WorldWideScience

Sample records for thermally evaporated lamellar

  1. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  2. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  3. Thermal Conductivity of Superconductors in the Intermediate State: Size Effect in a Longitudinal Lamellar Structure

    International Nuclear Information System (INIS)

    Suter, J.M.; Rinderer, L.

    1978-01-01

    The thermal conductivity of type I superconductors has been measured in a well-defined, optically controlled intermediate-state configuration the so-called longitudinal lamellar structure (LLS). A regular arrangement of alternating normal and superconducting lamellas is obtained in an elongated plate by applying the magnetic field obliquely (following Sharvin) and decreasing it from the critical values. The heat current is set parallel to the lamellas. Due to the peculiar reflection law governing the quasiparticle reflections at a normal-superconductor interphase boundary, the thermal conductivity of the LLS is reduced when the electronic mean free path is larger than or comparable to the width of the lamellas. As first pointed out by Andreev, the reflection occurs with vecotr-momentum conservation, and only the quasiparticles moving nearly parallel to the lamellas can transport heat efficiently. The corresponding reduction of the thermal conductivity is a size effect.Systematic measurements of the thermal conductivity of the LLS in high-purity lead and tin are interpreted in terms of the size-effect model. The parameters of the model were experimentally determined in a preliminary study, to enable an unambiguous comparison with the theory. In particular, the geometrical aspects of the structures were studied using a magnetooptical technique. Interesting results on the characteristics of the LLS were obtained. The thermal conductivity data on lead essentially confirm the size-effect description. In tin heat transport by the lamellas of both types takes place, the heat carriers being the electrons (T > or approx. = 1.6 K). The discrepancy between the predictions of the size-effect model and the observed values in tin are attributed to an oversimplified calculation of the contribution of the superconducting lamellas to the conductivity

  4. Do black holes really evaporate thermally

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1980-01-01

    The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons: and hence black holes: do not exist

  5. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    Science.gov (United States)

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  6. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  7. Growth of zinc oxide nanoflowers by thermal evaporation method

    International Nuclear Information System (INIS)

    Abdulgafour, H.I.; Hassan, Z.; Al-Hardan, N.; Yam, F.K.

    2010-01-01

    An alternative method for site-selective growth of ZnO nanostructures that does not use an Au catalyst or a ZnO thin-film seed layer is presented. Well-aligned ZnO nanoflower structure arrays were directly fabricated on silicon substrates through zinc powder evaporation, which uses a simple thermal evaporation method without a catalyst. The collected ZnO nanoflowers were then characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical properties of these nanostructured materials are also discussed.

  8. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    Science.gov (United States)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  9. Thermal infrared mapping of the Leidenfrost drop evaporation

    Science.gov (United States)

    Wciślik, Sylwia

    2016-09-01

    The paper presents an author complementary study on the Leidenfrost drop evaporation. The research was conducted under ambient conditions and in the film boiling regime. Large water drops were placed on the copper substrate of the constant temperature Tw ranging from 297.6 to 404oC. The initial single drop diameter and its mass was D0 ≈ 1cm and m0 ≈ 1g respectively. One of the obtained results, for each Tw are the drop thermal images versus time. They were used to calculate an average temperature over the drop upper surface (Td). For an exemplary heating surface temperature of Tw = 297.6oC the average drop temperature is approximately 11oC lower than the saturation one and equals Td = 88,95oC. This value is estimated for the first 200s of evaporation and with time step size Δt = 0,5s. The drop upper surface temperature is highly variable and indicates strong convection inside it. This is due to the complex nature of heat and mass transfer. The maximum standard deviation from Td = 88,95oC is SD = 1.21.

  10. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    Brugnot, C.

    1993-11-01

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  11. Thermal performance of a compact evaporator coil in household refrigerator-freezers

    International Nuclear Information System (INIS)

    Kim, Man Hoe

    1998-01-01

    A high-efficiency evaporator coil, which is placed horizontally between refrigerator and freezer compartments, for household auto-defrost refrigerator-freezers has been developed. Several experiments were performed to investigate the thermal performance of the newly developed compact evaporator coil in a 248 liter auto-defrost refrigerator-freezer and the results are compared with those of the conventional evaporator. The energy efficiency of the system with newly designed evaporator can be improved by 7%, and the size and material of the evaporator can be reduced by 7% and 40%, respectively, compared with the conventional one

  12. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch.; Stucki, S.; Schuler, A.J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  13. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  14. Thermal management optimization of a thermoelectric-integrated methanol evaporator using a compact CFD modeling approach

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Snyder, G. Jeffrey

    2013-01-01

    To better manage the magnitude and the direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat......, and uses a different material property acquisition method based on module manufacturers’ datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include: type of the fins of the heat...

  15. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    Science.gov (United States)

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  16. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.

    Science.gov (United States)

    Wu, Y S; Fan, J T; Yu, W

    2011-03-01

    Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.

  17. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  18. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview

    Science.gov (United States)

    WANG, Faming

    2017-01-01

    Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566

  19. Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems

    International Nuclear Information System (INIS)

    Choi, Jeehoon; Sung, Byungho; Kim, Chulju; Borca-Tasciuc, Diana-Andra

    2013-01-01

    While miniature loop heat pipes (mLHP) have significant potential for electronic cooling, they are only used in a narrow niche of applications, such as space or military. Complicated fabrication and system integration leading to high cost devices are the main culprit. To this end, this paper explores a low-cost sintering method for fabricating evaporators for mLHP that have increased heat transfer performance. Through this method, the porous wick of the evaporator is fabricated to partially fill the vapor collection channels embedded in the base plate of the evaporator. The sintering method employs an organic material used to define the vapor collection channels, which is sublimated at the end of the sintering process. Interpenetrating these two, otherwise distinctive, parts of the evaporator results in an increased contact area and thermal conductance. The heat transfer performance of an mLHP employing the new evaporator is compared to that of a system using a standard evaporator configuration, where the porous wick is rested against a flat base plate. It is found that the thermal contact conductance increases about 25%, depending on the applied heat load, while the total thermal resistance of the mLHP with the new evaporator decreases approximately by a factor of two. -- Highlights: • The mLHPs have received attention from academic and industrial communities. • But the complicated fabrication and system integration lead to high cost devices. • Thus these have stunted the advent of commercialization. • We introduce a novel low-cost sintering method for fabricating evaporators. • The mLHP with new evaporator can provide overall cooling at a lower temperature

  20. Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe

    Science.gov (United States)

    Zhang, Renping

    2018-03-01

    A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.

  1. Thermodynamic analysis of siphon flash evaporation desalination system using ocean thermal energy

    International Nuclear Information System (INIS)

    Jin, Zhi-jiang; Ye, Hao; Wang, Hao; Li, Hao; Qian, Jin-yuan

    2017-01-01

    Highlights: • Siphon flash evaporation desalination system using ocean thermal energy. • Exergy efficiency under design conditions. • Parametric studies using ASPEN Plus. • Experimental studies on the performance of the system. - Abstract: Ocean thermal energy refers to the thermal potential energy produced by the temperature difference between the warm surface seawater and the cold deep seawater. In this paper, a siphon flash evaporation desalination system using ocean thermal energy is proposed. Because it can utilize the ocean thermal energy directly for desalination, siphon flash evaporation desalination system has relatively higher energy efficiency compared with converting ocean thermal energy into electric energy and then using electric energy for desalination. The working principle of this system is introduced firstly. Then, the exergy, exergy loss and exergy efficiency in the flash evaporation, condensation and the whole system are carried out quantitatively. The results show that the exergy efficiency of the system which directly utilizing ocean thermal energy for desalination reaches to 7.81% under design conditions; lower surface seawater temperature, higher deep seawater temperature and higher flash temperature can result in an increasing of system efficiency, while the whole energy consumption shall also be taken into consideration. Then the simulation model of the whole system is created in ASPEN PLUS in order to investigate the influence of some most important parameters, such as surface seawater temperatures, deep seawater temperatures and difference of inlet temperature between surface and deep seawater. Finally, an experimental platform is established based on the working principle and process to verify the validity of the working principle and the simulation model. The siphon flash evaporation desalination system provides a novel method of direct high efficient conversion and utilization of ocean thermal energy and this work can provide

  2. Design and construction of a thermal evaporation unit for laser isotope separation chamber

    International Nuclear Information System (INIS)

    Jazmati, A. K.; Al-Khawwam, A.

    2008-01-01

    A thermal evaporation unit has been ,especially, designed and constructed to fit in the laboratory chamber, which is already constructed for laser isotope separation project. The evaporation unit consists of three parts: an evaporator, a thermal isolation unit and a cooling jacket. The evaporator designed so that it produces the Yb metal vapour through a thin slit. The sheet of the vapour that comes out of the slit diverts and crosses the three laser beams that are needed for the isotope separation process. The diversion of the metal vapour sheet helps in optimizing the interaction volume between the metal vapour and the laser beams. The temperature of the evaporator can reach up to 800 Centigrade homogeneously along the slit. Less than 800 Centigrade temperature is needed to sublimate the Yb metal (powder form) in the vacuum chamber at about 10-6 mbar as has been tested. The temperature of the evaporator is controlled by the current , which passes through the heating wires. (author)

  3. Thermal CFD study and improvement of table top fridge evaporator by virtual prototyping

    Directory of Open Access Journals (Sweden)

    Georgi Todorov

    2017-09-01

    Full Text Available The present paper aims to assess and to improve existing design of evaporators for household table top refrigeration appliances using Computational Fluid Dynamics (CFD. This category of refrigerators are compact and cheap solutions for domestic appliance. The requirement for low cost solution does not cancel necessity of high effectivity, usually referred as “energy class”. The evaporator is important component of refrigerator heat transport system and to its efficiency. Existing design of evaporator is improved in two directions – as shape of the serpentine and as cross section – constrained by overall cost limit. Two groups of thermal CFD analyses are performed over various design variants. Used virtual prototypes enable to view in detail heat transfer process and to reach an better solution in means of overall price/performance. This study shows the effect of serpentine geometry on evaporator performance as well as demonstrates the benefits of virtual prototyping when targeting optimization and improvement.

  4. Decomposition of palladium acetate and C60 fullerite during thermal evaporation in PVD process

    Directory of Open Access Journals (Sweden)

    Rymarczyk Joanna

    2017-10-01

    Full Text Available The mechanisms of thermal decomposition of evaporated material during Physical Vapor Deposition (PVD process depend on the kind of evaporated material. Such parameters of PVD process as deposition rate, source temperature and deposition time should be carefully selected taking into account the properties of material. Deposited films can span the range of chemical compositions based on the source materials. The nanostructural carbon films in form of palladium nanograins embedded in various carbonaceous matrixes were obtained by thermal evaporation during PVD process from two separated sources containing C60 fullerite and palladium acetate, both in a form of powder. The evaporation was realized by resistive heating of sources under a dynamic vacuum of 10-3 Pa. The influence of decomposition path of evaporated materials on the film structure has been discussed. Prepared C-Pd films were characterized using thermo-gravimetric method, differential thermal analysis, infrared spectroscopy and X-ray diffraction. The influence of decomposition of Pd acetate and fullerite on the final film structure was also shown.

  5. Thermal panting in dogs: the lateral nasal gland, a source of water for evaporative cooling.

    Science.gov (United States)

    Blatt, C M; Taylor, C R; Habal, M B

    1972-09-01

    Two lateral nasal glands appear to provide a large part of the water for evaporative cooling in the panting dog; their function is analogous to that of sweat glands in man. Each gland drains through a single duct which opens about 2 centimeters inside the opening of the nostril. This location may be essential to avoid desiccation of the nasal mucosa during thermal panting. The rate of secretion from one gland increased from 0 to an average of 9.6 g (gland . hour)(-1) as air temperature was increased from 10 degrees to 50 degrees C. Evaporation of the fluid from the paired glands could account for between 19 and 36 percent of the increase in respiratory evaporation associated with thermal panting. The fluid secreted by the gland was hypoosmotic to plasma.

  6. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  7. Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher

    Directory of Open Access Journals (Sweden)

    Azam Noroozi

    2018-02-01

    Full Text Available Wind catchers are one of the oldest cooling systems that are employed to provide sufficient natural ventilation in buildings. In this study, a laboratory scale wind catcher was equipped with a combined evaporative system. The designed assembly was comprised of a one-sided opening with an adjustable wetted pad unit and a wetted blades section. Theoretical analysis of the wind catcher was carried out and a set of experiments were organized to validate the results of the obtained models. The effect of wind speed, wind catcher height, and mode of the opening unit (open or closed was investigated on temperature drop and velocity of the moving air through the wind catcher as well as provided sensible cooling load. The results showed that under windy conditions, inside air velocity was slightly higher when the pad was open. Vice versa, when the wind speed was zero, the closed pad resulted in an enhancement in air velocity inside the wind catcher. At wind catcher heights of 2.5 and 3.5 m and wind speeds of lower than 3 m/s, cooling loads have been approximately doubled by applying the closed-pad mode.

  8. Effect of Air Gap Entrapped in Firefighter Protective Clothing on Thermal Resistance and Evaporative Resistance

    Directory of Open Access Journals (Sweden)

    He Hualing

    2018-03-01

    Full Text Available Heat and water vapor transfer behavior of thermal protective clothing is greatly influenced by the air gap entrapped in multilayer fabric system. In this study, a sweating hot plate method was used to investigate the effect of air gap position and size on thermal resistance and evaporative resistance of firefighter clothing under a range of ambient temperature and humidity. Results indicated that the presence of air gap in multilayer fabric system decreased heat and water vapor transfer abilities under normal wear. Moreover, the air gap position slightly influenced the thermal and evaporative performances of the firefighter clothing. In this study, the multilayer fabric system obtained the highest thermal resistance, when the air space was located at position B. Furthermore, the effect of ambient temperature on heat and water vapor transfer properties of the multilayer fabric system was also investigated in the presence of a specific air gap. It was indicated that ambient temperature did not influence the evaporative resistance of thermal protective clothing. A thermographic image was used to test the surface temperature of multilayer fabric system when an air gap was incorporated. These results suggested that a certain air gap entrapped in thermal protective clothing system could affect wear comfort.

  9. Study of evaporation from He II free surface induced by thermal shock wave

    International Nuclear Information System (INIS)

    Murakami, M.; Maki, M.; Fujiyama, J.; Furukawa, T.

    2002-01-01

    Experimental study on evaporation phenomena in superfluid helium (He II, T<2.17 K) environment was carried out. We took such advantages of He II environment that a practically pure vapor-liquid system could be realized in a experimental cell because all gaseous components except helium were in frozen state and a thermal shock wave could be used as a pulsed heat source to induce evaporation. Evaporation is caused by the incidence of a second sound thermal pulse onto the He II free surface. The gas-dynamic phenomena were visualized with the laser holographic interferometer (LHI) and were measured with superconductive thermometers and pressure transducers as well as with the newly developed superconductive hot-wire anemometer. The whole gasdynamic field was seen to consist of an evaporation shock wave, a uniform flow region and a Knudsen layer. The condensation coefficient of He II is obtained from the comparison of the experimental data with the slip boundary condition at evaporating interface derived from the kinetic theory of gases. It was demonstrated that a He II environment could offer an ideal situation for experimental gas-dynamic studies, and such experimental techniques as LHI and a hot-wire fully developed in conventional fluid-dynamics were of use even in cryogenic environment

  10. Measuring the thermal insulation and evaporative resistance of sleeping bags using a supine sweating fabric manikin

    International Nuclear Information System (INIS)

    Wu, Y S; Fan, Jintu

    2009-01-01

    For testing the thermal insulation of sleeping bags, standard test methods and procedures using heated manikins are provided in ASTM F1720-06 and EN 13537:2002. However, with regard to the evaporative resistance of sleeping bags, no instrument or test method has so far been established to give a direct measurement. In this paper, we report on a novel supine sweating fabric manikin system for directly measuring the evaporative resistance of sleeping bags. Eleven sleeping bags were tested using the manikin under the isothermal condition, namely, both the mean skin temperature of the manikin and that of the environment were controlled to be the same at 35 °C, with the wind speed and ambient relative humidity at 0.3 m s −1 and 50%, respectively. The results showed that the novel supine sweating fabric manikin is reproducible and accurate in directly measuring the evaporative resistance of sleeping bags, and the measured evaporative resistance can be combined with thermal insulation to calculate the moisture permeability index of sleeping bags

  11. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  12. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    International Nuclear Information System (INIS)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong

    2016-01-01

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future

  13. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-10-15

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.

  14. Genetics Home Reference: lamellar ichthyosis

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Lamellar ichthyosis Lamellar ichthyosis Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lamellar ichthyosis is a condition that mainly affects the skin . ...

  15. Thermal Effectiveness Characteristics of Low Approach Indirect Evaporative Cooling Systems in Buildings

    OpenAIRE

    Costelloe, Ben; Finn, Donal

    2007-01-01

    Meteorological enthalpy analysis of temperate and maritime climates above latitude 45°N suggests that the water-side evaporative cooling technique has considerable unrealised potential with contemporary “high temperature” building cooling systems—such as chilled ceilings and displacement ventilation. As low approach conditions are the key to exploiting the cooling potential of the ambient air, thermal performance at such conditions needs to be investigated. To address the research issues, an ...

  16. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  17. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  18. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-09-30

    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  19. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  20. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen [Department of Mechanical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States); Foltz, Heinrich [Department of Electrical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States)

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited on Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.

  1. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  2. Assessment of lamellar tearing

    International Nuclear Information System (INIS)

    McEnerney, J.W.

    1978-03-01

    Information on lamellar tearing is summarized and related to proposed ASME Code requirements. Lamellar tearing is characterized as a complex phenomenon related to poor short transverse ductility and through-thickness strain. The material, welding, and design variables that affect lamellar tearing are shown to be complex and interrelated. The commonly reported tests for assessing material susceptibility are described, with the controversy over their validity being carefully detailed. Although the use of a nondestructive test such as ultrasonic examination is most desirable, a widely applicable test method does not appear to be available. Of the destructive tests, the short transverse tensile reduction-of-area currently offers the most applicable means of assessing material susceptibility. However, because of the importance of matrix toughness, the short transverse Charpy V-notch test should be considered for use as an additional test if acceptance limits are developed. The ultrasonic detection of lamellar tears is susceptible to interpretation errors, which can make it overly conservative and lead to unnecessary repairs. The repair of tears is described as costly, difficult, and sometimes ineffective. Current design requirements appear to preclude any failures during static and fatigue service loads. However, without improvement of short transverse ductility, certain dynamic service loads could cause lamellar tearing failures. Two alternate design paths are recommended to prevent tearing during fabrication or service loading. The current and proposed ASME requirements dealing with lamellar tearing are reviewed and recommendations are made

  3. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia/Programa de Pos-Graduacao em Engenharia Civil, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana - UTFPR, Av. Sete de Setembro, 3165. Curitiba PR, CEP. 80230-901 (Brazil); Gonzalez Cruz, Eduardo [Instituto de Investigaciones de la Facultad de Arquitectura y Diseno (IFAD), Universidad del Zulia, Nucleo Tecnico de LUZ, Av. Goajira (16) con Calle 67, Maracaibo, CP 4011-A-526 (Venezuela); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles CA, USA, and Ben Gurion University (Israel)

    2010-06-15

    In this paper, we compare results of a long-term temperature monitoring in a building with high thermal mass to indoor temperature predictions of a second building that uses an indirect evaporative cooling system as a means of passive cooling (Vivienda Bioclimatica Prototipo -VBP-1), for the climatic conditions of Sde Boqer, Negev region of Israel (local latitude 30 52'N, longitude 34 46'E, approximately 480 m above sea level). The high-mass building was monitored from January through September 2006 and belongs to a student dormitory complex located at the Sde Boqer Campus of Ben-Gurion University. VBP-1 was designed and built in Maracaibo, Venezuela (latitude 10 34'N, longitude 71 44'W, elevation 66 m above sea level) and had its indoor air temperatures, below and above a shaded roof pond, as well as the pond temperature monitored from February to September 2006. Formulas were developed for the VBP-1, based on part of the whole monitoring period, which represent the measured daily indoor maximum, average and minimum temperatures. The formulas were then validated against measurements taken independently in different time periods. The developed formulas were here used for estimating the building's thermal and energy performance at the climate of Sde Boqer, allowing a comparison of two different strategies: indirect evaporative cooling and the use of thermal mass. (author)

  4. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  5. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  6. Thermal characteristics of a medium-level concentration photovoltaic unit with evaporation cooling

    Science.gov (United States)

    Kokotov, Yuri V.; Reyz, Michael A.; Fisher, Yossi

    2009-08-01

    The results of thermal analysis and experiments are presented for a 1-kW brand new medium-level (8X) concentration photovoltaic (CPV) unit that is cooled by evaporation and built as an elongated floating solar unit. The unit keeps the silicon PV elements at low and stable temperature around the clock, significantly outperforms competitors' systems in terms of the power output and the life span of identical PV elements. It is demonstrated theoretically and experimentally that the PV element temperature level exceeds the temperature level of water in the water basin (used as a heat sink) by just a few degrees.

  7. Growth of ZnS nanostructures in high vacuum by thermal evaporation.

    Science.gov (United States)

    Yuvaraj, D; Sathyanarayanan, M; Rao, K Narasimha

    2014-06-01

    ZnS nanostructures were grown on Si substrates in high vacuum by modified thermal evaporation technique. Morphology, chemical composition and structural properties of grown ZnS nanostructures were studied using scanning electron microscope (SEM), X-ray diffractometer and transmission electron microscope (TEM). SEM studies showed that morphology of the grown structures varies with incident flux and source temperature. TEM studies showed that grown nanostructures are single crystalline in nature without structural defects such as stacking faults and twins. No catalytic particle was included in this growth process, and hence these micro and nanostructures were assumed to grow by VS mechanism.

  8. Self-assembled plasmonic nanoparticles on vertically aligned carbon nanotube electrodes via thermal evaporation.

    Science.gov (United States)

    Kim, Youngmin; Lee, Seungjae; Lee, Kyungjun; Shim, Sangdeok; Kim, Jin Young; Lee, Hyung Woo; Choi, Dukhyun

    2014-11-26

    This study details the development of a large-area, three-dimensional (3D), plasmonic integrated electrode (PIE) system. Vertically aligned multiwalled carbon nanotube (VA-MWNT) electrodes are grown and populated with self-assembling silver nanoparticles via thermal evaporation. Due to the geometric and surface characteristics of VA-MWNTs, evaporated silver atoms form nanoparticles approximately 15-20 nm in diameter. The nanoparticles are well distributed on VA-MWNTs, with a 5-10 nm gap between particles. The size and gap of the self-assembled plasmonic nanoparticles is dependent upon both the length of the MWNT and the thickness of the evaporated silver. The wetting properties of water of the VA-MWNT electrodes change from hydrophilic (∼70°) to hydrophobic (∼120°) as a result of the evaporated silver. This effect is particularly pronounced on the VA-MWNT electrodes with a length of 1 μm, where the contact angle is altered from an initial 8° to 124°. Based on UV-visible spectroscopic analysis, plasmonic resonance of the PIE systems occurs at a wavelength of approximately 400 nm. The optical behavior was found to vary as a function of MWNT length, with the exception of MWNT with a length of 1 μm. Using our PIE systems, we were able to obtain clear surface-enhanced Raman scattering (SERS) spectra with a detection limit of ∼10 nM and an enhancement factor of ∼10(6). This PIE system shows promise for use as a novel electrode system in next-generation optoelectronics such as photovoltaics, light-emitting diodes, and solar water splitting.

  9. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  10. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation

    Science.gov (United States)

    Farid, Sidra; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    Thermal evaporation growth technique is presented as a route to grow cost effective high quality CdS thin films. We have successfully grown high quality CdS thin films on ITO coated glass substrates by thermal evaporation technique and analyzed the effects of annealing and excitation dependent input of CdS thin film using Raman and photoluminescence spectroscopy. LO phonon modes have been analyzed quantitatively considering the contributions due to anneal induced effects on film quality using phonon spatial correlation model, line shape and defect state analysis. Asymmetry in the Raman line shape towards the low frequency side is related to the phonon confinement effects and is modeled by spatial correlation model. Calculations of width (FWHM), integrated intensity, and line shape for the longitudinal (LO) optical phonon modes indicate improved crystalline quality for the annealed films as compared to the as grown films. With increase in laser power, intensity ratio of 2-LO to 1-LO optical phonon modes is found to increase while multiple overtones upto fourth order are observed. Power dependent photoluminescence data indicates direct band-to-band transition in CdS thin films.

  11. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2018-03-01

    Full Text Available The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111 while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells. Keywords: CdTe thin film, Microstructural, Optoelectrical, Thermal evaporation

  12. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, L., E-mail: lsg09_phy089@student.usm.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new kind of substrate (porous silicon) was used. Black-Right-Pointing-Pointer Also this research introduces an easy and safe method to grow high quality GaN NWs. Black-Right-Pointing-Pointer This is a new growth process to decrease the cost, complexity of growth of GaN NWs. Black-Right-Pointing-Pointer It is a controllable method to synthesize GaN NWs by thermal evaporation. - Abstract: Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  13. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  14. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    OpenAIRE

    Shevelev Sergey

    2017-01-01

    The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process...

  15. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  16. New techniques in lamellar keratoplasty.

    Science.gov (United States)

    Alio, Jorge L; Shah, Sunil; Barraquer, Carmen; Bilgihan, Kamil; Anwar, Mohammed; Melles, Gerrit R J

    2002-08-01

    In the past years, several lamellar keratoplasty surgical techniques have been developed, modified or improved in the past years, including microkeratome assisted anterior and posterior lamellar keratoplasty, anterior lamellar keratoplasty using air-dissection or visco-dissection, sutureless posterior lamellar keratoplasty, LASIK for postkeratoplasty astigmatism, and excimer laser assisted keratophakia for keratoconus or to manage complications after LASIK. These procedures may continue to gain interest as alternative procedures for a penetrating keratoplasty in the treatment of various corneal disorders.

  17. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  18. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    International Nuclear Information System (INIS)

    Caldeira Filho, A.M.; Mulato, M.

    2011-01-01

    Some semiconductor materials such as lead iodide (PbI 2 ) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10 8 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  19. Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-12-01

    Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal (Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vapor-liquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  20. CO$_2$ evaporative cooling: The future for tracking detector thermal management

    CERN Document Server

    AUTHOR|(CDS)2051454; Daguin, Jerome; Petagna, Paolo; Postema, Willem Johannes; Bart Verlaat; Lukasz Zwalinski

    2016-01-01

    In the last few years, CO$_2$ evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO$_2$ evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the con...

  1. The anomalous low temperature resistivity of thermally evaporated α-Mn thin film

    International Nuclear Information System (INIS)

    Ampong, F.K.; Boakye, F.; Nkum, R.K.

    2010-01-01

    Electrical resistivity measurements have been carried out on thermally evaporated α-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10 -6 Torr. The results show a resistance minimum, a notable characteristic of α-Mn but at a (rather high) temperature of 194±1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 μΩm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  2. The anomalous low temperature resistivity of thermally evaporated alpha-Mn thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ampong, F.K., E-mail: kampxx@yahoo.co [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Boakye, F.; Nkum, R.K. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2010-08-15

    Electrical resistivity measurements have been carried out on thermally evaporated alpha-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10{sup -6} Torr. The results show a resistance minimum, a notable characteristic of alpha-Mn but at a (rather high) temperature of 194+-1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 muOMEGAm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  3. Automated installation for organic coatings deposition by vacuum thermal evaporation method

    Science.gov (United States)

    Gryaznov, A. O.; Lee, E. V.; Ishchenko, A. V.; Vokhmintsev, A. S.; Weinstein, I. A.; Kazin, N. A.; Irgashev, R. A.

    2017-09-01

    An automated installation based on National Instruments' control and measurement equipment, vacuum chamber with resistive heater and "ThermoVac" virtual instrument was designed and tested for deposition of thin organic films by vacuum thermal evaporation method. A 5,11-dimethyl-5,11-dihydroindolo[3,2-b]carbazole layer with thickness of 200 ± 50 nm was applied on the surface of fused silica glass, titanium and titanium nitride substrates. Current-voltage characteristics of Ti/IC/Au and TiN/IC/Au/Ti films were studied. It was determined that deposited organic layer had p-type conductivity and charge carriers mobility of 4.9.10-7 cm2/(V.s).

  4. Structural, optical and XPS study of thermal evaporated In2O3 thin films

    Science.gov (United States)

    Neelakanta Reddy, I.; Venkata Reddy, Ch; Cho, Migyung; Shim, Jaesool; Kim, Dongseob

    2017-08-01

    The nanostructured In2O3 thin films were deposited on Si n-type (1 0 0) substrates by reactive thermal evaporation. The structural, morphological, and oxidation states of the films were investigated using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. The optical properties of the films were analyzed by UV-vis spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The deposited films showed c-In2O3 crystalline nanostructures with a preferred diffraction peak of (2 2 2). The truncated icosahedron shape’s morphology with a transmittance of 85% was observed in the In2O3 thin films. All the deposited indium oxide films have 3+  oxidation states.

  5. Understanding the unusual photoluminescence properties of SiO x nanoropes prepared by thermal evaporation method

    Science.gov (United States)

    Senapati, Subrata; Rath, Ashutosh; Nanda, Karuna Kar

    2018-01-01

    We report the indium oxide catalyzed growth of the amorphous SiO x nanoropes using the silicon wafer as both source-cum-substrates by thermal evaporation and investigate the luminescence properties. Both blue and yellow emissions are observed from the nanoropes. Blue emission could be attributed to the defect centers of the oxygen deficiency in the nanoropes, whereas yellow emission is due to the trapped excitons in the Si/SiO x interface of the materials. Effect of laser exposure on luminescence properties is studied by performing time-dependent PL measurements at different ambiance. Irrespective of laser excitation and ambiance, a monoexponential decay of blue emission with continuous laser exposure is clearly observed, which is due to the gradual removal of surface adsorbed species.

  6. In situ biofouling of ocean thermal energy conversion /OTEC/ evaporator tubes

    Science.gov (United States)

    Sasscer, D. S.; Morgan, T.; Tosteson, T. R.; Grannemann, G. N.

    1981-05-01

    The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning, and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-K/W-day.

  7. Influence of multi-depositions on the final properties of thermally evaporated TlBr films

    International Nuclear Information System (INIS)

    Destefano, N.; Mulato, M.

    2010-01-01

    Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 10 9 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.

  8. Structural and optical properties of Zn–In–Te thin films deposited by thermal evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Güllü, H.H.; Bayraklı, Ö.; Candan, İ. [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey); Coşkun, E. [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey); Department of Physics, Çanakkale Onsekiz Mart University, 17100 Çanakkale (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey)

    2013-07-25

    Highlights: •The new ternary compound Zn–In–Te (ZIT) has been studied for photovoltaic device applications as an absorber layer. •ZIT thin films were deposited by thermal evaporation of stoichiometric sintered polycrystalline powder. •The optical constants were calculated by using different methods, (SOM), Envelope Model (EM) and Cauchy Method. •Urbach energies were calculated and the increasing band tail energies were observed with increasing annealing temperature. -- Abstract: Annealing effects on structural and optical properties of the thermally evaporated Zn–In–Te (ZIT) thin films have been investigated. The structural and the compositional analyses were carried out by means of X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA). The as-grown and annealed ZIT films had polycrystalline structure and the preferred orientation changed from (2 2 0) to (1 1 2) direction with increasing annealing temperature. The optical properties and constants were determined by transmittance measurements in the wavelength range of 200–2000 nm. The effect of annealing on the optical parameters was determined by using Single Oscillator Model (SOM), Envelope Model (EM) and Cauchy Method. The absorbance studies revealed that the films had three distinct transitions in the high absorption region because of the tetragonal distortion, and that was used to evaluate the splitting energies of crystal-field and spin–orbit splitting. The fundamental optical band gap values were found to be lying in the range of 1.51 and 1.72 eV and the notable change of the band gaps due to annealing temperatures was observed. Finally, the Urbach energies were calculated and it was observed that the band tail energies were increasing with increasing annealing temperature.

  9. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition.

    Science.gov (United States)

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-05-22

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm(2). Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.

  10. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  11. Structural, electrical, and optical properties of copper indium diselenide thin film prepared by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N.M.; Ray, J.R.; Patel, K.J.; Kheraj, V.A.; Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390001, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.co [Applied Physics Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390001, Gujarat (India); Rehani, Bharti [Metallurgical Engineering Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390001, Gujarat (India)

    2009-05-01

    Stoichiometric compound of copper indium diselenide (CuInSe{sub 2}) was synthesized by direct reaction of high-purity elemental copper, indium and selenium in an evacuated quartz ampoule. The phase structure and composition of the synthesized pulverized material analyzed by X-ray diffraction (XRD) and energy dispersive analysis of X-rays (EDAX) revealed the chalcopyrite structure and stoichiometry of elements. Thin films of CuInSe{sub 2} were deposited onto organically cleaned soda lime glass substrates held at different temperatures (i.e. 300 K to 573 K) using thermal evaporation technique. CuInSe{sub 2} thin films were then thermally annealed in a vacuum chamber at 573 K at a base pressure of 10{sup -2} mbar for 1 h. The effect of substrate temperature (T{sub s}) and thermal annealing (T{sub a}) on structural, compositional, morphological, optical and electrical properties of films were investigated using XRD, transmission electron microscopy, EDAX, atomic force microscopy (AFM), optical transmission measurements and Hall effect techniques. XRD and EDAX studies of CuInSe{sub 2} thin films revealed that the films deposited in the substrate temperature range of 423-573 K have preferred orientation of grains along the (112) plane and near stoichiometric composition. AFM analysis indicates that the grain size increases with increase of T{sub s} and T{sub a}. Optical and electrical characterizations of films suggest that CuInSe{sub 2} thin films have high absorption coefficient (10{sup 4} cm{sup -1}) and resistivity value in the interval 10{sup -2}-10{sup 1} {Omega} cm influenced by T{sub s} and T{sub a}.

