 1,2-dihydroisoquinoline and 1-indanone derivatives according to different conditions. N-Sulfonyl keteneimine is the key intermediate for the synthesis of dihydroisoquinoline, whereas the aza-vinyl carbene intermediate results in the formation of 1-indanone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    International Nuclear Information System (INIS)

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Kumorek, Marta M.; Rypáček, František; Janoušková, Olga; Koubková, Jana

    2016-01-01

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold’s outer surface at the air–liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications. (paper)

  19. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    Science.gov (United States)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  20. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  1. Activation of ERK signalling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2)-induced thermal hyperalgesia.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2017-10-01

    Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H 2 O 2 is the major player. However, molecular mechanism of H 2 O 2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H 2 O 2 -induced hyperalgesia in rats. Intraplantar injection of H 2 O 2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20 min of H 2 O 2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24 h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H 2 O 2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H 2 O 2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.

  2. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    Science.gov (United States)

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (Plecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (plecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement

    Science.gov (United States)

    Vinod, Sithara; Philip, John

    2017-12-01

    Magnetic nanofluids or ferrofluids exhibit extraordinary field dependant tunable thermal conductivity (k), which make them potential candidates for microelectronic cooling applications. However, the associated viscosity enhancement under an external stimulus is undesirable for practical applications. Further, the exact mechanism of heat transport and the role of field induced nanostructures on thermal transport is not clearly understood. In this paper, through systematic thermal, rheological and microscopic studies in 'model ferrofluids', we demonstrate for the first time, the conditions to achieve very high thermal conductivity to viscosity ratio. Highly stable ferrofluids with similar crystallite size, base fluid, capping agent and magnetic properties, but with slightly different size distributions, are synthesized and characterized by X-ray diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometer, Fourier transform infrared spectroscopy and thermo-gravimetry. The average hydrodynamic diameters of the particles were 11.7 and 10.1 nm and the polydispersity indices (σ), were 0.226 and 0.151, respectively. We observe that the system with smaller polydispersity (σ = 0.151) gives larger k enhancement (130% for 150 G) as compared to the one with σ = 0.226 (73% for 80 G). Further, our results show that dispersions without larger aggregates and with high density interfacial capping (with surfactant) can provide very high enhancement in thermal conductivity, with insignificant viscosity enhancement, due to minimal interfacial losses. We also provide experimental evidence for the effective heat conduction (parallel mode) through a large number of space filling linear aggregates with high aspect ratio. Microscopic studies reveal that the larger particles act as nucleating sites and facilitate lateral aggregation (zippering) of linear chains that considerably reduces the number density of space

  5. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    International Nuclear Information System (INIS)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-01-01

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  6. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    Science.gov (United States)

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    Science.gov (United States)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  8. Conformational fluctuation dynamics of domain I of human serum albumin in the course of chemically and thermally induced unfolding using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Yadav, Rajeev; Sengupta, Bhaswati; Sen, Pratik

    2014-05-22

    The present study elucidates the involvement of conformational fluctuation dynamics during chemically and thermally induced unfolding of human serum albumin (HSA) by fluorescence correlation spectroscopic (FCS) study, time-resolved fluorescence measurements, and circular dichroism (CD) spectroscopic methods. Two fluorescent probes, tetramethylrhodamine-5-maleimide (TMR) and N-(7-dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA) were used to selectively label the domain I of HSA through the reaction with cys-34 for these studies. The guanidine hydrochloride (GnHCl) induced global structural change of HSA is monitored through its hydrodynamic radius (r(H)) and CD response, which is found to be two step in nature. In FCS experiment, along with the diffusion time component we have observed an exponential relaxation time component (τ(R)) that has been ascribed to the concerted chain dynamics of HSA. Unlike in the global structural change, we found that the τ(R) value changes in a different manner in the course of the unfolding. The dependence of τ(R) on the concentration of GnHCl was best fitted with a four state model, indicating the involvement of two intermediate states during the unfolding process, which were not observed through the CD response and r(H) data. The fluorescence lifetime measurement also supports our observation of intermediate states during the unfolding of HSA. However, no such intermediate states were observed during thermally induced unfolding of HSA.

  9. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect.