  12. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Science.gov (United States)

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions.

    Science.gov (United States)

    Alpatova, A; Alsaadi, A; Ghaffour, N

    2018-06-05

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO 3 scaling on the membrane surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparison of structural properties of thermally evaporated CdTe thin films on different substrates

    International Nuclear Information System (INIS)

    Tariq, G.H.; Anis-ur-Rehman, M.

    2011-01-01

    The direct energy band gap in the range of 1.5 eV and the high absorption coefficient (105 cm/sup -1/) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (1 cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2 X 10/sup -5/mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200 deg. C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type. (author)

  15. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  16. Physical properties of very thin SnS films deposited by thermal evaporation

    International Nuclear Information System (INIS)

    Cheng Shuying; Conibeer, Gavin

    2011-01-01

    SnS films with thicknesses of 20–65 nm have been deposited on glass substrates by thermal evaporation. The physical properties of the films were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ultraviolet–visible-near infrared spectroscopy at room temperature. The results from XRD, XPS and Raman spectroscopy analyses indicate that the deposited films mainly exhibit SnS phase, but they may contain a tiny amount of Sn 2 S 3 . The deposited SnS films are pinhole free, smooth and strongly adherent to the surfaces of the substrates. The color of the SnS films changes from pale yellow to brown with the increase of the film thickness from 20 nm to 65 nm. The very smooth surfaces of the thin films result in their high reflectance. The direct bandgap of the films is between 2.15 eV and 2.28 eV which is much larger than 1.3 eV of bulk SnS, this is deserving to be investigated further.

  17. Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Al-Busaidi, M.; Gismelseed, A.; Al-Rawas, A. [Physics Department, College of Science, Sultan Qabos University, P. O. Box 36, Postal Code 123, Al-Khodh, Muscat (Oman)

    2004-05-01

    Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers (MLs) have been investigated. Although multilayered structure has been successfully obtained, a substantial interfacial roughness ranging from 0.6 nm to 1.2 nm has been determined. All Fe/Cu MLs were polycrystalline with an average grain size of about 10 nm. Fe was bcc and textured (110) whereas Cu was fcc(111). Transmission electron microscopy analysis showed that the fcc Cu layer was rather textured (110) and (100) at least in the first stage of growth of the Fe/Cu MLs. Conversion electron Moessbauer (CEMS) measurements indicated the existence of three phases. Two of them were magnetic with a dominant bcc Fe phase, followed by fcc Fe phase. The third phase was superparamagnetic. The CEMS results were explained in terms of the partial diffusion of Fe into Cu with three different zones. The small magnetoresistance (MR<0.2%) was correlated to Fe clusters located at Fe-Cu interfaces. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Atomic Force Microscopy and XRD Analysis of Silver Films Deposited by Thermal Evaporation

    Science.gov (United States)

    Maqbool, Muhammad; Khan, Tahirzeb

    Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.

  19. Surface Characterization and Grain Size Calculation of Silver Films Deposited by Thermal Evaporation

    Science.gov (United States)

    Maqbool, Muhammad; Khan, Tahirzeb

    Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). Thickness of the films varied between 20 nm and 60 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. 3D and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Grain sizes were calculated using the XRD results and Scherer's formula. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching a maximum value of 41.9 nm when the film size reaches 60 nm. We could not find any sequential variation in the grain size with the growth rate.

  20. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions

    KAUST Repository

    Alpatova, Alla

    2018-03-26

    The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO scaling on the membrane surface.

  1. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  2. Lamellar-in-lamellar structure of binary linear multiblock copolymers

    NARCIS (Netherlands)

    Klymko, T.; Subbotin, A.; ten Brinke, G.

    2008-01-01

    A theoretical description of the lamellar-in-lamellar self-assembly of binary A-b-(B-b-A)(m)-b-B-b-A multiblock copolymers in the strong segregation limit is presented. The essential difference between this binary multiblock system and the previously considered C-b-(B-b-A)(m)-b-B-b-C ternary

  3. Growth, structural and optical properties of copper indium diselenide thin films deposited by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N.M.; Panchal, C.J.; Kheraj, V.A.; Ray, J.R.; Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001, Gujarat (India)

    2009-05-15

    Copper indium diselenide (CuInSe{sub 2}) compound was synthesized by reacting its constituent's elements copper, indium and selenium in near stoichiometric proportions (i.e. 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Synthesized pulverized compound material was used as an evaporant material to deposit thin films of CuInSe{sub 2} onto organically cleaned sodalime glass substrates, held at different temperatures (300-573 K), by means of single source thermal evaporation method. The phase structure and the composition of chemical constituents present in the synthesized compound and thin films have been investigated using X-ray diffraction and energy dispersive X-ray analysis, respectively. The investigations show that CuInSe{sub 2} thin films grown above 423 K are single phase, having preferred orientation of grains along the (112) direction, and having near stoichiometric composition of elements. The surface morphology of CuInSe{sub 2} films, deposited at different substrate temperatures, has been studied using the atomic force microscopy to estimate its surface roughness. An analysis of the transmission spectra of CuInSe{sub 2} films, recorded in the wavelength range of 500-1500 nm, revealed that the optical absorption coefficient and the energy band gap for CuInSe{sub 2} films, deposited at different substrate temperatures, are {proportional_to}10{sup 4} cm{sup -1} and 1.01-1.06 eV, respectively. The transmission spectrum was analyzed using iterative method to calculate the refractive index and the extinction coefficient of CuInSe{sub 2} thin film deposited at 523 K. The Hall effect measurements and the temperature dependence of the electrical conductivity of CuInSe{sub 2} thin films, deposited at different substrate temperatures, revealed that the films had electrical resistivity in the range of 0.15-20 ohm cm, and the activation energy 82-42 meV, both being influenced by the substrate temperature. (author)

  4. Lamellar-in-lamellar structure of binary linear multiblock copolymers.

    Science.gov (United States)

    Klymko, T; Subbotin, A; Ten Brinke, G

    2008-09-21

    A theoretical description of the lamellar-in-lamellar self-assembly of binary A-b-(B-b-A)(m)-b-B-b-A multiblock copolymers in the strong segregation limit is presented. The essential difference between this binary multiblock system and the previously considered C-b-(B-b-A)(m)-b-B-b-C ternary multiblock copolymer system is discussed. Considering the situation with long end blocks, the free energy of the lamellar-in-lamellar self-assembled state is analyzed as a function of the number k of "thin" internal lamellar domains for different numbers m of repeating (B-b-A) units and different values of the Flory-Huggins chi(AB) interaction parameter. The theoretical predictions are in excellent agreement with the available experimental data.

  5. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  6. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  7. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu [Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States)

    2017-05-20

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  8. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    International Nuclear Information System (INIS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-01-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  9. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli

    2012-12-01

    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  10. Thermally evaporated thin films of SnS for application in solar cell devices

    International Nuclear Information System (INIS)

    Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume; Forbes, Ian

    2009-01-01

    SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy bandgap phases e.g. SnS 2 , Sn 2 S 3 and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. In this work thin films of tin sulphide have been thermally evaporated onto glass and SnO 2 :coated glass substrates with the aim of optimising the properties of the material for use in photovoltaic solar cell device structures. In particular the effects of source temperature, substrate temperature, deposition rate and film thickness on the chemical and physical properties of the layers were investigated. Energy dispersive X-ray analysis was used to determine the film composition, X-ray diffraction to determine the phases present and structure of each phase, transmittance and reflectance versus wavelength measurements to determine the energy bandgap and scanning electron microscopy to observe the surface topology and topography and the properties correlated to the deposition parameters. Using the optimised conditions it is possible to produce thin films of tin sulphide that are pinhole free, conformal to the substrate and that consist of densely packed columnar grains. The composition, phases present and the optical properties of the layers deposited were found to be highly sensitive to the deposition conditions. Energy bandgaps in the range 1.55 eV-1.7 eV were obtained for a film thickness of 0.8 μm, and increasing the film thickness to > 1 μm resulted in a reduction of the energy bandgap to less than 1.55 eV. The applicability of using these films in photovoltaic solar cell device structures is also discussed.

  11. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  12. Influence of Annealing on the Optical Parameters of In2S3 Thin Films Produced by Thermal Evaporation

    Science.gov (United States)

    Izadneshan, H.; Gremenok, V. F.

    2014-05-01

    In2S3 thin fi lms are grown on glass substrates by vacuum thermal evaporation followed by annealing in vacuum between 330 and 400 °C for different time durations. We have investigated the infl uence of the annealing parameters on the characteristics of thin fi lms. It is shown that thermal treatment changed the crystal structure and optical energy band gap of In2S3 thin fi lms. Two energy band gaps were determined for all the fi lms, one indirect and the other direct.

  13. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  14. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  15. One-dimensional and quasi-one-dimensional ZnO nanostructures prepared by spray-pyrolysis-assisted thermal evaporation

    Science.gov (United States)

    Liu, Wen-Cheng; Cai, Wei

    2008-03-01

    One-dimensional (1D) and quasi-1D ZnO nanostructures have been fabricated by a kind of new spray-pyrolysis-assisted thermal evaporation method. Pure ZnO powder serves as an evaporation source. Thus-obtained products have been characterized by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM). The room temperature photoluminescence spectrum of these ZnO nanostructures is presented. The results show that as-grown ZnO nanomaterials have a hexagonal wurtzite crystalline structure. Besides nanosaws, nanobelts and nanowires, complex ZnO nanotrees have also been observed in synthesized products. The study provides a new simple route to construct 1D and quasi-1D ZnO nanomaterials, which can probably be extended to fabricate other oxide nanomaterials with high melting point and doped oxide nanomaterials.

  16. Study of evaporation from He II free surface induced by thermal shock wave

    Science.gov (United States)

    Murakami, M.; Maki, M.; Fujiyama, J.; Furukawa, T.

    2002-05-01

    Experimental study on evaporation phenomena in superfluid helium (He II, Tsurface. The gas-dynamic phenomena were visualized with the laser holographic interferometer (LHI) and were measured with superconductive thermometers and pressure transducers as well as with the newly developed superconductive hot-wire anemometer. The whole gasdynamic field was seen to consist of an evaporation shock wave, a uniform flow region and a Knudsen layer. The condensation coefficient of He II is obtained from the comparison of the experimental data with the slip boundary condition at evaporating interface derived from the kinetic theory of gases. It was demonstrated that a He II environment could offer an ideal situation for experimental gas-dynamic studies, and such experimental techniques as LHI and a hot-wire fully developed in conventional fluid-dynamics were of use even in cryogenic environment.

  17. LAMELLAR ICHTHYOSIS (COLLODION BABY

    Directory of Open Access Journals (Sweden)

    Paramarta IGE

    2012-11-01

    Full Text Available The ichthyosis are a heterogeneous group of hereditary and acquired disorder of keratinization which affected the epidermis characterized by presence of visible scales on the skin surface in the absence of inflammation. It can occur as a disease limited to the skin or in association with abnormalities of other organ systems. Lamelar ihthyosis (LI is one of two mayor autosomal recessive ichthyosis with an incidence of approximately one in 300,000. The diagnosis is based on clinical and pathologic finding. Infection is the most common complication, while prognosis of LI is depends on severity and complication of the disease. A case of lamellar ichthyosis in 0 day Balinese female baby was reported. The skin of the body was thick, plate-like appearance, scaling on the entire body, some of the thick skin was ruptured on chest and extremities. There were eclabium on the mouth and ectropion on the eyes. Histopathology examination showed hyperkeratosis without perivascular infiltration lymphocyte. The baby was given breast feeding, antibiotic, hydrocortisone cream and olium olivarum. The prognosis of the baby is good.

  18. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?

    Science.gov (United States)

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-08-01

    This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.

  19. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    Science.gov (United States)

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  20. Stability of the lamellar structure in Mo-TiC eutectic composite under a low vacuum at high temperatures

    International Nuclear Information System (INIS)

    Goto, Shoji; Nishijima, Yuzo; Yoshinaga, Hideo

    1986-01-01

    Thermal stability of the lamellar structure in a Mo-TiC eutectic composite has been investigated through the heat-treatment at 1523 - 2223 K for 5.76 x 10 4 - 3.6 x 10 5 s under a low vacuum pressure of 13 mPa. It was found that the TiC phase in the eutectic lamellar disappeared above the critical temperature of about 1750 K, but below the critical temperature the disappearance of TiC phase was hardly observed and TiO film was formed on the surface. The Mo matrix phase was not oxidized and was stable at all test temperatures, since its affinity for oxygen is lower than that for carbon and titanium. It is presumed that at higer temperatures the disappearance process of TiC phase is controlled by the diffusion of carbon atoms through the matrix to the surface, and carbon and titanium atoms on the surface are removed by CO gas formation and TiO evaporation, respectively, but at lower temperatures the evaporation of TiO is so slow that the TiO film is formed on the surface. (author)

  1. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on...

  2. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  3. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  4. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com [School of Physics, USM, 11800 Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), USM, 11800 Penang (Malaysia); Ahmed, Naser M. [School of Physics, USM, 11800 Penang (Malaysia)

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphology and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.

  5. In6Se7 thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    International Nuclear Information System (INIS)

    Ornelas, R.E.; Avellaneda, D.; Shaji, S.; Castillo, G.A.; Roy, T.K. Das; Krishnan, B.

    2012-01-01

    Indium selenide (In 6 Se 7 ) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 °C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In 6 Se 7 . Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In 6 Se 7 thin films.

  6. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    Science.gov (United States)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  7. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-03-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  8. Investigation on thermal evaporated CH3NH3PbI3 thin films

    International Nuclear Information System (INIS)

    Li, Youzhen; Xu, Xuemei; Yang, Junliang; Wang, Chenggong; Wang, Congcong; Gao, Yongli; Xie, Fangyan

    2015-01-01

    CH 3 NH 3 I, PbI 2 and CH 3 NH 3 PbI 3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The XPS results indicate that the PbI 2 and CH 3 NH 3 PbI 3 films are more uniform and stable than the CH 3 NH 3 I film. The atomic ratio of the CH 3 NH 3 I, PbI 2 and CH 3 NH 3 PbI 3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH 3 NH 3 PbI 3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH 3 NH 3 PbI 3 film is crystalline. The valence band maximum (VBM) and work function (WF) of the CH 3 NH 3 PbI 3 film are about 0.85eV and 4.86eV, respectively

  9. Space Evaporator Absorber Radiator for Life Support and Thermal Control Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal...

  10. Lamellar Ichthyosis with Bilateral Ectropion

    African Journals Online (AJOL)

    Lamellar Ichthyosis with Bilateral Ectropion. Gunjan Jain, Vaibhav Kumar Jain1, Reena Sharma1, Indra Kumar Sharma, Ganesh Kumar Verma. Departments of Paediatrics and 1Ophthalmology, Uttar Pradesh Rural Institute of Medical Sciences and Research, Saifai,. Etawah, Uttar Pradesh, India. CASE REPORT.

  11. Effects of mesh size in a flat evaporator and condenser cooling capacity on the thermal performance of a capillary pumped loop

    International Nuclear Information System (INIS)

    Boo, Joon Hong

    2000-01-01

    The thermal performance of a flat evaporator for Capillary Pumped Loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to 4.9x10 4 W/m 2 was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed

  12. Optical and Electrical Properties of Ag-Doped In2S3 Thin Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Peijie Lin

    2014-01-01

    Full Text Available Ag-doped In2S3 (In2S3:Ag thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD, spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3 and AgIn5S8 phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103 to 5.478×10-2 Ω·cm.

  13. Preparation of SnS thin films with gear-like sheet appearance by close-spaced vacuum thermal evaporation

    Science.gov (United States)

    Shao, Zhangpeng; Shi, Chengwu; Chen, Junjun; Zhang, Yanru

    2017-07-01

    SnS thin films with gear-like sheet appearance were successfully prepared by close-spaced vacuum thermal evaporation using SnS powders as a source. The influence of substrate temperature on the surface morphology, chemical composition, crystal structure and optical property of SnS thin films was investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and ultraviolet-visible-near infrared spectroscopy. The results revealed that serration architecture appeared obviously in the edge of the SnS sheet and the strongest peak at 2𝜃=31.63∘ was broadened and many shoulder peaks were observed with increasing substrate temperature. The atomic ratio of Sn to S increased from 1:1.08 to 1:1.20, the grain size became slightly smaller and the optical absorption edge had a blueshift in the SnS thin film with decreasing substrate temperature.

  14. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  15. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Samantha, E-mail: sam_antonini@uni-bonn.de; Nguyen, Phong Thanh; Arnold, Ute; Eichert, Thomas; Clemens, Joachim

    2012-01-01

    A No Mix sanitation system was installed in a dormitory at the University of Can Tho in Vietnam, with the objective of recycling nutrients from source separated urine. This paper presents a pilot scale evaporation technology, and investigates the feasibility of recovering nitrogen and phosphorus from human urine by solar still for use as fertilizer. After 26 days of sun exposure, 360 g of solid fertilizer material was recovered from 50 L undiluted urine. This urine-derived fertilizer was mainly composed of sodium chloride, and had phosphorus and nitrogen contents of almost 2%. When tested with maize and ryegrass, the urine fertilizer led to biomass yields and phosphorus and nitrogen uptakes comparable to those induced by a commercial mineral fertilizer. Urine acidification with sulfuric or phosphoric acid prior treatment reduced nitrogen losses, improved the nutrient content of the generated fertilizers, and induced higher biomass yields and nitrogen and phosphorus uptakes than the commercial mineral fertilizer. However, acidification is not recommended in developing countries due to additional costs and handling risks. The fate of micropollutants and the possibility of separating sodium chloride from other beneficial nutrients require further investigation. - Highlights: Black-Right-Pointing-Pointer 360 g of fertilizer was derived from 50 L urine by solar evaporative distillation. Black-Right-Pointing-Pointer The fertilizer contained 90% sodium chloride, 3% sulfur, 2% nitrogen, 2% phosphorus. Black-Right-Pointing-Pointer It induced biomass yields comparable to those produced by a commercial fertilizer. Black-Right-Pointing-Pointer Urine acidification improved the nutrient content of the generated fertilizers. Black-Right-Pointing-Pointer Acidification is not recommended for use in developing countries (costs, safety).

  16. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam

    International Nuclear Information System (INIS)

    Antonini, Samantha; Nguyen, Phong Thanh; Arnold, Ute; Eichert, Thomas; Clemens, Joachim

    2012-01-01

    A No Mix sanitation system was installed in a dormitory at the University of Can Tho in Vietnam, with the objective of recycling nutrients from source separated urine. This paper presents a pilot scale evaporation technology, and investigates the feasibility of recovering nitrogen and phosphorus from human urine by solar still for use as fertilizer. After 26 days of sun exposure, 360 g of solid fertilizer material was recovered from 50 L undiluted urine. This urine-derived fertilizer was mainly composed of sodium chloride, and had phosphorus and nitrogen contents of almost 2%. When tested with maize and ryegrass, the urine fertilizer led to biomass yields and phosphorus and nitrogen uptakes comparable to those induced by a commercial mineral fertilizer. Urine acidification with sulfuric or phosphoric acid prior treatment reduced nitrogen losses, improved the nutrient content of the generated fertilizers, and induced higher biomass yields and nitrogen and phosphorus uptakes than the commercial mineral fertilizer. However, acidification is not recommended in developing countries due to additional costs and handling risks. The fate of micropollutants and the possibility of separating sodium chloride from other beneficial nutrients require further investigation. - Highlights: ► 360 g of fertilizer was derived from 50 L urine by solar evaporative distillation. ► The fertilizer contained 90% sodium chloride, 3% sulfur, 2% nitrogen, 2% phosphorus. ► It induced biomass yields comparable to those produced by a commercial fertilizer. ► Urine acidification improved the nutrient content of the generated fertilizers. ► Acidification is not recommended for use in developing countries (costs, safety).

  17. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  18. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors

    Science.gov (United States)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.

    2017-08-01

    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  19. High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Flavio Nucciarelli

    2017-07-01

    Full Text Available New methods for the production of colloidal Ga nanoparticles (GaNPs are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed.

  20. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Science.gov (United States)

    Xinkun, Wu; Wei, Liu; Shuying, Cheng; Yunfeng, Lai; Hongjie, Jia

    2012-02-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature, and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 °C for 3 h Fabricated CZTS thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, ultraviolet-visible-near infrared spectrophotometry, the Hall effect system, and 3D optical microscopy. The experimental results show that, when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15, the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV, and a direct band gap of about 1.47 eV. The carrier concentration, resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3, 6.96 Ω·cm, and 12.9 cm2/(V·s), respectively and the conduction type is p-type. Therefore, the CZTS thin films are suitable for absorption layers of solar cells.

  1. Electrical and Optical Properties of GeSi−:H Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Thin a-GeSi1−:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As, and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the Ge0.5Si0.5:H thin films as pure, doped with 3.5% of Al (p-type and that doped with 3.5% As (n-type, were proposed.

  2. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  3. Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2013-01-01

    Full Text Available Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.

  4. Retrieval of Spatio-temporal Evaporation by Integrating Landsat OLI Optical and Thermal Data

    Science.gov (United States)

    Wandera, L. N.; Tol, C. V. D.; Mallick, K.; Bayat, B.; Verbeiren, B.; van Griensven, A.; Verhoef, W.; Suliga, J.; Barrios, J. M.; Chormański, J.; Kleniewska, M.

    2017-12-01

    Soil-Vegetation-Atmosphere (SVAT) Transfer Models are capable of providing continuous predictions of evapotranspiration (ET). However, providing these models with reliable spatio-temporal information of vegetation and soil properties remains challenging. Thus, combining optical and thermal satellite information might assists to overcome this challenge when using SVAT models. In this study, using a radiative transfer model of solar and sky radiation (RTMo), we simulate Landsat 8 reflectance bands (2-7). We then apply a numerical optimization approach to invert the model and retrieve the corresponding canopy attributes leaf chlorophyll content (Cab), leaf water content (Cw), leaf dry matter content (Cdm), leaf brown material (Cs), Leaf Area Index (LAI) and the leaf angle distribution function in the canopy at overpass time. The retrievals are then directly used as inputs into our SVAT model of choice, Soil Canopy Observations of Photochemistry and Energy Fluxes (SCOPE). Using a model for transfer of thermal radiation emitted by vegetation and soil (RTMt), we proceed to simulate Landsat radiance for the corresponding reflectance data using a lookup table (LUT). These variables were then used to develop a crop factor (Kc) map. A reference ET was generated and applied to the Kc map to obtain actual ET. We proceeded to interpolate the ET between the image acquisition dates to have a complete time series. The retrieval maps for the specific variables captured seasonal variability patterns for the respective variables. The generated KC map showed similar trend with the LAI maps. There was an underestimation of actual ET when the simulation was not constrained to the thermal information. The interpolation of ET between acquisition image dates reflected the seasonal trends. Key Word: SVAT, optical, thermal, remote sensing, evapotranspiration

  5. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    Science.gov (United States)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  6. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  7. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling

    Science.gov (United States)

    Chandrasekar, M.; Senthilkumar, T.

    2016-07-01

    A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.

  8. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  9. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  10. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  11. X-Ray diffraction analysis of thermally evaporated copper tin selenide thin films at different annealing temperature

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Zainal Abidin Talib; Wan Mahmood Mat Yunus; Josephine Liew Ying Chyi; Wilfred Sylvester Paulus

    2010-01-01

    Semiconductor thin films Copper Tin Selenide, Cu 2 SnSe 3 , a potential compound for semiconductor radiation detector or solar cell applications were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen, N 2 , for 2 hours in the temperature range from 100 to 500 degree Celsius. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from the Reitveld refinement show that the samples composed of Cu 2 SnSe 3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43 m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain. (author)

  12. Thermal Evaporation Synthesis and Optical Properties of ZnS Microbelts on Si and Si/SiO2 Substrates

    Science.gov (United States)

    Nguyen, V. N.; Khoi, N. T.; Nguyen, D. H.

    2017-06-01

    In this study, we report on the differences in optical properties of zinc sulfide (ZnS) microbelts grown on Si and Si/SiO2 substrates by a thermal evaporation method. Our investigation suggests that the composition and luminescence of the microbelts are dependent on the growth substrate. Field emission scanning electron microscopy images show the formation of nanoparticles with a diameter of 300-400 nm on ZnS microbelts grown on Si substrate. In addition, energy dispersive x-ray spectroscopy analysis combined with x-ray diffraction and Raman measurements reveal the existence of Si on these microbelts which may bond with O to form SiO2 or amorphous silica. In contrast, no Si presents on the microbelts grown on Si/SiO2 substrate. Moreover, photoluminescence measurement at 300 K shows a narrow emission peak in the near-ultraviolet region from microbelts grown on Si/SiO2 substrate but a broad emission band with multi-peaks from microbelts grown on Si substrate. The origin of the luminescence distinction between microbelts is discussed in terms of the differences in the growth substrates and compositions.

  13. Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO{sub 3}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.J. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001, Gujarat (India); Panchal, C.J. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001, Gujarat (India)], E-mail: cjpanchal_msu@yahoo.com; Kheraj, V.A.; Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001, Gujarat (India)

    2009-03-15

    Tungsten trioxide (WO{sub 3}) thin films are of great interest due to their enormous and promising applications in various opto-electronic thin-film devices. We have investigated the structural, electrical, and optical properties of the WO{sub 3} thin films grown by thermal evaporation of WO{sub 3} powder and their dependence on growth condition. The WO{sub 3} thin films were grown on glass substrates at different substrate temperature varying from room temperature to 510 deg. C. The structural characterization and surface morphology were carried out using X-ray diffraction and atomic force microscopy, respectively. The amorphous films were obtained at substrate temperatures below 450 deg. C whereas films grown above 450 deg. C were crystalline. The surface roughness and the grain size of the films increase on increasing the substrate temperature. The electrical characterization has been carried out using four-point-probe methods. The resistivity of the films decreases significantly while the carrier concentration and mobility increase with the substrate temperature. The transparency and optical energy band-gap, E{sub g}, of the films are found to decrease monotonically as the substrate temperature increases.

  14. Microwave properties of MgB{sub 2} thin films prepared in situ by thermal evaporation combined with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev, A G; Schneider, R; Hott, R; Ratzel, F; Linker, G; Geerk, J [Forschungszentrum Karlsruhe, Institut fuer Festkoerperphysik, PO Box 3640, D-7602 1 Karlsruhe (Germany)

    2006-06-01

    Superconducting MgB{sub 2} thin films were prepared in situ using a combination of rf magnetron sputtering of B and thermal evaporation of Mg. The films exhibited T{sub c} of up to 36 K. The microwave measurements were performed on 14 x 14 mm{sup 2} films using both Cu-shielded and Nb-shielded sapphire puck resonators at the frequency of 18.8 GHz. The hf surface resistance (R{sub S}) and the change of the hf surface reactance ({delta}X{sub S}) were determined. The films exhibited low R{sub S} matching the literature results for high-quality MgB{sub 2} films. Below 3K R{sub S} reached 3-5 {mu}{omega} which was the resolution limit of our measurement. The temperature dependences of both R{sub S} and {delta}X{sub S} were in good agreement with BCS theory. From the R{sub S}(T) dependence we obtained an energy gap {delta}(0) {approx} 3 meV. The measured variation of the London penetration depth with temperature, {delta}{lambda}{sub L}(T), was also in good agreement with the BCS model. Using the BCS relation between the energy gap and the penetration depth we fitted our experimental {delta}{lambda}{sub L}(T) data and obtained {lambda}{sub L}(0) values, which ranged for different films from 85 to 100 nm.

  15. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    Science.gov (United States)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  16. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  17. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Chunfeng Lan

    2018-02-01

    Full Text Available We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc, short-circuit current (Jsc and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells.

  18. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  19. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  20. Development of a Global Evaporative Stress Index Based on Thermal and Microwave LST towards Improved Monitoring of Agricultural Drought

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Otkin, J.; Holmes, T. R.; Gao, F.

    2017-12-01

    This presentation will describe the development of a global agricultural monitoring tool, with a focus on providing early warning of developing vegetation stress for agricultural decision-makers and stakeholders at relatively high spatial resolution (5-km). The tool is based on remotely sensed estimates of evapotranspiration, retrieved via energy balance principals using observations of land surface temperature. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET generated with the ALEXI surface energy balance model. The LST inputs to ESI have been shown to provide early warning information about the development of vegetation stress with stress-elevated canopy temperatures observed well before a decrease in greenness is detected in remotely sensed vegetation indices. As a diagnostic indicator of actual ET, the ESI requires no information regarding antecedent precipitation or soil moisture storage capacity - the current available moisture to vegetation is deduced directly from the remotely sensed LST signal. This signal also inherently accounts for both precipitation and non-precipitation related inputs/sinks to the plant-available soil moisture pool (e.g., irrigation) which can modify crop response to rainfall anomalies. Independence from precipitation data is a benefit for global agricultural monitoring applications due to sparseness in existing ground-based precipitation networks, and time delays in public reporting. Several enhancements to the current ESI framework will be addressed as requested from project stakeholders: (a) integration of "all-sky" MW Ka-band LST retrievals to augment "clear-sky" thermal-only ESI in persistently cloudy regions; (b) operational production of ESI Rapid Change Indices which provide important early warning information related to onset of actual vegetation stress; and (c) assessment of ESI as a predictor of global yield anomalies; initial studies have shown the ability of intra

  1. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry.

    Science.gov (United States)

    Liu, Yi-Wei; Aciego, Sarah M; Wanamaker, Alan D; Sell, Bryan K

    2013-08-15

    Research on the ocean carbon cycle is vitally important due to the projected impacts of atmospheric CO2 on global temperatures and climate change, but also on ocean chemistry. The direct influence of this CO2 rise on the seawater pH can be evaluated from the boron isotopic composition in biogenic carbonates; however, conscientious laboratory techniques and data treatment are vital in obtaining accurate and precise results. A rapid-throughput boron purification and Total Evaporation Thermal Ionization Mass Spectrometry method was developed for high accuracy and precision boron isotopic analysis for small (ng) sample sizes. An improved microsublimation method, in which up to 20 samples can be processed simultaneously under identical temperature conditions, was developed. Several tests have confirmed the viability of this technique. First, seawater and Porites coral samples were processed with H2 O2 and the results compared with those obtained using microsublimation; second, the impact of various sublimation times was evaluated; and third, quantitative recovery was assessed using standard addition. Microsublimation provides a valid method for the quantitative recovery and separation of boron from both major elements and organic matter under low-blank conditions. The close agreement of our results with published values validates the accuracy of the measurements. The isotopic ratio for SRM 951a boric acid isotopic standard was 4.0328 ± 0.0054 (2 STD, n = 25). The reproducibility of boron isotopic composition for standards including AE121, IAEA B-1 and an in-house coral standard UM-CP1 was ±0.68‰ (2 STD, n = 15), ±1.12‰ (2 STD, n = 24), and ±1.17‰ (2 STD, n = 14), respectively. The sample sizes were boron isotopic values in a variety of carbonate materials should facilitate the reconstruction of past ocean pH conditions with decadal-scale resolution. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  3. Lamellar ichthyosis: iki olgu sunumu

    OpenAIRE

    Şahin, Mert Kafkas; Akal, Neşe; Öznurhan, Fatih

    2009-01-01

    Ichthyosis, deri yüzeyinde kuru ve pullu balık derisi görünümü oluşumuna neden olan dermatolojik bir bozukluktur. Ichthyosis’ in doğumdavar olan (konjenital ichthyosis) ve doğum sonrası (vulgar ichthyosis) gelişebilen birçok alt çeşidi bulunmaktadır. Konjenital ichthyosis’ in birçeşidi olan lamellar ichthyosis, çoğunlukla otozomal resesif genetik geçişlidir ve hayat boyu devam eder. Hastalığın mekanizması tam olarakbilinmemekle birlikte, çoğunlukla keratinosit transglutaminaz enziminden sorum...

  4. On the role of tin doping in InOx thin films deposited by radio frequency-plasma enhanced reactive thermal evaporation.

    Science.gov (United States)

    Amaral, A; Brogueira, P; Lavareda, G; de Carvalho, C Nunes

    2010-04-01

    In view of the increasing need for larger-area display devices with improved image quality it becomes increasingly important to decrease resistivity while maintaining transparency in transparent conducting oxides (TCOs). Accomplishing the goal of increased conductivity and transparency will require a deeper understanding of the relationships between the structure and the electro-optical properties of these materials. In this work we study the role of tin doping in InOx thin films. Undoped indium oxide (InOx) and indium tin oxide (ITO) thin films were deposited at room temperature by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE), a new technique recently developed in our laboratory using as evaporation source either In rods or a 90%In:10%Sn alloy, respectively. The two most important macroscopic properties-optical transparency and electrical resistivity-seem to be independent of the tin content in these deposition conditions. Results show that the films present a visible transmittance of the order of 82%, and an electrical resistivity of about 8 x 10(-4) omega x cm. Surface morphology characterization made by atomic force microscopy (AFM) showed that homogeneity of the films deposited from a 90%In:10%Sn alloy is enhanced (a film with small and compact grains is produced) and consequently a smooth surface with reduced roughness and with similar grain size and shape is obtained. Films deposited from pure In rods evaporation source show the presence of aggregates randomly distributed above a film tissue formed of thinner grains.

  5. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  6. Rule-based Mamdani-type fuzzy modelling of thermal performance of fintube evaporator under frost conditions

    Directory of Open Access Journals (Sweden)

    Ozen Dilek Nur

    2016-01-01

    Full Text Available Frost formation brings about insulating effects over the surface of a heat exchanger and thereby deteriorating total heat transfer of the heat exchanger. In this study, a fin-tube evaporator is modeled by making use of Rule-based Mamdani-Type Fuzzy (RBMTF logic where total heat transfer, air inlet temperature of 2 °C to 7 °C and four different fluid speed groups (ua1=1; 1.44; 1.88 m s-1, ua2=2.32; 2.76 m s-1, ua3=3.2; 3.64 m s-1, ua4=4.08; 4.52; 4.96 m s-1 for the evaporator were taken into consideration. In the developed RBMTF system, outlet parameter UA was determined using inlet parameters Ta and ua. The RBMTF was trained and tested by using MATLAB® fuzzy logic toolbox. R2 (% for the training data and test data were found to be 99.91%. With this study, it has been shown that RBMTF model can be reliably used in determination of a total heat transfer of a fin-tube evaporator.

  7. Cu2ZnGeS4 thin films deposited by thermal evaporation: the impact of Ge concentration on physical properties

    Science.gov (United States)

    Courel, Maykel; Sanchez, T. G.; Mathews, N. R.; Mathew, X.

    2018-03-01

    In this work, the processing of Cu2ZnGeS4 (CZGS) thin films by a thermal evaporation technique starting from CuS, GeS and ZnS precursors, and post-deposition thermal processing, is discussed. Batches of films with GeS layers of varying thicknesses are deposited in order to study the role of Ge concentration on the structural, morphological, optical and electrical properties of CZGS films. The formation of the CZGS compound with a tetragonal phase and a kesterite structure is confirmed for all samples using XRD and Raman studies. An improvement in crystallite size for Ge-poor films is also observed in the XRD analysis, which is in good agreement with the grain size observed in the cross section SEM image. Furthermore, it is found that the band-gap of CZGS film can be tailored in the range of 2.0–2.23 eV by varying Ge concentration. A comprehensive electrical characterization is also performed which demonstrates that slightly Ge-poor samples are described by the lowest grain boundary defect densities and the highest photosensitivity and mobility values. A study of the work function of CZGS samples with different Ge concentrations is also presented. Finally, a theoretical evaluation is presented, considering, under ideal conditions, the possible impact of these films on device performance. Based on the characterization results, it is concluded that Ge-poor CZGS samples deposited by thermal evaporation present better physical properties for device applications.

  8. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).

    Science.gov (United States)

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.

  9. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  10. Lamellar multilayer hexadecylaniline-modified gold nanoparticle

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  11. Simulation Aspects of Lamellar Morphology: Incommensurability Effect.

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Posel, Zbyšek

    2015-01-01

    Roč. 24, č. 2 (2015), s. 141-151 ISSN 1022-1344 R&D Projects: GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : dissipative particle dynamics * incommensurability effect * lamellar spacing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.294, year: 2015

  12. Rod and lamellar growth of eutectic

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2010-04-01

    Full Text Available The paper presents adaptation problem of lamellar growth of eutectic. The formation of rod eutectic microstructure was investigated systematically. A new rod eutectic configuration was observed in which the rods form with elliptical cylindrical shape. A new interpretation of the eutectic growth theory was proposed.

  13. Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process.

    Science.gov (United States)

    Shen, Guozhen; Bando, Yoshio; Lee, Cheol-Jin

    2005-06-02

    Novel hierarchical ZnO nanoarchitectures, such as microtrepangs, microbelts, nanoflowers, nanocombs, nanowheels, and nanofans assembled by ZnO nanocones, nanobowling pins, nanobottles, nanoarrows, and nanonails, have had their growth controlled by the thermal evaporation of Zn and a mixture of In and In2S3. Both the morphologies of the products and their construction units could be efficiently controlled by simple adjustment of the weight ratio of In/In2S3. The phase structure, morphologies, and photoluminescence properties of the ZnO products were investigated by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectroscopy. These novel hierarchical ZnO nanoarchitectures may be attractive building blocks for creating optical or other nanodevices.

  14. Photoelectric properties by interface effect of organic/inorganic(CuPc/PbTe) multilayer prepared by pulsed laser deposition and thermal evaporation

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Tabata, H; Kawai, T

    1999-01-01

    Highly crystallized CuPc/PbTe multilayer are prepared at substrate temperature from room temperature to 300 .deg. C by pulsed laser deposition and thermal evaporation method. From the measurement of AFM image, these all film exhibits composed of round grains and flat matrix. For observation the interface effect of multilayer, we measured the transverse current-voltage characteristics in the dark and under illumination. The photocarrier is generated in the CuPc layer and the electron-hole pairs are separated by the steep incline of the potential near the CuPc/PbTe interface. The CuPc/PbTe multilayers in the in-plane current-voltage curve exhibit larger photoconduction effect than that of CuPc single layer.

  15. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    Science.gov (United States)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  16. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2016-07-19

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  17. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  18. Stability enhancement of P3HT:PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Radhakrishnan, Thulasi; Reddy, V. S.

    2018-02-01

    Polymer solar cells have been fabricated with thermally evaporated MoO3 as anode buffer layer (ABL). The stability of MoO3 and PEDOT:PSS based devices was examined under different test conditions. The MoO3 based device exhibited a slightly better efficiency and significantly higher stability compared to PEDOT:PSS based device. At a relative humidity of 45% the unencapsulated PEDOT:PSS based device degraded completely within 96 h. On the other hand, MoO3 based device retained more than 60% of its initial efficiency after 96 h. The reason behind stability enhancement was investigated by measuring time-evolution of reflectance and hole-current. Experimental results revealed that the stability enhancement for MoO3 based device originates from the reduction in degradation of anode/active layer interface.

  19. Lamellar changes in the keratoconic cornea.

    Science.gov (United States)

    Mathew, Jessica H; Goosey, John D; Söderberg, Per G; Bergmanson, Jan P G

    2015-12-01

    The purpose of this study was to identify ultrastructural changes associated with ectasia and to determine the association between lamellar count and corneal thinning. Five surgically removed keratoconic corneal buttons and four, non-keratoconic, normal eye bank control corneas were processed for transmission electron microscopy using an established protocol, ensuring minimal tissue distortion. A sequence of overlapping digital images, spanning the full apical cone corneal thickness, was assembled. A seamless digital montage was printed at 5000× magnification. Lamellae were counted in the anterior-posterior orientation, along a linear line, using established criteria for identification of individual lamellae. The stromal thickness estimated as a 95% confidence interval for the mean, CI (0.95), in the keratoconic corneas was 372 ± 62 μm, while in the normal cornea, it was 446 ± 89 μm. All keratoconic corneas showed ultrastructural evidence of lamellar splitting and a loss of interweaving anterior lamellae. In the keratoconic corneas, the median total linear stromal lamellar absolute count tangential to the corneal surface was 362, (25th percentile; 75th percentile) = (355; 365) lamellae and in the normal cornea, 246, (25th percentile; 75th percentile) = (239; 251). The linear lamellar density in the keratoconic corneas was estimated as CI (0.95) 117 ± 22 and 86 ±19 lamellae per 100 μm in the anterior and posterior portion of the stroma, respectively. In normal cornea, the linear lamellar density was estimated as CI (0.95) 51 ± 8 and 80 ± 20 lamellae per 100 μm. The mean difference of linear lamellar count between the anterior and the posterior portion of the cornea was estimated as CI (0.95) 31 ± 23 for keratoconic corneas and -29 ± 28 for the normal corneas. The current morphometric analysis of ultrastructural changes suggests that ectasia and thinning in keratoconus is associated with lamellar splitting into multiple bundles of

  20. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  1. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  2. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  3. Water stress reduces evaporative cooling in hybrid poplars during hot drought: genotype influences degree of coupling between thermal stress and atmosphere

    Science.gov (United States)

    Fojtik, A. C.; Barnes, M.; Breshears, D. D.; Law, D.; Moore, D. J.

    2016-12-01

    Climate change is projected to increase global temperatures as well as the frequency and severity of drought in many regions worldwide. Potential consequences of hotter drought include widespread forest mortality and ecosystem reorganization. Of concern is the response of woody plants, especially commercially significant species, to drought exacerbated by higher temperatures. Quantifying the physiological effects of hot drought on woody plants can improve understanding of their limitations and ability to adapt to projected conditions. Here we test an association between water stress and thermal stress in two genotypes of hybrid poplar trees during a naturally occurring hot drought in Southern Arizona. Genotype 57-276 had small, diamond-shaped leaves, while genotype R-270 had large, rounded leaves. We hypothesized that the degree of coupling between the atmosphere and leaf temperature would vary with genotype due to the effects of leaf size on boundary layer. We compared pre-dawn water potential (Ψ) to the difference between leaf and air temperature (ΔT; a proxy for thermal stress), and meteorological variables including vapor pressure deficit (VPD), photosynthetically active radiation (PAR), and wind speed as the drought progressed. In both genotypes, Ψ was negatively related to ΔT when leaf temperature was higher than air temperature; this relationship was stronger in the large leaf genotype than the small leaf genotype. Leaves from highly stressed plants were the hottest compared to ambient air temperature. This suggests that water stress results in a reduction in leaf transpiration and associated evaporative cooling. Each genotype also had unique factors affecting ΔT. The small leaf genotype was more tightly coupled to the atmosphere, with ΔT influenced by PAR, and wind speed. This is consistent with smaller, diamond-shaped leaves, which result in a smaller leaf boundary layer that is more sensitive to atmospheric conditions. For the large leaf genotype,

  4. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation

    Science.gov (United States)

    Kim, SeongYeon; Rana, Tanka R.; Kim, JunHo; Yun, JaeHo

    2017-12-01

    We report on physical vapor deposition of indium sulfide (In2S3) buffer layers and its application to Cu(In,Ga)Se2 (CIGSe) thin film solar cell. The Indium sulfide buffer layers were evaporated onto CIGSe at various substrate temperatures from room temperature (RT) to 350 °C. The effect of deposition temperature of buffer layers on the solar cell device performance were investigated by analyzing temperature dependent current-voltage ( J- V- T), external quantum efficiency (EQE) and Raman spectroscopy. The fabricated device showed the highest power conversion efficiency of 6.56% at substrate temperature of 250 °C, which is due to the decreased interface recombination. However, the roll-over in J- V curves was observed for solar cell device having buffer deposited at substrate temperature larger than 250 °C. From the measurement results, the interface defect and roll-over related degradation were found to have limitation on the performance of solar cell device.

  5. One-step fabrication of thermally stable TiO2/SiO2 nanocomposite microspheres by evaporation-induced self-assembly.

    Science.gov (United States)

    Bahadur, J; Sen, D; Mazumder, S; Sastry, P U; Paul, B; Bhatt, H; Singh, S G

    2012-08-07

    The evaporation-induced self-assembly of mixed colloids has been employed to synthesize microspheres of TiO(2)/SiO(2) nanocomposites. Small-angle neutron/X-ray scattering and scanning electron microscopy experiments reveal the hierarchical morphology of the microspheres. Although the internal structure of the microspheres, consisting of solely silica nanoparticles, gets significantly modified with time because of the reduction in the high specific surface area by internal coalescence, the same for the composite microspheres remains stable over an aging time of 1 year. Such temporal stability of the composite microspheres is attributed to the inhibition of coalescence of the silica nanoparticles in the presence of titania nanoparticles. X-ray diffraction and thermogravimetric results show the improved thermal stability of the composite grains against the anatase-to-rutile phase transition. Such thermal stability is attributed to the suppression of the growth of titania nanoparticles in the presence of silica nanoparticles. The UV-vis results indicate the confinement effect of the TiO(2) nanoparticles in the silica matrix. A plausible mechanism has been elucidated for the formation of microspheres with different morphology during self-assembly.

  6. Application of ZnO single-crystal wire grown by the thermal evaporation method as a chemical gas sensor for hydrogen sulfide.

    Science.gov (United States)

    Park, N K; Lee, S Y; Lee, T J

    2011-01-01

    A zinc oxide single-crystal wire was synthesized for application as a gas-sensing material for hydrogen sulfide, and its gas-sensing properties were investigated in this study. The gas sensor consisted of a ZnO thin film as the buffer layer and a ZnO single-crystal wire. The ZnO thin film was deposited over a patterning silicon substrate with a gold electrode by the CFR method. The ZnO single-crystal wire was synthesized over the ZnO thin film using zinc and activated carbon as the precursor for the thermal evaporation method at 800 degrees C. The electrical properties of the gas sensors that were prepared for the growth of ZnO single-crystal wire varied with the amount of zinc contained in the precursor. The charged current on the gas sensors increased with the increasing amount of zinc in the precursor. It was concluded that the charged current on the gas sensors was related to ZnO single-crystal wire growth on the silicon substrate area between the two electrodes. The charged current on the gas sensor was enhanced when the ZnO single-crystal wire was exposed to a H2S stream. The experimental results obtained in this study confirmed that a ZnO single-crystal wire can be used as a gas sensor for H2S.

  7. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Materials Engineering Department, College of Engineering, University of Kufa, Najaf (Iraq); Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  8. Effect of a thermally evaporated bis (2-methyl-8-quninolinato)-4-phenylphenolate cathode buffer layer on the performance of polymer photovoltaic cells

    International Nuclear Information System (INIS)

    Kim, Dal-Ho; Park, Jea-Gun

    2012-01-01

    We investigated the device characteristics of polymer photovoltaic (PV) cells based on a poly(3 hexylthiophene) (P3HT) and [6,6]-phenylC61 butyric acid methyl ester (PCBM) bulk heterojunction with a cathode buffer layer of thermally evaporated bis (2-methyl-8-quninolinato)-4-phenylphenolate (BAlq). A power conversion efficiency (PCE) of 2.46% was obtained with the insertion of a 4-nm-thick BAlq, which was ∼118% increase over that for the cell without a BAlq layer, under Air Mass 1.5 Global (AM 1.5 G) illumination, 100 mW/cm 2 . Moreover, we examined the charge carrier transport property, and found that the hole mobility of the cell was enhancement due to the insertion of a BAlq layer with a thickness of less than 4 nm, which accounted for the improved in the photocurrent and fill factor (FF) due to the better balance of charge carriers. Finally, the BAlq buffer layer was also demonstrated as an optical spacer that improved the optical absorption of the P3HT:PCBM layer, which accounted for the J sc enhancement of the device.

  9. Lamellar congenital ichthyosis in practice of dermatologists

    Directory of Open Access Journals (Sweden)

    S. V. Koshkin

    2016-01-01

    Full Text Available The paper describes 2 cases of congenital lamellar ichthyosis debuting state «collodion baby». Presented features of clinical manifestations: in newborn all skin is covered with a thin dry yellowish-brown film, resembling collodion, also ectropion and eklabium are frequently marked. After some time cracks appear, the film turns into large squamas, which exfoliate completely in 1.5 months, and so the clinical picture of congenital ichthyosis is formed. Timely initiated therapy, including external moisturizers and lipid-replenishing funds, contributed to the rapid relief of clinical symptoms and infectious-inflammatory process.

  10. Lamellar γ-AlOOH architectures: Synthesis and application for the removal of HCN

    International Nuclear Information System (INIS)

    Hou Hongwei; Zhu You; Tang Gangling; Hu Qingyuan

    2012-01-01

    Using hexadecyl trimethyl ammonium bromide (CTAB) as a structure-directing agent and precipitator, the complete synthesis of lamellar γ-AlOOH architectures was successfully accomplished via a hydrothermal route. Different product structures were obtained by varying the molar ratio of aluminum nitrate and CTAB. Several techniques, including X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry thermal analysis, were used to characterize the products. The effects of CTAB concentration, reaction temperature and time, and the molar ratio of Al 3+ /CTAB on the product morphologies were investigated. The nitrogen adsorption and desorption measurements indicated that the γ-AlOOH architectures possess a Brunauer–Emmett–Teller surface area of approximately 75.02 m 2 /g. It was also demonstrated that 10 mg γ-AlOOH architectures can remove 45.3% of the HCN (1.68 μg/mL) from model wastewater. When 0.03 mg/cig γ-AlOOH architectures were combined with cigarette paper, 8.12% of the present HCN was adsorbed. These results indicate that lamellar γ-AlOOH architectures may be a potential adsorbent for removing HCN from highly toxic pollutant solutions and harmful cigarette smoke. Highlights: ► Hexadecyl trimethyl ammonium bromide (CTAB) was used as a structure-directing agent and precipitator. ► Hydrothermal treatment enables growth of lamellar γ-AlOOH architectures. ► Lamellar γ-AlOOH architectures were demonstrated to exhibit high BET surface area and excellent adsorptive capacity. ► HCN in contaminated water and cigarette smoke can be effectively removed by the prepared lamellar γ-AlOOH superstructures.

  11. A Case Report of Ichthyosis Lamellar Syndrome

    Directory of Open Access Journals (Sweden)

    Gh. Eshghi

    2014-04-01

    Full Text Available Introduction: Ichthyosis lamellar syndrome is a rare genodermatosis and in most families is inherited as an autosomal recessive trait because of transglutaminase-1 deficiency. Case Report: Our patient was a 6 year old girl and she was the result of consanguinity. She had large plate-like scales. The scales had mosaic-like pattern and erythroderma was absent. Tautness of her facial skin was associated with ectropion and eclabion and hypoplasia of auricular cartilages. She had scarring alopecia because of taut skin (specially at the periphery of scalp. She also had palmoplantar keratoderma and secondary nail dystrophy and thanked nails. Her parents also gave us the history of heat intolerance and it is because of interaepi-dermal constriction of sweat ducts. Our patient had the history of recurrent ear infections and it is because of accumulation of scales in the external ear. Conclusion: Our patient underwent a biopsy and based on our clinical findings her diagnosis was lamellar ichthyosis. (Sci J Hamadan Univ Med Sci 2014; 21 (1:76-79

  12. Catalyst-free combined synthesis of Zn/ZnO core/shell hollow microspheres and metallic Zn microparticles by thermal evaporation and condensation route

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Waheed S. [Research Centre of Materials Science, Beijing Institute of Technology, Beijing 100081 (China); Cao Chuanbao, E-mail: cbcao@bit.edu.c [Research Centre of Materials Science, Beijing Institute of Technology, Beijing 100081 (China); Nabi, Ghulam; Yao Ruimin; Bhatti, Sajjad H. [Research Centre of Materials Science, Beijing Institute of Technology, Beijing 100081 (China)

    2010-09-17

    Research highlights: {yields} Catalyst-free combined synthesis of metal/semiconductor Zn/ZnO core/shell microspheres with hollow interiors on Si substrate and metallic Zn polygonal microparticles on glass substrate in a single experiment via thermal evaporation and condensation technique was reported. The Zn/ZnO hollow microspheres were observed to have dimensions in the range of 70-80 {mu}m whereas metallic Zn microparticles with polygonal cross section and oblate spherical shape were found to be of 8-10 {mu}m. Some of the Zn/ZnO core/shell hollow spheres were also observed to have single crystalline ZnO pointed rods in extremely low density grown on the outer shell. A vapor-liquid-solid (VLS) process based growth mechanism was proposed for the formation of Zn/ZnO core/shell microspheres with hollow interior. The optical properties of Zn/ZnO core/shell microspheres were investigated by measuring the photoluminescence (PL) spectra at room temperature (RT). Two very strong emission bands were observed at 373 and 469 nm in the ultraviolet and visible regions respectively under excitation wavelength of 325 nm. Also the effect of the various excitation wavelengths on the PL behaviour was studied at room temperature. PL studies of Zn/ZnO core/shell microspheres show the promise of the material for applications in UV and blue light optical devices. - Abstract: Here we report catalyst-free combined synthesis of metal/semiconductor Zn/ZnO core/shell microspheres with hollow interiors on Si substrate and metallic Zn polygonal microparticles on glass substrate in a single experiment via thermal evaporation and condensation technique using nitrogen (N{sub 2}) as carrier agent at 800 {sup o}C for 120 min. The Zn/ZnO hollow microspheres were observed to have dimensions in the range of 70-80 {mu}m whereas metallic Zn microparticles with polygonal cross section and oblate spherical shape were found to be of 8-10 {mu}m. Some of the Zn/ZnO core/shell hollow spheres were also

  13. Structural, morphological, gas sensing and photocatalytic characterization of MoO{sub 3} and WO{sub 3} thin films prepared by the thermal vacuum evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, A., E-mail: asma17687@gmail.com [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Touihri, S.; Mhamdi, A. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Unité de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, BP 51, La Marsa, 2070 Tunis (Tunisia); Manoubi, T. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-12-01

    Graphical abstract: - Highlights: • Outlining adequacy an original combination of several characterization means. • Structural, morphological and gas sensing properties for both MoO{sub 3} and WO{sub 3} thin films have been studied. • These films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. • The photocatalytic activity of MoO{sub 3} and WO{sub 3} thin films has been studied. - Abstract: Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO{sub 3} and WO{sub 3} were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO{sub 3} and WO{sub 3} thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV–visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  14. Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Sharma, V.; Padha, N. [Department of Physics and Electronics, Dr. Ambedkar Road, University of Jammu, Jammu-180 006, Jammu and Kashmir State (India); Shah, N.M.; Desai, M.S.; Panchal, C.J. [Applied Physics Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390 001, Gujarat State (India); Protsenko, I.Yu. [Appl. Physics Dept., Faculty of Electronic and Information Technologies, Sumy State University (Ukraine)

    2010-01-15

    Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350-550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (T{sub s}) on the structural, morphological, optical, and electrical properties of the films were investigated using x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall-effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80-330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all T{sub s}. With the increase of T{sub s} the intensity of the diffraction peaks increased and well-resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38-1.18 eV. Hall-effect measurements revealed the resistivity of films in the range 112-20 {omega} cm for films deposited at different T{sub s}. The activation energy for films deposited at different T{sub s} was in the range of 0.14 eV-0.28 eV as derived from the analysis of the data of low-temperature resistivity measurements. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique)

    NARCIS (Netherlands)

    van Dooren, Bart T. H.; Mulder, Paul G. H.; Nieuwendaal, Carla P.; Beekhuis, W. Houdijn; Melles, Gerrit R. J.

    2004-01-01

    To measure the recipient endothelial cell loss after the Melles technique for deep anterior lamellar keratoplasty. In 21 eyes of 21 patients, a deep anterior lamellar keratoplasty procedure was performed. Before surgery and at 6, 12, and 24 months after surgery, specular microscopy was performed to

  16. Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions.

    Science.gov (United States)

    Volpe, V; Brunetti, B; Gigli, G; Lapi, A; Vecchio Ciprioti, S; Ciccioli, A

    2017-11-16

    The evaporation/decomposition behavior of the imidazolium ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF 6 ) was investigated in the overall temperature range 425-551 K by means of the molecular-effusion-based techniques Knudsen effusion mass loss (KEML) and Knudsen effusion mass spectrometry (KEMS), using effusion orifices of different size (from 0.2 to 3 mm in diameter). Specific effusion fluxes measured by KEML were found to depend markedly on the orifice size, suggesting the occurrence of a kinetically delayed evaporation/decomposition process. KEMS experiments revealed that other species are present in the vapor phase besides the intact ion pair BMImPF 6 (g) produced by the simple evaporation BMImPF 6 (l) = BMImPF 6 (g), with relative abundances depending on the orifice size-the larger the orifice, the larger the contribution of the BMImPF 6 (g) species. By combining KEML and KEMS results, the conclusion is drawn that in the investigated temperature range, when small effusion orifices are used, a significant part of the mass loss/volatility of BMImPF 6 is due to molecular products formed by decomposition/dissociation processes rather than to evaporated intact ion pairs. Additional experiments performed by nonisothermal thermogravimetry-differential thermal analysis (TG-DTA) further support the evidence of simultaneous evaporation/decomposition, although the conventional decomposition temperature derived from TG curves is much higher than the temperatures covered in effusion experiments. Partial pressures of the BMImPF 6 (g) species were derived from KEMS spectra and analyzed by second- and third-law methods giving a value of Δ evap H 298K ° = 145.3 ± 2.9 kJ·mol -1 for the standard evaporation enthalpy of BMImPF 6 . A comparison is done with the behavior of the 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf 2 ) ionic liquid.

  17. Thermolysin activates equine lamellar hoof matrix metalloproteinases.

    Science.gov (United States)

    Mungall, B A; Pollitt, C C

    2002-01-01

    Cultured equine lamellar hoof explants secrete the pro-enzymes matrix metalloproteinase-2 (MMP-2, 72 kDa) and MMP-2 (92 kDa). Untreated explants remained intact when tested on a calibrated force transducer, but when treated with an MMP activator, developed "in-vitro laminitis", separating at the dermal-epidermal junction. Explants treated with the bacterial protease thermolysin separated dose-dependently; this was accompanied by activation of both MMP-2 and -9. Thermolysin-mediated MP activation did not occur in a cell-free system and was not inhibited by the addition of the MMP inhibitor and batimastat. These findings suggest that thermolysin-mediated gelatinase activation is not dependent on membrane-bound matrix metalloproteinase (MT-MMP) activation, providing further evidence that bacteria can produce potent MMP activators that probably facilitate host invasion.

  18. Extended constitutive laws for lamellar phases

    Directory of Open Access Journals (Sweden)

    Chi-Deuk Yoo

    2013-10-01

    Full Text Available Classically, stress and strain rate in linear viscoelastic materials are related by a constitutive relationship involving the viscoelastic modulus G(t. The same constitutive law, within Linear Response Theory, relates currents of conserved quantities and gradients of existing conjugate variables, and it involves the autocorrelation functions of the currents in equilibrium. We explore the consequences of the latter relationship in the case of a mesoscale model of a block copolymer, and derive the resulting relationship between viscous friction and order parameter diffusion that would result in a lamellar phase. We also explicitly consider in our derivation the fact that the dissipative part of the stress tensor must be consistent with the uniaxial symmetry of the phase. We then obtain a relationship between the stress and order parameter autocorrelation functions that can be interpreted as an extended constitutive law, one that offers a way to determine them from microscopic experiment or numerical simulation.

  19. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  20. PFR evaporator leak

    International Nuclear Information System (INIS)

    Smedley, J.A.

    1975-01-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10 -6 g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10 -7 to 10 -6 g/s equivalent water leak could be detected, i

  1. Lamellar ichthyosis (collodian baby with severe bilateral ectropion

    Directory of Open Access Journals (Sweden)

    Boparai M

    1988-01-01

    Full Text Available A case of lamellar ichthyosis (collodian baby, is being reported. Skin biopsy has confirmed the diagnosis. Severe bilateral ectropion of thee eyelids was the prominent feature. Management of such cases has been briefly discussed.

  2. Role of Lamellar Hole-Associated Epiretinal Proliferation in Lamellar Macular Holes.

    Science.gov (United States)

    dell'Omo, Roberto; Virgili, Gianni; Rizzo, Stanislao; De Turris, Serena; Coclite, Giovanni; Giorgio, Dario; dell'Omo, Ermanno; Costagliola, Ciro

    2017-03-01

    To compare the morphologic and functional characteristics and response to surgery of lamellar macular holes (LMHs) with and without lamellar hole-associated epiretinal proliferation (LHEP) and standard epiretinal membrane (ERM). Retrospective observational case series. Setting: Vitreoretinal clinical practice. Eigthy-four eyes of 84 patients. The included eyes must present an irregular foveal contour and schitic or cavitated lamellar separation of neurosensory retina on spectral-domain optical coherence tomography (SDOCT) and an area of increased autofluorescence on blue fundus autofluorescence (B-FAF). Twenty-six eyes underwent pars plana vitrectomy (PPV). Logarithm of minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA) and evolution of morphologic characteristics. Standard ERM alone, LHEP alone, and concomitant ERM and LHEP were found in 51.2%, 13.1%, and 35.7% of the cases, respectively. A substantial stability of functional and morphologic parameters throughout the follow-up period was observed in the eyes that did not undergo surgery indipendently from the associated epiretinal material. The most significant change, observed in the preoperative period, in the eyes that underwent surgery, was the thinning of the central foveal thickness (CFT, P < .001). In the operated eyes, logMAR BCVA continuosly improved during the postoperative period (P = .006), CFT was found increased, and diameters of the hole were found reduced since the first month after operation (P < .001). In eyes with LMHs, presence of LHEP without any trace of standard ERM is rare. The presence of LHEP does not seem to influence the natural course of the disease and the response to surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structural studies of lamellar surfactant systems under shear

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Recent experimental studies on concentrated surfactant systems are reviewed. Particular attention is focused on the transformation from planar lamellar sheets to multilamellar vesicles. It is discussed whether both of these states are thermodynamic stable, or if the MLV is an artifact of shear...... induced factors. Recent studies includes the dependence on shear, and dependence on salt and cosurfactants, and thereby related lamellar defects. The review include moreover the demonstration that polymeric amphiphiles dramatically enhance the quality of classical surfactants. (C) 2001 Elsevier Science...

  4. Stabilization of distearoylphosphatidylcholine lamellar phases in propylene glycol using cholesterol.

    Science.gov (United States)

    Harvey, Richard D; Ara, Nargis; Heenan, Richard K; Barlow, David J; Quinn, Peter J; Lawrence, M Jayne

    2013-12-02

    Phospholipid vesicles (liposomes) formed in pharmaceutically acceptable nonaqueous polar solvents such as propylene glycol are of interest in drug delivery because of their ability to improve the bioavailability of drugs with poor aqueous solubility. We have demonstrated a stabilizing effect of cholesterol on lamellar phases formed by dispersion of distearoylphosphatidylcholine (DSPC) in water/propylene glycol (PG) solutions with glycol concentrations ranging from 0 to 100%. The stability of the dispersions was assessed by determining the effect of propylene glycol concentration on structural parameters of the lamellar phases using a complementary combination of X-ray and neutron scattering techniques at 25 °C and in the case of X-ray scattering at 65 °C. Significantly, although stable lamellar phases (and liposomes) were formed in all PG solutions at 25 °C, the association of the glycol with the liposomes' lamellar structures led to the formation of interdigitated phases, which were not thermostable at 65 °C. With the addition of equimolar quantities of cholesterol to the dispersions of DSPC, stable lamellar dispersions (and indeed liposomes) were formed in all propylene glycol solutions at 25 °C, with the significant lateral phase separation of the bilayer components only detectable in propylene glycol concentrations above 60% (w/w). We propose that the stability of lamellar phases of the cholesterol-containing liposomes formed in propylene glycol concentrations of up to 60% (w/w) represent potentially very valuable drug delivery vehicles for a variety of routes of administration.

  5. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  6. Electrical and optical properties of thermally-evaporated thin films from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh{sub 4}) and 1,8-dihydroxyanthraquinone

    Energy Technology Data Exchange (ETDEWEB)

    Carbia-Ruelas, E. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Sanchez-Vergara, M.E., E-mail: elena.sanchez@anahuac.mx [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, D. F (Mexico); Morales-Saavedra, O.G. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM. A. P. 70-186, Coyoacan, 04510, Mexico, D. F (Mexico); Alvarez-Bada, J.R. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)

    2011-02-01

    In this work, the synthesis of molecular materials formed from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg{sub d}. The cubic NLO effects were substantially enhanced for materials synthesized from K{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}], where {chi}{sup (3)} (-3{omega}; {omega}, {omega}, {omega}) values in the promising range of 10{sup -12} esu have been evaluated.

  7. Electrical and optical properties of thermally-evaporated thin films from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8-dihydroxyanthraquinone

    International Nuclear Information System (INIS)

    Carbia-Ruelas, E.; Sanchez-Vergara, M.E.; Garcia-Montalvo, V.; Morales-Saavedra, O.G.; Alvarez-Bada, J.R.

    2011-01-01

    In this work, the synthesis of molecular materials formed from A 2 [TiO(C 2 O 4 ) 2 ] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg d . The cubic NLO effects were substantially enhanced for materials synthesized from K 2 [TiO(C 2 O 4 ) 2 ], where χ (3) (-3ω; ω, ω, ω) values in the promising range of 10 -12 esu have been evaluated.

  8. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  9. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  10. Thermocapillary flow about an evaporating meniscus

    Science.gov (United States)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  11. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  12. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  13. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando

    2009-01-01

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  14. A Robust CuCr2O4/SiO2 Composite Photothermal Material with Underwater Black Property and Extremely High Thermal Stability for Solar-Driven Water Evaporation

    KAUST Repository

    Shi, Yusuf

    2017-12-27

    The design and fabrication of efficient photothermal materials is the key issue in solar-driven water evaporation. In this work, a robust CuCr2O4/SiO2 composite membrane with outstanding solar-driven water evaporation performance (1.32 kg m−2 h−1) under one sun irradiation is rationally designed and synthesized by using quartz glass fibrous membrane as supporting matrix and stable CuCr2O4 particles as the active light absorber. Instead of coating a separate layer on top of the support, the CuCr2O4 particles are evenly distributed inside the matrix, which endows the membrane with great mechanical strength and excellent wear and abrasion resistance. The highly porous composite survives 6 atm pressure and retains its performance even after 75% of the membrane is removed by sandpaper. This work also looks into a generally overlooked aspect of wet versus dry state of photothermal material and its implications. Interestingly, the composite possesses a gray color with a high reflectance in dry state but turns into deep black with a low reflectance in wet state due to the decreased subsurface scattering and strong NIR light absorbance of water in wet state. This composite material also possesses excellent thermal stability and thermal shock resistance, making it able to be easily recovered by calcination in air or direct burning in fire for contaminants removal. The results demonstrate that this composite is a competitive photothermal material for practical solar distillation and indicate that the optical properties of material in wet state are more relevant to photothermal material screening and optimization for solar distillation.

  15. Lamellar Ichthyosis with Bilateral Ectropion | Jain | Nigerian Journal ...

    African Journals Online (AJOL)

    Lamellar ichthyosis is a rare congenital disorder with ocular manifestation resulting from the cicatrization of anterior lamella of eyelids. Early diagnosis and management of ectropion can prevent the most severe complications such as severe dry eyes, corneal perforation, and possible loss of the eye. This case report ...

  16. Recurrent Coxsackievirus Infection in a Patient with Lamellar Ichthyosis.

    Science.gov (United States)

    Damsky, William E; Leventhal, Jonathan S; Khalil, David; Vesely, Matthew D; Craiglow, Brittany G; Milstone, Leonard M; Choate, Keith A

    2016-01-01

    We describe a case of coxsackievirus (CV) A6 infection in a patient with lamellar ichthyosis followed by subsequent CV A8 infection within the same year. Atypical cutaneous features characterized the infection. This observation, combined with the rapidity with which reinfection occurred, suggests that the natural history of CV infection may be altered in patients with underlying ichthyoses. © 2016 Wiley Periodicals, Inc.