    Science.gov (United States)

    Mengesha, Zebasil Tassew; Yang, Jyisy

    2016-11-15

    In this study, an active surface-enhanced Raman scattering (SERS) substrate with a thermally inducible hot spot effect for sensitive measurement of Raman-active molecules was successfully fabricated from silver nanoparticle (AgNP)-decorated shape-memory polystyrene (SMP) sheets. To prepare the SERS substrate, SMP sheets were first pretreated with n-octylamine for effective decoration with AgNPs. By varying the formulation and condition of the reduction reaction, AgNP-decorated SMP (Ag@SMP) substrates were successfully prepared with optimized particle gaps to produce inducible hot spot effects on thermal shrink. High-quality SERS spectra were easily obtained with enhancement factors higher than 10 8 by probing with aromatic thiols. Several Ag@SMP substrates produced under different reaction conditions were explored for the creation of inducible hot spot effects. The results indicated that AgNP spacing is crucial for strong hot spot effects. The suitability of Ag@SMP substrates for quantification was also evaluated according to the detection of adenine. Results confirmed that prepared Ag@SMP substrates were highly suitable for quantitative analysis because they yielded an estimated limit of detection as low as 120 pg/cm 2 , a linear range of up to 7 ng/cm 2 , and a regression coefficient (R 2 ) of 0.9959. Ag@SMP substrates were highly reproducible; the average relative standard deviation for all measurements was less than 10%.

  10. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  11. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    International Nuclear Information System (INIS)

    Yin, Hongyao; Xiao, Haibo; Ding, Lei; Zhang, Chun; Ren, Aiming; Li, Bo

    2015-01-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ cut-off  ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10 3 GM) and high thermal stability (T d  = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10 3 GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties

  12. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    Science.gov (United States)

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guo-Ping; Hou, Xinmei; Chou, Kuo-Chih

    2018-06-04

    In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 30 °C compared to the base fluids and is further enhanced with the increased temperature. The main reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced thermal conductivity of the SiC-B dispersions. © 2018 IOP Publishing Ltd.

  13. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  14. Thermal-Induced Errors Prediction and Compensation for a Coordinate Boring Machine Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2014-01-01

    Full Text Available To improve the CNC machine tools precision, a thermal error modeling for the motorized spindle was proposed based on time series analysis, considering the length of cutting tools and thermal declined angles, and the real-time error compensation was implemented. A five-point method was applied to measure radial thermal declinations and axial expansion of the spindle with eddy current sensors, solving the problem that the three-point measurement cannot obtain the radial thermal angle errors. Then the stationarity of the thermal error sequences was determined by the Augmented Dickey-Fuller Test Algorithm, and the autocorrelation/partial autocorrelation function was applied to identify the model pattern. By combining both Yule-Walker equations and information criteria, the order and parameters of the models were solved effectively, which improved the prediction accuracy and generalization ability. The results indicated that the prediction accuracy of the time series model could reach up to 90%. In addition, the axial maximum error decreased from 39.6 μm to 7 μm after error compensation, and the machining accuracy was improved by 89.7%. Moreover, the X/Y-direction accuracy can reach up to 77.4% and 86%, respectively, which demonstrated that the proposed methods of measurement, modeling, and compensation were effective.

  15. Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors.

    Science.gov (United States)

    Lohrasebi, A; Mohamadi, S; Fadaie, S; Rafii-Tabar, H

    2012-07-01

    We model the dynamics of the F(0) component of the F(0)F(1)-ATPase mitochondrion-based nano-motor operating in a stochastically-fluctuating medium that represents the intracellular environment. The stochastic dynamics are modeled via Langevin equation of motion wherein fluctuations are treated as white noise. We have investigated the influence of an applied alternating electric field on the rotary motion of the F(0) rotor in such an environment. The exposure to the field induces a temperature rise in the mitochondrion's membrane, within which the F(0) is embedded. The external field also induces an electric potential that promotes a change in the mitochondrion's transmembrane potential (TMP). Both the induced temperature and the change in TMP contribute to a change in the dynamics of the F(0). We have found that for external fields in the radio frequency (RF) range, normally present in the environment and encountered by biological systems, the contribution of the induced thermal effects, relative to that of the induced TMP, to the dynamics of the F(0) is more significant. The changes in the dynamics of the F(0) part affect the frequency of the rotary motion of the F(0)F(1)-ATPase protein motor which, in turn, affects the production rate of the ATP molecules. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M.; Kassem, M.E.; El-Khatib, A.M.

    1994-01-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C p , of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author)

  17. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M. (Alexandria Univ. (Egypt). Dept. of Materials Science); Kassem, M.E.; El-Khatib, A.M. (Alexandria Univ. (Egypt). Dept. of Physics)

    1994-05-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C[sub p], of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author).

  18. Large thermal conductivity reduction induced by La/O vacancies in the thermoelectric LaCoO3 system.

    Science.gov (United States)

    Wang, Yang; Li, Fang; Xu, Luxiang; Sui, Yu; Wang, Xianjie; Su, Wenhui; Liu, Xiaoyang

    2011-05-16

    A series of compact La/O-vacant La(1-x)CoO(3-y) compounds were prepared by a cold high-pressure procedure, and their thermoelectric (TE) properties were investigated. Compared with the ion-substituted hole-type LaCoO(3) systems (e.g., La(1-x)Sr(x)CoO(3)), the thermal conduction of La(1-x)CoO(3-y) is noticeably reduced by the La/O vacancies, whereas the electric transport is less influenced, which results in an efficient ZT enhancement. We demonstrate that the large thermal conductivity reduction originates from the strong point-defect scattering, and La(1-x)CoO(3-y) can be rationalized as a partially filled solid solution: La(1-x)◻(x)CoO(3-y)◻(y), where ◻ denotes a vacancy. Such intrinsic thermal conductivity suppression provides an effective pathway for the design of better TE materials.