  17. Synthesis of single wall carbon nanotubes from a lamellar type ...

    Indian Academy of Sciences (India)

    Wintec

    circular disc of fine copper mesh covered with collodion. Images were taken using a JEOL JSM-2000 EX electron microscope operated at an acceleration voltage of 200 kV. 3. Results and discussion. Figure 1 shows the as-synthesized AlPO4-L which was found to be of short range ordered lamellar type molecular ...

  18. Insertion of anisotropic particles in lamellar surfactant phases

    International Nuclear Information System (INIS)

    Grillo, Isabelle

    1998-01-01

    We search for the interactions governing the possibility to mix organic and inorganic colloids. We use laponite, a synthetic anionic clay, made of 30 nm diameter and 1 nm thickness anisotropic disks. Three surfactant Systems, an anionic one (AOT), a cationic one (DDAB) and a nonionic one (C 12 E 5 ) investigate three different cases of interaction forces. We establish experimentally the equilibrium phase diagrams and characterise the structure of these ternary Systems by SANS and SAXS experiments. We quantify the adsorption. An AOT bilayer surround the particle edges; an almost complete bilayer of DDAB and C 12 E 5 is formed on the basal faces. SANS contrast variation experiments under controlled conditions along the adsorption isotherm of C 12 E 5 allow to determine the average thickness of the adsorbed surfactant layer. In the monophasic lamellar domain, the particles stay between the membranes, when the spacing is larger than the particle thickness. In the biphasic domain, dense clay aggregates are in equilibrium with a lamellar phase, containing few amount of particles. They enter in the AOT bilayers when the space between the bilayers are smaller than 8 A. From the phase diagram and interaction forces study, three conditions of stability emerge: - an osmotic one: the osmotic lamellar pressure is higher or equal to the colloidal one. - an energetic one: the interaction energy between a particle and the surfactant bilayer is close to the particle energy in aqueous suspension. - an entropic one: particles should not inhibit the stabilising fluctuations of the lamellar phase. (author) [fr

  19. Lamellar-in-lamellar structure of A-b-(B-b-C)(m)-b-B-b-A multiblock copolymers

    NARCIS (Netherlands)

    Subbotin, A.; Klymko, T.; ten Brinke, G.

    2007-01-01

    The number k of "internal" layers for the lamellar self-assembled state of a new class of multiblock copolymers A-b-(B-b-C)(m)-b-B-b-A is determined as a function of m in the strong segregation limit. Here the outer A-blocks are assumed to be considerably longer than the m + 1 blocks of equal length

  20. Formation of a lamellar phase : Rearrangement of amphiphiles from the bulk isotropic phase into a lamellar fashion

    NARCIS (Netherlands)

    Sein, A; Engberts, J B F N

    1996-01-01

    The dynamics of the formation of a lyotropic lamellar arrangement. of surfactant molecules has been studied by means of a contact experiment. Technical grade dodecylbenzenesulfonic acid (HDoBS) was brought into contact with water or an aqueous solution containing sodium hydroxide or sodium hydroxide

  1. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  2. Evaporation Anisotropy of Forsterite

    Science.gov (United States)

    Ozawa, K.; Nagahara, H.; Morioka, M.

    1996-03-01

    Evaporation anisotropy of a synthetic single crystal of forsterite was investigated by high temperature vacuum experiments. The (001), (010), and (001) surfaces show microstructures characteristic for each surface. Obtained overall linear evaporation rates for the (001), (010), and (001) surfaces are ~17, ~7, and ~22 mm/hour, and the intrinsic evaporation rates, obtained by the change in surface microstructures, are ~10, ~4.5, and ~35 mm/hour, respectively. The difference between the intrinsic evaporation rates and overall rates can be regarded as contribution of dislocation, which is notable for the (100) and (010) surfaces and insignificant for the (001) surface. This is consistent with observed surface microstructures.

  3. Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation

    Science.gov (United States)

    Gantassi, A.; Essaidi, H.; Ben Hamed, Z.; Gherouel, D.; Boubaker, K.; Colantoni, A.; Monarca, D.; Kouki, F.; Amlouk, M.; Manoubi, T.

    2015-03-01

    Silver indium sulfide thin films have been successfully synthesized out from β-In2S3 buffer layers using appropriate heat treatments of evaporated β-In2S3/Ag. X-ray analysis show that the β-In2S3/Ag crystalline films with 60 nm thickness of Ag, which were annealed under sulfur atmosphere at 400 °C, were mainly formed by the ternary AgInS2. Raman spectra confirmed that the observed peaks were characteristics to AgInS2 chalcopyrite of thin film structure. The optical band gap of AgInS2, which was evaluated as nearly 1.80 eV, was confirmed by the electrical study which yielded a value in the order of 1.78 eV. The electrical conductivity, conduction mechanism, dielectric properties and relaxation model of this thin film were studied using impedance spectroscopy technique in the frequency range 5 Hz-13 MHz under various temperatures (370-440 °C). Besides, complex impedance, AC conductivity and complex electric modulus have been investigated on the basis of frequency and temperature dependence.

  4. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather

  5. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  6. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  7. Clipped random wave analysis of isometric lamellar microemulsions

    International Nuclear Information System (INIS)

    Choy, Dawen; Chen, Sow-Hsin

    2000-01-01

    We have made small angle neutron scattering studies of C 10 E 4 -D 2 O-octane isometric microemulsions in the lamellar phase at the hydrophile-lipophile balance temperature. The scattering intensity distributions were then analyzed with a particular choice of a spectral density function (SDF) derived by maximization of generalized entropy. The model agrees well with the measured intensities on an absolute scale, and allowed us to derive various length scales associated with the microemulsion mesoscopic structure as well as the average interfacial curvatures. We also used the experimentally determined SDF to generate a three-dimensional snapshot of the fluctuating microemulsion microstructure. Unlike conventional pictures of extended lamellar planes, we observed small domains which were internally lamellar but randomly oriented with respect to each other. Finally, we computed the probability distributions of the mean curvature H and the Gaussian curvature K on the oil-water interface. The former showed a symmetric distribution centered around H = 0, while the latter showed a skewed distribution peaked at a negative value of K, but with a wing extending to positive values. (c) 2000 The American Physical Society

  8. Lamellar pathology in horses with pituitary pars intermedia dysfunction.

    Science.gov (United States)

    Karikoski, N P; Patterson-Kane, J C; Singer, E R; McFarlane, D; McGowan, C M

    2016-07-01

    Hoof lamellar pathology in horses with pituitary pars intermedia dysfunction (PPID) has not been described previously. To describe the histomorphometry and pathological lesions in hoof lamellar tissue of animals that had PPID with or without concurrent laminitis, with reference to age-matched controls. We hypothesised that lamellar lesions consistent with laminitis would be associated with PPID, even in animals without current or historical laminitis. Prospective case-control study. Mid-dorsal hoof histological sections were obtained post mortem from the forelimbs of 16 PPID-affected animals either with (n = 6) or without laminitis (n = 10) and 10 age- and breed-matched controls. Sections were examined by a blinded veterinary pathologist. The length and width of 10 primary epidermal lamellae were measured using image analysis software. The morphology and pathology of primary and secondary epidermal lamellae were then typed or graded in axial, middle and abaxial regions. Fasting serum insulin, plasma adrenocorticotropin and blood glucose concentration were measured from blood samples taken prior to euthanasia. All animals with PPID and laminitis had fasting hyperinsulinaemia (median 74.1 miu/l, interquartile range 49.9-349.5 miu/l) whereas PPID animals without laminitis had serum insulin concentrations below the upper limit of the reference range (morphological alteration and pathology consistent with laminitis. © 2015 EVJ Ltd.

  9. The Effect of Heat Supply on Diesel Evaporation as the First Step of Hydrogen Production

    International Nuclear Information System (INIS)

    Sarioglan A; Olgun H; Baranak M; Ersoz A; Atakul H; Ozdogan S

    2006-01-01

    Evaporation of diesel fuel is an important stage in the diesel reforming processes. Thermal decomposition of the heavy feedstock that occurs primarily in the high temperature domain of the evaporation process leads to carbonous material formation and may plug the evaporator. The diesel evaporator design is one of the key parameters to minimize carbon formation. The operating conditions must be optimized as well. In this study, the evaporation heat was supplied by two different ways. In the first evaporation system, the evaporation heat of the diesel fuel was supplied by an electrical furnace. In the second system, diesel was evaporated in a tube-and-tube heat exchanger via indirect heat supplied by hot nitrogen gas. The latter case was chosen to simulate the utilization of fuel reforming off-gases. Results indicate that evaporation by the hot gases results in much lower thermal decomposition of the diesel fuel compared to the utilization of the electrical energy. (authors)

  10. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  11. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  12. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  13. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  14. Natural convection above circular disks of evaporating liquids

    Science.gov (United States)

    Dollet, Benjamin; Boulogne, François

    2017-05-01

    We investigate theoretically and experimentally the evaporation of liquid disks in the presence of natural convection due to a density difference between the vapor and the surrounding gas. From the analogy between thermal convection above a heated disk and our system, we derive scaling laws to describe the evaporation rate. The local evaporation rate depends on the presence of a boundary layer in the gas phase such that the total evaporation rate is given by a combination of different scaling contributions, which reflect the structure of the boundary layer. We compare our theoretical predictions to experiments performed with water in an environment controlled in humidity, which validate our approach.

  15. Evaporation from microreservoirs.

    Science.gov (United States)

    Lynn, N Scott; Henry, Charles S; Dandy, David S

    2009-06-21

    As a result of very large surface area to volume ratios, evaporation is of significant importance when dealing with lab-on-a-chip devices that possess open air/liquid interfaces. For devices utilizing a reservoir as a fluid delivery method to a microfluidic network, excessive evaporation can quickly lead to reservoir dry out and overall device failure. Predicting the rates of evaporation from these reservoirs is difficult because the position of the air/liquid interface changes with time as the volume of liquid in the reservoir decreases. Here we present a two-step method to accurately predict the rates of evaporation of such an interface over time. First, a simple method is proposed to determine the shape of an air/liquid meniscus in a reservoir given a specific liquid volume. Second, computational fluid dynamics simulations are used to calculate the instantaneous rate of evaporation for that meniscus shape. It is shown that the rate of evaporation is strongly dependent on the overall geometry of the system, enhanced in expanding reservoirs while suppressed in contracting reservoirs, where the geometry can be easily controlled with simple experimental methods. Using no adjustable parameters, the model accurately predicts the position of the inner moving contact line as a function of time following meniscus rupture in poly(dimethylsiloxane) reservoirs, and predicts the overall time for the persistence of liquid in those reservoirs to within 0.5 minutes. The methods in this study can be used to design holding reservoirs for lab-on-a-chip devices that involve no external control of evaporation, such that evaporation rates can be adjusted as necessary by modification of the reservoir geometry.

  16. Investigation of physical properties of quaternary AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin films deposited by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.t [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2010-08-06

    The aim of this study is to understand the structural, optical and photo-electrical properties of the quaternary chalcogenide AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin films deposited onto the glass substrates by thermal evaporation of the single crystalline powder. Energy dispersive X-ray analysis (EDXA) showed remarkable change in atomic percentage of the constituent elements after annealing. The X-ray diffraction (XRD) of the films below the annealing temperature of 300 {sup o}C indicated the polycrystalline structure with co-existence of AgGaTe{sub 2} and AgGa{sub 0.5}In{sub 0.5}Te{sub 2} phases. However, the single phase of AgGa{sub 0.5}In{sub 0.5}Te{sub 2} chalcopyrite structure was obtained at the annealing of 300 {sup o}C. The band gap values were calculated in between 1.05 and 1.37 eV depending on annealing temperature. The temperature dependent photoconductivity was measured under different illumination intensity. The nature of existing trap levels were studied by measuring the variation of photocurrent as a function of illumination intensity. The analysis showed that AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin film changes its behavior from the sublinear to supralinear photoconductivity after annealing.

  17. An investigation of the insertion of the cations H{sup +}, Na{sup +}, K{sup +} on the electrochromic properties of the thermally evaporated WO{sub 3} thin films grown at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.J. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.com [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Mehta, P.K. [Physics Department, Faculty of Science, M.S. University of Baroda, Vadodara 390002, Gujarat (India)

    2010-11-01

    The phenomenon of electrochromism in tungsten trioxide (WO{sub 3}) thin films has recently attained considerable interest due to their enormous applications in inorganic thin film electrochromic devices. We have investigated the compositional, optical, and electrochromic properties of the WO{sub 3} thin films grown at different substrate temperatures by the thermal evaporation of WO{sub 3} powder. The thin films were characterized using X-ray diffraction (XRD), X-ray photo-emission spectroscopy (XPS), and electrochemical techniques. The XPS analysis suggested that the oxygen to tungsten (O/W) ratio decreases, i.e., the oxygen deficiency increases, on increasing the substrate temperature up to 500 deg. C. The electrochemical analysis provided a comparative study of the coloration efficiency (CE) of the WO{sub 3} thin films intercalated with three different ions viz. H{sup +}, Na{sup +}, and K{sup +}. The effect of the variation of the substrate temperature on the CE and the switching time have also been investigated for the WO{sub 3} thin films intercalated with H{sup +} ions; the thin films deposited at RT and intercalated with H{sup +} ions are found to possess adequate electrochromic properties viz. CE and switching time from device point of view.

  18. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  19. Numerical simulation of droplet evaporation between two circular plates

    International Nuclear Information System (INIS)

    Bam, Hang Jin; Son, Gi Hun

    2015-01-01

    Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.

  20. Lamellar Hole-Associated Epiretinal Proliferation in Comparison to Epiretinal Membranes of Macular Pseudoholes.

    Science.gov (United States)

    Compera, Denise; Entchev, Enrico; Haritoglou, Christos; Scheler, Renate; Mayer, Wolfgang J; Wolf, Armin; Kampik, Anselm; Schumann, Ricarda G

    2015-08-01

    To compare immunocytochemical and ultrastructural characteristics of "lamellar hole-associated epiretinal proliferation" in lamellar macular holes with "conventional epiretinal membrane" in macular pseudoholes. A consecutive observational case series, laboratory investigation. We analyzed surgically excised flat-mounted internal limiting membrane specimens and epiretinal membrane specimens removed from 25 eyes of 25 patients with lamellar macular holes (11 eyes) and macular pseudoholes (14 eyes) using interference and phase-contrast microscopy, immunocytochemistry, and transmission electron microscopy. By spectral-domain optical coherence tomography, epiretinal material of homogenous reflectivity without contractive properties was categorized as lamellar hole-associated epiretinal proliferation, whereas tractional epiretinal membranes presenting contractive properties were termed conventional epiretinal membrane. Lamellar hole-associated epiretinal proliferation was seen in 73% of eyes with lamellar macular hole. Eyes with macular pseudohole presented with conventional epiretinal membrane. In lamellar hole-associated epiretinal proliferation, positive immunoreactivity for anti-glial fibrillary acidic protein, hyalocyte markers, and anti-collagen type I and III was seen. In contrast, specimens of macular pseudoholes were positive for α-smooth muscle actin and anti-glial fibrillary acidic protein, predominantly. Cellular ultrastructure showed that lamellar hole-associated epiretinal proliferation of lamellar macular holes mainly consisted of fibroblasts and hyalocytes, whereas myofibroblasts dominated in conventional epiretinal membranes of macular pseudoholes. Cells within lamellar hole-associated epiretinal proliferation appear to originate from vitreous and possess less contractive properties than cells of conventional epiretinal membranes. Our findings point to differences in pathogenesis in a subgroup of lamellar macular holes presenting lamellar hole

  1. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  2. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  3. Equine laminitis model: lamellar histopathology seven days after induction with oligofructose.

    Science.gov (United States)

    Van Eps, A W; Pollitt, C C

    2009-11-01

    The histopathology of laminitis during its transition from the acute to the chronic phase has not been previously documented. Studying hoof lamellar tissues 7 days after induction of laminitis may provide insight into the intractable nature of the chronic phase of the disease. To induce laminitis and investigate hoof wall lamellar tissues 7 days after dosing. Laminitis was induced using oligofructose in 6 normal Standardbred horses. The dorsal hoof lamellar tissues of these and 12 normal horses were processed and examined by light microscopy. Serial sections of a lamellar tip affected by laminitis were used to create a 3 dimensional reconstruction. Transverse sections of dorsal hoof wall lamellae were significantly longer than normal. Many secondary epidermal lamellae were not connected to primary lamellae and existed as spherical or ovoid, discrete islands isolated in the lamellar dermis. The lamellar basement membrane was intact. Lamellar tissue has the ability to reorganise rapidly following an episode of acute laminitis. Although histopathological evidence of ongoing acute laminitis was absent by 7 days, there was marked disruption of lamellar architecture. The architecture and subsequent strength of the resultant lamellar interface could be greatly influenced for the better by strategies that minimise mechanical displacement during the acute phase of laminitis.

  4. Complications and Management of Deep Anterior Lamellar Keratoplasty

    Directory of Open Access Journals (Sweden)

    Banu Torun Acar

    2014-10-01

    Full Text Available Objectives: To report the intraoperative and postoperative follow-up complications and management of these in deep anterior lamellar keratoplasty (DALK surgery. Materials and Methods: Two hundred eighty-four eyes of 252 patients followed up in our cornea clinic who underwent DALK using Anwar’s big-bubble technique with healthy Descemet’s membrane and endothelium were included in this study. Intraoperative and postoperative complications as well as the management and treatment of these complications were evaluated. Results: Big bubble was created in 220 (77.5% eyes of 284 eyes, and lamellar dissection was performed in 64 (22.5% eyes. Perforation occurred during trephination in 4 eyes, and the procedure was accomplished by penetrating keratoplasty (PK. Intraoperative microperforation occurred in 44 eyes. Perforation enlarged in 4 eyes and PK was performed. Operation was continued in 40 eyes with air injection into the anterior chamber. In postopertive follow-up period, double anterior chamber (DAC occurred in 32 of 40 eyes. DAC spontaneously regressed in 8 eyes, and air was given into the anterior chamber with a second surgical intervention in 24 eyes. DAC improved in 20 eyes. Four eyes underwent PK. Fungal keratitis evolved at the interface in one eye, because of no healing during the follow-up period, this eye underwent PK under antifungal therapy. Eyes with interface haze and Descemet’s membrane folds were followed. Conclusion: DALK is a difficult technique with a steep learning curve. In addition to the complications seen in PK, specific complications can occur in lamellar surgery. (Turk J Ophthalmol 2014; 44: 337-40

  5. Deformation of lamellar TiAl alloys by longitudinal twinning

    OpenAIRE

    Edwards, Thomas Edward James; Di Gioacchino, Fabio; Muñoz-Moreno, Rocío; Clegg, William John

    2016-01-01

    The occurrence of longitudinal twinning in the engineering alloy Ti-45Al-2Nb-2Mn (at%)-0.8vol% TiB2 has been studied by measuring the changes in crystallographic orientation within individual lamellae during microcompression. Twinning in this alloy appeared to be a nucleation-limited process with the twins growing from lamellar boundaries at resolved shear stresses as low as 100 MPa, consistent with observations elsewhere. However, instead of forming twins ~10-200 nm in thickness, as in polys...

  6. Synthesis and characterization of lamellar aragonite with hydrophobic property

    International Nuclear Information System (INIS)

    Wang Chengyu; Xu Yang; Liu Yalan; Li Jian

    2009-01-01

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  7. Evaporative oxidation treatability test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  8. Evaporative oxidation treatability test report

    International Nuclear Information System (INIS)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment

  9. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation; Estrutura supramolecular de um derivado de perileno em filmes finos fabricados por evaporacao termica a vacuo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Jose Diego

    2015-07-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  10. Hybrid Technique of Lamellar Keratoplasty (DMEK-S

    Directory of Open Access Journals (Sweden)

    Pavel Studeny

    2013-01-01

    Full Text Available Purpose: To evaluate the outcomes of the hybrid technique of posterior lamellar keratoplasty (DMEK-S. Materials and Methods: 71 eyes of 55 patients enrolled in a single-center study underwent posterior lamellar keratoplasty with a hybrid lamella DMEK-S implanted using a solution implantation technique, owing to endothelial dysfunction. The outcome measures studied were visual acuity and endothelial cell density. Results: The rate of endothelial cell loss caused by surgery was 43.8%. During followups, we observed the stabilization of postoperative findings, or at minimum a very low rate of corneal endothelial cell loss. The UCDVA and BCDVA dramatically improved postoperatively. The rebubbling rate in our group of patients was 61.9%. We replaced the lamella due to its failure or malfunction in 17 patients (23.9%. Conclusion: In summary, DMEK-S combines the advantages of DSEK/DSAEK and DMEK. The central zone of bare Descemet’s membrane and endothelium allows for very good visual outcomes, and the peripheral rim allows for better manipulation of the lamella during implantation. It is an effective method of treating the endothelial dysfunction of various etiologies, but the high complication rate needs to be addressed before widespread implementation of the technique in the future.

  11. Lamellar rearrangement of internal lipids from human hair.

    Science.gov (United States)

    Coderch, L; Méndez, S; Barba, C; Pons, R; Martí, M; Parra, J L

    2008-09-01

    The internal lipids were extracted from untreated hair without surface lipids. Liposomes were formed with the internal lipids at different hydration levels to determine the organization of these lipids and the influence of the water content on the lamellar structure of the hair fibres by X-ray Scattering (SAXS). Two structures of hair lipids were observed at 4.5 and approximately 9.0 nm with a different behaviour as a function of water content: the largest bilayer being the one that showed a capacity to retain water inside its structure. SAXS was also applied directly to three samples: a packed swatch of hair fibres at 60% RH, fibres soaked in water and delipidized fibres. Only the lamella at 9.0 nm was slightly affected by water content. Moreover, there was a small diminution in intensity probably due to a high permeability of wet fibres which could give rise to a disorder of the lipid structure. These two lamellar rearrangements are probably made up of lipids with a different and specific hydrophilic/hydrophobic balance.

  12. Correlative Microscopy of Lamellar Hole-Associated Epiretinal Proliferation

    Directory of Open Access Journals (Sweden)

    Denise Compera

    2015-01-01

    Full Text Available Purpose. To describe morphology of lamellar hole-associated epiretinal proliferation (LHEP removed from eyes with lamellar macular holes (LMH. Methods. Based on optical coherence tomography data, 10 specimens of LHEP were removed from 10 eyes with LMH during standard vitrectomy. Specimens were prepared for correlative light and electron microscopy (CLEM using an immunonanogold particle of 1.4 nm diameter that was combined with a fluorescein moiety, both having been attached to a single antibody fragment. As primary antibodies, we used antiglial fibrillary acidic protein (GFAP, anti-CD45, anti-CD64, anti-α-smooth muscle actin (α-SMA, and anticollagen type I and type II. Results. In LHEP, GFAP-positive cells possess ultrastructural characteristics of fibroblasts and hyalocytes. They represent the major cell types and were densely packed in cell agglomerations on vitreous collagen strands. Epiretinal cells of LHEP rarely demonstrated contractive properties as α-SMA-positive myofibroblasts were an infrequent finding. Conclusion. CLEM indicates that epiretinal cells in LHEP might originate from the vitreous and that remodelling processes of vitreous collagen may play an important role in pathogenesis of eyes with LMH.

  13. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  14. Morphological, Structural, and Optical Properties of Single-Phase Cu(In,GaSe2 Thin Films from the Selenization of Thermally Evaporated InSe/Cu/GaSe Precursors

    Directory of Open Access Journals (Sweden)

    Francis B. Dejene

    2014-01-01

    Full Text Available The relatively small band gap values (~1 eV of CuInSe2 thin films limit the conversion efficiencies of completed CuInSe2/CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to homogeneously increase the band gap by substituting indium with gallium. In this study, thermal evaporation of InSe/Cu/Gase precursors was exposed to an elemental Se vapour under defined conditions. This technique produced large-grained, single-phase Cu(In,GaSe2 thin films with a high degree of in-depth compositional uniformity. The selenization temperature, ramp time, reaction period, and the effusion cell temperature with respect to the Cu(In,GaSe2 films were optimized in this study. The homogeneous incorporation of Ga into CuInSe2 led to a systematic shift in the lattice spacing parameters and band gap of the absorber films. Under optimized conditions, gallium in cooperation resulted only in a marginal decrease in the grain size, X-ray diffraction studies confirmed single-phase Cu(In,GaSe2 material, and X-ray photoluminescence spectroscopy in-depth profiling revealed a uniform distribution of the elements through the entire depth of the alloy. From these studies optimum selenization conditions were determined for the deposition of homogeneous Cu(In,GaSe2 thin films with optimum band gap values between 1.01 and 1.21 eV.

  15. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    Science.gov (United States)

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ∼ 160 deg), and negligible contact angle hysteresis (evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ∼ 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation.

  16. Lamellar icthyosis – A case report of a Nigerian child | Odokuma ...

    African Journals Online (AJOL)

    Lamellar Ichthyosis (LI) is an autosomal recessive disorder with an incidence of less than 1 in 3 blacks. Lamellaricthyosis is usually diagnosed based on the history of collodion membrane at birth and the characteristic appearance of scales especially on the skin. Here, we present a case of lamellar icthyosisoccuring an ...

  17. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  18. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  19. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Ana, M.A. Santa; Mirabal, N.; Benavente, E.; Cardenas, G.; Gonzalez, G.; Torres, C.M. Sotomayor

    2007-01-01

    This work explores the functionalization of an organic-inorganic MoS 2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS 2 . SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS 2

  20. Novel spatula and dissector for safer deep anterior lamellar keratoplasty

    Directory of Open Access Journals (Sweden)

    Gustavo ,2,3 Bonfadini

    2014-10-01

    Full Text Available Objective: We describe a novel spatula and dissector to facilitate the big-bubble technique in deep anterior lamellar keratoplasty (DALK. Methods: A 29-year-old man who was diagnosed with bilateral keratoconus underwent deep anterior lamellar keratoplasty (DALK. After 350μm partial thickness incision of the recipient cornea, the Bonfadini dissector was inserted at the deepest point in the peripheral incision and could be advanced to the center of the cornea safely because of its "semi-sharp" tip. After achieving the big-bubble (BB separation of Descemet membrane (DM from the overlying stroma, the anterior stromal disc was removed. Viscoelastic material was placed on the stromal bed to prevent uncontrolled collapse and perforation of DM during the paracentesis blade incision into the BB. We could detect the safe opening of the BB using the Bonfadini dissector by the leakage of air bubbles into the viscoelastic material. After injecting viscoelastic material into the BB space, we inserted the Bonfadini spatula into the bigbubble safely because of its curved profile and blunt edges. The groove along the length of the Bonfadini spatula enables safe and efficient incision or the residual stromal tissue using the pointed end of a sharp blade while protecting the underlying DM. After removal of posterior stroma, the donor button was sutured with 16 interrupted 10-0 nylon sutures. Results: This technique and the use of the Bonfadini spatula and dissector facilitate exposure of Descemet membrane. Conclusion: The smooth Bonfadini DALK spatula and dissector facilitate safe and efficient completion of DALK surgery.

  1. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  2. Research Status of Evaporative Condenser

    Science.gov (United States)

    Wang, Feifei; Yang, Yongan

    2018-02-01

    Reducing energy consumption, saving water resources, recycling cool water are main directions of China’s development. Evaporative condenser using latent heat reduces water resources waste, with energy-saving advantages. This paper reviews the research status of evaporative condenser at home and abroad, and introduces the principle, classification, various influencing factors of evaporative condenser, and puts forward the future research direction.

  3. Electrolyte effects on the stability of nematic and lamellar lyotropic liquid crystal phases: colligative and ion-specific aspects.

    Science.gov (United States)

    Dawin, Ute C; Lagerwall, Jan P F; Giesselmann, Frank

    2009-08-20

    We investigated the electrolyte effects on the stability of nematic and lamellar lyotropic liquid crystalline (LLC) phases formed by the simple anionic surfactant cesium pentadecafluorooctanoate (CsPFO) in water. To the lyotropic guest phase, at the constant CsPFO-mass fraction of 0.55, the series of electrolytes LiCl, NaCl, KCl, CsCl, CsI, and Cs(2)SO(4), respectively, was added at concentrations ranging from 0.5 to 2.5 mol %. With increasing electrolyte concentration two substantially different effects were observed. At low concentrations all added electrolytes caused an increase of the thermal stability of the LLC phases, favoring the lamellar phase over the nematic phase. This behavior is, at least qualitatively, understood within the packing parameter model. The extent of the stabilization clearly depends on the chemical nature of the added cation. For a given cation, however, the effect is colligative, i.e., independent of the chemical nature of the added anion. At higher salt concentrations a salting-out-like phase separation was induced. This effect is clearly ion-specific as the salting-out concentration varied for each cation following the order of the Hofmeister series for cations.

  4. Oblique evaporation waves

    Science.gov (United States)

    Simões-Moreira, José R.

    Evaporation waves are processes that may occur under certain conditions in which a metastable or superheated liquid undergoes a sudden phase transition in a narrow and observable region, which resembles a shock wave. It is inferred from photographic documentation that in certain liquid jet flashing regimes the phenomenon is present. The evaporation wave discontinuity has been successfully modeled in a similar way as a deflagration wave in a combusting gas. One-dimensional laboratory experiments have demonstrated the existence of the (lower) Chapman-Jouguet solution for the cases where the liquid were at a high degree of metastability. Subsonic solutions were also observed for less pronounced degree of metastability (Hill 1991, Sim oes-Moreira 1994). In this paper, the fundamental theory is briefly revised and compared with some of the experimental results obtained for the cases operating at the C-J condition. Next, the paper presents the extension of the one-dimensional theory to include the oblique evaporation wave geometry. Relationships between upstream and downstream flow properties are discussed ant further consequences of these relationships are analyzed.

  5. The timeline of lamellar basement membrane changes during equine laminitis development.

    Science.gov (United States)

    Visser, M B; Pollitt, C C

    2011-07-01

    The timing of lamellar basement membrane (BM) changes occurring during laminitis development is incompletely understood. To determine the temporal progression of lamellar BM changes and whether laminin-332 (Ln-332) γ2 cleavage products are generated during laminitis development. Eight clinically normal Standardbred horses were allocated into treatment (n = 5) or sham (n = 3) groups. The treatment group received, via nasogastric intubation, an oligofructose (OF) bolus (10 g/kg bwt) while the sham group was given water. Laminitis induction proceeded for 48 h followed by euthanasia. Lamellar biopsies were obtained prior to dosing and at intervals during the treatment period for analysis (at 12, 18, 24, 30 and 36 h and at 48 h following euthanasia). Changes in lamellar collagen type IV and Ln-332 were first observed at 12 h post dosing. A unique pattern of reactivity for the Ln-332 γ2 antibody D4B5 occurred, in which reactivity was observed only in lamellar tissue affected by laminitis. No bioactive Ln-332 γ2 proteolytic fragments were detected in lamellar samples. Basement membrane changes occurred early during the laminitis process. Direct Ln-332 γ2 cleavage to release biologically active products did not appear to occur. Thus loss of stability or protein interaction of the BM is probably responsible for the γ2 specific reactivity observed. Basement membrane changes may a first step in lamellar failure occurring prior to detection with conventional methods. Thus, more sensitive detection methods of BM changes are required to study laminitis development. © 2011 EVJ Ltd.

  6. Evaporative cooling of the dipolar hydroxyl radical.

    Science.gov (United States)

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  7. Convection-enhanced water evaporation

    Directory of Open Access Journals (Sweden)

    B. M. Weon

    2011-03-01

    Full Text Available Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.

  8. Lamellar Liquid-Crystalline System with Tunable Iridescent Color by Ionic Surfactants.

    Science.gov (United States)

    Cong, Zhenhua; Lin, Bowen; Li, Weiqing; Niu, Jian; Yan, Feng

    2017-07-18

    Liquid crystals formed by the self-assembly of small molecules are very promising smart materials because of their unique properties, such as self-assembled multivalency, biocompatibility, and fast response to external stimuli. Here we report an iridescent liquid-crystal system composed of water layers, which is sandwiched by two bilayer membranes. Such membranes are composed of a self-assembled nonionic surfactant, which is called hexadecylglyceryl maleate (HGM), and only a small amount of ionic surfactants. It is found that the iridescent color of the liquid crystal system is very sensitive to the concentration of ionic surfactants, even if a trace of change of the ionic surfactants' concentration will induce the color change of liquid-crystal system. The result shows that with the increase in ionic surfactant concentration, the flat bilayer membrane tends to be curved to form some edge-dislocation defects. The appearance of such defects in the lamellar system leads to the decrease in spacing distance between adjacent bilayer membranes. This is because some vacant spaces emerged inevitably during this process. The ionic surfactant-sensitive HGM system also shows the thermal response. It is because the phase-separation results in the increase in local concentration of SDS in the bilayer membrane, which has the same effect as increasing the SDS concentration in the whole system.

  9. The estimate of permittivity of anisotropic composites with lamellar inclusions by the self-assessment method

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are widely used as structural or thermal protection materials; they are used as well as functional materials in a large number of different electrical devices and as dielectrics. This composite has one of the most important characteristics the relative permittivity. It depends primarily on the dielectric properties of the inclusions and the matrix as well as the shape and volume content of the inclusions.In this paper, a mathematical model of the interaction of the electrostatic fields in an isotropic plate and in the surrounding homogeneous anisotropic medium is constructed. This model describes the dielectric properties of the composite with such inclusions. A variant of the same orientation of lamellar inclusions is considered, which leads to the special case of anisotropy of the dielectric properties of the composite that has transverse isotropy towards the direction perpendicular to the inclusions. The shape of inclusions is represented as an oblate ellipsoid of revolution (spheroid. Transformation of the differential equation describing the distribution of the electric potential transversely to isotropic medium surrounding the spheroidal inclusion, to the Laplace equation with the subsequent transition from the initial spheroid to the given ellipsoid of rotation allows us to apply the self-assessment method for the determination of the dielectric properties of the composite. This method equates the result of averaging the perturbation of the electrostatic field in the inclusions and the matrix particles towards the unperturbed fields in the environment to zero.The constructed mathematical model allows us to determine the electrostatic field disturbance in the inclusions and the matrix particles towards the unperturbed field given in the environment at a distance from the inclusions and the matrix particles, much larger than their characteristic dimensions. By averaging the perturbation of the electrostatic field in all the

  10. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  11. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  12. Experimental study of capillary-assisted evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Sabir, H.M.; ElHag, Y.B.M.; Benhadj-Djilali, R. [Faculty of Engineering, Kingston University, Friars Avenue, London SW15 3DW (United Kingdom)

    2008-07-01

    The paper presents the results of experimental work aimed at studying the effect of porous layer parameters on the thermal performance of water evaporators. The results show that there are optimum particle sizes that are associated with maximum boiling heat rates and heat transfer coefficients. The results also show that the layer thickness has monotonic effect on the evaporators' performance but its impact is less pronounced compared to that of the particle size. The trends are explained in terms of the contradicting effects that exist within the layer. The research also showed that the effect of the heat load, represented by temperature and velocity of the load air, was negligible. Boiling heat transfer coefficients of up to 5 kW/m{sup 2} C were achieved. (author)

  13. Parallel and perpendicular lamellar phases in copolymer-nanoparticle multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Lauter-Pasyuk, V.; Lauter, H.; Gordeev, G.; Mueller-Buschbaum, P.; Toperverg, B.P.; Petry, W.; Jernenkov, M.; Petrenko, A.; Aksenov, V

    2004-07-15

    Recent results in developing novel nanocomposite multilayer structures are presented. We used symmetric polystryrene-block-polymethylmethacrylate (deuterated) P(S-b-MMAd) lamellar thin films as a self-assembling matrix for the lamellar arrangement of Fe{sub 3}O{sub 4} nanoparticles. Pure copolymer films showed an unusual structure with a perpendicular to the surface orientation of the lamellae, in the part of the film towards the free surface. This is a new phenomenon because up to now this orientation was obtained only on specially prepared substrates. After the incorporation of nanoparticles into the copolymer matrix, the system switched to a lamellar structure parallel to the surface. Further increasing of the nanoparticles concentration led to a more perfect lamellar structure, which shows that the limit for a high concentration of nanoparticles, important for nanotechnology has not yet been reached.

  14. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C. R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity.

  15. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    International Nuclear Information System (INIS)

    Spencer, C.R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity

  16. Linkage of autosomal recessive lamellar ichthyosis to chromosome 14q

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.J.; Compton, J.G.; Bale, S.J. [National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD (United States); DiGiovanna, J.J. [National Cancer Institute, Bethesda, MD (United States); Hashem, N. [Ains-Shams Univ. Medical Genetics Center, Cairo (Egypt)

    1994-12-01

    The authors have mapped the locus for lamellar ichthyosis (LI), an autosomal recessive skin disease characterized by abnormal cornification of the epidermis. Analysis using both inbred and outbred families manifesting severe LI showed complete linkage to several markers within a 9.3-cM region on chromosome 14q11. Affected individuals in inbred families were also found to have striking homozygosity for markers in this region. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families. Several transcribed genes have been mapped to the chromosome 14 region containing the LI gene. The transglutaminase 1 gene (TGM1), which encodes one of the enzymes responsible for cross-linking epidermal proteins during formation of the stratum corneum, maps to this interval. The TGM1 locus was completely linked to LI (Z = 9.11), suggesting that TGM1 is a good candidate for further investigation of this disorder. The genes for four serine proteases also map to this region but are expressed only in hematopoietic or mast cells, making them less likely candidates.

  17. Microkeratome-assisted lamellar keratoplasty for keratoconus: stromal sandwich.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoglu, Berati

    2003-07-01

    To evaluate microkeratome-assisted lamellar keratoplasty for the treatment of keratoconus when it is not possible to correct the astigmatic ametropia with contact lenses. Ophthalmology Department, School of Medicine, Gazi University, Ankara, Turkey. This prospective study comprised 9 eyes of 7 keratoconus patients with contact lens intolerance. The donor cornea was prepared with a microkeratome and punched with a 7.25 mm or 7.50 mm trephine. Following the creation of a standard 9.0 mm corneal flap in the host cornea, the donor stromal button was implanted under this corneal flap like a sandwich. Transepithelial photorefractive keratectomy or laser in situ keratomileusis was performed when the corneal topography and refraction stabilized by the end of the sixth postoperative month. Follow-up ranged from 7 to 22 months. All patients gained 5 or more lines (mean 7.2 lines +/- 1.6 [SD]), and no patient lost a line of vision. The mean corneal thickness was 432.7 +/- 36.1 micrometers preoperatively and 578.1 +/- 45.1 micrometers after refractive surgery. The early visual results of this surgical technique are promising and seem to be comparable to those with penetrating keratoplasty.

  18. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Millot, Francis.

    1976-03-01

    Lamellar halides such as NiCl 2 , FeCl 2 , NiBr 2 , MnBr 2 , MgBr 2 , CdBr 2 , CoI 2 , FeI 2 , MnI 2 , CaI 2 and PbI 2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed [fr

  19. Nanoparticle size controls aggregation in lamellar nonionic surfactant mesophase.

    Science.gov (United States)

    Venugopal, Edakkal; Aswal, Vinod K; Kumaraswamy, Guruswamy

    2013-08-06

    We show that the size of silica nanoparticles influences the nature of their aggregation in an aqueous solution of a relatively hydrophobic nonionic surfactant, C12E4. We present results for dispersions of silica nanoparticles with sizes varying from 8 to 26 nm, in a 75: 25 C12E4/water system, that forms a lamellar phase, Lα, at room temperature. Addition of silica particles does not affect the formation of the Lα phase. Nanoparticles smaller than about 11 nm aggregate irreversibly in the C12E4/water system. However, nanoparticles larger than about 15 nm aggregate in the Lα phase, but are dispersed at temperatures above the Lα order-disorder temperature. Thus, in contrast to the smaller particles, aggregation of silica nanoparticles larger than about 15 nm is reversible with temperature. We use small-angle neutron scattering (SANS) to demonstrate that these results can be explained by the size-dependent wrapping of nanoparticles by surfactant bilayers. Larger particles, above 15 nm in size, are sterically stabilized by the formation of an adsorbed surfactant bilayer. The cost of bilayer bending inhibits adsorption onto the highly curved surfaces of smaller particles, and these "bare" particles aggregate irreversibly.

  20. Orientationally Ordered Lamellar Block Copolymer Films for Electrostatic Capacitor Applications

    Science.gov (United States)

    Grabowski, Christopher; Samant, Saumil; Karim, Alamgir; Durstock, Michael

    2015-03-01

    Improving the maximum operating voltage of an electrostatic capacitor requires materials that can better suppress breakdown initiation and/or forestall breakdown propagation. Progress has been made in developing layered architectures through polymer co-extrusion and inorganic nanolaminates, which create tortuous pathways to the applied electric field, resulting in increased breakdown strength. Block copolymer films provide another route to achieve such layered structures, while allowing more control over orientation, domain size, and morphology. We report the dielectric performance of micron-thick linear diblock copolymer films consisting of polystyrene-b-poly-2-vinylpyridine and polystyrene-b-poly methyl methacrylate, focusing on molecular weight ratios that yield lamellar and spherical morphologies. Specialized techniques such as cold-zone soft shear annealing allow for the precise control of lamellae orientation (layering parallel or perpendicular to the applied electric field). Our results indicate dielectric breakdown performance for parallel ordered lamellae is greater than comparable perpendicular lamellae and as-cast films with no induced microphase separation, which we attribute to the presence of interfacial layers that act as barriers to the applied field.

  1. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow.

    Science.gov (United States)

    Tan, Ivan; Yong, Jeffery; Dong, Jing Ming; Lim, Louis; Leung, Thomas

    2008-10-03

    Actomyosin retrograde flow underlies the contraction essential for cell motility. Retrograde flow in both lamellipodia and lamella is required for membrane protrusion and for force generation by coupling to cell adhesion. We report that the Rac/Cdc42-binding kinase MRCK and myosin II-related MYO18A linked by the adaptor protein LRAP35a form a functional tripartite complex, which is responsible for the assembly of lamellar actomyosin bundles and of a subnuclear actomyosin network. LRAP35a binds independently to MYO18A and MRCK. This binding leads to MRCK activation and its phosphorylation of MYO18A, independently of ROK and MLCK. The MRCK complex moves in concert with the retrograde flow of actomyosin bundles, with MRCK being able to influence other flow components such as MYO2A. The promotion of persistent protrusive activity and inhibition of cell motility by the respective expression of wild-type and dominant-negative mutant components of the MRCK complex show it to be crucial to cell protrusion and migration.

  2. Aspergillus Flavus Keratitis after Deep Anterior Lamellar Keratoplasty

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Jafarinasab

    2012-01-01

    Full Text Available Purpose: To report the clinical, microbiologic, confocal scan and histopathologic features of Aspergillus flavus keratitis which developed immediately after deep anterior lamellar keratoplasty (DALK. Case Report: A 28-year-old woman underwent DALK using the big-bubble technique for keratoconus. The operation was uneventful, yielding a bare Descemet′s membrane (DM followed by transplantation of a corneal graft devoid of DM and endothelium. Four days after keratoplasty, mild infiltrates were noticed in the inferonasal margin of the graft, which rapidly progressed to involve the adjacent recipient cornea. Confocal scan findings suggested filamentous fungal keratitis, leading to initiation of topical and systemic antifungal medications followed by immediate replacement of the graft. Histopathologic examination disclosed keratitis caused by a filamentous fungus, which was determined by microbiologic cultures to be Aspergillus flavus. Early diagnosis and appropriate management resulted in complete recovery from this potentially devastating infection. Conclusion: Aspergillus Flavus can cause graft ulcers immediately after DALK. Confocal scan proved to be a valuable tool for early diagnosis and prompt intervention to control this otherwise devastating infection.

  3. Toxic anterior segment syndrome following deep anterior lamellar keratoplasty

    Directory of Open Access Journals (Sweden)

    Neslihan Sevimli

    Full Text Available ABSTRACT We present the case of a 31-year-old patient with toxic anterior segment syndrome (TASS that developed after undergoing deep anterior lamellar keratoplasty (DALK. She had keratoconus, and despite wearing hard contact lenses for many years in the left eye, her vision had deteriorated; therefore, DALK was performed on this eye. The preoperative visual acuity (VA was finger counting at 3 m. Routine DALK was performed using the "big-bubble" technique. The corneal entry incision was hydrated at the end of the surgery, which was terminated by air injection into the anterior chamber. On postoperative day 1, VA was at the level of hand movements, and the cornea was edematous. Topical high-dose dexamethasone and oral steroids were initiated considering the diagnosis of TASS. Subsequently, the patient's VA increased, and the corneal edema decreased. We believe that the use of re-sterilized cannulas may have been the likely cause of TASS. Although DALK can be performed without interfering with the anterior chamber, one should keep in mind that TASS may occur in response to the solution used to hydrate the incision site and the air injected into the anterior chamber.

  4. Lamellar ichthyosis maps to chromosome 14q11

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.J.; Compton, J.G.; Bale, S.J. [and others

    1994-09-01

    Lamellar ichthyosis (LI) is a serious skin disorder inherited as an autosomal recessive trait and characterized by large, brown plate-like scales covering the body. Skin involvement is apparent at birth, often as a collodion membrane. Scarring alopecia, ectropion, and secondary hypohidrosis are frequent. We used a panel of candidates genes that are expressed in the epidermis to study seven multiplex Caucasian families in the U.S. and six inbred (multiplex and simplex) families in Egypt. We find no recombination (Z=9.11 at {theta}=0) in either set of families with transglutaminse 1 (TGM1), the gene encoding the enzyme responsible for cross-linking proteins to the cell envelope in the upper-most layer of the epidermis. In addition, striking homozygosity is observed in the inbred families for markers neighboring TGM1, defining a 9.3 cM candidate region which is bounded by MYH7 and D14S275. This is the first report of linkage in LI and suggests that further study of the TGM1 gene may identify the underlying pathogenesis of this severe, disfiguring disorder. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families.

  5. Butterfly patterns in a sheared lamellar-system

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, P. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Zipfel, J.; Richtering, W. [Freiburg Univ. (Germany)

    1997-04-01

    A technologically important extension of `classical` scattering techniques is to investigate soft-matter systems under non-equilibrium conditions. Shear flow is known to have a profound influence on the structure and orientation of complex fluids like thermotropic or lyotropic liquid-crystals, colloidal and polymeric solutions. There is a fundamental interest in understanding the microscopic structure and dynamics of such complex fluids as the macroscopic material properties might change with the application of an external perturbation like shear. The following example illustrates a recent study of the influence of shear on the structure of a lyotropic lamellar phase. Results using a cone-and-plate and the ILL Couette type shear-cell were obtained by rheo-small-angle light scattering (rheo-SALS) and small-angle neutron scattering (SANS) at D11. Because of the broad range of momentum transfer Q available at D11 a characteristic butterfly-pattern with a scattering peak revealing both the structure and the supramolecular structure of the system could be detected at very low Q. (author). 5 refs.

  6. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies

    DEFF Research Database (Denmark)

    Mat Azmi, Intan Diana Binti; Wibroe, Peter Popp; Wu, Lin-Ping

    2016-01-01

    Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits their ap......Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits...... and immune-safe nanopharmaceuticals....

  7. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  8. Thermodynamic Behaviors of Macroscopic Liquid Droplets Evaporation from Heated Substrates

    Science.gov (United States)

    Chen, Xue; Zhu, Zhi-Qiang; Liu, Qiu-Sheng; Wang, Xu-Wen

    2015-09-01

    Evaporation of a macroscopic-scale sessile droplet on different hot isothermal substrates has been experimentally investigated, for the framework of planning space experiments onboard Chinese recoverable satellite to explore the interface effect, heat and mass transfer during the phase transition process. Undoubtedly, the evaporation phenomenon of a sessile drop on heated substrates is a complex problem which involves the behavior of triple line, heat transfer with thermal conduction and convection, mass transfer into the vapor phase. Therefore, preparations from scientific view have been carried out to validate setup of the space experiment modes. Based on the experiments performed in the terrestrial gravity, we found that the evolution of a water droplet could be separated into three stages, began with the constant contact area, then switched to the depin stage and ended up with the flushing stage. The average evaporation rate was measured and the thermal effects of different substrates were studied. Results revealed a linear variation of contact diameter with its average evaporation rate, which has the similar tendency with small drops. The varieties of the heat flux density during evaporating showed that droplet absorbed energy from the heated substrate, then with the help of the internal flow of thermocaplliry and buoyant convection, heat was transported to the liquid-vapor interface providing the energy for evaporation.

  9. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  10. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate.

    Science.gov (United States)

    Gosenca, Mirjam; Bešter-Rogač, Marija; Gašperlin, Mirjana

    2013-09-27

    Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at a Tween 80/lecithin mass ratio of 1/1, and the region of lamellar liquid crystals was identified. Second, selected unloaded and AP-loaded lamellar liquid crystal systems were physicochemically characterized with polarizing optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology techniques. The interlayer spacing and rheological parameters differ regarding quantitative composition, whereas the microstructure of the lamellar phase was affected by the AP incorporation, resulting either in additional micellar structures (at 25 and 32 °C) or being completely destroyed at higher temperature (37°C). After this, the study was oriented towards in vitro cytotoxicity evaluation of lamellar liquid crystal systems on a keratinocyte cell line. The results suggest that the lamellar liquid crystals that were developed could be used as a physiologically acceptable dermal delivery system. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    Science.gov (United States)

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  12. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  13. Plasma dynamics during pulsed laser evaporation of high Tc superconductors

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1991-01-01

    The authors of this paper theoretically and experimentally investigated the dynamics of the evaporated material generated by nanosecond excimer laser irradiation of YBa 2 Cu 3 O 7 targets in vacuum. The velocity distribution and the ionization of the plasma were determined by the ion time of flight measurements. The excimer laser ablated species possessed very high velocities (>120 6 cm/sec) which increased non-linearly with energy density. The ionization/volume of the evaporated material exhibited a weak dependency on energy density, thereby suggesting the role of non-thermal mechanisms in the ionization process. These experimental results have been correlated with the theoretical model analyzing the plasma dynamics during pulsed laser evaporation of materials. A new modification to the earlier theoretical model is developed which accurately predicts the terminal velocities and the effect of ionization on these velocities. Various factors including, evaporation rates, degree of ionization, and laser wavelength which affect the plasma velocities will also be discussed

  14. Diffusion and evaporation of a liquid droplet

    Science.gov (United States)

    Shukla, K. N.

    1980-06-01

    The process of evaporation and diffusion of a spherical liquid droplet in an atmosphere of noncondensable gas is studied theoretically. An equation for the shrinkage of the radius of the droplet is derived on the basis of continuity and momentum equations. Further, a conjugate problem consisting of the energy and mass balance for the gaseous environment is formulated. An approximation of thin thermal and diffusion boundary-layers is introduced to simplify the analysis. Results are presented for methanol-nitrogen, ammonia-nitrogen, and sodium-argon systems. It has been observed that the droplet of highly viscous fluid exhibits rapid contraction.

  15. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    International Nuclear Information System (INIS)

    Pierce, R.A.

    2003-01-01

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. A fundamental element of predicting evaporator product solubility is to collect data that can be used to estimate key operating parameters. The data must be able to predict evaporator behavior for a range of eluate concentrations that are evaporated to the point of precipitation. Parameters that were selected for modeling include solubility, density, viscosity, thermal conductivity, and heat capacity. Of central importance is identifying the effect of varying feed components on overall solubility. The point of solubility defines the upper limit for eluate evaporation operations and liquid storage. The solubility point also defines those chemical compounds that have the greatest effects on physical properties. Third, solubility behavior identifies intermediate points where physical property data should be measured for the database. Physical property data (density, viscosity, thermal conductivity, and heat capacity) may be an integral part of tracking evaporator operations as they progress toward their end point. Once the data have been collected, statistical design software can develop mathematical equations that estimate solubility and other physical properties

  16. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  17. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Hajicek, P.; Israel, W.

    1980-01-01

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  18. Modeling Treated LAW Feed Evaporation

    International Nuclear Information System (INIS)

    DANIEL, WE

    2004-01-01

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process

  19. Effect of Delayed Digital Hypothermia on Lamellar Inflammatory Signaling in the Oligofructose Laminitis Model.

    Science.gov (United States)

    Dern, K; Watts, M; Werle, B; van Eps, A; Pollitt, C; Belknap, J

    2017-03-01

    In the oligofructose (OF) model of sepsis-related laminitis (SRL), digital hypothermia ("cryotherapy") initiated before the onset of clinical signs is reported not only to limit lamellar injury, but also to cause marked inhibition of lamellar inflammatory signaling. Because hypothermia also has been reported to be protective when not initiated until the onset of lameness in the OF model of SRL, we hypothesized that the lamellar protection conferred by hypothermia is caused by local lamellar inhibition of inflammatory signaling as described when hypothermia was initiated earlier in the disease process. Eight Standardbred geldings aged 3-11 years with no lameness and no abnormalities of the feet detectable by gross or radiographic examination. Using the OF model of SRL, lamellar mRNA concentrations of proinflammatory cytokines, chemokines, and endothelial adhesion proteins were compared between samples from treated limbs (CRYO, submerged in ice water for 36 hour starting at the onset of lameness), untreated limbs (NON-CRYO, opposite limb from CRYO limbs maintained at ambient temperature), and untreated limbs from normal horses in which laminitis was not induced (CON). Although OF administration resulted in increases in lamellar mRNA concentrations of several inflammatory mediators in NON-CRYO limbs (vs CON), digital hypothermia had no significant effect on these increases. The lack of inflammatory inhibition in lamellar tissue samples in our study indicates that the protective effects of digital hypothermia instituted at the onset of clinical signs of laminitis do not arise from inhibition of inflammatory pathways. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  1. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  2. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    Science.gov (United States)

    Stewart, Mark E.

    2017-01-01

    Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.

  3. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  4. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  5. Remote manipulation of posterior lamellar corneal grafts using a magnetic field.

    Science.gov (United States)

    Nahum, Yoav; Barliya, Tilda; Bahar, Irit; Livnat, Tami; Nisgav, Yael; Weinberger, Dov

    2013-06-01

    In posterior lamellar keratoplasty procedures such as Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty, the lamellar graft is manipulated directly or by injecting an air bubble. This preliminary study sought to evaluate the feasibility of guiding lamellar corneal grafts by generating a magnetic field. Rabbit and porcine Descemet stripping endothelial keratoplasty and Descemet membrane endothelial keratoplasty grafts were manually produced and immersed in a ferromagnetic solution containing nanomagnetic particles conjugated to streptavidin or in gadoteric acid. For the feasibility study, grafts were transferred to an artificial anterior chamber or plastic test tube and a magnetic field was generated with a handheld NdFeB disc magnet. The presence and the sustainability of graft motion were documented under various conditions. For the semiquantitative study, whole or partial grafts were transferred to a plastic test tube after immersion, and the amount of tissue retraction induced by the remote magnet was graded. The grafts were successfully manipulated in all directions by the magnet, from a distance of up to 7 mm. They remained ferromagnetic more than 24 hours after immersion in the ferromagnetic solutions. The degree of retraction was affected by graft size, immersion time, time from immersion, and immersion solution. Posterior lamellar corneal grafts may be made ferromagnetic and remotely manipulated by creation of a magnetic field. The ferromagnetic properties are adjustable. This technique holds promise in attaching and repositioning grafts during keratoplasty. Further research is needed to assess the possible effects of ferromagnetic solutions on corneal endothelial cells and on lamellar graft clarity.

  6. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  7. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  8. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I research, Surface Optics Corporation (SOC) demonstrated a durable silver mirror coating based an ion assisted, thermal evaporation process. The recipe...

  9. Method and apparatus for flash evaporation of liquids

    Science.gov (United States)

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  10. Initiation of melting and evaporating of materials under plasma disruption

    International Nuclear Information System (INIS)

    Hayashi, Takahiro; Morita, Takeshi; Kozawa, Yoshiyuki; Fujii-e, Yoichi

    1993-01-01

    In a tokamak reactor, a pulsed high heat flux, whose heat flux should result in up to 2 x 10 5 MW/m 2 , would be injected to the plasma facing components (PFCs) due to a plasma disruption. By this heat load the PFCs are melted, evaporated and cracked. In this study melting and evaporation behavior was investigated through performing the experiment with use of an electron beam to simulate heat loads due to plasma disruptions and the numerical and approximate analyses. Experimental and analytical results show that the evaporated mass increases abruptly at a curtain heat flux and time, and that the thickness of melting layer has the maximum at a curtain heat flux. From dimensionless expressions of such results the simple dimensionless correlations between the relevant values were obtained to estimate the significant characteristics such as evaporation thresholds and maximum melting layer thickness. Applying them to evaluation of the thermal resistance of materials against various heat loads due to a plasma disruption confirms that against the milder heat load, the materials whose initiation of melting and evaporation occurs late, such as tungsten, are suitable for armor materials and against the severer heat load, the materials that have a large of latent heat evaporation, such as graphite, are suitable for armor materials. (author)

  11. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  12. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  14. Morphological abnormalities and apoptosis in lamellar tissue of equines after intestinal obstruction and treatment with hydrocortisone

    Directory of Open Access Journals (Sweden)

    L.M Laskoski

    2010-12-01

    Full Text Available Four experimental groups of equines were used in order to study morphological abnormalities and apoptosis in lamellar tissue. Group Cg (control was composed of animals without any surgical procedure; group Ig (instrumented, animals that underwent enterotomy; group Tg (treated, animals that were subjected to intestinal obstruction and were treated with hydrocortisone; and group Ug (untreated, animals that were subjected to intestinal obstruction without treatment. The lamellar tissue was analyzed regarding the presence of tissue abnormalities and apoptosis. No morphological abnormalities were observed in animals of surgical groups, and no difference in apoptosis was observed between groups. It was concluded that intestinal obstruction allowed laminitis to develop, probably by systemic activation, and that the maneuvers performed in the enterotomy aggravated the process. Hydrocortisone did not aggravate the lesions of the lamellar tissue

  15. Morphological instability of lamellar structures in directionally solidified Ni-Ni3Si alloys

    Science.gov (United States)

    Wei, Lufeng; Zhao, Zhilong; Gao, Jianjun; Cui, Kai; Guo, Jingying; Chen, Sen; Liu, Lin

    2018-02-01

    The morphological instability of lamellar structures in Ni-Ni3Si eutectic and hypereutectic alloys directionally solidified at low growth rates was investigated. The first instability in large lamellar structures was zigzag instability, which formed curved lamellae. A zigzag pattern was first displayed in three dimensions. The diffusion-limited growth of the Ni3Si phase decreased phase width and spacing, consequently causing zigzag instability. The reduced spacing was observed at λ/λave = 0.9. After zigzag instability, the microstructure of the eutectic alloy turned into a labyrinth structure and lamellar fragmentation. However, in hypereutectic alloys, shape transition from lamellae to rods occurred, in turn, by the broken lamellae or elongated rods to dumbbell-shaped rods, peanut-shaped rods, and circular rods.

  16. Deep anterior lamellar keratoplasty for the management of iatrogenic keratectasia occurring after hexagonal keratotomy

    Science.gov (United States)

    Mehta, Paras; Rathi, Varsha M; Murthy, Somasheila I

    2012-01-01

    Iatrogenic keratectasia has been reported subsequent to refractive surgery or trauma. Hexagonal keratotomy (HK) is a surgical incisional technique to correct hyperopia. A number of complications have been reported following this procedure, including irregular astigmatism, wound healing abnormalities and corneal ectasia. When visual acuity is poor because of ectasia or irregular astigmatism and contact lens fitting is not possible, penetrating or lamellar keratoplasty can be performed. Since incisions in refractive keratotomy are set at 90–95% depth of cornea, intraoperative microperforations are known to occur and lamellar keratoplasty may become difficult. We describe deep anterior lamellar keratoplasty (DALK) used to successfully manage keratectasia after HK. Pre DALK vision was 20/400 and post DALK vision was 20/30 two months after surgery. This report aims to show improved visual outcome in corneal ectasia secondary to HK. DALK can be a procedure of choice with proper case selection. PMID:22446912

  17. Tectonic deep anterior lamellar keratoplasty in impending corneal perforation using cryopreserved cornea.

    Science.gov (United States)

    Jang, Ji Hye; Chang, Sung Dong

    2011-04-01

    We report a case of tectonic corneal transplantation for impending corneal perforation to preserve anatomic integrity using cryopreserved donor tissue. An 82-year-old woman exhibiting impending corneal perforation suffered from moderate ocular pain in the left eye for one week. After abnormal tissues around the impending perforation area were carefully peeled away using a Crescent blade and Vannas scissors, the patient received tectonic deep anterior lamellar keratoplasty using a cryopreserved cornea stored in Optisol GS® solution at -70℃ for four weeks. At six months after surgery, the cornea remained transparent and restored the normal corneal thickness. There were no complications such as corneal haze or scars, graft rejection, recurrent corneal ulcer, and postoperative rise of intraocular pressure. Cryopreserved donor lamellar tissue is an effective substitute in emergency tectonic lamellar keratoplasty, such as impending corneal perforation and severe necrotic corneal keratitis. © 2011 The Korean Ophthalmological Society

  18. Unified constitutive modelling for two-phase lamellar titanium alloys at hot forming conditions

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2016-01-01

    Full Text Available In this paper, a set of mechanism based unified viscoplastic constitutive equations have been established for two-phase titanium alloys with initial lamellar microstructure, which models the softening mechanisms of the alloys in hot forming conditions. The dislocation density, rotation and globularization of lamellar α-phase and their effects on flow behaviour can also be modelled. The values of material constants in the equation set have been calibrated, according to stress-strain curves and globularization fractions of lamellar α-phase obtained from compression tests at a range of temperatures and strain rates, using a genetic algorithm (GA based optimisation method. Based on the determined constitutive equations, flow stress and globularization evolution of Ti-17 and TA15 alloys at different temperatures and strain rates were predicted. Good agreements between the experimental and computed results were obtained.

  19. OPTIMAL EVAPORATING AND CONDENSING TEMPERATURES ...

    African Journals Online (AJOL)

    ORC) in a hot and humid environment. A theoretical procedure is proposed for the determination of the optimal evaporation temperature (OET) and optimal condensing temperature (OCT) of a subcritical ORC plant, which is based on ...

  20. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  1. Femtosecond laser-assisted lamellar keratoplasty Transplante lamelar auxiliado pelo laser de fentosegundo

    Directory of Open Access Journals (Sweden)

    Hunson Kaz Soong

    2008-08-01

    Full Text Available Lamellar keratoplasty consists of transplanting partial-thickness donor cornea onto a complementary recipient bed. Manual lamellar dissection is technically very difficult, time-consuming, and imprecise. Also, the manually-dissected lamellar interface often has topographical irregularities that may optically degrade the best-corrected visual acuity. The femtosecond clinical laser (IntraLase FS LaserTM, Irvine, CA is a recent innovation that can be programmed to produce bladeless, precise lamellar cuts at any depth with accompanying trephination cuts for both anterior and posterior lamellar transplantion. Posterior laser cuts may be used to assist in deep lamellar endothelial keratoplasty or Descemet's stripping automated endothelial keratoplasty.A ceratoplastia lamelar consiste em transplante de espessura parcial da córnea doadora em um leito receptor complementar. A dissecção lamelar manual é técnica de difícil realização, imprecisa e que demanda tempo. Além disso, a interface lamelar freqüentemente apresenta irregularidade topográfica que pode comprometer a acuidade visual final. O laser clínico "femtosecond" (IntraLase FS LaserTM, Irvine, CA é uma recente inovação que pode ser utilizado para produzir cortes lamelares precisos em qualquer profundidade da córnea, acompanhados de cortes verticais tanto para transplantes lamelares anteriores como posteriores sem a utilização de lâminas. Os cortes posteriores podem ser utilizados para a realização de ceratoplastia endotelial lamelar profunda ou ceratoplastia endotelial com remoção da membrana de Descemet.

  2. [Lamellar body count in amniotic fluid for assessing fetal lung maturity].

    Science.gov (United States)

    Visnjevac, Jovana; Novakov-Mikić, Aleksandra; Nikolić, Aleksandra; Visnjevac, Nemanja

    2010-01-01

    Respiratory distress syndrome (RDS) of the newborn infant caused by immaturity of fetal lung is a very serious clinical problem. Surfactant is stored in the form of lamellar bodies. They are secreted into alveolar space and passed into amniotic fluid where they can be found. The similarity of lamellar body size to platelet size permits the use of a standard automated hematologic cell counter to estimate the number of lamellar bodies in amniotic fluid. We conducted a prospective clinical study from 2005-2006 on amniotic fluid samples. Amniotic fluid samples were collected near delivery by transvaginal amniotomy, amniotomy during Cesarean section and 72 hours before delivery by amniocentesis. A hematology analyzer (Nikon-Kohden) was used to determine the lamellar body counts. After birth of newborns we compared their complete clinical examination results particularly emphasizing the prediction of the method of RDS by lamellar body count. Maximally specific lamellar body cutoffs for maturity and immaturity were determined using ROC curves. Of 232 amniotic fluid samples which were tested, 112 samples were collected by transvaginal amniotomy, 88 were taken during Cesarean delivery and 32 samples were collected by amniocentesis. The incidence of RDS was 14.6%. ROC curves were used to identify cut points for the test. We found that LBC is a good screening test for predicting fetal lung maturity with the area under the curve of 0.751. LBC cutoff of 42 x 10(3)/microl, with sensitivity of 82.4% and specificity of 64.6%, proved best for predicting fetal lung maturity. LBC is a good screening test for predicting fetal lung maturity. The advantages of LBC are speed, objectivity, low price, low sample volume required and universal availability.

  3. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  4. Physical properties of a natural lamellar aluminosilicate structure, rich in Fe

    Science.gov (United States)

    Andrade, B. C.; Machado, R.; Jorge, A. M.; Gravina, E. G.; Macêdo, M. A.

    2012-07-01

    We present a natural sample from the coast of Sergipe, a state of Brazil, with a lamellar aluminosilicate structure characterized by three major components: phlogopite (K2(Mg,Fe2+)6[Si6Al2O20](OH)4), clinochlore (Mg,Al)6[Si3AlO10](OH)8 and goethite (αFeOOH). Ferrimagnetic behavior was found at room temperature with a Curie temperature TC>300 K. At low temperatures, the zero field cooling curve showed a peak at 6 K attributed to frustration caused by a ferrimagnetic-antiferromagnetic coupling between the lamellar structure (ferrimagnetic) and the grains of the antiferromagnetic goethite.

  5. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  6. Thermal conductivity of zirconia thermal barrier coatings

    Science.gov (United States)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  7. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  8. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  9. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM + alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β o phase and ζ-silicide particles is observed emanating from the α 2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  10. Localised boundary air layer and clothing evaporative resistances for individual body segments.

    Science.gov (United States)

    Wang, Faming; del Ferraro, Simona; Lin, Li-Yen; Sotto Mayor, Tiago; Molinaro, Vincenzo; Ribeiro, Miguel; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2012-01-01

    Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.

  11. Evaluation of the correlations for predicting evaporative loss from water body

    International Nuclear Information System (INIS)

    Yilmaz, T.P.; Aybar, H.S.