  19. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation.

    Science.gov (United States)

    Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang

    2018-05-15

    Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.

  20. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M C; Elliman, R G; Rao, M R [Australian National Univ., Canberra, ACT (Australia); Baribeau, J M [National Research Council of Canada, Ottawa, ON (Canada)

    1994-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  1. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Elliman, R.G.; Rao, M.R. [Australian National Univ., Canberra, ACT (Australia); Baribeau, J.M. [National Research Council of Canada, Ottawa, ON (Canada)

    1993-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  2. Si diffusion in compositional disordering of Si-implanted GaAs/AlGaAs superlattices induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    Uematsu, Masashi; Yanagawa, Fumihiko

    1988-01-01

    The Si diffusion in Si-implanted GaAs/Al 0.5 Ga 0.5 As superlattices intermixed in the disrodering process induced by rapid thermal annealing (RTA), is investigated by means of secondary ion mass spectroscopy (SIMS). The SIMS profiles indicate that no fast Si diffusion occurs during the disordering, and the disordering occurs when the Si concentration exceeds 1 x 10 19 cm -3 , which is about three times larger than the threshold value for the disordering by furnace annealing (FA). The number of Si atoms which are allowed to pass through the heterointerface is considered to be essential for disordering. (author)

  3. "Shrink-to-fit" superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.

    Science.gov (United States)

    Manna, Uttam; Carter, Matthew C D; Lynn, David M

    2013-06-11

    An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Noncontrast magnetic resonance angiography of the hand: improved arterial conspicuity by multidirectional flow-sensitive dephasing magnetization preparation in 3D balanced steady-state free precession imaging.

    Science.gov (United States)

    Fan, Zhaoyang; Hodnett, Philip A; Davarpanah, Amir H; Scanlon, Timothy G; Sheehan, John J; Varga, John; Carr, James C; Li, Debiao

    2011-08-01

    : To develop a flow-sensitive dephasing (FSD) preparative scheme to facilitate multidirectional flow-signal suppression in 3-dimensional balanced steady-state free precession imaging and to validate the feasibility of the refined sequence for noncontrast magnetic resonance angiography (NC-MRA) of the hand. : A new FSD preparative scheme was developed that combines 2 conventional FSD modules. Studies using a flow phantom (gadolinium-doped water 15 cm/s) and the hands of 11 healthy volunteers (6 males and 5 females) were performed to compare the proposed FSD scheme with its conventional counterpart with respect to the signal suppression of multidirectional flow. In 9 of the 11 healthy subjects and 2 patients with suspected vasculitis and documented Raynaud phenomenon, respectively, 3-dimensional balanced steady-state free precession imaging coupled with the new FSD scheme was compared with spatial-resolution-matched (0.94 × 0.94 × 0.94 mm) contrast-enhanced magnetic resonance angiography (0.15 mmol/kg gadopentetate dimeglumine) in terms of overall image quality, venous contamination, motion degradation, and arterial conspicuity. : The proposed FSD scheme was able to suppress 2-dimensional flow signal in the flow phantom and hands and yielded significantly higher arterial conspicuity scores than the conventional scheme did on NC-MRA at the regions of common digitals and proper digitals. Compared with contrast-enhanced magnetic resonance angiography, the refined NC-MRA technique yielded comparable overall image quality and motion degradation, significantly less venous contamination, and significantly higher arterial conspicuity score at digital arteries. : The FSD-based NC-MRA technique is improved in the depiction of multidirectional flow by applying a 2-module FSD preparation, which enhances its potential to serve as an alternative magnetic resonance angiography technique for the assessment of hand vascular abnormalities.