    1999-01-01

    Water evaporation (evaporation from here on) is a natural phenomenon that is important for system design and system safety in many engineering branches. Indeed, evaporative heat and mass loss are observed and calculated in very diverse situations, such as irrigation plants, water purification plants, cooling ponds, lakes, dams, swimming pools, health spas, management of liquid wastes as in evaporation pools, and spent fuel pools in nuclear power plants. There are a number of correlations obtained from experimental studies that predict the evaporative heat and mass loss from a water body. This study aims to summarize and to compare the existing evaporation correlations to determine the upper and lower bounding correlations for use in various thermal-hydraulic analyses of systems. Currently and widely used, six correlations found in the literature have been selected and tested using the major parameters of evaporation such as water temperature, air relative humidity, air velocity, and temperature. The comparison test cases show that ASHRAE (1991) and Ryan et al. (1974) equations result in the highest evaporative loss, while the Brady et al. (1969) equation provides the lowest evaporative loss in most conditions. Engineering designers may sometimes need the upper bound value of evaporative loss or sometimes the lower bound value for a conservative calculation. The authors conclude that using a single equation does not provide the conservative calculation for every situation and show which correlation gives the lower or upper bound for different conditions

  12. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    Science.gov (United States)

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  14. Thermally induced lamellar reorganization and thickening in spherical poly (L-lactic acid) crystalsome

    Science.gov (United States)

    Staub, Mark; Qi, Hao; Li, Christopher

    Understanding fundamental aspects of spherical crystals is important for a variety of applications such as encapsulation and drug delivery. The curved nature of these crystals gives rise to differences in key crystallographic concepts such as grain boundaries and defect formation when compared to flat crystals. This curved crystallography is difficult to study experimentally, especially at the nanoscale. Our group has recently shown how an oil in water miniemulsion can be used to direct the crystallization of poly (L-lactic acid) (PLLA) at a curved liquid/liquid interface. This produces nanosized, polymer single-crystal-like capsules termed crystalsomes with increased stability and mechanical properties compared with non-crystalline counterparts. This system will serve as our model for examining spherical crystallography. In this work, combined wide angle X-ray diffraction, Atomic force microscopy, and differential scanning calorimetry is employed to examine how the curved interface effects crystal thickening and reorganization compared to flat PLLA crystals. The influence of degree of curvature on these processes is also studied by examining crystalsomes with differing diameters.

  15. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.

    2016-08-20

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  16. Bypass line assisted start-up of a loop heat pipe with a flat evaporator

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Jung, Eui Guk

    2009-01-01

    Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10 .deg. C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed

  17. Structure and strength of sub-100 nm lamellar structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2018-01-01

    Pearlitic steel wire, with a representative sub-100 nm lamellar structure, is the strongest mass-produced steel with an excellent combination of formability and strength. This overview summarises investigations of cold-drawn pearlitic steel wire in the last decades, covering the microstructural...... and performance of pearlitic steel wire to widen its use in society....

  18. Early surfactant guided by lamellar body counts on gastric aspirate in very preterm infants

    DEFF Research Database (Denmark)

    Verder, Henrik Axel; Ebbesen, Finn Oluf; Fenger-Grøn, Jesper

    2013-01-01

    We have developed a rapid method, based on lamellar body counts (LBC) on gastric aspirate, for identifying newborns who will develop respiratory distress syndrome with a need for surfactant supplementation. Objective: We set out to test whether it was possible to improve the outcome when used in ...

  19. External negative electric potential accelerates exocytosis of lamellar bodies in human skin ex vivo.

    Science.gov (United States)

    Kumamoto, Junichi; Goto, Makiko; Denda, Sumiko; Nakatani, Masashi; Takasugi, Yuya; Tsuchiya, Katsunori; Shimizu, Yuji; Takatsuru, Yusuke; Denda, Mitsuhiro

    2013-06-01

    Exocytosis of lamellar bodies at the uppermost nucleated layer of the epidermis is a crucial process for epidermal permeability barrier homoeostasis. We have previously suggested that skin surface electric potential might be associated with barrier homoeostasis. Thus, we hypothesized that the potential might drive exocytosis of lamellar bodies. In this study, we tested this idea by applying negative electric potential (-0.5 V) to human skin samples ex vivo for 2 h and observing the ultrastructure of the uppermost layer. The secretion of lamellar bodies was accelerated in the potential-applied skin, compared to that in untreated control skin. Multiphoton observation indicated that extracellular lipid domains were more extensive in treated skin than in control skin. Moreover, the calcium ion gradient was greater at the uppermost layer of the epidermis of treated skin, compared to that in control skin. These results indicate that electric potential may regulate lamellar body secretion in healthy human skin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analytic theory of soft x-ray diffraction by lamellar multilayer gratings

    NARCIS (Netherlands)

    Kozhevnikov, I.V.; van der Meer, R.; Bastiaens, Hubertus M.J.; Boller, Klaus J.; Bijkerk, Frederik

    2011-01-01

    An analytic theory describing soft x-ray diffraction by Lamellar Multilayer Gratings (LMG) has been developed. The theory is derived from a coupled waves approach for LMGs operating in the single-order regime, where an incident plane wave can only excite a single diffraction order. The results from

  1. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    -ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently...

  2. Investigation on the Effect of Sulfur and Titanium on the Microstructure of Lamellar Graphite Iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Stefanescu, Doru Michael; Tiedje, Niels Skat

    2013-01-01

    The goal of this work was to identify the inclusions in lamellar graphite cast iron in an effort to explain the nucleation of the phases of interest. Four samples of approximately the same carbon equivalent but different levels of sulfur and titanium were studied. The Ti/S ratios were from 0.15 t...

  3. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Roč. 11, NOV 2015 (2015), s. 2087-2096 ISSN 1860-5397 Institutional support: RVO:61388955 Keywords : Hoveyda-Grubbs type catalyst * hybrid catalysts * lamellar zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.697, year: 2015

  4. Chain elongation suppression of cyclic block copolymers in lamellar microphase-separated bulk

    NARCIS (Netherlands)

    Matsushita, Y; Iwata, H; Asari, T; Uchida, T; ten Brinke, G; Takano, A

    2004-01-01

    Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the

  5. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  6. Lecithin/sphingomyelin ratio and lamellar body count for fetal lung maturity: a meta-analysis

    NARCIS (Netherlands)

    Besnard, Anouk E.; Wirjosoekarto, Soetinah A. M.; Broeze, Kimiko A.; Opmeer, Brent C.; Mol, Ben Willem J.

    2013-01-01

    To determine and compare the diagnostic accuracy of the lecithin/sphingomyelin (L/S) ratio and lamellar body count (LBC) in the prediction of neonatal respiratory distress syndrome (RDS). A systematic review was performed to identify studies comparing either the L/S ratio or the LBC with the

  7. Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films

    DEFF Research Database (Denmark)

    Potemkin, Igor I.; Busch, Peter; Smilgies, Detlef-M

    2007-01-01

    We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene-block-polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation...

  8. Technologies of Selective Energy Supply at Evaporation of Food Solutes

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2017-04-01

    Full Text Available The aim of the research is to create innovative evaporating equipment that can produce concentrates with a high content of solids, with a low level of thermal effects on raw materials. The significance of the solution of technological problems of the key process of food technologies - concentration of liquid solutions (juices, extracts, etc. is shown. Problems and scientific contradictions are formulated and the hypothesis on using of electromagnetic energy sources for direct energy transfer to solution’s moisture has been offered. The prospects of such an energy effect are proved by the energy management methods. The schemes of fuel energy conversion for the conventional thermal concentration technology and the innovative plant based on the electromagnetic energy generators are presented. By means of the similarity theory the obtained model is transformed to the criterial one depicted kinetic of evaporation process at the electromagnetic field action. The dimensionless capacity of the plant is expressed by the dependence between the Energetic effect number and relative moisture content. The scheme of automated experimental system for study of the evaporation process in the microwave field is shown. The experimental results of juice evaporation are presented. It has been demonstrated that the technologies of selective energy supply represent an effective tool for improvement of juice concentration evaporative plants. The main result of the research is design of the evaporator that allows reaching juice concentrates with °brix 95 at the temperature as low as 35 °С, i.e. 2…3 times superior than traditional technologies.

  9. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  10. Influence of electron evaporative cooling on ultracold plasma expansion

    International Nuclear Information System (INIS)

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-01-01

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10 8 /cm 3 ). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma

  11. Thin Film Evaporation of Receding Meniscus within Micro Pillar Arrays

    Science.gov (United States)

    Alhosani, Mohamed H.; Alsheghri, Ammar A.; Alghaferi, Amal; Zhang, Tiejun

    2015-03-01

    Evaporation is a key process in power generation, water desalination, and thermal management applications. It has been proved that hydrophilic micro structured surfaces can enhance the convection heat transfer by promoting high-performance thin film evaporation and enlarging the total heat transfer surface area. When depositing a water droplet on hydrophilic structured surfaces, two distinct regions can be observed, a) central region with water level higher than the micro pillar height (droplet region), b) thin film region as a result of liquid meniscus receding among micro structures. In this study, we are able to probe the physics of thin film evaporation of receding liquid meniscus among micro pillar arrays with different pillar heights, spacings and diameters. Heat transfer is systematically studied in the droplet and thin film region for each sample. Also, Young-Laplace equation and kinetic theory of mass transport are used to model the thin film evaporation around micro pillars. With the proposed model, the shape of meniscus around micro pillars and the diameter of droplet/extended thin film region can be predicted and compared with the experimental measurement. The model can also be extended to model thin film evaporation of meniscus within nano structured surfaces. Supported by cooperative agreement between Masdar Inst and MIT.

  12. Convective evaporation of vertical films.

    Science.gov (United States)

    Boulogne, François; Dollet, Benjamin

    2018-02-28

    Motivated by the evaporation of soap films, which has a significant effect on their lifetime, we performed an experimental study on the evaporation of vertical surfaces with model systems based on hydrogels. From the analogy between heat and mass transfer, we adopt a model describing the natural convection in the gas phase due to a density contrast between dry and saturated air. Our measurements show a good agreement with this model, both in terms of scaling law with the Grashof number and in terms of order of magnitude. We discuss the corrections to take into account, notably the contribution of edge effects, which have a small but visible contribution when lateral and bottom surface areas are not negligible compared to the main evaporating surface area.

  13. In vitro tissue engineering of lamellar cornea using human amniotic epithelial cells and rabbit cornea stroma

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Liu

    2013-08-01

    Full Text Available AIM:To reconstruct the lamellar cornea using human amniotic epithelial (HAE cells and rabbit cornea stroma in vitro using tissue engineering technology.METHODS: Human amnia taken from uncomplicated caesarean sections were digested by collagenase to obtain HAE cells, and the cells were cultured to proliferate. Rabbit corneal epithelial cells were removed by n-heptanol to make lamellar matrix sheets. The second passage of HAE cells were cultured on the corneal stroma sheets for 1 or 2 days, then transferred to an air-liquid interface environment to culture for 2 weeks. Tissue engineered lamellar cornea (TELC morphology was observed by Hematoxylin-eosin (HE staining; its ultrastructure was observed by transmission electron microscopy (TEM and scanning electron microscopy (SEM; corneal epithelial cell-specific keratin 3 and keratin 12 were detected with immunofluorescence microscopy.RESULTS:HAE cells grew on the rabbit corneal stroma, forming a monolayer after 1-2 days. About 4-5 layers of epithelial cells developed after 2 weeks of air-liquid interface cultivation, a result similar to normal corneal epithelium. Rabbit corneal stromal cells were significantly reduced after one week, then almost completely disappeared after 2 weeks. TEM showed desmosomes between the epithelial cells; hemidesmosomes formed between the epithelial cells and the basement membrane. SEM revealed that the HAE cells which grew on the lamellar cornea had abundant microvilli. The tissue-engineered cornea expressed keratin 3 and keratin 12, as detected by immunofluorescence assay.CONCLUSION: Functional tissue-engineered lamellar corneal grafts can be constructed in vitro using HAE cells and rabbit corneal stroma.

  14. In vitro tissue engineering of lamellar cornea using human amniotic epithelial cells and rabbit cornea stroma.

    Science.gov (United States)

    Liu, Xiao-Yong; Chen, Jian; Zhou, Qing; Wu, Jing; Zhang, Xiao-Ling; Wang, Li; Qin, Xiao-Yan

    2013-01-01

    To reconstruct the lamellar cornea using human amniotic epithelial (HAE) cells and rabbit cornea stroma in vitro using tissue engineering technology. Human amnia taken from uncomplicated caesarean sections were digested by collagenase to obtain HAE cells, and the cells were cultured to proliferate. Rabbit corneal epithelial cells were removed by n-heptanol to make lamellar matrix sheets. The second passage of HAE cells were cultured on the corneal stroma sheets for 1 or 2 days, then transferred to an air-liquid interface environment to culture for 2 weeks. Tissue engineered lamellar cornea (TELC) morphology was observed by Hematoxylin-eosin (HE) staining; its ultrastructure was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM); corneal epithelial cell-specific keratin 3 and keratin 12 were detected with immunofluorescence microscopy. HAE cells grew on the rabbit corneal stroma, forming a monolayer after 1-2 days. About 4-5 layers of epithelial cells developed after 2 weeks of air-liquid interface cultivation, a result similar to normal corneal epithelium. Rabbit corneal stromal cells were significantly reduced after one week, then almost completely disappeared after 2 weeks. TEM showed desmosomes between the epithelial cells; hemidesmosomes formed between the epithelial cells and the basement membrane. SEM revealed that the HAE cells which grew on the lamellar cornea had abundant microvilli. The tissue-engineered cornea expressed keratin 3 and keratin 12, as detected by immunofluorescence assay. Functional tissue-engineered lamellar corneal grafts can be constructed in vitro using HAE cells and rabbit corneal stroma.

  15. Refractory material crucibles evaluation for U evaporation

    International Nuclear Information System (INIS)

    Damiao, A.J.; Vasconcelos, G.; Silveira, C.A.B.; Rodrigues, N.A.S.

    1996-01-01

    In studies that involve small amounts of U vapor generation, such as spectroscopy or thin films, most of the E-gun power is delivered to the cooling system. Normally crucibles are used as container and thermal insulator. Since liquid U is extremely reactive at evaporation temperatures, the crucibles are seriously attacked, decreasing the insulation efficiency and adding contaminants to the U vapor. There is no complete solution for the problem, however, with a careful choice of materials, one can design crucibles with extended lifetime and reduced contamination. This work reports some preliminary results we have obtained in the assessing of crucible materials and design, such as, graphite, Si C, vitreous carbon and Al 2 O 3 . (author)

  16. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  17. modeling of evaporation modeling of evaporation losses in sewage

    African Journals Online (AJOL)

    eobe

    show that evaporation reduces with increase in seepage losses which can be enhanced with use of conditioners and coarser sands because of their ... and heat between dried sludge and air (material and. Nigerian Journal of Technology ... Despite the increasing importance of solar drying of sludge, models to predict the ...

  18. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.

    Science.gov (United States)

    Persad, Aaron H; Ward, Charles A

    2016-07-27

    Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.

  19. Surface wettability and triple line behavior controlled by nano-coatings: effects on the sessile drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerôme

    2010-11-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop posed on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (SiOx, SiOc and CF), the wettability and the triple line dynamic of a sessile drop under natural phase change. The experiment consists in analyzing simultaneously the kinetics of evaporation, internal thermal motion and heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamic of the evaporative heat flux appears clearly different for a drop evaporating in pinned mode than in receding mode. Moreover, the kinetics of evaporation, the internal flow structure and the evaporative heat flux are drastically influenced by the wettability the substrate.

  20. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  1. Evaporation in relation to hydrology

    NARCIS (Netherlands)

    Wartena, L.; Keijman, J.Q.; Bruijn, H.A.R. de; Bakel, P.J.T. van; Stricker, J.N.M.; Velds, C.A.

    1981-01-01

    In meteorology some topics enjoy particular interest from other disciplines. The interest of hydrologists for the evaporation of water is a case in point, understandably and rightly so. In fact, over the last few decades, hydrology has clearly done more than using meteorological knowledge thus

  2. Passive downdraught evaporative cooling in office building - Jordan

    OpenAIRE

    Al Asir, R. S.

    2005-01-01

    Wind driven ventilation presented in wind tower finds its roots in the Middle East vernacular architecture it catches the upper air stream cools and channelled it down to the occupied spaces. This paper explores the cooling potential of passive downdraught evaporative cooling wind catcher to ventilate an office building in Amman/Jordan. Summer comfort zone for Amman is developed to present a thermal assessment tool for the results. Study case of an office building in Amman is introduced based...

  3. Structure and thermal stability of arc evaporated (Ti{sub 0.33}Al{sub 0.67}){sub 1-x}Si{sub x}N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Flink, A. [Department of Physics, Chemistry, and Biology (IFM) Linkoeping University, SE-581 83 Linkoeping (Sweden)], E-mail: axefl@ifm.liu.se; Andersson, J.M. [Seco Tools AB, SE-737 82 Fagersta (Sweden); Alling, B. [Department of Physics, Chemistry, and Biology (IFM) Linkoeping University, SE-581 83 Linkoeping (Sweden); Institute of Physics of Complex Matter, Swiss Federal Institute of Technology, Lausanne (EPFL) 1015 Lausanne (Switzerland); Daniel, R. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy, University of Leoben, A-8700 Leoben (Austria); Sjoelen, J.; Karlsson, L. [Seco Tools AB, SE-737 82 Fagersta (Sweden); Hultman, L. [Department of Physics, Chemistry, and Biology (IFM) Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2008-11-28

    (Ti{sub 0.33}Al{sub 0.67}){sub 1-x}Si{sub x}N (0 {<=} x {<=} 0.29) thin solid films were deposited onto cemented carbide substrates by arc evaporation and analyzed using analytical electron microscopy, X-ray diffraction, nanoindentation, and density functional theory. As-deposited films with x {<=} 0.02 consisted mainly of a metastable c-(Ti,Al)N solid solution for which Si serves as a veritable grain refiner. Additional Si promoted growth of a hexagonal wurtzite (Al,Ti,Si)N solid solution, which dominated at 0.02 < x < 0.17. For x {>=} 0.17, the films were X-ray amorphous. Despite these widely different microstructures, all as-deposited films had nanoindentation hardness in the narrow range of 22-25 GPa. Isothermal annealing of the x = 0.01 alloy film at a temperature of 900 deg. C , corresponding to that in turning operation, resulted in spinodal decomposition into c-AlN and TiN and precipitation of h-AlN. For x = 0.09 films, annealing between 600 deg. C and 1000 deg. C yielded c-TiN precipitation from the h-(Al,Ti,Si)N phase. Furthermore, the x = 0.01 and x = 0.09 films exhibited substantial age hardening at 900 deg. C , to 34 GPa and 29 GPa due to spinodal decomposition and c-TiN precipitation, respectively. Films with a majority of c-(Ti,Al)N phase worked best in steel turning tests, while films with x > 0.02 developed cracks during such operation. We propose that the cracks are due to tensile strain which is caused by a decrease in molar volume during the phase transformation from hexagonal wurtzite (Al,Ti,Si)N into cubic TiN phase, which results in degradation in machining performance.

  4. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  5. Influence of the wall on the droplet evaporation

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.

    2015-01-01

    Full Text Available Evaporative influence of the wall material and its thickness has been investigated in the present study. The wall influence for heat exchangers is particularly important in the boiling transition regime and in the event of the Leidenfrost temperature. The experimental points significantly diverge in the transition area of the boiling crisis. This fact can be explained by a different residence time of droplet on the wall surface. The discrepancy between the experimental data also takes place at the Leidenfrost temperature. The lower the thermal diffusivity of the wall material (high thermal inertia, the more the wall is cooled under a droplet.

  6. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  7. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  8. Out-of-tank evaporator demonstration. Final report

    International Nuclear Information System (INIS)

    Lucero, A.J.; Jennings, H.L.; VanEssen, D.C.

    1998-02-01

    The project reported here was conducted to demonstrate a skid-mounted, subatmospheric evaporator to concentrate liquid low-level waste (LLLW) stored in underground tanks at Oak Ridge National Laboratory (ORNL). This waste is similar to wastes stored at Hanford and Savannah River. A single-stage subatmospheric evaporator rated to produce 90 gallons of distillate per hour was procured from Delta Thermal, Inc., of Pensacola, Florida, and installed in an existing building. During the 8-day demonstration, 22,000 gal of LLLW was concentrated by 25% with the evaporator system. Decontamination factors achieved averaged 5 x 10 6 (i.e., the distillate contained five million times less Cesium 137 than the feed). Evaporator performance substantially exceeded design requirements and expectations based on bench-scale surrogate test data. Out-of tank evaporator demonstration operations successfully addressed the feasibility of hands-on maintenance. Demonstration activities indicate that: (1) skid-mounted, mobile equipment is a viable alternative for the treatment of ORNL LLLW, and (2) hands-on maintenance and decontamination for movement to another site is achievable. Cost analysis show that 10% of the demonstration costs will be immediately recovered by elimination of solidification and disposal costs. The entire cost of the demonstration can be recovered by processing the inventory of Melton Valley Storage Tank waste and/or sluice water prior to solidifications. An additional savings of approximately $200,000 per year can be obtained by processing newly generated waste through the system. The results indicate that this type of evaporator system should be considered for application across the DOE complex. 25 refs., 11 figs., 2 tabs

  9. Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Malek; Janghouri, Mohammad; Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir

    2015-04-15

    Electrical and optical characteristic, surface morphology and energy transfer of Ir(ppy){sub 3}:PtTPP were studied as a function of thermal evaporation rate. We have investigated the effect of various evaporation rates for mixture of dyes using single furnace method. When the deposition rate increased from 0.5 to 5 Ǻ/s, the luminescence efficiency, current density and energy transfer of OLED increased. AFM measurements showed that the surface roughness of the Ir(ppy){sub 3}:PtTPP films decreased with increasing deposition rates. These blends show excellent red emitting guest–host system with easier deposition rate control. - Highlights: • Thermal evaporation rate is used to control the doping by using single furnace. • The advantages of using single furnace are discussed. • It is shown that the evaporation rate also affects the surface roughness.

  10. Preparation of Mesoporous SiO2-Pillared Lamellar Titanoniobate Catalysts for Bioethanol Dehydration

    Directory of Open Access Journals (Sweden)

    Olivalter Pergentino

    2014-01-01

    Full Text Available The lamellar perovskite K0,8Ti0,8Nb1,2O5 was prepared by solid state reaction, and its protonic form was used in a sequence of intercalation steps with n-butylamine, cetyltrimethylammonium bromide (CTABr, and tetraethyl orthosilicate (TEOS. After calcination, a high surface area, mesoporous SiO2-pillared titanoniobate, was obtained. The samples were characterized by XRD, EDX, TG-DTG, N2 adsorption isotherms, and NH3-TPD. The pillarization procedure affected the textural properties, the amount, and strength distribution of acid sites. The influence of the pillarization procedure on the catalytic properties of the lamellar titanoniobates was investigated on ethanol dehydration. High ethanol conversions and ethylene yields (>90% were obtained in the presence of the SiO2-pillared titanoniobate catalyst, at 350–450°C.

  11. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.

    Science.gov (United States)

    Hamed, Elham; Jasiuk, Iwona

    2013-12-01

    A computational multiscale model of damage mechanisms and strength of lamellar bone is presented. The analysis incorporates the hierarchical structure of bone spanning the nanoscale (mineralized collagen fibril), the sub-microscale (single lamella) and the microscale (lamellar structure) levels. Due to the presence of several constituents (collagen, hydroxyapatite minerals, and non-collagenous proteins) and the different microstructural features at each scale, various deformation and failure mechanisms occur in bone at its several levels of hierarchy. The model takes into account the dominant damage mechanisms at the above mentioned three scales and predicts the strength of bone by using a cohesive finite element method. Elastic moduli of bone at these three different scales are also obtained as part of these calculations. The obtained modeling results compare well with other theoretical and experimental data available in the literature. © 2013 Elsevier Ltd. All rights reserved.

  12. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt

    Directory of Open Access Journals (Sweden)

    Ang Zhang

    2017-11-01

    Full Text Available In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentration difference led to the fluid flow, and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency without any compromising accuracy. Results show that the existence of natural convection would affect the growth undercooling and thus control the interface shape by adjusting the lamellar width. In particular, by alternating the magnitude of the solute expansion coefficient, the strength of the natural convection is changed. Corresponding microstructure patterns are discussed and compared with those under no-convection conditions.

  13. Creep characteristics of a hypoeutectic Mg-Ca binary alloy with a near-fully lamellar microstructure

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Tsukahara, Masashi; Shibayama, Atsushi; Murata, Yoshinori; Morinaga, Masahiko

    2011-01-01

    Highlights: → We develop a hypoeutectic Mg-Ca cast alloy with a near-fully lamellar microstructure. → Dislocations are introduced within the lamellar microstructure during casting. → The dislocation segments in the α-Mg plates are located on the basal planes. → Creep of the alloy is ascribed to the easy glide of the introduced dislocations. -- The creep behavior of a hypoeutectic Mg-14.8 mass% Ca cast alloy with an α-Mg/C14-Mg 2 Ca near-fully lamellar microstructure was investigated at 473 K. Transmission electron microscopy shows that dislocations are introduced within the lamellar microstructure of the alloy during casting; the dislocation segments in the α-Mg plates are located on basal planes. The stress exponent of the creep rate is unity in the early stage of transient creep. Creep deformation of the alloy is ascribed to the easy glide of the introduced dislocations.

  14. Genotype and Anterior Segment Phenotype in a Cohort of Turkish Patients with Lamellar Ichthyosis.

    Science.gov (United States)

    Palamar, Melis; Onay, Huseyin; Ertam, Ilgen; Ates, Esra Arslan; Dereli, Tugrul; Ozkinay, Ferda; Yagci, Ayse

    2015-01-01

    To evaluate the ocular surface and topography findings of lamellar ichthyosis, and to investigate the correlation of these findings with mutations in TGM1, CYP4F22 and NIPAL4 genes. Twelve patients with lamellar ichthyosis were evaluated. Routine ophthalmic examination including Schirmer 1, tear break-up time and ocular surface staining score, topography, and genetic evaluation for coding exons of TGM1, NIPAL4 and CYP4F22 genes were performed. The mean age of the patients was 19.75 ± 9.15 (range, 4-31) years. Mean Schirmer 1 scores of the right and the left eyes were similar (18.75 ± 3.10 mm). Mean tear break-up time of the right and the left eyes were 6.58 ± 2.74, 6.58 ± 3.02 seconds, respectively. Mean ocular surface staining grade was 0.36 ± 0.20 in the right, and 0.39 ± 0.17 in the left eyes. Keratoconus was detected in two patients. Two patients with bilateral cataract formation were found. Genetic sequencing revealed that one case had homozygous R326X mutation in the CYP4F22 gene, two cases had homozygous A176D mutation in the NIPAL4 gene, and three had homozygous M1T mutation in the same gene. Mutations were detected in patients with keratoconus and in a patient with bilateral cataract formation. In lamellar ichthyosis, eyelid malformations together with decreased tear break-up time might cause sight-threatening complications. Genetic counseling for mutations might enable the physician to predict the possibility of upcoming ocular problems in lamellar ichthyosis patients.

  15. Lamellar leukocyte infiltration and involvement of IL-6 during oligofructose-induced equine laminitis development.

    Science.gov (United States)

    Visser, Michelle B; Pollitt, Christopher C

    2011-11-15

    Laminitis is known to involve deregulation of proteases and destruction of the lamellar basement membrane with the host inflammatory response also playing a role. Leukocyte infiltration has been well characterized in the black walnut model of laminitis induction, but not in carbohydrate induced models. Increased gene expression of multiple cytokines, including IL-6, has also been implicated in laminitis development. Using real time PCR, immunohistochemistry and zymography methods, we characterize leukocyte infiltration and IL-6 gene expression in oligofructose (OF) induced laminitis. As well, we use two in vitro models to investigate a role for IL-6 in protease regulation. Laminitis was induced in normal standardbred horses (n=5) by alimentary OF dosing and lamellar biopsies were obtained throughout the 48 h experimental period. Lamellar explants and keratinocytes were also isolated from clinically normal horses for in vitro experiments. We found infiltration of calprotectin-positive leukocytes (monocytes and neutrophils) at 18-24h post oligofructose dosing, while IL-6 gene expression was increased as early as 12h post dosing. Additionally, while we found that IL-6 did not cause significant BM damage in vitro, it did result in increased secreted proMMP-9 levels from lamellar explants. Thus, we find that leukocyte infiltration does occur during oligofructose-induced laminitis development, however, IL-6 gene expression in the lamellae may precede leukocyte infiltration. Additionally, we show IL-6 plays a role in increasing the level of proMMP-9 in vivo in a manner that does not involve keratinocytes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  17. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  18. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  19. Diffuse lamellar keratitis associated with gonococcal keratoconjunctivitis 3 years after laser in situ keratomileusis.

    Science.gov (United States)

    Symes, Richard J; Catt, Caroline J; Males, John J

    2007-02-01

    A 29-year-old man presented with a 5-day history of a red eye with a purulent discharge. Three years previously, he had undergone laser in situ keratomileusis elsewhere. A diagnosis of gonococcal keratoconjuntivitis was made clinically and confirmed with culture. The patient subsequently developed diffuse lamellar keratitis (DLK). The keratoconjunctivitis and DLK resolved with antibiotic therapy and topical steroids. The cause and effect relationship of these 2 uncommon events is of interest.

  20. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    Directory of Open Access Journals (Sweden)

    Leena Bajracharya

    2015-01-01

    Full Text Available A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection.

  1. Common complications of deep lamellar keratoplasty in the early phase of the learning curve

    Directory of Open Access Journals (Sweden)

    Hosny M

    2011-06-01

    Full Text Available Mohamed HosnyOphthalmology Department, Faculty of Medicine, Cairo University, Cairo, EgyptPurpose: To evaluate and record the common complications that face surgeons when they perform their first few series of deep lamellar keratoplasty and measures to avoid these.Setting: Dar El Oyoun Hospital, Cairo, Egypt.Methods: Retrospective study of the first 40 eyes of 40 patients carried out by two corneal surgeons working in the same center. All patients were planned to undergo a deep anterior lamellar keratoplasty using the big bubble technique. Twelve patients suffered from keratoconus while 28 patients had anterior corneal pathologies. Recorded complications were classified as either intraoperative or postoperative.Results: Perforation of Descemet's membrane was the most common intraoperative complication. It occurred in nine eyes (22.5%: five eyes (12.5% had microperforations while four eyes (10% had macroperforations, three eyes (7.5% had central perforations, and six eyes (15% had peripheral perforations. Other complications included incomplete separation of Descemet's membrane and remnants of peripheral stromal tissue. Postoperative complications included double anterior chamber which occurred in four eyes (10% and Descemet's membrane corrugations. Postoperative astigmatism ranged from 1.25 to 4.5 diopters with a mean of 2.86 diopters in the whole series, but in the six cases with identified residual stroma in the periphery of the host bed, the astigmatism ranged from 2.75 to 4.5 diopters with a mean of 3.62 diopters.Conclusion: Deep lamellar keratoplasty is sensitive to procedural details. Learning the common complications and how to avoid them helps novice surgeons to learn the procedure faster.Keywords: deep lamellar keratoplasty, complications, big bubble technique

  2. 21 CFR 131.130 - Evaporated milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk. It...

  3. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  4. Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading

    OpenAIRE

    McKenzie, Jennifer A.; Bixby, Elise C.; Silva, Matthew J.

    2011-01-01

    Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout...

  5. Excimer laser-assisted anterior lamellar keratoplasty for keratoconus, corneal problems after laser in situ keratomileusis, and corneal stromal opacities.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoğlu, Berati

    2006-08-01

    To evaluate excimer laser-assisted anterior lamellar keratoplasty to augment thin corneas as in keratoconus ( .05). This technique presents a different modality for the treatment of keratoconus, post-LASIK corneal problems, and other corneal stromal opacities with anterior lamellar keratoplasty. Additional studies with more patients and longer follow-up will help determine the role of this technique as a substitute for penetrating keratoplasty in these patients.

  6. The Evolution of Splint Armour in Georgia and Byzantium: Lamellar and Scale Armour in the 10th-12th Centuries

    OpenAIRE

    TSURTSUMIA, Mamuka

    2011-01-01

    Byzantine technology was part of the military technology that existed in vast areas of Eurasia; hence study of the armament of its neighbours is important.The purpose of the present paper is to add new data about Byzantium’s Caucasian neighbour (namely, Georgia). Besides that, it also includes certain views about the stages of the evolution and provenance of splint (scale and lamellar) armour. This paper also attempts to clarify the difference between banded and linear suits of lamellar armou...

  7. Duplex Tear Film Evaporation Analysis.

    Science.gov (United States)

    Stapf, M R; Braun, R J; King-Smith, P E

    2017-12-01

    Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system's dynamics.

  8. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  9. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    Energy Technology Data Exchange (ETDEWEB)

    Berti, D.; Fratini, E.; Baglioni, P. [Department of Chemistry and CSGI, University of Florence, Via G. Capponi 9, 50121 Florence (Italy); Dante, S.; Hauss, T. [Berlin Neutron Scattering Center, Hahn Meitner Institut, Glienicker Strasse 100, Wannsee, 14109 Berlin (Germany)

    2002-07-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considered as an indication of the recognition process occurring at the polar-head-group region of the mixed phospholiponucleoside membrane. (orig.)

  10. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    CERN Document Server

    Berti, D; Baglioni, P; Dante, S; Hauss, T

    2002-01-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considere...

  11. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  12. Physical properties of a natural lamellar aluminosilicate structure, rich in Fe

    International Nuclear Information System (INIS)

    Andrade, B.C.; Machado, R.; Jorge, A.M.; Gravina, E.G.; Macêdo, M.A.

    2012-01-01

    We present a natural sample from the coast of Sergipe, a state of Brazil, with a lamellar aluminosilicate structure characterized by three major components: phlogopite (K 2 (Mg,Fe 2+ ) 6 [Si 6 Al 2 O 20 ](OH) 4 ), clinochlore (Mg,Al) 6 [Si 3 AlO 10 ](OH) 8 and goethite (αFeOOH). Ferrimagnetic behavior was found at room temperature with a Curie temperature T C >300 K. At low temperatures, the zero field cooling curve showed a peak at 6 K attributed to frustration caused by a ferrimagnetic–antiferromagnetic coupling between the lamellar structure (ferrimagnetic) and the grains of the antiferromagnetic goethite. - Highlights: ► We studied a natural sample from the coast of Sergipe, state of Brazil, with a lamellar aluminosilicate structure. ► The three major components are phlogopite, clinochlore and goethite. ► The ferromagnetic behavior was found at room temperature with T C >300 K. ► The inverse susceptibility as a function of temperature was fitted with the theoretical model applicable to ferrimagnetic materials.

  13. Treatment of perforated cornea with an autologous lamellar scleral graft: histologic findings.

    Science.gov (United States)

    Jovanovic, Vesna; Jankov, Mirko; Nikolic, Ljubisa

    2018-01-01

    We report a case of central corneal perforation treated with an autologous lamellar scleral graft and histologic findings obtained after a subsequent penetrating keratoplasty. A corneal perforation within a large Pseudomonas ulcer in a 55-year-old male rigid gas permeable contact lens wearer was sealed by a lamellar scleral graft from the same eye, followed by an uneventful penetrating keratoplasty 6 months later. Histology of the excised button revealed that the well-apposed graft, which maintained the irregular arrangement of the scleral collagen fibers, was embedded in the corneal stroma over the deep blood vessels and a rupture in Descemet's membrane. The clinical and histologic findings showed that autologous lamellar scleral grafts can be successfully used for the emergency treatment of corneal perforation when a corneal transplant is not available. The distinctive scleral structure revealed by histology and the inadequate graft transparency indicate that visual rehabilitation of eyes with a central corneal perforation can be achieved only by a subsequent optic penetrating keratoplasty.

  14. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  15. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  16. Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud

    OpenAIRE

    Taquet, Vianney; Wirström, Eva; Charnley, Steven B.; Faure, Alexandre; López-Sepulcre, Ana; Persson, Carina M.

    2017-01-01

    Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. We present the detection of the Complex Organic Molecules (COMs) acetaldehyde and methyl formate as w...

  17. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    Science.gov (United States)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  18. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  19. Does groundwater enhance evaporative cooling?

    Science.gov (United States)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  20. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  1. Liquid waste evaporator operating experience

    International Nuclear Information System (INIS)

    Beauchamp, A.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) operates the Waste Treatment Centre (WTC) to treat and immobilize some of the low- level radioactive waste (LLRW) streams at the Chalk River Laboratories (CRL). The WTC at treats low- level radioactive liquid waste by removing the contaminants from the wastewater, concentrating them, and immobilizing them. The fundamental design concept for the WTC is to process the waste streams using forced circulation type liquid waste evaporation (LWE), to solidify the concentrates using thin film evaporator and to discharge the purified effluent into the Ottawa River following verification monitoring. The solidified product drums are stored in existing storage facilities in the CRL. The LWE was installed in the WTC to treat the LLRW. After about four (4) years of design, construction and cold commissioning, the active commissioning of the evaporator process using radioactive waste streams commenced in February 2000. The LWE has overcome problems encountered with previous processing system such as fouling and enabled treatment of historical liquid wastes, which are currently stored in tanks at CRL, and waste from future CRL projects. This paper summarizes some of the operating experience obtained during the last four years of operation. (author)

  2. Experimental results on evaporation waves

    Science.gov (United States)

    Grana Otero, Jose; Parra Fabian, Ignacio

    2010-11-01

    A liquid contained in a vertical glass tube is suddenly depressurized from a high initial pressure down to one for which the stable state is vapour, so vaporization sets off at the free surface. For large enough evaporation rates, the planar vapour-liquid interface is Darrieus-Landau unstable [1], leading to the interface surface rippling close to the instability threshold. Further increasing the initial to final pressure ratio brings about evaporation waves [2,3], in which a highly corrugated front propagates downwards into the liquid. A new experimental method is presented as well as some experimental results obtained by tracking the evolution of the front with a high speed camera. In addition, a number of new phenomena related to the dynamics of bubbles growth at the walls has been uncovered. In particular, a new mode of propagation of the evaporation front is found. In this mode the front originates from below the interface, so the propagation is upwards against gravity with a curved but smooth front.[4pt] [1] F. J. Higuera, Phys. Fluids, V. 30, 679 (1987).[0pt] [2] J.E.Shepherd and B.Sturtevant, J.Fluid Mech., V.121,379 (1982).[0pt] [3] P.Reinke and G.Yadigaroglu, Int.J.Multiph. Flow, V.27,1487 (2001).

  3. Microdialysis measurements of lamellar perfusion and energy metabolism during the development of laminitis in the oligofructose model.

    Science.gov (United States)

    Medina-Torres, C E; Underwood, C; Pollitt, C C; Castro-Olivera, E M; Hodson, M P; Richardson, D W; van Eps, A W

    2016-03-01

    Failure of lamellar energy metabolism, with or without ischaemia, may be important in the pathophysiology of sepsis-associated laminitis. To examine lamellar perfusion and energy balance during laminitis development in the oligofructose model using tissue microdialysis. In vivo experiment. Six Standardbred horses underwent laminitis induction using the oligofructose model (OFT group) and 6 horses were untreated controls (CON group). Microdialysis probes were placed in the lamellar tissue of one forelimb (all horses) as well as the skin dermis of the tail in OFT horses. Dialysate and plasma samples were collected every 2 h for 24 h and concentrations of energy metabolites (glucose, lactate, pyruvate) and standard indices of energy metabolism (lactate to glucose ratio [L:G] and lactate to pyruvate ratio [L:P]) determined. Microdialysis urea clearance was used to estimate changes in tissue perfusion. Data were analysed nonparametrically. Median glucose concentration decreased to 5-fold increase in median L:G compared with baseline occurred in OFT lamellar and skin dialysate (Plaminitis in the oligofructose model. Glucose concentrations in the lamellar interstitium decreased, suggesting increased glucose consumption but there was no definitive evidence of lamellar energy failure. © 2015 EVJ Ltd.

  4. Oligosaccharides and glycolipids addition in charged lamellar phases; Addition d`oligosaccharides et de glycolipides dans des phases lamellaires chargees

    Energy Technology Data Exchange (ETDEWEB)

    Ricoul, F

    1997-09-26

    The aim of this work is to study the addition of oligosaccharides and glycolipids in lamellar phases of the cationic surfactant DDAB (di-dodecyl-dimethyl-ammonium bromide). Two steps have been followed: the determination of phases prisms and the thermodynamic interpretation in terms of molecular interactions. In order to characterize these systems, two new experimental small angle scattering methods have been perfected: 1) a neutron scattering contrast variation method which allows to study the adsorption of aqueous solution in bilayers and 2) a capillary concentration gradient method to establish directly and quantitatively the phases diagrams of ternary systems by X rays scattering. It has been pointed out that the oligosaccharides induce a depletion attractive force on the lamellar-lamellar equilibrium of the DDAB when they are excluded of the most concentrated phase. For the two studied glycolipids: 2-O lauroyl-saccharose and N-lauroyl N-nonyl lactitol, the ternary phase diagrams water-DDAB-glycolipid have been established in terms of temperature. Critical points at ambient temperature have been given. The osmotic pressure in concentrated lamellar phases has been measured. It has been shown that glycolipids increase the hydration repulsion at short distance and that the electrostatic repulsion is outstanding and unchanged at high distance if there is at less 1 mole percent of ionic surfactant. In a dilute solution, glycolipids decrease the maximum swelling of lamellar phases, with a competition between the lamellar phase and the micellae dilute phase for water. (O.M.). 165 refs.

  5. Local behaviour of evaporating stars and black holes around the total evaporation event

    International Nuclear Information System (INIS)

    Fayos, F; Torres, R

    2010-01-01

    Many models in which the object under study loses all its mass have appeared in the literature. This can be found from evaporating stars to incipient black holes, all the way to evaporating black holes. In this paper we try a semiclassical study of these evaporating models centred on the evaporating event itself. We analyse their common properties, behaviours and possibilities. Specifically, we pay special attention to the evaporating models as a means of avoiding singularities during the collapse. In the case of any pre-existing non-spacelike curvature singularity, we show that these models tend to evaporate it. Finally, we introduce a new class of evaporating black holes.

  6. Uso do sistema de resfriamento adiabático evaporativo no conforto térmico de vacas da raça girolando Use of adiabatic evaporative cooling system in thermal comfort of girolando cows

    Directory of Open Access Journals (Sweden)

    Gledson L. P. de Almeida

    2011-07-01

    Full Text Available Objetivou-se, com esta pesquisa, avaliar diferentes tempos de exposição dos animais à climatização no curral de espera sobre os índices de conforto, parâmetros fisiológicos e produção de leite de vacas girolando 7/8. Consideraram-se tratamentos quatro tempos de exposição dos animais ao sistema de resfriamento adiabático evaporativo (SRAE, 0, 10, 20 e 30 min. O experimento foi realizado durante a estação de verão, com duração de 56 dias. Utilizaram-se 16 vacas com produção média de 18 kg de leite, adotando-se delineamento em quadrado latino 4 x 4. A temperatura de bulbo seco (Tbs, ºC e a umidade relativa (UR, %, foram registradas a cada minuto o que permitiu determinar a eficiência do SRAE por meio do índice de temperatura e umidade (ITU e entalpia (h. A frequência respiratória (FR, temperatura retal (TR e temperatura de pelame (TP, foram medidas antes e depois da climatização. O tratamento 30 min permitiu manter as variáveis ambientais e os índices de conforto dentro dos limites recomendados. As variáveis fisiológicas (FR, TR e TP mostraram valores inferiores no tratamento 30 min, o que refletiu positivamente na produção de leite, com aumento de 4,4%, quando comparado com o tratamento 0 min.The objective of this research was to evaluate different times of exposure of animals to cooling in the waiting pen on the comfort index, physiological parameters and milk production of girolando 7/8 cows. As treatments, four times of exposure of animals to adiabatic evaporative cooling system (AECS, 0, 10, 20 and 30 min were considered. The experiment was conducted during the summer season and lasted 56 days. Sixteen cows were used with an average daily milk production of 18 kg, distributed in 4 x 4 Latin square design. The dry bulb temperature (DBT and relative humidity (RH were recorded every minute, which allowed to determine the efficiency of the AECS through the Temperature and Humidity Index (THI and enthalpy (h. The

  7. Design and development of a split-evaporator heat-pump system

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  8. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    Science.gov (United States)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and

  9. Evaporator Development for an Evaporative Heat Pipe System

    Science.gov (United States)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  10. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  11. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Science.gov (United States)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  12. Putting the "vap" into evaporation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30–35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have

  13. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  14. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Valderrama, B.; Henderson, H.B.; Gan, J.; Manuel, M.V.

    2015-01-01

    Highlights: • Effect of temperature, laser energy, and detection rate on the evaporation of UO 2 was investigated. • Laser energy can significantly affect the evaporation behavior of UO 2 . • Proper experimental conditions allows for an accurate investigation of UO 2 with APT. - Abstract: Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO 2 ). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporation regimes are present in UO 2 . Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO 2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate

  15. On the Evaporation of Black Holes in String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    We show that, in string theory, the quantum evaporation and decay of black holes in two-dimensional target space is related to imaginary parts in higher-genus string amplitudes. These arise from the regularisation of modular infinities due to the sum over world-sheet configurations, that are known to express the instabilities of massive string states in general, and are not thermal in character. The absence of such imaginary parts in the matrix model limit confirms that the latter constitutes the final stage of the evaporation process, at least in perturbation theory. Our arguments appear to be quite generic, related only to the summation over world-sheet surfaces, and hence should also apply to higher-dimensional target spaces.

  16. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  17. Microporous Cokes Formed in Zeolite Catalysts Enable Efficient Solar Evaporation

    KAUST Repository

    Wang, Jianjian

    2017-03-13

    Cokes are inevitably generated during zeolite-catalyzed reactions as deleterious side products that deactivate the catalyst. In this study, we in-situ converted cokes into carbons within the confined microporous zeolite structures and evaluated their performances as absorbing materials for solar-driven water evaporation. With a properly chosen zeolite, the cokederived carbons possessed ordered interconnected pores and tunable compositions. We found that the porous structure and the oxygen content in as-prepared carbons had important influences on their energy conversion efficiencies. Among various investigated carbon materials, the carbon derived from the methanol-to-olefins reaction over zeolite Beta gave the highest conversion efficiency of 72% under simulated sunlight with equivalent solar intensity of 2 suns. This study not only demonstrates the great potential of traditionally useless cokes for solar thermal applications but also provides new insights into the design of carbon-based absorbing materials for efficient solar evaporation.

  18. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

    Directory of Open Access Journals (Sweden)

    Jennifer A McKenzie

    Full Text Available Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading or lamellar bone (LBF loading. A set of normal (non-loaded rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR. The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.

  19. Some cosmological consequences of primordial black-hole evaporations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1976-01-01

    According to Hawking, primordial black holes of less than 10 15 g would have evaporated by now. This paper examines the way in which small primordial black holes could thereby have contributed to the background density of photons, nucleons, neutrinos, electrons, and gravitons in the universe. Any photons emitted late enough should maintain their emission temperature apart from a redshift effect: it is shown that the biggest contribution should come from primordial black holes of about 10 15 g, which evaporate in the present era, and it is argued that observations of the γ-ray background indicate that primordial black holes of this size must have a mean density less than 10 -8 times the critical density. Photons which were emitted sufficiently early to be thermalized could, in principle, have generated the 3 K background in an initially cold universe, but only if the density fluctuations in the early universe had a particular form and did not extend up to a mass scale of 10 15 g. Primordial black holes of less than 10 14 g should emit nucleons: it is shown that such nucleons could not contribute appreciably to the cosmic-ray background. However, nucleon emission could have generated the observed number density of baryons in an initially baryon-symmetric universe, provided some CP-violating process operates in black hole evaporations such that more baryons are always produced than antibaryons. We predict the spectrum of neutrinos, electrons, and gravitons which should result from primordial black-hole evaporations and show that the observational limits on the background electron flux might place a stronger limitation on the number of 10 15 g primordial black holes than the γ-ray observations. Finally, we examine the limits that various observations place on the strength of any long-range baryonic field whose existence might be hypothesized as a means of preserving baryon number in black-hole evaporations

  20. A Study of the Confinement Induced Sponge to Lamellar Phase Transformation by Direct Force Measurement

    International Nuclear Information System (INIS)

    Antelmi, David

    1996-10-01

    The interactions between two macroscopic walls immersed in an isotropic symmetric sponge phase (L 3 ) at different volume fractions, Φ, were studied with a surface force apparatus. The purpose of these experiments was to investigate the behaviour of the sponge phase when confined between two smooth rigid surfaces. Particular attention was given to investigating this behaviour as the bulk transition to the lamellar phase (L α ) was approached. At temperatures far from the L 3 /L α bulk transition temperature, the force-distance profile showed weak oscillations with a periodicity approximately equal to twice the characteristic length, ξ, measured for the sponge phase from small angle x-ray scattering. Furthermore, the oscillations were superimposed on an exponential attractive background that decayed with an order parameter correlation length of 2-3 times ξ The attractive background was explained by the enhancement of the sponge order in the vicinity of the rigid walls. The structural oscillations observed in the force-distance profile, although not completely understood, were discussed in terms of the packing of sponge cells (cell size ξ). The significance of the observed periodicity (2ξ) may indicate the importance of the symmetric nature of the sponge phase. By moving pairs of cells in response to an applied strain, the symmetry of the sponge structure is protected. As the temperature increased towards the L 3 /L α bulk transition temperature, an abrupt change in the force-distance profile was observed at a threshold separation labelled D* in . A different force regime was observed for separations below D* in which oscillated with a periodicity that was twice the reticular spacing, d, for a L α phase of similar Φ. The force oscillations were superimposed on an attractive background that was almost linear. These observations were consistent with a first order phase transition from the sponge phase to the lamellar phase, induced by the confinement, where

  1. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  2. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  3. Femtosecond laser-assisted sutureless anterior lamellar keratoplasty for superficial corneal opacities.

    Science.gov (United States)

    Jabbarvand, Mahmoud; Hashemian, Hesam; Khodaparast, Mehdi; Ghadimi, Hadi; Khalilipour, Elias

    2014-11-01

    To evaluate the visual and refractive outcomes, endothelial cell count (ECC), ocular surface changes, corneal aberrations, and biomechanical profile changes after femtosecond laser-assisted anterior lamellar keratoplasty surgery for superficial corneal scars. Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran. Prospective case series. Patients with superficial corneal scars had femtosecond laser-assisted anterior lamellar keratoplasty. Visual and refractive results, ECC, ocular surface changes, corneal aberrations, and biomechanical profiles were assessed preoperatively and for 1 year postoperatively. Nineteen eyes (19 patients) were evaluated. A significant decline occurred in refractive astigmatism and corneal astigmatism after 1 year. There was a nonsignificant reduction in corneal hysteresis and the corneal resistance factor from preoperatively to 1 year postoperatively. The corneal-compensated intraocular pressure (IOP) and Goldmann-correlated IOP increased during the follow-up; the increase was not significant. A statistically insignificant reduction in the root mean square for trefoil and spherical aberrations occurred between 1 month and 1 year postoperatively (P=.1 and P=.4, respectively). The decreases in primary coma and total higher-order aberrations approached significance (P=.08 and P=.07, respectively). There were no significant changes in the central corneal thickness, ECC, or ocular surface parameters. No intraoperative complications occurred. Femtosecond laser-assisted anterior lamellar keratoplasty was an efficient and safe procedure for improving the quality of vision in patients with anterior corneal pathology, and the results remained stable during the 1-year follow-up. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Comparison of synthetic glues and 10-0 nylon in rabbit lamellar keratoplasty.

    Science.gov (United States)

    Cho, Soon Young; Kim, Man Soo; Oh, Su Ja; Chung, Sung Kun

    2013-09-01

    To evaluate changes in mean keratometry and to compare wound repair with corneal lamellar grafts in rabbit eyes using human synthetic tissue adhesives and 10-0 nylon. Corneal grafts were made using a 6.0-mm-diameter trephine and blades in the eyes of 15 New Zealand white rabbits. Human fibrin tissue adhesive (Tisseel) was used in group 1, human fibrin tissue adhesive (Beriplast P) was used in group 2, polyethylene glycol adhesive (Coseal) was used in group 3, and 8 bite sutures with 10-0 nylon were used in group 4 (control) for lamellar keratoplasty. Four bite sutures were made with 10-0 nylon in groups 1, 2, and 3. Slit-lamp microscopy and keratometry were performed at 3 days and 1, 2, and 4 weeks after the surgery. Histopathologic and electromicroscopic examinations were performed 4 weeks after the surgery. No inflammation or corneal toxicity was seen in groups 1 and 2. Histologically, a few inflammatory cells were seen in groups 3 and 4. Groups 1, 2, and 3 showed no statistically significant changes in mean keratometry at 4 weeks postoperatively compared with preoperative mean keratometry (Wilcoxon signed-rank test, P = 0.178, 0.208, and 0.889, respectively). The control group showed significant changes in mean keratometry at 4 weeks postoperatively (Wilcoxon signed-rank test, P = 0.018). Human fibrin tissue adhesives were well tolerated in rabbit eyes, with no apparent corneal toxicity. Polyethylene glycol adhesive showed more inflammation and insufficient wound repair compared with human fibrin tissue adhesives. Therefore, human fibrin tissue adhesives can be used as an alternative to sutures in lamellar keratoplasty.

  5. Comparative proteomic analysis of lung lamellar bodies and lysosome-related organelles.

    Directory of Open Access Journals (Sweden)

    Ross Ridsdale

    2011-01-01

    Full Text Available Pulmonary surfactant is a complex mixture of lipids and proteins that is essential for postnatal function. Surfactant is synthesized in alveolar type II cells and stored as multi-bilayer membranes in a specialized secretory lysosome-related organelle (LRO, known as the lamellar body (LB, prior to secretion into the alveolar airspaces. Few LB proteins have been identified and the mechanisms regulating formation and trafficking of this organelle are poorly understood. Lamellar bodies were isolated from rat lungs, separated into limiting membrane and core populations, fractionated by SDS-PAGE and proteins identified by nanoLC-tandem mass spectrometry. In total 562 proteins were identified, significantly extending a previous study that identified 44 proteins in rat lung LB. The lung LB proteome reflects the dynamic interaction of this organelle with the biosynthetic, secretory and endocytic pathways of the type II epithelial cell. Comparison with other LRO proteomes indicated that 60% of LB proteins were detected in one or more of 8 other proteomes, confirming classification of the LB as a LRO. Remarkably the LB shared 37.8% of its proteins with the melanosome but only 9.9% with lamellar bodies from the skin. Of the 229 proteins not detected in other LRO proteomes, a subset of 34 proteins was enriched in lung relative to other tissues. Proteins with lipid-related functions comprised a significant proportion of the LB unique subset, consistent with the major function of this organelle in the organization, storage and secretion of surfactant lipid. The lung LB proteome will facilitate identification of molecular pathways involved in LB biogenesis, surfactant homeostasis and disease pathogenesis.

  6. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  7. Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2016-04-05

    The US Department of Energy has formulated different gasoline fuels called \\'\\'Fuels for Advanced Combustion Engines (FACE)\\'\\' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model. The temporal variations of the liquid mass fractions of the droplet components were used to characterize the evaporation process. Components with similar evaporation characteristics were merged together. A representative component was initially chosen based on the highest initial mass fraction. Three 6 components surrogates, Surrogate 1-3, that match evaporation characteristics of FACE I have been formulated without keeping same mass fractions of different hydrocarbon types. Another two surrogates (Surrogate 4 and 5) were considered keeping same hydrocarbon type concentrations. A distillation based surrogate that matches measured distillation profile was proposed. The calculated molar mass, hydrogen-to-carbon (H/C) ratio and RON of Surrogate 4 and distillation based one are close to those of FACE I.

  8. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    Science.gov (United States)

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. CuInS[sub 2] with lamellar morphology; 2: Photoelectrochemical behavior of heterogeneous material

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Guerriero, P. (Inst. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del C.N.R., Padova (Italy)); Razzini, G. (Applicata del Politecnico di Milano (Italy). Dipt. di Chimica Fisica); Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    Lamellar CuInS[sub 2] material grown in a steep temperature gradient shows heterogeneous composition and complex photoeffects. Besides predominant n-type behavior, the electrode surface has areas with intrinsic or p-type conductivity, the latter usually corresponding to indium-rich regions. An inverted (cathodic) photocurrent is observed at n-type electrodes polarized under accumulation conditions. Both spectral dependence, with a pronounced peak for energies around the bandgap, and quantum yields > 1 suggest that these photoeffects originate from photoconductivity phenomena in the crystal bulk. Variability in electronic properties limits the average performance of the material in solar cells.

  10. Fast Diffusion of Long Guest Rods in a Lamellar Phase of Short Host Particles

    Science.gov (United States)

    Alvarez, Laura; Lettinga, M. Paul; Grelet, Eric

    2017-04-01

    We investigate the dynamic behavior of long guest rodlike particles immersed in liquid crystalline phases formed by shorter host rods, tracking both guest and host particles by fluorescence microscopy. Counterintuitively, we evidence that long rods diffuse faster than short rods forming the one-dimensional ordered smectic-A phase. This results from the larger and noncommensurate size of the guest particles as compared to the wavelength of the energy landscape set by the lamellar stack of liquid slabs. The long guest particles are also shown to be still mobile in the crystalline smectic-B phase, as they generate their own voids in the adjacent layers.

  11. Rigorous coupled-wave analysis of electromagnetic scattering from lamellar grating with defects.

    Science.gov (United States)

    Watanabe, Koki; Pištora, Jaromír; Nakatake, Yoshimasa

    2011-12-05

    This paper proposes a spectral-domain approach to the electromagnetic scattering problem of lamellar grating with defects. The fields in imperfectly periodic structures have continuous spectra in the wavenumber space, and the main problem of the spectral-domain approach is connected to the discretization scheme on the wavenumber. The present approach introduces the pseudo-periodic Fourier transform to consider the discretization scheme in the Brillouin zone. This transformation also makes it possible to apply the conventional grating formulations to the problems of imperfectly periodic structures. The present formulation is based on the rigorous coupled-wave analysis with the help of pseudo-periodic Fourier transform.

  12. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  13. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    Science.gov (United States)

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. GPHR-dependent functions of the Golgi apparatus are essential for the formation of lamellar granules and the skin barrier.

    Science.gov (United States)

    Tarutani, Masahito; Nakajima, Kimiko; Uchida, Yoshikazu; Takaishi, Mikiro; Goto-Inoue, Naoko; Ikawa, Masahito; Setou, Mitsutoshi; Kinoshita, Taroh; Elias, Peter M; Sano, Shigetoshi; Maeda, Yusuke

    2012-08-01

    The lumen of the Golgi apparatus is regulated to be weakly acidic, which is critical for its functions. The Golgi pH regulator (GPHR) is an anion channel essential for normal acidification of the Golgi apparatus, and is therefore required for its functions. The Golgi apparatus has been thought to be the origin of lamellar granules in the skin. To study the functional role(s) of GPHR in the skin, we established keratinocyte-specific GPHR-knockout mice using the Cre-loxP system. These mutant mice exhibited hypopigmented skin, hair loss, and scaliness. Histological examination of GPHR-knockout mice showed ballooning of the basal cells and follicular dysplasia. In addition, inflammatory cells were seen in the dermis. The expression of trans-Golgi network 46, a marker for lamellar bodies, and kallikrein 7, a protein within lamellar bodies, is diminished in GPHR-knockout mouse skin. Examination by electron microscopy revealed that keratinocytes produced aberrant lamellar bodies. The transepidermal water loss of these knockout mice was increased compared with wild-type mice. Moreover, expression of cathelicidin-related antimicrobial peptide (CRAMP) in the skin was diminished. These results suggest that GPHR is essential for the homeostasis of the epidermis including the formation of lamellar bodies and for the barrier function.

  15. Continuous Brine Evaporation Cartridge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Continuous Brine Evaporation Cartridge (CBEC) is proposed for greater than 95% water recovery from highly contaminated wastewater without...

  16. Conical evaporator and liquid-return wick model for vapor anode, multi-tube AMTEC cells

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A detailed, 2-D thermal-hydraulic model for conical and flat evaporators and the liquid sodium return artery in PX-type AMTEC cells was developed, which predicts incipient dryout at the evaporator wick surface. Results obtained at fixed hot and cold side temperatures showed that the flat evaporator provided a slightly lower vapor pressure, but reached the capillary limit at higher temperature. The loss of performance due to partial recondensation over up to 20% of the wick surface of the deep conical evaporators was offset by the larger surface area available for evaporation, providing a slightly higher vapor pressure. Model results matched the PX-3A cell's experimental data of electrical power output, but the predicted temperature of the cell's conical evaporator was consistently ~50 K above measurements. A preliminary analysis indicated that sodium vapor leakage in the cell (through microcracks in the BASE tubes' walls or brazes) may explain the difference between predicted and measured evaporator temperatures in PX-3A. .

  17. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  18. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  19. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  20. A numerical study of the impacts of volatile component blending on diesel spray evaporation and combustion

    International Nuclear Information System (INIS)

    Lee, H.L.; Chang, S.L.; Petrick, M.

    2002-01-01

    A multiphase computational fluid dynamics (CFD) code is used to simulate the evaporation and combustion processes of a diesel spray blended with a highly volatile component. The CFD code uses an Eulerian approach to model the liquid phase of diesel fuel with components of different boiling temperatures. The approach divides the droplets into size groups and assigns different boiling temperatures for each group. The CFD code accounts for liquid droplet flow, turbulent mixing, interfacial drag and heat transfer, droplet evaporation and combustion, radiation heat transfer, and pollutant kinetics. Using the code, a parametric study was conducted to investigate the impacts of a volatile component on the spray evaporation and combustion characteristics. The results indicate that the blending of a highly volatile component can have an impact on droplet evaporation rate and that thermal radiation is significant in spray combustion due to the formation of soot

  1. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  2. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  3. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  4. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  5. Effect of onion extract on corneal haze suppression after air assisted lamellar keratectomy

    Science.gov (United States)

    KIM, Soohyun; PARK, Young Woo; LEE, Euiri; PARK, Sang Wan; PARK, Sungwon; NOH, Hyunwoo; KIM, Jong Whi; SEONG, Je Kyung; SEO, Kangmoon

    2015-01-01

    This study evaluated the effect of onion extract on corneal haze suppression after applying the air assisted lamellar keratectomy. The air assisted lamellar keratectomy was performed on 24 canine eyes. They were treated with an artificial tear (group C), prednisolone acetate (group P), onion extract (group O) and TGF-β1 (group T) three times per day from 7 to 28 days after the surgery. Corneal haze occurred on the all eyes and was observed beginning 7 days after the surgery. The haze was significantly decreased in groups P and O from day 14 compared with the group C using the clinical (group P; P=0.021, group O; P=0.037) and objective evaluation method (group P; P=0.021, group O; P=0.039). In contrast, it was significantly increased in group T from day 14 compared with group C based on the clinical (P=0.002) and objective evaluation method (P<0.001). Subsequently, these eyes were enucleated after euthanasia, and immunohistochemistry with α-SMA antibodies was done. The total green intensity for α-SMA was significantly more expressed in group T and significantly less expressed in groups P and O than in group C. Onion extract could have potential as a therapeutic in preventing corneal haze development by suppressing the differentiation of fibroblasts into myofibroblasts. PMID:26607134

  6. Nucleation of the lamellar phase from the disordered phase of the renormalized Landau-Brazovskii model

    Science.gov (United States)

    Carilli, Michael F.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-02-01

    Using the zero-temperature string method, we investigate nucleation of a stable lamellar phase from a metastable disordered phase of the renormalized Landau-Brazovskii model at parameters explicitly connected to those of an experimentally accessible diblock copolymer melt. We find anisotropic critical nuclei in qualitative agreement with previous experimental and analytic predictions; we also find good quantitative agreement with the predictions of a single-mode analysis. We conduct a thorough search for critical nuclei containing various predicted and experimentally observed defect structures. The predictions of the renormalized model are assessed by simulating the bare Landau-Brazovskii model with fluctuations. We find that the renormalized model makes reasonable predictions for several important quantities, including the order-disorder transition (ODT). However, the critical nucleus size depends sharply on proximity to the ODT, so even small errors in the ODT predicted by the renormalized model lead to large errors in the predicted critical nucleus size. We conclude that the renormalized model is a poor tool to study nucleation in the fluctuating Landau-Brazovskii model, and recommend that future studies work with the fluctuating bare model directly, using well-chosen collective variables to investigate kinetic pathways in the disorder → lamellar transition.

  7. Peptide derivatized lamellar aggregates as target-specific MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Tesauro, D.; Accardo, A.; Morelli, G. [Univ Naples Federico II, CIRPeB, Dept Biol Sci, I-80134 Naples, (Italy); Tesauro, D.; Accardo, A.; Morelli, G. [IBB CNR, I-80134 Naples, (Italy); Gianolio, E.; Aime, S. [Univ Turin, IFM, Dept Chem, I-10125 Turin, (Italy); Paduano, L. [Univ Naples Federico II, Dept Chem, I-80126 Naples, (Italy); Teixeira, J. [CEA Saclay, Laboratoire Leon Brillouin, CEA-CNRS, F-91191 Gif Sur Yvette, (France); Schillen, K. [Lund Univ, Ctr Chem and Chem Engn, S-22100 Lund, (Sweden)

    2007-07-01

    The relaxivity behaviour and the structural characterization of new supramolecular aggregates (bilayer structures and micelles) obtained by combining two different amphiphilic monomers are reported. One monomer, (C18){sub 2}DTPAGlu-Gd, contains a very stable gadolinium complex, and the other, DSPE-PEG{sub 2000}-CCK8, contains the bioactive CCK8 peptide. Samples that contained only DSPE-PEG{sub 2000}-CCK8, or up to 50% (C18){sub 2}DTPAGlu-Gd, aggregated as double-layer structures (lamellar aggregates) with a thickness of similar to 80-100 angstroms, as evaluated by SANS measurement and Cryo-TEM imaging. A transition to micelle formation was observed when the amount of (C18){sub 2}DTPAGlu-Gd in the aggregate was increased. These were rod-like micelles similar to 40 angstroms in radius and {>=} 200 angstroms in length. The proton relaxivities for both lamellar aggregates and rod-like micelles were the same (17.2 mM{sup -1} s{sup -1}), although the values were the results of different combinations of local and global contributions. The in vitro target selectivity of aggregates that contained the CCK-8 peptide was demonstrated by using nuclear medicine techniques. (authors)

  8. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells.

    Science.gov (United States)

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C; Xu, Yan; Wert, Susan E; Ikegami, Machiko; Whitsett, Jeffrey A

    2008-05-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3(Delta/Delta) mice). Consistent with the role of STAT3, intratracheal IL-6 induced ABCA3 expression in vivo. Decreased ABCA3 and abnormalities in the formation of lamellar bodies, the intracellular site of surfactant lipid storage, were observed in Stat3(Delta/Delta) mice. Expression of SREBP1a and 1c, SCAP, ABCA3, and AKT mRNAs was inhibited by deletion of Stat3 in type II cells isolated from Stat3(Delta/Delta) mice. The activities of PI3K and AKT were required for normal Abca3 gene expression in vitro. AKT activation induced SREBP expression and increased the activity of the Abca3 promoter in vitro, consistent with the role of STAT3 signaling, at least in part via SREBP, in the regulation of ABCA3. ABCA3 expression is regulated by IL-6 in a pathway that includes STAT3, PI3K, AKT, SCAP, and SREBP. Activation of STAT3 after exposure to IL-6 enhances ABCA3 expression, which, in turn, influences pulmonary surfactant homeostasis.

  9. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  10. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng

    2014-01-01

    (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...