  5. A study of arteries of foot by flow sensitive dephasing prepared balanced steady-state free precession MR angiography in diabetes

    International Nuclear Information System (INIS)

    Zou Liqiu; Liu Xiaoyi; Liu Xin; Feng Fei; Qi Yulong; Liu Pengcheng

    2011-01-01

    Objective: To investigate balanced steady-state free precession with flow-sensitive dephasing magnetization preparation (FSD-bSSFP) in the assessment of arteries of foot in diabetic patients. Methods: The lower-extremity peripheral arteries of 43 diabetic patients were evaluated by FSD-bSSFP no contrast MRA and contrast-enhanced MRA (CE-MRA) in. Two experienced observers assessed the image quality, degree of venous contaminated and visibility of pedal artery branches by FSD-bSSFP and CE-MRA respectively in consensus. The signal intensity (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the source images of both groups were measured and Wilcoxon and t tests were performed. Results: The image score of FSD-bSSFP group was 2.7±1.1 and CE-MRA was 2.6±0.8, there was no statistical difference (Z= 0.134, P>0.05). The image score of demonstration of the pedal artery branches and degree of venous contamination on FSD-bSSFP were 3.2±0.9 and 1.8±0.4 respectively which were superior to that of CE-MRA (2.5±0.9 and 2.1±0.8 respectively). Significant statistical difference existed between the two groups in demonstration of pedal artery branches (Z=5.246, P 0.05). But CNR of CE-MRA was superior to that of FSD-bSSFP and significant statistical difference existed between these two methods (t=5.113, P<0.01). Conclusion: FSD-bSSFP without contrast could be used in the evaluation of foot arteries in patients of renal dysfunction and diabetes. (authors)

  6. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  7. Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS-b-PMMA thin films

    International Nuclear Information System (INIS)

    Seguini, Gabriele; Giammaria, Tommaso J; Lupi, Federico Ferrarese; Perego, Michele; Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele; Vita, Francesco; Placentino, Immacolata F; Francescangeli, Oriano; Hilhorst, Jan; Ferrero, Claudio

    2014-01-01

    The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol −1 was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 ° C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine. (paper)

  8. Positron annihilation and thermoluminescence studies of thermally induced defects in α-Al2O3 single crystals

    International Nuclear Information System (INIS)

    Muthe, K P; Gupta, S K; Sudarshan, K; Pujari, P K; Kulkarni, M S; Rawat, N S; Bhatt, B C

    2009-01-01

    α-Al 2 O 3 crystals were subjected to different thermal treatments at a temperature of 1500 deg. C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  9. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster; Mutacion y recombinacion somaticas inducidas con neutrones termicos de reactor en Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  10. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons; Antimutagenesis de moduladores quimicos contra el dano inducido por neutrones termicos de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, Departamentos de Materiales Radiactivos, de Biologia, del Reactor y Gerencia de Aplicaciones Nucleares en la Salud, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  11. NAK WP-cave project: Thermally induced convective motion in groundwater in the near field of the WP-cave after filling and closure

    International Nuclear Information System (INIS)

    Hopkirk, R.J.

    1989-04-01

    The thermal convective motion induced in groundwater due to the decay heat generated by the high-level waste in the WP-Cave has been studied by means of coupled thermo-hydraulic numerical models. The WPC concept is proposed as an alternative to the KBS-3 repository concept for construction in crystalline rock. However, in the absence of specific site fissure data, the rock mass has been modelled as a quasi-porous medium. The repository was assumed to be filled 40 years after unloading of the spent fuel. For a further 100 years the whole repository is cooled, before being backfilled and sealed off. Maximum waste temperatures and the fluid fluxes crossing the backfilled bentonite diffusion barrier were monitored to 3000 years after fuel unloading. At the same time, the effects of the hydraulic cage and of a highly permeable rock zone beneath the central storage volume on the induced fluid flows have been assessed. (orig.)

  12. Evidence of β-sheet structure induced kinetic stability of papain upon thermal and sodium dodecyl sulphate denaturation

    Directory of Open Access Journals (Sweden)

    Rašković Brankica

    2015-01-01

    Full Text Available Papain is a protease that consists of α-helical and β-sheet domains which unfold almost independently. Both, papain considerable thermal stability and sodium dodecyl sulphate (SDS resistance have been shown. However, the ability of each domain to unfold upon thermal and SDS denaturation has never been studied. This work shows that fruit papain has slightly higher thermal inactivation resistance when it is compared to stem papain with rather high activation energy (Ea of 223 ± 16 kJmol-1 and Tm50 value of 79 ± 2 °C. SDS resistance of fruit papain was estimated by SDS-PAGE analysis and activity staining. It has been noted that, in the presence of SDS, unless heat energy was applied in order to unfold papain, the protein remained active. Furthermore, it has been proven via Fourier transform infrared spectroscopy (FT-IR that α-helical domain of fruit papain is more prone to unfolding at elevated temperatures and in the presence of SDS then β-sheet rich domain. Thermal denaturation of papain without detergent present led to accelerated formation of aggregation specific intermolecular β-sheets as compared to native protein. Presented results are both, of fundamental and application importance. [Projekat Ministarstva nauke Republike Srbije, br. 172049

  13. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    Science.gov (United States)

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at

  15. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  16. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  17. Thermalization dynamics of two correlated bosonic quantum wires after a split

    Science.gov (United States)

    Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian

    2018-04-01

    Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.

  18. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  19. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  20. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    Science.gov (United States)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.