  11. Lecithin/sphingomyelin ratio and lamellar body count for fetal lung maturity: a meta-analysis.

    Science.gov (United States)

    Besnard, Anouk E; Wirjosoekarto, Soetinah A M; Broeze, Kimiko A; Opmeer, Brent C; Mol, Ben Willem J

    2013-07-01

    To determine and compare the diagnostic accuracy of the lecithin/sphingomyelin (L/S) ratio and lamellar body count (LBC) in the prediction of neonatal respiratory distress syndrome (RDS). A systematic review was performed to identify studies comparing either the L/S ratio or the LBC with the occurrence of RDS published between January 1999 and February 2009. Two independent reviewers performed study selection and data extraction. For each study sensitivity and specificity were calculated. Summary receiver-operating characteristics (ROC) curves, assessing the diagnostic performance of both tests, were constructed. A subgroup analysis was performed to estimate the sensitivity and specificity of the various cut-off values. 13 studies were included. The ROC curves of the collected data illustrate that the LBC and L/S ratio perform equally well in the prediction of RDS. Comparison of the two summary ROC curves of each test indicates that the diagnostic performance of LBC might even have a slight advantage over L/S ratio. Due to the wide cut-off range it was not possible to define specific cut-off values with the best accuracy. We recommend replacing the L/S ratio as gold standard with the lamellar body count since the LBC is easy to perform, rapid, inexpensive, and available to all hospitals 24h per day. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Sutureless femtosecond anterior lamellar keratoplasty: A 1-year follow-up study

    Directory of Open Access Journals (Sweden)

    Rohit Shetty

    2014-01-01

    Full Text Available Aim: To study the safety and efficacy of sutureless femtosecond anterior lamellar keratoplasty (FALK in patients with corneal stromal opacities. Materials and Methods: Eleven eyes of 11 consecutive patients with corneal stromal opacities involving < 250 μ due to various pathologies were included in the study. Preoperatively, all underwent anterior segment imaging with spectral domain optical coherence tomography (SD-OCT (Bioptigen Inc., Durham, North Carolina, USA to measure the depth of the stromal opacity. All patients underwent FALK, and bandage contact lens was placed for a period of 2 weeks. Postoperatively, uncorrected visual acuity, best corrected visual acuity (BCVA, and SD-OCT evaluation were performed. Results: All patients showed significant improvement in BCVA. The mean postoperative BCVA (in decimals improved from 0.11 ± 0.06 preoperatively to 0.59 ± 0.08. There were no intraoperative or significant postoperative complications that were noticed. Conclusion: FALK is a safe and effective alternative to deep anterior lamellar keratoplasty or penetrating keratoplasty in the treatment of anterior stromal opacities.

  13. Big Bubble Deep Anterior Lamellar Keratoplasty for Management of Deep Fungal Keratitis

    Directory of Open Access Journals (Sweden)

    Hua Gao

    2014-01-01

    Full Text Available Objective. To evaluate the therapeutic effect of big bubble deep anterior lamellar keratoplasty (DALK in patients with deep fungal keratitis. Methods. Consecutive patients who had DALK for deep fungal keratitis at Shandong Eye Hospital between July 2011 and December 2012 were included. In all patients, the infiltration depth was more than 4/5ths of the corneal thickness. DALK surgery was performed with bare Descemet membrane (DM using the big bubble technique. Corrected distance visual acuity (CDVA, graft status, and intraoperative and postoperative complications were monitored. Results. Big bubble DALK was performed in 23 patients (23 eyes. Intraoperative perforation of the DM occurred in two eyes (8.7% during stromal dissection. The patients received lamellar keratoplasty with an air bubble injected into the anterior chamber. Double anterior chamber formed in 3 eyes (13.0%. Mean CDVA of the patients without cataract, amblyopia, and fungal recurrence was improved from preoperative HM/20 cm−1.0 (LogMAR to 0.23 ± 0.13 (LogMAR at the last followup (P<0.01. Fungal recurrence was found in two patients (8.7%. Corneal stromal graft rejection was noted in one patient (4.3%. Conclusions. DALK using the big bubble technique seems to be effective and safe in the treatment of deep fungal keratitis unresponsive to medication.

  14. Lubrication model for evaporation of binary sessile drops

    Science.gov (United States)

    Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant

    2017-11-01

    Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.

  15. Computer-Aided Modelling of Short-Path Evaporation for Chemical Product Purification, Analysis and Design

    DEFF Research Database (Denmark)

    Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul

    2006-01-01

    An important stage in the design process for many chemical products is its manufacture where, for a class of chemical products that may be thermally unstable (such as, drugs, insecticides, flavours /fragrances, and so on), the purification step plays a major role. Short-path evaporation is a safe...... method, suitable for separation and purification of thermally unstable materials whose design and analysis can be efficiently performed through reliable model-based techniques. This paper presents a generalized model for short-path evaporation and highlights its development, implementation and solution...... glycerol, mono-, di- and triglycerides, and (b) the recovery of a pharmaceutical product from a six-component mixture. Validation of the short-path evaporation model is highlighted through the comparison of experimental data from an industrial pilot plant with the simulated results from the model. Also...

  16. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  17. Sequence crystallization during isotherm evaporation of southern ...

    African Journals Online (AJOL)

    Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple solar evaporation. Indeed, during isothermal solar evaporation, it is possible to recover mineral salts and to determine the precipitation sequences of different ...

  18. Evaporation experiments and modelling for glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.

    2007-01-01

    A laboratory test facility has been developed to measure evaporation rates of different volatile components from commercial and model glass compositions. In the set-up the furnace atmosphere, temperature level, gas velocity and batch composition are controlled. Evaporation rates have been measured

  19. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  20. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  1. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    Science.gov (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  2. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  3. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  4. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  5. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  6. Hole mobility in thermally evaporated pentacene: Morphological and directional dependence

    Science.gov (United States)

    Günther, Alrun A.; Widmer, Johannes; Kasemann, Daniel; Leo, Karl

    2015-06-01

    Pentacene has been extensively studied as an active material for organic field-effect transistors as it shows very good charge carrier mobility along its preferred transport direction. In this contribution, we investigate the hole transport in pentacene thin films by measurement in conventional lateral organic field-effect transistors (OFETs), which yields the hole mobility along the a-b plane of pentacene, and by the recently published potential mapping (POEM) approach, which allows for direct extraction of the charge carrier mobility perpendicular to the substrate, in this case perpendicular to the a-b plane, without the assumption of a specific transport model. While the mobility along the a-b plane—determined from OFET measurements—is found to be in the region of 0.45 cm2/Vs, transport perpendicular to this plane shows an average mobility at least one order of magnitude lower. Investigating also how these effective mobility values depend on the deposition rate of the pentacene films, we find that the decrease in grain size for increasing deposition rate causes the mobility to decrease both parallel and perpendicular to the substrate due to the increased number of grain boundaries to be overcome. For the out-of-plane transport, this effect is found to saturate for deposition rates higher than 2.5 Å/s.

  7. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    and E A LOZA-NERI1. 1Facultad de Ingeniería, Universidad Anáhuac México Norte, Avenida Universidad Anáhuac 46,. Col. Lomas Anáhuac, 52786, Huixquilucan, Estado de México, México. 2Instituto de Física, Dpto. Materia Condensada, Universidad Nacional Autónoma de México,. Ciudad Universitaria, 04510, México ...

  8. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Author Affiliations. M E Sánchez-Vergara1 M Rivera2 R A Torres-García1 C O Perez-Baeza1 E A Loza-Neri1. Facultad de Ingeniería, Universidad Anáhuac México Norte, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, 52786, Huixquilucan, Estado de México, México; Instituto de Física, Dpto. Materia Condensada ...

  9. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    The surface morphology of these films was analysed by atomic force microscopy (AFM) and scanning electron ... been investigated using spectrophotometric measurements of absorbance in the wavelength range of 200–. 1100 nm and the ... Phthalocyanine; thin films; optical properties; absorption spectra. 1. Introduction.

  10. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing

    NARCIS (Netherlands)

    Bröde, P.; Havenith, G.; Wang, X.; Candas, V.; Hartog, E.A. den; Griefahn, B.; Holmér, I.; Kuklane, K.; Meinander, H.; Nocker, W.; Richards, M.

    2008-01-01

    In order to assess the non-evaporative components of the reduced thermal insulation of wet clothing, experiments were performed with a manikin and with human subjects in which two layers of underwear separated by an impermeable barrier were worn under an impermeable overgarment at 20°C, 80% RH and

  11. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  12. Apparatus for diffusion-gap thermal desalination

    Science.gov (United States)

    Lowenstein, Andrew

    2017-09-26

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composed of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.

  13. Convective instability of sludge storage under evaporation and solar radiation

    Science.gov (United States)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40

  14. Queratitis lamelar difusa después del Lasik Diffuse lamellar keratitis after LASIK

    Directory of Open Access Journals (Sweden)

    Lorelei Ortega Díaz

    2010-12-01

    Full Text Available OBJETIVO: Describir el comportamiento de la queratitis lamelar difusa como complicación después de emplear la técnica quirúrgica queratomileusis in situ con láser. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal en el Servicio de Cirugía Refractiva Corneal del Instituto Cubano de Oftalmología "Ramón Pando Ferrer" en el último trimestre del año 2008. La muestra quedó conformada por 16 ojos a los que se les realizó la queratomileusis in situ con láser como técnica quirúrgica para corregir ametropía y que presentaron complicaciones con esta cirugía. Se analizaron variables como la agudeza visual sin corrección; los ojos con esta complicación fueron analizados según la clasificación de Linebarger. RESULTADOS: La frecuencia de queratitis lamelar difusa fue de 3,0 por cada 100. La agudeza visual no corregida se comportó entre 0,8 y 1,0 en 12 ojos de 16 afectados, el estadio 1 se presentó en 12 ojos. CONCLUSIONES: La queratitis lamelar difusa es una complicación poco frecuente, los casos que la padecieron alcanzaron una buena agudeza visual final sin corrección. Predominó la forma leve de este cuadro.OBJECTIVE: To describe the situation of Diffuse lamellar keratitis as a complication after in situ keratomileusis with laser. METHODS: A descriptive cross-sectional study was carried out in the Refractive Corneal Service of "Ramón Pando Ferrer" Cuban Institute of Ophthalmology during the last quarter of 2008. The sample embraced 16 eyes that underwent in situ keratomileusis plus laser as the refractive procedure to correct ametropy and presented with some complications. Visual acuity without correction was one the analyzed variables and the eyes with this type of complication were classified according to Linebarger´s classification. RESULTS: The diffuse lamellar keratitis frequency was 3.0 per one hundred cases, the visual acuity without correction was 0.8 to 1.0 in 12 out of 16 eyes whereas stage 1 was

  15. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  16. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  17. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    International Nuclear Information System (INIS)

    Hołyst, R; Litniewski, M; Jakubczyk, D; Kolwas, K; Kolwas, M; Kowalski, K; Migacz, S; Palesa, S; Zientara, M

    2013-01-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid–vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid–vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P 1 /(a + P 2 ), where a is the radius of the evaporating droplet, t is time and P 1 and P 2 are two parameters. P 1 = −λΔT/(q eff ρ L ), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet

  18. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  19. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.

    1986-01-01

    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  20. Lyotropic Mesomorphisms of a Lamellar Liquid Crystalline Phase in Non-hydrous Condition: A Phospholipid Hydrated by Different Polar Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Kyu [Korea Kolmar Corporation, Yongi (Korea, Republic of); Jeong, Kwan Young [Chung-buk University, Cheongju (Korea, Republic of)

    2010-05-15

    The lyotropic mesomorphism of lamellar liquid crystalline phase was examined by observing the swelling behavior of Distearoylphosphatidylcholine(DSPC) in glycerin and panthenol without water. The lyotropic mesomorphism was examined by using DSC, XRDs and Cryo-SEM. Increase of two polar solvents under non-hydrous condition showed distinctive differences in the lyotropic mesomorphism from forming different anisotropic structures with DSPC. Glycerin did not affect to the crystalline region of lamellar phase, whereas typical swelling mesomorphism was shown in the noncrystalline region. In contrast, panthenol showed some effect on the crystalline region, but common swelling mesomorphism was found in the non-crystalline region. In this case, the isopropyl and propyl groups in panthenol were the main factor to affect to the lipophilic domain in the crystalline region of lamellar phase. Also, it was found that the formation of well-arranged lamellar structure only by introducing glycerin and panthenol as a solvent without water, was possible. These results were confirmed by examination of the swelling mesomorphism of liquid crystal membrane triggered by introducing the two polar solvents.

  1. Inverse temperature dependence of strain hardening in ultrahigh molecular weight polyethylene: role of lamellar coupling and entanglement density.

    Science.gov (United States)

    Na, Bing; Lv, Ruihua; Xu, Wenfei; Yu, Pingsheng; Wang, Ke; Fu, Qiang

    2007-11-22

    Irradiation of ultrahigh molecular weight polyethylene (UHMWPE) with a dose of 150 kGy by an electron beam can effectively increase the entanglement density in the amorphous phase and has little influence on the properties of the crystalline phase, which provides examples to comparatively investigate the role of lamellar coupling and entanglement density in determining the strain-hardening effect in semicrystalline polymers. The strain-hardening modulus, deduced from the Haward plots of true stress-strain curves, is inversely temperature-dependent and has a sharp transition around 65 degrees C that corresponds to the mechanical alphaI-process of the crystalline phase for both nonirradiated and irradiated samples, irrespective of the entanglement density in the amorphous phase. Lamellar coupling takes more effect in determining the strain-hardening behavior before the mechanical alphaI-process is activated. With further increasing temperature, lamellar coupling becomes weaker and the role of the entangled amorphous phase is gradually presented. However, the same temperature dependence of the strain-hardening modulus in both nonirradiated and irradiated samples indicates that the strain-hardening behavior in semicrystalline polymer is mostly determined by lamellar coupling rather than by entanglement density.

  2. Undulations in salt-free charged lamellar phases detected by small angle neutron scattering and neutron reflectivity

    NARCIS (Netherlands)

    Salamat, G.; Vries, de R.; Kaler, E.W.; Satija, S.; Sung, L.

    2000-01-01

    Neutron reflectivity of lamellar phases containing pentaethylene glycol n-dodecyl ether, sodium decylsulfonate, and D2O is measured at the solid-liquid interface. The scattering length density profiles deduced from fits to the reflectivity data show that undulations of the mixed surfactant bilayers

  3. Predicting lung maturity in preterm rupture of membranes via lamellar bodies count from a vaginal pool: a cohort study.

    Science.gov (United States)

    Salim, Raed; Zafran, Noah; Nachum, Zohar; Garmi, Gali; Shalev, Eliezer

    2009-10-14

    Amniocentesis is the accepted mode of attaining amniotic fluid to perform tests for fetal lung maturity. The purpose of this study was to validate a non-invasive fetal lung maturity test by counting lamellar bodies from a vaginal pool among women with preterm premature rupture of membranes. In a prospective study, amniotic fluid specimens were collected from a vaginal pool from women after preterm premature rupture of membranes with gestational age between 27 and 36 completed weeks. Receiver operating characteristics curve was estimated to assess the threshold of lamellar bodies' count that may predict fetal lung maturity. Seventy-five specimens were collected of which 17 were between 32 to 34 weeks. A lamellar bodies' count of 28,000 or more predicted mature fetus 100% of the time (specificity) among all women and also among women between 32 to 34 weeks. The sensitivity was 72% among all and 92% when gestational age was between 32 to 34 weeks. A count of 8,000 or less, predicted respiratory distress syndrome with a sensitivity of 98% among the whole group. Counting of lamellar bodies in amniotic fluid from a vaginal pool may be used to predict fetal lung maturity.

  4. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  5. Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

    Directory of Open Access Journals (Sweden)

    Romero-Méndez Ricardo

    2014-01-01

    Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.

  6. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  7. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  8. On the evaporation of ammonium sulfate solution

    International Nuclear Information System (INIS)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  9. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  10. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  11. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol/water/heptane systems.

    Directory of Open Access Journals (Sweden)

    Gallegos, C.

    2005-06-01

    Full Text Available Linear viscoelastic tests as well as transient and steady flow experiments were carried out on lamellar liquid crystalline samples of poly (oxyethylene alcohol/water/heptane systems. The effect of surfactant and heptane concentrations on the rheological properties of the lamellar mesophase was investigated. The mechanical spectrum inside the linear viscoelastic regime shows, in all cases, a well-developed plateau region in the whole frequency range studied. The values of the dynamic functions were higher for intermediate surfactant or heptane concentrations indicative of a major development of the elastic network in the midrange of existence of the lamellar phase. Transient and steady flow experiments point out a shear-induced evolution of the lamellar microstructure. Different power law regions with different values of the flow index were detected in the viscosity versus shear rate plots. These shear-induced structural modifications were confirmed by using polarizing microscopy in an optical shearing cell. Structural modifications appear to be highly influenced by shear rate. In general, applying relatively high constant shear rates, the alignment of the bilayers followed by the appearance of the “oily streaks” structure was observed. Appearance of shear-induced vesicles occurs at high heptane content, as indicates the texture of close-packed monodisperse spherulites detected by polarizing microscopy.n este trabajo se han estudiado las propiedades reológicas de una fase líquido-cristalina laminar contenida en un sistema alcohol polietoxilado/agua/heptano, mediante ensayos viscoelásticos lineales, estacionarios y transitorios. El efecto de distintas variables como la composición de tensioactivo y heptano sobre dichas propiedades reológicas ha sido analizado. El espectro mecánico obtenido de la fase laminar muestra en todos los casos una región “plateau” en el intervalo de frecuencias estudiado así como mayores valores

  12. CuInS[sub 2] with lamellar morphology; 1: Efficient photoanodes in acidic polyiodide medium

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Dietz, N.; Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    CuInS[sub 2] grown in a steep temperature gradient acquires a peculiar lamellar morphology, similar to that of layered compound semiconductors. Thin electrodes (of thickness down to 30 to 40 [mu]m) can be prepared by cleavage, reducing series resistance in the bulk of the semiconductor. The liquid junction of n-CuInS[sub 2] with acidic polyiodide medium 2M HI, 2.5 M CaI[sub 2], 40 mM I[sub 2] was investigated. The best photoanodes attained quantum yields of monochromatic light of about 0.7 and conversion efficiencies above 7% under simulated AM1 sunlight. Their performance does not decrease substantially under moderately concentrated sunlight (300 to 400 mW cm[sup [minus]2]), due to small ohmic losses. Cell output appears quite stable during the first week of operation, but irregular electrode corrosion is observed, which may be detrimental to long term operation.

  13. Synthesis, characterization and reaction behaviour of lamellar AFm phases with aliphatic sulfonate-anions

    International Nuclear Information System (INIS)

    Poellmann, Herbert; Stefan, Stoeber; Stern, Edda

    2006-01-01

    The addition of alkanesulfonates as admixtures to cementitious materials allows the formation of new lamellar phases (AFm), which was proofed by X-ray diffraction (XRD). The course of hydration was investigated by heat flow calorimetry. The layered structures of AFm phases are composed of brucite-like main layers and interlayers containing alkanesulfonate ions and additional H 2 O molecules. These structural not necessary H 2 O molecules release gradually at definite steps with increasing temperature. With varying relative humidity the layer thickness c' of short aliphatic chained calcium aluminate alkanesulfonate hydrates changes considerably, whereas large organic molecules dominate the layer thickness of those with longer aliphatic chains. By means of the increase of layer thickness with increasing chain lengths it is possible to determine the tilt angles of the aliphatic chains in the interlayers

  14. Research of lamellar lubricants mechanical-and-physical properties and structure

    Science.gov (United States)

    Morgunov, A. P.; Masyagin, V. B.; Derkach, V. V.; Matveev, N. A.

    2017-06-01

    in the article ascertaining the applicability of lamellar solid lubricants is considered for the purpose of wear resistance increase of metal surface elements by their contact interaction in different operational conditions. Forms of binding in the structure of solid lubricants are described through the example of molybdenum disulfide MoS2, as well as change properties at standard and high (350-480°C) exposure temperature. After solid lubricant application the additional treatment is made on the work surface of flanged wheels in the wheel set of a locomotive using plastic deformation for getting of multilevel micro relief resulting in working service increase of the wheel set in comparison with control set from 1.6 to 3 times.

  15. Visual outcome of penetrating keratoplasty, deep anterior lamellar keratoplasty and Descemet membrane endothelial keratoplasty.

    Science.gov (United States)

    Garrido, Clàudia; Cardona, Genís; Güell, Josep L; Pujol, Jaume

    2017-11-13

    A single-center, cross-sectional study was designed to assess and compare objective and subjective quality of vision of patients intervened with penetrating keratoplasty (PK), deep anterior lamellar keratoplasty (DALK) and Descemet membrane endothelial keratoplasty (DMEK). Forty-six patients previously intervened with PK (22 eyes), DALK (7 eyes) and DMEK (17 eyes) were recruited. Visual evaluation included spherical and cylindrical refraction, distance corrected visual acuity (DCVA), photopic contrast sensitivity (CS), optical quality, measured with the HD Analyzer (objective scattering index [OSI], MTF cut-off and Strehl ratio), and ocular and corneal aberrometry, measured with the KR-1W Wavefront Analyzer. Statistically significant between-group differences were found in age (p=0.006, DMEK patients were older) and time since surgery (pvisual function parameters under evaluation. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  16. Neutron spin-echo investigation of the microemulsion dynamics. in bicontinuous lamellar and droplet phases

    CERN Document Server

    Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B

    2002-01-01

    Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...

  17. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Directory of Open Access Journals (Sweden)

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  18. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  19. Research of lamellar lubricants mechanical-and-physical properties and structure

    International Nuclear Information System (INIS)

    Morgunov, A P; Masyagin, V B; Derkach, V V; Matveev, N A

    2017-01-01

    in the article ascertaining the applicability of lamellar solid lubricants is considered for the purpose of wear resistance increase of metal surface elements by their contact interaction in different operational conditions. Forms of binding in the structure of solid lubricants are described through the example of molybdenum disulfide MoS 2 , as well as change properties at standard and high (350-480°C) exposure temperature. After solid lubricant application the additional treatment is made on the work surface of flanged wheels in the wheel set of a locomotive using plastic deformation for getting of multilevel micro relief resulting in working service increase of the wheel set in comparison with control set from 1.6 to 3 times. (paper)

  20. Early byzantine lamellar armour from Carthago Spartaria (Cartagena, Spain

    Directory of Open Access Journals (Sweden)

    Vizcaíno Sánchez, Jaime

    2008-12-01

    Full Text Available This article presents an Early Byzantine lamellar armour, retrieved in the excavations at the quarter built over the Roman Theatre of Cartagena. The armour has close parallels with contemporary known material from the central and eastern Mediterranean or other sites, and it is an important find which increases the body of archeological evidence about Byzantine presence in Spania.

    Este artículo presenta una coraza laminar protobizantina hallada en las excavaciones del barrio construido sobre el teatro romano de Cartagena. La coraza tiene estrechos paralelos con materiales contemporáneos del Mediterráneo Central y Oriental u otros lugares, y es un importante hallazgo que incrementa la nómina de evidencias arqueológicas acerca de la presencia bizantina en Spania.

  1. Results of topography of the cornea following deep anterior lamellar keratoplasty

    Directory of Open Access Journals (Sweden)

    Ramin Salati

    2004-09-01

    Full Text Available There are no remarkable reports about the topographic characteristics of the cornea following deep anterior lamellar keratoplasty (DLKP. In this study we tried to characterize the corneal topographic patterns following DLKP, and determine the correlations between these patterns with other factors. In this study optical DLPP with Melles technique was performed on 40 keratoconus eyes. Each patient was examined in four separate sessions once preoperatively, and three sessions at 3, 6, and 12 months postoperatively. The corneal topographic pattern of each exam was identified, and its correlations with other factors such as suturing technique were evaluated. The decreases in mean keratometry and mean corneal astigmatism and the conversion of irregular topographic patterns to regular patterns were significant following the operation. There were not any cases of immunologic endothelial rejection. We conclude that DLKP is a safe and predictable surgical treatment in keratoconus eyes.

  2. Experimental evidence for lamellar magnetism in hemo-ilmenite by polarized neutron scattering

    DEFF Research Database (Denmark)

    Brok, Erik; Sales, Morten; Lefmann, Kim

    2014-01-01

    Large local anomalies in the Earth's magnetic field have been observed in Norway, Sweden, and Canada. These anomalies have been attributed to the unusual magnetic properties of naturally occurring hemo-ilmenite, consisting of a paramagnetic ilmenite host (alpha-Fe2O3-bearing FeTiO3) with exsolution...... lamellae (approximate to 3 μm m thick) of canted antiferromagnetic hematite (FeTiO3-bearing α-Fe2O3) and the mutual exsolutions of the same phases on the micron to nanometer scale. The origin of stable natural remanent magnetization (NRM) in this system has been proposed to be uncompensated magnetic...... moments in the contact layers between the exsolution lamellae. This lamellar magnetism hypothesis is tested here by using polarized neutron diffraction to measure the orientation of hematite spins as a function of an applied magnetic field in a natural single crystal of hemo-ilmenite from South Rogaland...

  3. Rupture pressure of the posterior lamella obtained during big-bubble deep anterior lamellar keratoplasty.

    Science.gov (United States)

    McKee, Hamish D; Barua, Ankur; Brahma, Arun K; Jhanji, Vishal; Carley, Fiona M

    2012-11-01

    To investigate the pressure required to rupture the posterior lamella obtained during the presumed Descemet membrane-baring big-bubble technique of deep anterior lamellar keratoplasty (DALK). DALK using the big-bubble technique was carried out on donor corneoscleral discs mounted on an artificial anterior chamber. Once the anterior lamella was removed, the chamber was connected to a mercury manometer. The pressure inside the chamber was increased until rupture occurred or the manometer reached its measurement limit. The deep lamella ruptured at 252 mm Hg in one cornea, at 270 mm Hg in another, and had not ruptured at 300 mm Hg (upper limit of the manometer) in the remaining 18 donor corneas. The posterior lamella of big-bubble DALK probably confers significant structural integrity on the globe.

  4. Induction of neoplasia after deep anterior lamellar keratoplasty in a CXL-treated cornea.

    Science.gov (United States)

    Krumeich, Jörg H; Brand-Saberi, Beate; Chankiewitz, Verena; Chankiewitz, Erik; Guthoff, Rudolf

    2014-03-01

    Corneal collagen crosslinking (CXL) with ultraviolet-A energy plus riboflavin has become a ubiquitous treatment in early keratoconus, although its long-term safety is unknown. We describe severe sequelae in a CXL-treated patient after he underwent a standard deep anterior lamellar keratoplasty procedure. In April 2009, a healthy 49-year-old male patient (R.H.) underwent bilateral CXL according to the Dresden protocol for progressive keratoconus stage 3. The best-corrected visual acuity did not improve over 20/100 within a postoperative period of 2 years, and contact lenses were not tolerated. Consequently, a unilateral deep anterior lamellar keratoplasty was performed, to transplant an 8-mm fully epithelialized button onto an 8-mm bed with a bared Descemet membrane (surgeon: J.H.K.). The postoperative healing course was unusually disturbed. Sutures pulled through the recipient tissue, which required suture replacement. Portions of the epithelium sloughed off repeatedly, and bulky regrowth displayed no attachment to the Bowman membrane. Within the first weeks, the transplant became cloudy. Two biopsies were removed from the limbus area and submitted to independent histopathological laboratories, both of which diagnosed the condition as epithelial neoplasia. Pathology tests indicated conjunctival intraepithelial neoplasia, the preliminary stage of invasive squamous cell carcinoma, in the keratocyte-voided bed of the recipient. This case suggests that CXL might hamper the ocular healing process and, combined with subsequent corneal surgery, could potentially initiate neoplasia. Further investigation is warranted to determine the safety of the combination of ultraviolet-A/riboflavin treatment and subsequent corneal tissue transplantation.

  5. Effect of corneal hydration on the quality of the femtosecond laser anterior lamellar cut.

    Directory of Open Access Journals (Sweden)

    Ossama Nada

    Full Text Available The goal of this study was to assess the effect of corneal hydration on the quality of the femtosecond laser (FSL anterior lamellar cut. The Visumax FSL was used to dissect an 8-mm-diameter corneal flap in 22 eye bank corneas showing various levels of hydration. The intended ablation depth was 220 µm in all eyes, which corresponded to the maximal depth available with this laser. After the cut, the achieved ablation depth was measured using optical coherence tomography images, flap separability was assessed by measuring the mean force generated to detach the flap, and stromal bed roughness was assessed by measuring the Haralick contrast level on the 1000× scanning electron microscopy images of the ablated surfaces. The preoperative central corneal thickness ranged from 547 to 1104 µm (mean ± SEM: 833 ± 30 µm. A negative correlation was found between the level of corneal hydration and the ablation depth measured in the mid-peripheral cornea (r =  -0.626, p = 0.003, the ablation being more superficial in more edematous corneas. The Haralick contrast also tended to increase as a function of corneal hydration (r = 0.416, p = 0.061, suggesting that laser ablation in edematous corneas results in rougher stromal surfaces. These results support the hypothesis that the quality of the FSL lamellar cut decreases as the level of corneal hydration increases. Although FSL is still considered in the field as the tool of the future for corneal dissection, a better understanding of the limits of this tool will be needed before it can replace manual or automated stromal dissection techniques in hydrated corneas.

  6. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Directory of Open Access Journals (Sweden)

    Yaotao Wang

    Full Text Available Polybutene-1 (PB-1, a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  7. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers.

    Science.gov (United States)

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely "no cavitation" for the quenched sample with the thinnest lamellae where only shear yielding occurred, "cavitation with reorientation" for the samples stretched at lower temperatures and samples with thicker lamellae, and "cavitation without reorientation" for samples with thinner lamellae stretched at higher temperatures. The mode "cavitation with reorientation" occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of "cavitation without reorientation" appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher

  8. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  9. Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF6 Ions

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-06-02

    We report the results of atomistic simulations of the structural equilibrium properties of PS–PEO block copolymer (BCP) melt in the ordered lamellar phase doped with LiPF6 salt. A hybrid simulation strategy, consisting of steps of coarse-graining and inverse coarse-graining, was employed to equilibrate the melt at an atomistic resolution in the ordered phase. We characterize the structural distributions between different atoms/ions and compare the features arising in BCPs against the corresponding behavior in PEO homopolymers for different salt concentrations. In addition, the local structural distributions are characterized in the lamellar phase as a function of distance from the interface. The cation–anion radial distribution functions (RDF) display stronger coordination in the block copolymer melts at high salt concentrations, whereas the trends are reversed for low salt concentrations. Radial distribution functions isolated in the PEO and PS domains demonstrate that the stronger coordination seen in BCPs arises from the influence of both the higher fraction of ions segregated in the PS phase and the influence of interactions in the PS domain. Such a behavior also manifests in the cation–anion clusters, which show a larger fraction of free ions in the BCP. While the average number of free anions (cations) decreases with increasing salt concentration, higher order aggregates of LiPF6 increase with increasing salt concentration. Further, the cation–anion RDFs display spatial heterogeneity, with a stronger cation–anion binding in the interfacial region compared to bulk of the PEO domain.

  10. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?

    Science.gov (United States)

    Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2012-01-01

    Clothing evaporative resistance is one of the inherent factors that impede heat exchange by sweating evaporation. It is widely used as a basic input in physiological heat strain models. Previous studies showed a large variability in clothing evaporative resistance both at intra-laboratory and inter-laboratory testing. The errors in evaporative resistance may cause severe problems in the determination of heat stress level of the wearers. In this paper, the effect of temperature difference between the manikin nude surface and wet textile skin surface on clothing evaporative resistance was investigated by both theoretical analysis and thermal manikin measurements. It was found that the temperature difference between the skin surface and the manikin nude surface could lead to an error of up to 35.9% in evaporative resistance of the boundary air layer. Similarly, this temperature difference could also introduce an error of up to 23.7% in the real clothing total evaporative resistance (R ( et_real ) < 0.1287 kPa m(2)/W). Finally, it is evident that one major error in the calculation of evaporative resistance comes from the use of the manikin surface temperature instead of the wet textile fabric skin temperature.

  11. Measurements of evaporation from a mine void lake and testing of modelling approaches

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  12. Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation.

    Science.gov (United States)

    Sobac, B; Brutin, D

    2011-12-20

    In this article, we investigate the influence of the surface properties of substrates on the evaporation process. Using various nanocoatings, it is possible to modify the surface properties of substrates, such as the roughness and the surface energy, while maintaining constant thermal properties. Experiments are conducted under atmospheric conditions with five fluids (methanol, ethanol, propanol, toluene and water) and four coatings (PFC, PTFE, SiOC, and SiO(x)). The various combinations of these fluids and coatings allow for a wide range of drop evaporation properties to be studied: the dynamics of the triple line, the volatility of fluids, and a large range of wettabilities (from 17 to 135°). The experimental data are in very good quantitative agreement with existing models of quasi-steady, diffusion-driven evaporation. The experimental results show that the dynamics of the evaporative rate are proportional to the dynamics of the wetting radius. Thus, the models succeed in describing the evaporative dynamics throughout the evaporation process regardless of the behavior of the triple line. Moreover, the use of various liquids reveals the validity of the models regardless of their volatility. The results also confirm the recent finding of a universal relation for the time evolution of the drop mass, independent of the drop size and initial contact angle. Finally, this study highlights the separate and coupled roles of the triple line and the wettability on the sessile drop evaporation process. Data reveal that the more wet and pinned a drop, the shorter the evaporation time. © 2011 American Chemical Society

  13. Evaporation analysis for Tank SX-104

    International Nuclear Information System (INIS)

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation

  14. Influence of Evaporation on Soap Film Rupture.

    Science.gov (United States)

    Champougny, Lorène; Miguet, Jonas; Henaff, Robin; Restagno, Frédéric; Boulogne, François; Rio, Emmanuelle

    2018-03-02

    Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text]. At first order, the environmental humidity seems to have almost no impact on most of the film thinning dynamics. However, we find that the film length at rupture increases continuously with [Formula: see text]. To rationalize our observations, we propose that film bursting occurs when the thinning due to evaporation becomes comparable to the thinning due to liquid drainage. This rupture criterion turns out to be in reasonable agreement with an estimation of the evaporation rate in our experiment.

  15. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  16. Evaporation analysis for Tank SX-104

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  17. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  18. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  19. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2017-11-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (ΔH vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and ΔH vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining ΔH vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine ΔH vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  20. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies