WorldWideScience

Sample records for thermally convective pb-17

  1. Corrosion of ferrous alloys exposed to thermally convective Pb-17 at. % Li

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1986-01-01

    A type 316 stainless steel thermal convection loop with type 316 stainless steel coupons and a Fe-9 Cr-1 Mo steel loop containing Fe-12 Cr-1 MoVW steel specimens circulated molten Pb-17 at. % Li at a maximum temperature of 500 0 C. Specimens were exposed for greater than 6000 h. Mass loss and surface characterization data were compared for these two alloys. At any particular exposure time, the corrosion of type 316 stainless steel by Pb-17 at. % Li was more severe, and of a different type than that of similarly exposed Fe-12 Cr-1 MoVW steel. The austenitic alloy suffered nonuniform penetration and dissolution by the lead-lithium, whereas the Fe-12 Cr-1 MoVW steel tended to be more uniformly corroded. The presence of a ferritic layer on the type 316 stainless steel, and its susceptibility to spalling during specimen cleaning, were shown to be important in evaluating the data and in comparing corrosion losses for the type types of alloys. A model for the nonuniform penetration of type 316 stainless steel by Pb-17 at. % Li was suggested

  2. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  3. Corrosion and mass transfer of ferrous alloys in Pb-17 at. % Li

    International Nuclear Information System (INIS)

    Tortorelli, P.F.

    1988-01-01

    Long term exposures of type 316 stainless and Fe--12Cr--1MoVW steels to thermally convective Pb-17 at. % Li demonstrated the aggressiveness of this environment, the greater corrosion susceptibility of the austenitic stainless steel, the constancy of the Fe--12Cr surface composition, and the applicability of a surface destabilization model. Cold work affected the penetration of type 316 stainless steel. Deposition in the type 316 stainless steel system appeared to be influenced by the effectiveness of nucleation and/or adhesion of deposits. In the Fe--12Cr--1MoVW steel loop, solubility-driven reactions appeared to be the most important process in deposition. 13 refs., 5 figs., 1 tab

  4. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  5. Compatibility of austenitic and martensitic steels behaviour in semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Sannier, J.; Dufrenoy, T.; Flament, T.; Terlain, A.

    1991-01-01

    Compatibility tests between Pb17Li and 316L austenitic or 1.4914 martensitic steels have been performed with experimental conditions simulating the special features of the water-cooled lithium-lead blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 deg C temperature range, the results show that corrosion kinetics for both 316L and 1.4914 steels are quasi-linear and about 3 times lower compared to turbulent condition. From amount of recovered deposits, the mass transfer of 316L steel at 450 deg C appears to be equivalent to that of 1.1914 steel at 475 deg C. The same relationship was observed in flowing Pb17Li condition

  6. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  7. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  8. Convective Concrete : Additive Manufacturing to facilitate activation of thermal mass

    NARCIS (Netherlands)

    de Witte, D.; de Klijn-Chevalerias, M.L.; Loonen, R.C.G.M.; Hensen, JLM; Knaack, U.; Zimmermann, G

    2017-01-01

    This paper reports on the research-driven design process of an innovative thermal mass concept: Convective Concrete. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such

  9. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  10. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  11. Convective Concrete: additive manufacturing to facilitate activation of thermal mass

    Directory of Open Access Journals (Sweden)

    Dennis de Witte

    2017-12-01

    Full Text Available Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung.

  12. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  13. Temperature structure function in the Bolgiano regime of thermal convection

    Czech Academy of Sciences Publication Activity Database

    Skrbek, Ladislav; Niemela, J. J.; Sreenivasan, K. R.; Donnelly, J.

    2002-01-01

    Roč. 66, č. 3 (2002), 036303/1-036303/6 ISSN 1063-651X Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * temperature fluctuations * Bolgiano regime Subject RIV: BK - Fluid Dynamics Impact factor: 2.397, year: 2002

  14. A micro-convection model for thermal conductivity of nanofluids

    Indian Academy of Sciences (India)

    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...

  15. Effects of Brinkman number on thermal-driven convective spherical ...

    African Journals Online (AJOL)

    Michael Horsfall

    KEYWORDS: Magnetic field generation, Thermal-driven convection, Brinkman number, Dynamo action, Fluid outer core ... The problem considers conducting fluid motion in a rapidly rotating spherical shell. The ... is, that the energy lost by the electric currents must be ... which are sources of free electrons and basically due.

  16. Non-linear thermal convection in a

    Directory of Open Access Journals (Sweden)

    Sachin Shaw

    2016-06-01

    Full Text Available Casson fluid flow has many practical applications such as food processing, metallurgy, drilling operations and bio-engineering operations. In this paper, we study Casson fluid flow through a plate with a convective boundary condition at the surface and quantify the effects of suction/injection, velocity ratio, and Soret and Dufour effects. Firstly we used a similarity transformation to change the governing equations to ordinary differential equations which were then solved numerically. The effect of the rheological parameters on the velocity, temperature, and concentration with skin friction, and heat and mass transfer are shown graphically and discussed briefly. It is observed that the velocity of the fluid at the surface decreases with increase of the velocity ratio while the nature of the flow is in opposite characteristics. The local Nusselt number decreases with increase in the velocity ratio. Skin friction at the surface is enhanced by buoyancy ratio and Casson number. Due to injection of the fluid in the system, the mass transfer rate at the surface increases while it decreases with the velocity ratio parameter.

  17. Influence of a magnetic field on the corrosion of austenitic and martensitic steels by semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Terlain, A.; Dufrenoy, T.

    1994-01-01

    The influence of a magnetic field on the compatibility of 316L austenitic and 1.4914 martensitic steels with Pb17Li has been studied in conditions simulating the special features of the water-cooled Pb17Li blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 C temperature range, the results show an increase of the corrosion rate in the presence of a magnetic field. This increase is about 50% for 316L steel and 30% for 1.4914 martensitic steel. Moreover the magnetic field induces a loss of symmetry in the deposition process: the amount of recovered deposit is greater in the direction parallel to the magnetic field than in the perpendicular one. ((orig.))

  18. Determination of the diffusion coefficients of iron and chromium in Pb17Li at 500 deg C

    International Nuclear Information System (INIS)

    Simon, N.; Flament, T.; Terlain, A.

    1992-01-01

    The diffusion of the dissolved metallic species in a liquid metal towards the boundary layer is one of the elementary steps of the overall mass transfer process induced by thermal gradient. This phenomenon is very probably the limiting step in the mass transfer of martensitic Fe-Cr steels in the presence of Pb17Li liquid eutectic alloy. For estimating diffusion flux, the diffusion coefficients of iron and chromium in Pb17Li are needed but are not known. Consequently these data have been determined in CEA laboratory by measuring metal loss of cylindrical specimens after rotation at 500 deg C in Pb17Li for several hours and applying the first Fick diffusion law in the boundary layer whose the thickness has been previously determined by EISENBERG. After a description of the experimental device, the results are presented and discussed

  19. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-02-01

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17LI is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Ph-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure.

  20. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  1. Corrosion in lithium-stainless steel thermal-convection systems

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650 0 C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop

  2. Tritium extraction from Pb-17Li by bubble columns

    International Nuclear Information System (INIS)

    Malara, C.

    1995-01-01

    Tritium extraction from the Pb-17Li liquid breeder of a fusion reactor can be efficiently carried out by bubble columns. To this aim, a mathematical model describing the complex fluid-dynamics of a bubble extractor is here presented. The model equations are made dimensionless and, together with the proper boundary conditions, numerically solved by the orthogonal collocation technique. Moreover, in order to better understand the role played by the different parameters in determining the performance of a bubble column, a closed solution of the model is obtained by introducing suitable hypotheses. A parametric analysis of the extraction efficiency of a bubble column as a function of the process parameters is carried out and, on this basis, the design of a tritium extraction system from the Pb-17Li breeder of a DEMO-type fusion reactor is proposed. 17 refs., 3 figs., 2 tabs

  3. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  4. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    International Nuclear Information System (INIS)

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  5. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  6. Thermally driven convective cells and tokamak edge turbulence

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.

    1987-07-01

    A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )

  7. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

    2017-08-20

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  8. Natural convection heat transfer coefficient for newborn baby - Thermal manikin assessed convective heat loses

    Science.gov (United States)

    Ostrowski, Ziemowit; Rojczyk, Marek

    2017-11-01

    The energy balance and heat exchange for newborn baby in radiant warmer environment are considered. The present study was performed to assess the body dry heat loss from an infant in radiant warmer, using copper cast anthropomorphic thermal manikin and controlled climate chamber laboratory setup. The total body dry heat losses were measured for varying manikin surface temperatures (nine levels between 32.5 °C and 40.1 °C) and ambient air temperatures (five levels between 23.5 °C and 29.7 °C). Radiant heat losses were estimated based on measured climate chamber wall temperatures. After subtracting radiant part, resulting convective heat loses were compared with computed ones (based on Nu correlations for common geometries). Simplified geometry of newborn baby was represented as: (a) single cylinder and (b) weighted sum of 5 cylinders and sphere. The predicted values are significantly overestimated relative to measured ones by: 28.8% (SD 23.5%) for (a) and 40.9% (SD 25.2%) for (b). This showed that use of adopted general purpose correlations for approximation of convective heat losses of newborn baby can lead to substantial errors. Hence, new Nu number correlating equation is proposed. The mean error introduced by proposed correlation was reduced to 1.4% (SD 11.97%), i.e. no significant overestimation. The thermal manikin appears to provide a precise method for the noninvasive assessment of thermal conditions in neonatal care.

  9. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  10. Mixed Convection in Technological Reservoir of Thermal Power Station

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy V.

    2014-01-01

    Full Text Available The problem of mixed convection of a viscous incompressible fluid in an open rectangular reservoir with inlet and outlet of mass with considering nonuniform heat sink at the external borders of the solution domain is solved. The region of the solution was limited by two vertical and by one horizontal walls of finite thickness and one free surface. The flat nonstationary mixed convection within the framework of Navier-Stokes model is examined for liquid and thermal conductivity for solid walls. Distributions of hydrodynamic parameters and temperatures with different intensity of heat sink on the outer contour of the cavity show a change in the intensity of heat sink on the region boundaries of the solution leads to scale changes in the structure of flow and temperature fields of the liquids.

  11. Thermally optimum spacing of vertical, natural convection cooled, parallel plates

    Science.gov (United States)

    Bar-Cohen, A.; Rohsenow, W. M.

    Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.

  12. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: wongc@fusion.gat.com; Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Sawan, M. [University of Wisconsin, Madison, WI (United States); Dagher, M. [University of California, Los Angeles, CA (United States); Smolentsev, S. [University of California, Los Angeles, CA (United States); Merrill, B. [INEEL, Idaho Falls, ID (United States); Youssef, M. [University of California, Los Angeles, CA (United States); Reyes, S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sze, D.K. [University of California, San Diego, CA (United States); Morley, N.B. [University of California, Los Angeles, CA (United States); Sharafat, S. [University of California, Los Angeles, CA (United States); Calderoni, P. [University of California, Los Angeles, CA (United States); Sviatoslavsky, G. [University of Wisconsin, Madison, WI (United States); Kurtz, R. [Pacific Northwest Laboratory, Richland, WA (United States); Fogarty, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Zinkle, S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Abdou, M. [University of California, Los Angeles, CA (United States)

    2006-02-15

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiC{sub f}/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperature of 700 deg. C. We have identified critical issues for the concept, some of which include the first wall design, the assessment of MHD effects with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R and D programs have been proposed to address these issues. At the same time we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  13. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-07-05

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperture of 700C. We have identified critical issues for the concept, some of which inlude the first wall design, the assessment of MHD effectrs with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R&D programs have been proposed to address these issues. At the same time, we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  14. Thermal convection in dielectric liquids in a cylindrical annulus

    Science.gov (United States)

    Mutabazi, Innocent; Kang, Changwoo; Meyer, Antoine; Meier, Martin; Egbers, Christoph

    2017-11-01

    Thermal convection is investigated in a dielectric liquid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ and electric permittivity ɛ in a cylindrical annulus of inner radius a and outer radius bwith a radial temperature gradient and a high-frequency electric tension. The coupling between the electric field and the gradient of the permittivity yields the dielectrophoretic force. The control parameters are η = a/b, Pr = ν / κ, the classic Rayleigh number Ra = αΔ T gd3 / νκ , and the electric Rayleigh number L = αΔ T ged3 / νκ The electric gravity ge is the gradient of the electric energy in the condenser. Linear stability analysis shows that for infinite annulus, depending on values of η, Ra and L, critical modes are either hydrodynamic or thermal modes, helical electric modes or columnar vortices. Experiments in an annulus of aspect ratio Γ = 19.6 during parabolic flight campaigns indicate the existence of columns. Columnar vortices result from the competition between Archimedean buoyancy and dielectrophoretic force. Direct numerical simulations in the annulus of Γ = 20 show that the columnar vortices occupy the central part of the annulus, while near the end-zones the flow is laminar and dominated by an azimuthal vorticity. This work was supported by CNRS (LIA ISTROF), CNES and DLR.

  15. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  16. Thermal convection in a co-rotating cylindrical annulus

    Science.gov (United States)

    Kang, Changwoo; Meyer, Antoine; Mutabazi, Innocent

    2017-11-01

    We investigate thermal convection in a fluid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ in a cylindrical annulus of inner radius a and outer radius bwith a solid body rotation of angular frequency Ω and an inward heating with a temperature difference ΔT. The control parameters are η = a/b, Pr = ν / κ and the Rayleigh number Ra = αΔ T gd3 / νκ where the centrifugal gravity gc =Ω2 (a +b)/2. We adopt the generalized Boussinesq approximation. Linear stability analysis shows that for infinite annulus, the threshold Rac decreases with η and tends to the value Rac = 1708 when η -> 1 and that critical modes are columnar vortices. Direct numerical simulations using periodic boundary conditions in the axial direction, show that the columnar vortices appear via a supercritical bifurcation. Higher modes of columnar vortices have been determined using the frequency spectra and the Nusselt number for Pr =1 and η = 0.5 : drifting vortices, vacillation modes and chaotic modes have been identified from Ra =1700 to Ra =107 The contribution of the centrifugal buoyancy to the variation of the kinetic energy in the flow is analysed. This work was supported by the project BIOENGINE (CPER-FEDER, Normandie) and CNES.

  17. Thermally developing forced convection and the corresponding thermal stresses in a porous plate channel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; LIU Xuemei

    2007-01-01

    Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.

  18. Mixed thermal convection: fundamental issues and analysis of the planar case

    Directory of Open Access Journals (Sweden)

    JACQUES PADET

    2015-09-01

    Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.

  19. Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage

    Science.gov (United States)

    Dai, Gaole; Shang, Jin; Huang, Jiping

    2018-02-01

    Heat can transfer via thermal conduction, thermal radiation, and thermal convection. All the existing theories of transformation thermotics and optics can treat thermal conduction and thermal radiation, respectively. Unfortunately, thermal convection has seldom been touched in transformation theories due to the lack of a suitable theory, thus limiting applications associated with heat transfer through fluids (liquid or gas). Here, we develop a theory of transformation thermal convection by considering the convection-diffusion equation, the equation of continuity, and the Darcy law. By introducing porous media, we get a set of equations keeping their forms under coordinate transformation. As model applications, the theory helps to show the effects of cloaking, concentrating, and camouflage. Our finite-element simulations confirm the theoretical findings. This work offers a transformation theory for thermal convection, thus revealing novel behaviors associated with potential applications; it not only provides different hints on how to control heat transfer by combining thermal conduction, thermal convection, and thermal radiation, but also benefits mass diffusion and other related fields that contain a set of equations and need to transform velocities at the same time.

  20. Self-cooled blanket concepts using Pb-17Li as liquid breeder and coolant

    International Nuclear Information System (INIS)

    Malang, S.; Deckers, H.; Fischer, U.; John, H.; Meyder, R.; Norajitra, P.; Reimann, J.; Reiser, H.; Rust, K.

    1991-01-01

    A blanket design concept using Pb-17Li eutectic alloy as both breeder material and coolant is described. Such a self-cooled blanket for the boundary conditions of a DEMO-reactor is under development at the Kernforschungszentrum Karlsruhe (KfK) in the frame of the European blanket development program. Results of investigations in the areas of design, neutronics, magneto-hydrodynamics, thermo-mechanics, ancillary loop systems, and safety are reported. Based on recent progress, it can be concluded that the boundary conditions of a DEMO-reactor can be met, tritium self-sufficiency can be obtained without using beryllium as an additional neutron multiplier, and tritium inventory and permeation are acceptably low. However, to complete judge the feasibility of the proposed concept, further studies are necessary to obtain a better understanding of the magneto-hydrodynamic phenomena and their effects on the thermal-hydraulic performance of a fusion reactor blanket. (orig.)

  1. Kinetic thermal structure in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Chen, Jun; Yin, Ze-Xia; She, Zhen-Su; Bao, Yun

    2017-11-01

    Plumes are believed to be the most important heat carrier in turbulent Rayleigh-Bénard convection (RBC). However, a physically sound and clear definition of plume is still absent. We report here the investigation of a definition of plume called kinetic thermal structure (KTS), based on the analysis of vertical velocity gradient (Λ = ∂w / ∂z), using direct numerical simulation (DNS) data of the three-dimensional RBC in a rectangular cell for Pr = 0.7 and Ra = 1 ×108 5 ×109 . It is shown that the conditional average of temperature on Λ exhibits such a behavior that when Λ is larger than a threshold, the volume carries a constant temperature of fluid, hence defines an unambiguous thermal structure, KTS. The DNS show that the KTS behaves in a sheet-like shape near the conducting plate, and becomes slender and smaller with increasing Ra . The heat flux carried by KTS displays a scaling law, with an exponent larger than the global- Nu - Ra scaling, indicating stronger heat transport than the turbulent background. An advantage of the KTS is its connection to the balance equation allowing, for the first time, a prediction of the Ra -dependence of its vertical velocity and the characteristic Λ threshold, validated by DNS. Supported by NSFC (11172006, 11221062, 11452002), and by MOST (China) 973 project (2009CB724100).

  2. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  3. Turbulent thermal superstructures in Rayleigh-Bénard convection

    Science.gov (United States)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  4. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  5. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    International Nuclear Information System (INIS)

    Lyubimova, T; Mailfert, A

    2013-01-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  6. Mixing properties of thermal convection in the earth's mantle

    NARCIS (Netherlands)

    Schmalzl, J.T.

    1996-01-01

    The structure of mantle convection will greatly influence the generation and the survival of compositional heterogeneities. Conversely, geochemical observations can be used to obtain information about heterogeneities in the mantle and then, with certain model assumptions, information about the

  7. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  8. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    Science.gov (United States)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  9. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  10. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  11. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  12. 3/2 or 5/2 for convective thermal transport?

    International Nuclear Information System (INIS)

    Duechs, D.F.

    1989-07-01

    To resolve frequent arguments on the form of the convective part of the thermal energy flux the relevant definitions and equations are compiled. The relative importance of the different terms involved is shown for Joint European Torus (JET) data. The choice of the ''adiabatic source terms'', p''centre dot''div v- ''->'' or v- ''->centre dot''grad p, decides the form of the convective heat flux. (author)

  13. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  14. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  15. Has the ultimate state of turbulent thermal convection been observed?

    Czech Academy of Sciences Publication Activity Database

    Skrbek, L.; Urban, Pavel

    2015-01-01

    Roč. 785, DEC (2015), s. 270-282 ISSN 0022-1120 R&D Projects: GA ČR GA14-02005S Institutional support: RVO:68081731 Keywords : turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics Impact factor: 2.514, year: 2015

  16. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

    Directory of Open Access Journals (Sweden)

    Jianhong Kang

    2015-01-01

    Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

  17. Corrosion behavior of CLAM steel weldment in flowing liquid Pb-17Li at 480 °C

    International Nuclear Information System (INIS)

    Chen Xizhang; Shen Zheng; Chen Xing; Lei Yucheng; Huang Qunying

    2011-01-01

    Highlights: ► The research shows that the CLAM steel weldment have its own corrosion mechanism in liquid Pb-17Li alloy. The basic rule of the corrosion behaviour of weldments is that the coorosion rate decreases obviously with the increasing of exposed time. ► The weight loss of CLAM steel weldment is far higer than the base metal after exposed to Pb-17Li alloy. Corrosion has little effects on elements of weldment sample surfaces. And an easier corrosion area in the weld joint are found. ► A simple presumably corrosion behavior model is established. The model demonstrate that the easier corroded area will be formed when the direction of martensite laths form small-angle with the specimen surface, The easy corrosion area is the martensite lath area lack of Cr and distributes like laths, the cross-section area is 1 μm 2 to 4 μm 2, the existence of the easier corrosion area is one of the reasons that lead to the difference of the corrosion rate. - Abstract: CLAM (China Low Activation Martensitic) steel is considered as one of the candidate structural materials in liquid LiPb blanket concepts. Welding is one of the essential technologies for its practical application, CLAM steel weldment shows a great difference with base metal due to the effect of welding thermal cycle. In order to investigate the corrosion behavior and mechanism of CLAM weldments in liquid Pb-17Li, the experiments were performed by exposing the TIG weldment samples in flowing LiPb at 480 °C. The weight loss test of exposed specimens show that in 500 h, 1000 h dynamic conditions, corrosion resistance of CLAM steel weldment is poor, SEM analysis shows that the thicker martensite lath in weld area lead to higher corrosion amount, EDS results show that the influence of corrosion on surface elements is small, and surface corrosion is even, EDX analysis shows that the penetration of Pb-17Li does not exist in the joint. With the increasing of exposure time, the corrosion rate decreases

  18. Finite element analysis of thermal convection in deep ocean sediments

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1980-01-01

    Of obvious importance to the study and engineering of a seabed disposal is the determination of the temperature and fluid flow fields existing in the sediment layer and the perturbation of these fields due to the implantation of localized heat sources. The fluid mechanical and heat transfer process occurring in oceanic sediments may be characterized as free (or natural) convection in a porous material. In the case of an undisturbed sediment layer, the driving force for the natural circulation of pore water comes from the geothermal heat flux. Current theories for heat flow from the sea floor suggest the possibility of large scale hydrothermal circulation in the oceanic crust (see e.g., Ribando, et al. 1976) which is in turn coupled with a convection process in the overlying sediment layer (Anderson 1980, Anderson, et al. 1979). The introduction of a local heat source, such as a waste canister, into a saturated sediment layer would by itself initiate a convection process due to buoyancy forces. Since the mathematical description of natural convection in a porous medium is of sufficient complexity to preclude the use of most analytic methods of analysis, approximate numerical procedures are often employed. In the following sections, a particular type of numerical method is described that has proved useful in the solution of a variety of porous flow problems. However, rather than concentrate on the details of the numerical algorithm the main emphasis of the presentation will be on the types of problems and results that are encountered in the areas of oceanic heat flow and seabed waste disposal

  19. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  20. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    Science.gov (United States)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  1. Thermal convection of viscoelastic shear-thinning fluids

    International Nuclear Information System (INIS)

    Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U

    2016-01-01

    The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)

  2. Thermal convection of liquid sodium in inclined cylinders

    Science.gov (United States)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two halves of the cylinder indicates the torsional character of LSC fluctuations. At β =30∘ , the intensity of the oscillations at the

  3. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  4. Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    NARCIS (Netherlands)

    Ahlers, Günter; Calzavarini, E.; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef; Sugiyama, K.

    2008-01-01

    As shown in earlier work [Ahlers et al., J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal

  5. Numerical modelling of thermal convection in the Luttelgeest carbonate platform, the Netherlands

    NARCIS (Netherlands)

    Lipsey, L.; Pluymaekers, M.; Goldberg, T.; Oversteeg, K. van; Ghazaryan, L.; Cloetingh, S.; van Wees, J.D.

    2016-01-01

    The presence of convective fluid flow in permeable layers can create zones of anomalously high temperature which can be exploited for geothermal energy. Temperature measurements from the Luttelgeest-01 (LTG-01) well in the northern onshore region of the Netherlands indicate variations in the thermal

  6. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  7. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    DEFF Research Database (Denmark)

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g. active chilled beam, air conditioning) and radiant terminals. The mode of heat transfer of the two emitters is different: the first one is mainly based on convection, whereas the second one is based...... conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH...

  8. Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid

    Science.gov (United States)

    Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.

    A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.

  9. The effect of thermal conductance of vertical walls on natural convection in a rectangular enclosure

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Yoshino, A.; Taii, K.

    2004-01-01

    This paper deals with the experimental results of natural convective heat transfer in a rectangular water layer bounded by vertical walls of different thermal conductance. The vertical walls were made of copper or stainless steel. A minimum was observed in the horizontal distribution of temperature near the heating wall since a secondary reverse flow occurred outside the boundary layer. For copper case the experimental results of Nusselt number agreed well with calculations under an isothermal wall condition. For stainless steel case, however, the measured values were lower than the calculations since a three-dimensional effect appeared in convection due to non-uniformity in wall temperature. (author)

  10. Thermal and hydrodynamic characteristics of forced and mixed convection flow through vertical rectangular channels

    Directory of Open Access Journals (Sweden)

    Hanafi Abdalla S.

    2008-01-01

    Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is

  11. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  12. Thermal-hydraulic performance of convective boiling jet array impingement

    International Nuclear Information System (INIS)

    Jenkins, R; De Brún, C; Kempers, R; Lupoi, R; Robinson, A J

    2016-01-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux. (paper)

  13. Thermal convection of liquid metal in the titanium reduction reactor

    Science.gov (United States)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  14. Transitional free convection flows induced by thermal line sources

    NARCIS (Netherlands)

    Bastiaans, R.J.M.

    1993-01-01

    In the present study the usefullness of a large eddy simulation for transition is examined. Numerical results of such simulations are presented from a study to determine the characteristics of a flow induced by a thermal line source. The first bifurcation to time dependent motion and the route to

  15. Hydrogen extraction from Pb-17Li: results with a 800 mm high packed column

    International Nuclear Information System (INIS)

    Alpy, N.; Terlain, A.; Lorentz, V.

    2000-01-01

    Within the framework of the studies carried out for the development of a gas-liquid alloy contactor for the extraction of hydrogen from Pb-17Li, the behaviour of a 800 mm high packed column has been investigated on the Melodie loop. The previous contactor technology, a structured packing supplied by the Sulzer Company, has been retained since it had shown satisfying efficiency, likely due to the beneficial effect, on the mass transfer, of the liquid flow division that it involves. The best results of the present study have been achieved via a reduction of the liquid load on the packing: an efficiency of up to 30% was reached at 673 K for an inlet hydrogen pressure in Pb-17Li of 1000 Pa. The impact of the hydrogen pressure in the inlet Pb-17Li flow and on the extraction efficiency has been experimentally assessed: this study allowed us to evaluate the potential of the process in terms of packing height. Finally, a future experimental facility, which should allow us to observe the hydraulic behaviour of liquid mercury (simulating Pb-17Li) on the packing is presented

  16. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  17. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    Science.gov (United States)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  18. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside.

  19. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I.

    2016-01-01

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside

  20. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection

    Science.gov (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.

    2015-11-01

    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  1. Inversion approach for thermal data from a convecting hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1983-08-01

    Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.

  2. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid

    Directory of Open Access Journals (Sweden)

    Sadia Ayub

    Full Text Available This paper models the peristaltic transport of magnetohydrodynamic (MHD third grade nanofluid in a curved channel with wall properties. Combined effects of heat and mass transfer are retained via mixed convection. The present analysis is made in the presence of thermal radiation and chemical reaction. No-slip effect is maintained at the boundary for the velocity, temperature and nanoparticle volume fraction. Resulting formulation is simplified by employing the assumptions of long wavelength and low Reynolds number approximations. Results of axial velocity, temperature, nanoparticle mass transfer and heat transfer are studied graphically. Results reveal increment in fluid velocity for larger values of heat transfer Grashof number. There is reduction in nanoparticle mass transfer with the increase in thermophoresis parameter. Keywords: Peristalsis, Third grade nanofluid, Curved channel, Mixed convection, Thermal radiation, Chemical reaction, Flexible walls, Numerical solutions

  3. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  4. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  5. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension

  6. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  7. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  8. Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Cardin, P.; Guervilly, C.

    2016-12-01

    We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.

  9. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  10. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  11. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  12. Thermal investigation of an infrared reflow oven with a convection fan

    International Nuclear Information System (INIS)

    Kim, Mi Ro; Choi, Young Ki; Lee, Jung Hee; Lee, Gyu Bong; Chung, Il Yong; Kim, Jung Duck

    1998-01-01

    A two-dimensional numerical model for an infrared reflow soldering with a convection fan is used by modifying the Eftychiou's numerical modeling. The two-dimensional tunnel model which predicts convective conditions within the reflow oven are solved using the finite volume method with the SIMPLER algorithm. The card model solves the transient two-dimensional heat conduction equation in conjunction with a radiative heat transfer analysis. We also performed an experiment to validate the numerical modeling. The numerical result shows excellent agreement with experimental data. Based on the capability of this model, parametric simulations are performed to determine the thermal response of the solder to variations in the oven operating conditions and heat transfer conditions. This study shows that radiation and conveyor velocity are important factors in the preheat region

  13. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  14. Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization

    International Nuclear Information System (INIS)

    Bouaziz, M.N.; Aziz, Abdul

    2010-01-01

    A novel concept of double optimal linearization is introduced and used to obtain a simple and accurate solution for the temperature distribution in a straight rectangular convective-radiative fin with temperature dependent thermal conductivity. The solution is built from the classical solution for a pure convection fin of constant thermal conductivity which appears in terms of hyperbolic functions. When compared with the direct numerical solution, the double optimally linearized solution is found to be accurate within 4% for a range of radiation-conduction and thermal conductivity parameters that are likely to be encountered in practice. The present solution is simple and offers superior accuracy compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method. The fin efficiency expression resembles the classical result for the constant thermal conductivity convecting fin. The present results are easily usable by the practicing engineers in their thermal design and analysis work involving fins.

  15. Thermal convection as a possible mechanism for the origin of polygonal structures on Pluto's surface

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frédéric

    2017-05-01

    High-resolution pictures of Pluto's surface obtained by the New Horizons spacecraft revealed, among other surface features, a large nitrogen ice glacier informally named Sputnik Planitia. The surface of this glacier is separated into a network of polygonal cells with a wavelength of ˜20-40 km. This network is similar to the convective patterns obtained under certain conditions by laboratory experiments, suggesting that it is the surface expression of thermal convection. Here we investigate the surface planform obtained for different convective systems in 3-D Cartesian geometry with different modes of heating and rheologies. We find that bottom heated systems, as assumed by previous studies, do not produce surface planforms consistent with the observed pattern. Alternatively, for a certain range of Rayleigh-Roberts number, RaH, a volumetrically heated system produces a surface planform similar to this pattern. We then combine scaling laws with values of RaH within its possible range to establish relationships between the critical parameters of Sputnik Planitia. In particular, our calculations indicate that the glacier thickness and the surface heat flux are in the ranges 2-10 km and 0.1-10 mW m-2, respectively. However, a difficulty is to identify a proper source of internal heating. We propose that the long-term variations of surface temperature caused by variations in Pluto's orbit over millions of years produces secular cooling equivalent to internal heating. We find that this source of heating is sufficient to trigger thermal convection, but additional investigations are needed to determine under which conditions it can produce surface patterns similar to those of Sputnik Planitia.

  16. Thermal histories of convective earth models and constraints on radiogenic heat production in the earth

    International Nuclear Information System (INIS)

    Davies, G.F.

    1980-01-01

    Thermal histories have been calculated for simple models of the earth which assume that heat is transported by convection throughout the interior. The application of independent constraints to these solutions limits the acceptable range of the ratio of present radiogenic heat production in the earth to the present surface heat flux. The models use an empirical relation between the rate of convective heat transport and the temperature difference across a convecting fluid. This is combined with an approximate proportionality between effective mantle viscosity and T/sup -n/, where T is temperature and it is argued that n is about 30 throughout the mantle. The large value of n causes T to be strongly buffered against changes in the earth's energy budget and shortens by an order of magnitude the response time of surface heat flux to changes in energy budget as compared to less temperature-dependent heat transport mechanisms. Nevertheless, response times with n=30 are still as long as 1 or 2 b.y. Assuming that the present heat flux is entirely primordial (i.e., nonradiogenic) in a convective model leads back to unrealistically high temperatures about 1.7 b.y. ago. Inclusion of exponentially decaying (i.e., radiogenic) heat sources moves the high temperatures further into the past and leads to a transition from 'hot' to 'cool' calculated thermal histories for the case when the present rate of heat production is near 50% of the present rate of heat loss. Requiring the calculated histories to satisfy minimal geological constraints limits the present heat production/heat loss ratio to between about 0.3 and 0.85. Plausible stronger constraints narrow this range to between 0.45 and 0.65. These results are compatible with estimated radiogentic heat production rates in some meteorites and terrestrial rocks, with a whole-earth K/U ratio of 1--2 x 10 4 giving optimal agreement

  17. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy

    Directory of Open Access Journals (Sweden)

    Herzog Walter

    2002-12-01

    Full Text Available Abstract Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid.

  18. Unsteady natural convection flow past an accelerated vertical plate in a thermally stratified fluid

    Directory of Open Access Journals (Sweden)

    Deka Rudra Kt.

    2009-01-01

    Full Text Available An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.

  19. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    Science.gov (United States)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  20. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  1. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  2. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  3. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  4. Effect of rotation on the onset of thermal convection in a viscoelastic fluid layer

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, Mahantesh S [Department of Mathematics, Government College, Gulbarga 585 105 (India); Sidram, W, E-mail: mahantesh_swamy@yahoo.co.in [Department of Mathematics, Gulbarga University, Jnana Ganga, Gulbarga 585 106 (India)

    2013-02-15

    A rotating viscoelastic fluid layer heated from below is studied analytically using both linear and nonlinear stability analyses. The Oldroyd-B fluid model is employed to describe the rheological behaviour of the fluid. The Coriolis term is included in the momentum equation and the Oberbeck-Boussinesq approximation is invoked. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Prandtl number and viscoelastic parameters. There is competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory rather than stationary modes. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability and this stabilization is reinforced by the rotation effect. The nonlinear theory is based on a truncated representation of the Fourier series method. The effect of rotation, viscoelastic parameters and also the Prandtl number on the transient heat transfer is presented graphically. (paper)

  5. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    International Nuclear Information System (INIS)

    Malara, C.; Casini, G.; Viola, A.

    1995-01-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.)

  6. Estimation of the effect of thermal convection and casing on the temperature regime of boreholes: a review

    International Nuclear Information System (INIS)

    Eppelbaum, L V; Kutasov, I M

    2011-01-01

    In a vertical borehole, free heat convection arises when the temperature gradient equals or exceeds the so-called critical gradient. The critical temperature gradient is expressed through the critical Rayleigh number and depends on two parameters: (a) the ratio of formation (casings) to fluid (gas) conductivities (λ f /λ) and (b) the convective parameter of the fluid. Both these parameters depend on the temperature (depth). An empirical equation for the critical Rayleigh number as a function of the ratio λ f /λ is suggested. For the 0–100 °C range, empirical equations for convective parameters of water and air are proposed. The analysis of the published results of field investigations in deep boreholes and modelling shows that the temperature disturbances caused by thermal convection do not exceed 0.01–0.05 °C. Thus, in deep wells the temperature deviations due to thermal convection are usually within the accuracy of the temperature surveys. However, due to convection cells the geothermal gradient cannot be determined with sufficient accuracy for short well sections. In shallow boreholes the effect of thermal convection is more essential (up to 3–5 °C). To reduce the effect of convection on the temperature regime in shallow observational wells, it is necessary to reduce the diameter of the wellbores and use well fillers (fluids and gases) with low values of the convective parameters. The field observations and numerical calculations indicate that the distorting effect due to casing pipes is small and its influence is localized to the ends of the pipes, and this effect is independent of time. (topical review)

  7. Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg

    2017-03-15

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.

  8. Early thermal history of Rhea: the role of serpentinization and liquid state convection

    Science.gov (United States)

    Czechowski, Leszek; Losiak, Anna

    2015-04-01

    Intorduction: Thermal history of Rhea from the beginning of accretion is investigated. The numerical model of convection combined with the parameterized theory is developed. Melting of the satellite's matter, gravitational differentiation and serpentinization of silicates are included. The role of the following parameters of the model is investigated: time of beginning of accretion, duration of accretion, viscosity of ice close to the melting point, activation energy in the formula for viscosity E, thermal conductivity of silicate component, ammonia content X, and energy of serpentinization. 1. Numerical model: In our calculations we use numerical model developed by Czechowski (2012) (see e.g. description in [1]). The model is based on parameterized theory of convection combined with 1-dimensional equation of the heat transfer in spherical coordinates: δT(r,t)- ρcp δt = div(k(r,T ) gradT (r,t))+ Q(r,T), where r is the radial distance (spherical coordinate), ρ is the density [kg m-3], cp [J kg1 K-1 ] is the specific heat, Q [W kg-1] is the heating rate, and k[W m-1 K-1] is the thermal conductivity. Q(r,t) includes sources and sinks of the heat. The equation is solved in time dependent region [0, R(t)]. During accretion the radius R(t) increases in time according to formula: R(t) = atfor tini tac , i.e. after the accretion (see e.g. [2]), where tinidenotes beginning of accretion and tac denotes duration of this process. If the Rayleigh number in the considered layer exceeds its critical value Racr then convection starts. It leads to effective heat transfer. The full description of convection is given by a velocity field and temperature distribution. However, we are interested in convection as a process of heat transport only. For solid state convection (SSC) heat transport can be described by dimensionless Nusselt number Nu. We use the following definition of the Nu: Nu= (True total surface heat flow)/(Total heat flow without convection). The heat transport by

  9. Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2012-01-01

    Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.

  10. Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

    Science.gov (United States)

    Czechowski, Leszek; Łosiak, Anna

    2016-12-01

    Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dramatic differences are found for realistic values. The process of differentiation is also investigated. It is found that liquid state convection could delay the differentiation for hundreds of My. The results are confronted with observational data from Cassini spacecraft. It is possible that differentiation is fully completed but the density of formed core is close to the mean density. If this interpretation is correct, then Rhea could have accreted any time before 3-4 My after formation of CAI.

  11. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  12. Harvesting electrical energy from torsional thermal actuation driven by natural convection.

    Science.gov (United States)

    Kim, Shi Hyeong; Sim, Hyeon Jun; Hyeon, Jae Sang; Suh, Dongseok; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong

    2018-06-07

    The development of practical, cost-effective systems for the conversion of low-grade waste heat to electrical energy is an important area of renewable energy research. We here demonstrate a thermal energy harvester that is driven by the small temperature fluctuations provided by natural convection. This harvester uses coiled yarn artificial muscles, comprising well-aligned shape memory polyurethane (SMPU) microfibers, to convert thermal energy to torsional mechanical energy, which is then electromagnetically converted to electrical energy. Temperature fluctuations in a yarn muscle, having a maximum hot-to-cold temperature difference of about 13 °C, were used to spin a magnetic rotor to a peak torsional rotation speed of 3,000 rpm. The electromagnetic energy generator converted the torsional energy to electrical energy, thereby producing an oscillating output voltage of up to 0.81 V and peak power of 4 W/kg, based on SMPU mass.

  13. Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets

    International Nuclear Information System (INIS)

    Tanwanichkul, B.; Thepa, S.; Rordprapat, W.

    2013-01-01

    Highlights: • Sandwich Greenhouse is designed for better quality and efficiency of rubber sheet drying. • Thermal models are developed to predict the convection heat transfer coefficient. • The models are validated and show good agreement with the actual experimental data. • The proposed greenhouse can maintain 40–60 °C, suitable for rubber sheet drying. • This greenhouse can bring down the moisture content to 2.8% in fewer than 2 days. - Abstract: In this paper, a novel “Sandwich Greenhouse” for rubber sheet drying is proposed. Using solar energy as the only heat source instead of traditional smoke house that requires firewood, it eliminates shortcomings such as skilled labor monitoring requirement, possible fire hazard, and darken-color rubber sheets due to soot particle contamination. Our greenhouse is specially designed to retain solar energy within, while minimizing the heat loss to the outside environment. The mathematical models are developed to predict the convection mass transfer coefficient and to study the thermal behavior during the drying of rubber sheets under our proposed greenhouse design. Validated with experimental observations, the models show good agreement with the actual experimental data. The experiment demonstrates an effectiveness of our proposed Sandwich Greenhouse, as the temperature of the rubber sheet is 15 °C and 5 °C higher than the ambient temperature during the daytime and nighttime, respectively. As a result, the moisture content of the rubber sheets can decrease from 36.4% to 2.8% in fewer than 2 days

  14. Impacts of convection on high-temperature aquifer thermal energy storage

    Science.gov (United States)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  15. An electrical resistivity monitor for the detection of composition changes in Pb-17Li

    International Nuclear Information System (INIS)

    Hubberstey, P.; Barker, M.G.; Sample, T.

    1991-01-01

    An electrical resistivity monitor for the detection of composition changes in the lithium-lead eutectic alloy, Pb-17Li, has been developed. A miniature electromagnetic pump is used to sample alloy continuously from a pool or loop system and force it through a capillary section, within which the necessary resistance measurements are made, prior to its return to the bulk source. To calibrate the monitor, detailed resistivity-temperature and resistivity-composition data have been determined for Pb-Li alloys at temperatures from 600 to 800K and compositions from 0 to 20.5 at% Li. The resistivity increases with both temperature and composition; for Pb-17li at 723 K, dρ/dT=0.054x10 -8 ΩmK -1 , and dρ/d[Li]=1.27x10 -8 Ωm(at% Li) -1 . The sensitivity of the monitor is such that changes in composition of as little as ±0.05 at% Li can be detected and its response time is limited soley by the rate of sampling. (orig.)

  16. Corrosion behaviour of Al based tritium permeation barriers in flowing Pb-17Li

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Konys, J.; Voss, Z.; Wedemeyer, O.

    2002-01-01

    Tritium permeation barriers on low-activation steels are required in fusion technology in order to reduce the tritium permeation rate through the structural material into the cooling water system. Al-Fe layers with alumina on top can fulfil the required reduction rate. Three techniques were selected to produce such a multi-layered coating system: chemical vapour deposition (CVD) by CEA, hot-dip aluminising (HDA) by FZK and vacuum plasma spraying (VPS) by JRC Ispra. A sufficient corrosion resistance against Pb-17Li attack is also required for the coating. Therefore, the corrosion behaviour of these three coatings on ferritic-martensitic steels was studied in the PICOLO loop of FZK in flowing Pb-17Li at 480 deg. C up to 10 000 h. Corrosion effects could not be found on HDA and VPS coated specimens even up to the longest time of exposure. The total thickness of the two-layered system remained unchanged at around 130 μm for all examined HDA and VPS specimens. In contrast to this, corrosion effects could be inspected on CVD coated specimens

  17. Vacuum sieve tray for tritium extraction from liquid Pb-17Li

    Energy Technology Data Exchange (ETDEWEB)

    Okino, Fumito, E-mail: fumito.okino@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Noborio, Kazuyuki [Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, 3-3-35 Suita-shi, Osaka 564-8680 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2012-08-15

    Formation of droplet of liquid Li-17Pb released from a nozzle into vacuum was studied for the evaluation of the feasibility as a tritium extraction process. Size of droplets formed from the nozzles was estimated by theoretical and experimental methods. For the theoretical estimation, the non-dimensional comparison of the physical bulk property of liquid Pb-17Li with water (H{sub 2}O) at ambient temperature was applied. It was found to be reasonable to apply the Plateau-Rayleigh-Instability theory for the droplet size formula of the fluid Pb-17Li for the nozzle diameter 0.4 mm-1.0 mm, temperature 400 Degree-Sign C-500 Degree-Sign C, at initial velocity of 3 m/s. The experimental results of the droplet size showed good agreement with the theory. This device was used for the parametric study of extraction of deuterium during their free fall in vacuum. The scaling of the device suggests the engineering feasibility of the process.

  18. Effect of heater geometry and cavity volume on the sensitivity of a thermal convection-based tilt sensor

    Science.gov (United States)

    Han, Maeum; Keon Kim, Jae; Kong, Seong Ho; Kang, Shin-Won; Jung, Daewoong

    2018-06-01

    This paper reports a micro-electro-mechanical-system (MEMS)-based tilt sensor using air medium. Since the working mechanism of the sensor is the thermal convection in a sealed chamber, structural parameters that can affect thermal convection must be considered to optimize the performance of the sensor. This paper presents the experimental results that were conducted by optimizing several parameters such as the heater geometry, input power and cavity volume. We observed that an increase in the heating power and cavity volume can improve the sensitivity, and heater geometry plays important role in performance of the sensor.

  19. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  20. One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites

    Science.gov (United States)

    Kamata, Shunichi

    2018-01-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.

  1. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    Science.gov (United States)

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  2. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction

  3. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    Science.gov (United States)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  4. Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods

    International Nuclear Information System (INIS)

    Hubberstey, P.; Sample, T.; Barker, M.G.

    1991-01-01

    The composition of liquid Pb-17Li alloys has been continously determined, using an electrical resistivity monitor, during their interaction with nitrogen, oxygen, hydrogen and water vapour. The operation of the monitor depends on the fact that the resistivity of liquid Pb-Li alloys is dependent on their composition. Accurate resistivity-composition isotherms have been derived from resistivity-temperature data for 15 Pb-Li alloys (0 Li -8 Ω m (mol% Li) -1 at 725 K) is such that a change of 0.05 mol% Li in the alloy composition can be measured. The addition of oxygen and water vapour resulted in a decrease in the resistivity of the liquid alloy. Neither nitrogen nor hydrogen had any effect. The observed changes were shown to be consistent with Li 2 O formation. (orig.)

  5. Corrosion and surface conditions of EUROFER 97 steel in Pb-17Li at 500 deg C

    International Nuclear Information System (INIS)

    Zmitko, M.; Splichal, K.; Masarik, V.

    2004-01-01

    In this work the corrosion behaviour of EUROFER 97 was examined in flowing Pb-17Li at the temperature 500 deg C up to 2500 hours. Surface morphology and chemical composition profiles and weight changes were investigated. Interaction of EUROFER 97 specimens with Pb-17Li melt results in a material dissolution, which is demonstrated by surface morphology and specimen weight changes. The specimen surfaces investigated after 500 and 1000 hours of exposure in Pb-17Li show similar surface appearance in both as-received and polished conditions. The corrosive damage occurs locally and a major part of surface areas is not affected. The exposure after 2500 hours evidences some visible decrease in the surface roughness for both surface conditions. The surface overlapping was observed and industrial tube productions have to avoid such types of defects. A small weight changes after 500 and 1000 hours and a higher weight decrease after 2500 hours were observed. The absolute values of the weight change after 500 and 1000 hours are about one order of magnitude lower than ones of weight changes after 2500 hours exposure. There were no significant differences of weight changes between as-received and polished surface conditions. The weight decrease of about 1 mg/cm 2 after 2500 hours is in a sufficient correlation with the value of about 4 mg/cm 2 evaluated from data of Fe-12Cr-1MoVW steel. The experiments have shown that the surface corrosive attack revealed only after a certain incubation period. During this period the surface layers are relatively stable to a direct attack of the surface by the melt. In the course of exposure time those layers are not further resistant and can influence the dissolutions of steel components. Concentration profiles of steel components near the steel surface were examined by EDX line-scan and point analyses. Under the experimental conditions no considerable profile of Cr and Fe in surface layers, as higher soluble steel components in Pb-17Li, was

  6. Behavior of radioisotope in liquid neutron irradiated Pb-17Li eutectic

    International Nuclear Information System (INIS)

    Tebus, V.N.; Aksenov, B.S.; Klabukov, U.G.

    1994-01-01

    Investigation of radioisotope 210 Po evaporation from liquid neutron irradiated Pb- 17 Li eutectic has been performed by Knudsen method. Equilibrium 210 Po vapor pressures at temperatures 250-700 degrees C were found about 3-4 orders of magnitude less than that for pure Po and were closed to equilibrium vapor pressures of Po-Pb compound. It was proposed Po forms stable Po-Pb compounds in eutectic at temperatures up to 750-800 degrees C. But disintegrates during long storage owing to self irradiation. It was determined Po aerosol transfer with radio gases takes place at the melting period. Contamination is happened also under irradiated eutectic storage at room temperature owing to aggregate recoil characteristic of Po

  7. Evaporation of lead and lithium from molten Pb-17Li - transport of aerosols

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Horn, S.; Bender, S.

    1991-01-01

    Evaporation of Pb and Li from molten Pb-17Li was investigated between 350 and 800deg C in vacuum, argon and helium covergas. Results were also obtained from other experimental facilities. Similarities were found to observations from sodium cooled reactors. The results show that Pb and Li evaporate independent on each other. The two elements show different behavior along the transport pathway. Deposits of the evaporated metals contained between 0.2 and 98 at% Li. As in the reactor RAPSODIE for sodium, evaporation rates for lithium were smaller in helium than in argon, however evaporation rates of lead were the same in both gases. No aerosol problems will exist with normal blanket operation. Under experimental conditions, aerosol concentrations were in the range of 10 -9 to 10 -6 g/m 3 . Aerosols can easily be trapped with sintered metal filters. (orig.)

  8. Dynamic corrosion investigations in the eutectic lead-lithium melt Pb-17Li

    International Nuclear Information System (INIS)

    Frees, G.; Drechsler, G.; Peric, Z.

    1989-01-01

    The Pb-17Li circuit 'PICOLO' was constructed and commissioned in the Institute for Material and Solid State Research II of the Kernforschungszentrum Karlsruhe. This circuit serves for corrosion tests with the martensitic steel 1.4914, which is under discussion for the application as structural material for a fusion reactor blanket. The design and the functions of the circuit are described. The experience which has been gained so far is principally favorable. A temperature of 500deg C seems, however, to be the upper limit for the operation with the structural materials of the circuit. The corrosion of specimens and materials of the components becomes considerably high at higher temperatures; this has been seen to cause the plugging due to the precipitation of corrosion products. The results of the first test series are presented and discussed. (orig.) [de

  9. Compatibility of 316L stainless steel with the liquid alloy Pb17Li

    International Nuclear Information System (INIS)

    Broc, M.; Fauvet, P.; Flament, T.; Terlain, A.; Sannier, J.

    1988-01-01

    The behavior of 316L austenitic stainless steel in liquid eutectic lead alloy is investigated. The 316L is a possible structural material for fusion reactors. The obtained results are summarized and compared with other experimental data. The mechanisms which control the corrosion process are discussed. The investigation shows that whatever, the hydraulic flow, the corrosion of 316L stainless steel exposed to Pb17Li is characterized by the formation of a porous ferritic layer. The corrosion kinetics is mainly dependent on temperature, hydraulic flow and metallurgical state of the steel. At 400 0 C in turbulent flow, the corrosion rate at steady state of 316L solution annealed is estimated to 27 microns/year to which a depth of 25 microns has to be added to take into account the initial transient period. From overall available results, dissolution and solid state transformation in case of turbulent flow and diffusion in liquid phase for laminar flow, may be suggested

  10. The status of thermal-hydraulic studies on the decay heat removal by natural convection using RAMONA and NEPTUN models

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hain, K.; Marten, K.; Rust, K.; Weinberg, D.; Ohira, H.

    2004-01-01

    Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)

  11. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  12. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  13. Proper orthogonal decomposition applied to laminar thermal convection in a vertical two plate channel

    International Nuclear Information System (INIS)

    Alvarez-Herrera, C; Murillo-Ramírez, J G; Pérez-Reyes, I; Moreno-Hernández, D

    2015-01-01

    This work reports the thermal convection with imposed shear flow in a thin two-plate channel. Flow structures are investigated under heating asymmetric conditions and different laminar flow conditions. The dynamics of heat flow and the energy distribution were determined by visualization with the Schlieren technique and application of the proper orthogonal decomposition (POD) method. The obtained results from the POD mode analysis revealed that for some flow conditions the heat transfer is related to the energy of the POD modes and their characteristic numbers. It was possible to detect periodic motion in the two-plate channel flow from the POD mode analysis. It was also found that when the energy is distributed among many POD modes, the fluid flow is disorganized and unsteady. (paper)

  14. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  15. Effects of thermally generated convection on the migration of radionuclides in saturated geologic formation

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Paik, Seungho; Rood, A.S.

    1994-01-01

    The problem of radionuclide migration in the presence of simultaneous forced and free convection in parallel flows is studied numerically by a hybrid spectral numerical technique. In this method, the momentum, energy, and mass conservation equations together with Boussinesq approximations are solved using a combined Galerkin and collocation method in conjunction with the backward Euler for time integration. Several cases are simulated with varying buoyancy parameters and Peclet number for prescribed thermal output and leach rates at the surface of a spherical canister. The results indicate that the actions of the buoyancy force are either to aid or oppose the main flow which can lead to an elongation of the concentration plume in the streamwise or transverse direction. It is also found that for a fixed Peclet number, influence of buoyancy force remains noticeable even when buoyancy parameter is an order of magnitude smaller than the Peclet number. (author)

  16. Corrosion of an Fe-12 Cr-1 Mo VW steel in thermally-convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    A thermal-convection loop of Fe-12 Cr-1 Mo VW steel circulated pure lithium between 500 and 350 0 C for 10,088 h. Periodic weighings of coupons at different temperatures around the loop revealed small weight losses and corrosion rates. Surface analysis showed a relatively thin corrosion layer with an underlying carbide-free zone and some depletion of chromium from the hottest specimen. While some mass transfer of chromium and nickel was detected, this mechanism did not strongly influence the weight loss process as it does with austenitic steels. Therefore, it appeared that reactions with carbon and nitrogen must be the dominant corrosion processes such that weight loss was maximized at the lowest temperature (350 0 C). Overall, the lithium-steel reactions in the temperature range of this experiment were relatively sluggish and the corrosion was not severe

  17. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  18. Natural convection of high-temperature, high-pressure gas in a horizontal annular layer of thermal insulator, (1)

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Takizuka, Takakazu; Sanokawa, Konomo

    1979-02-01

    Numerical calculations are described of the natural convection in a horizontal annular layer of thermal insulator. The purpose is to compare the numerical results for variable physical properties with those for constant properties. The numerical procedure and typical results are presented. (author)

  19. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  20. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  1. Filtering of sound from the Navier-Stokes equations. [An approximation for describing thermal convection in a compressible fluid

    Energy Technology Data Exchange (ETDEWEB)

    Paolucci, S.

    1982-12-01

    An approximation leading to anelastic equations capable of describing thermal convection in a compressible fluid is given. These equations are more general than the Oberbeck-Boussinesq equations and different than the standard anelastic equations in that they can be used for the computation of convection in a fluid with large density gradients present. We show that the equations do not contain acoustic waves, while at the same time they can still describe the propagation of internal waves. Throughout we show that the filtering of acoustic waves, within the limits of the approximation, does not appreciably alter the description of the physics.

  2. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.

    2010-11-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  3. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    International Nuclear Information System (INIS)

    Masood, W.; Mirza, Arshad M.

    2010-01-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  4. Convective thermal fluxes in unsteady non-homogeneous flows generating complex three dimensional vorticity patterns

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Redondo, Jose Manuel; Sanchez, Jesu Mary

    2016-04-01

    fresh water in order to form density interfaces. The Reynolds number can be reduced adding Glicerine the set of dimensionless parameters define different conditions of both numeric and small scale laboratory applied often in modeling environmental flows. Fields of velocity, density and their gradients are computed using advanced visualization [8 9]. Visualizations are performed by PIV, Particle tracking and shadowgraph. When convective heating and cooling takes place the patterns depend on the parameter space region of the initial conditions We also map the different transitions between two and three dimensional convection in an enclosure with several complex driven flows. The size of the water tank is of 0.2 x 0.2 x 0.1 m and the heat sources or sinks can be regulated both in power and sign [2-4]. The thermal convective driven flows are generated by Seebeck and Peltier effects in 4 wall extended positions of 0.05 x 0.05 cm each. The parameter range of convective cell array varies strongly with the Topology of the boundary conditions. At present side heat fluxes are considered and estimated as a function of Rayleigh, Peclet and Nusselt numbers, [4-6] The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or non-mixing front occurring at a density interface due to body forces [12] can be compared with the convective fronts. The evolution of the turbulent mixing layer and its complex configuration is studied taking into account the dependence on the initial modes at the early stages, Self-similar information [13]. Spectral and Fractal analysis on the images seems very useful in order to

  5. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  6. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, M.A.; Bielak, B.; Deffain, J.P.; Giancarli, L.; Li Puma, A.; Salavy, J.F.; Szczepanski, J. [CEA Saclay, Gif-sur-Yvette (France). FDRN/DMT/SERMA; Dellis, C. [CEA Grenoble, DTA-CEREM/SGM, Grenoble (France); Nardi, C. [ENEA Frascati, ERG-FUS-TECN-MEC, Frascati (Italy); Schleisiek, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit

    1998-09-01

    In 1996, the European Community started the development of a water-cooled Pb17Li blanket test module for ITER. First tests are currently scheduled to start with the beginning of the basic performance phase prior to D-T operation. The test module is designed to be a representative for a DEMO breeding blanket and relies on the liquid alloy Pb-17Li as both tritium breeder and neutron multiplier material, and water at PWR pressure and temperature as coolant. The structural material is martensitic steel. The straight, box-like structure of this blanket confines a pool of liquid Pb-17Li which is slowly circulated for ex-situ tritium extraction and lithium adjustment. The box and the Pb-17Li pool are separately cooled, the former with toroido-radial tubes, the latter with a bundle of double-walled U-tubes, equally made of martensitic steel and equipped with a permeation barrier. This paper presents the latest design and three manufacturing schemes with different degrees of technology. Advanced techniques such as solid or powder HIP are proposed to provide design flexibility. With a 3D neutronics analysis, the power and tritium generation were determined. (orig.) 11 refs.

  7. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  8. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  9. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  10. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    Science.gov (United States)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  11. Natural Convection Flow of Fractional Nanofluids Over an Isothermal Vertical Plate with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2017-03-01

    Full Text Available The studies of classical nanofluids are restricted to models described by partial differential equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by differential equations with Caputo time derivatives, are able to describe the influence of memory on the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a uniform temperature and thermal radiation, are analytically and graphically studied. Closed form solutions are determined for the dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms of the Wright function or its fractional derivatives, have also been reduced to the known solutions of ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt number, and skin friction coefficient, is graphically underlined and discussed. The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the nanoparticle volume fraction.

  12. Cessations and reversals of the large-scale circulation in turbulent thermal convection.

    Science.gov (United States)

    Xi, Heng-Dong; Xia, Ke-Qing

    2007-06-01

    We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

  13. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.

  14. Effect of wind, thermal convection, and variation in flight strategies on the daily rhythm and flight paths of migrating raptors at Georgia's Black Sea coast

    NARCIS (Netherlands)

    Vansteelant, W.M.G.; Verhelst, B.; Shamoun-Baranes, J.; Bouten, W.; van Loon, E.E.; Bildstein, K.L.

    2014-01-01

    Every autumn, large numbers of raptors migrate through geographical convergence zones to avoid crossing large bodies of water. At coastal convergence zones, raptors may aggregate along coastlines because of convective or wind conditions. However, the effect of wind and thermal convection on

  15. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  16. Corrosion of path A PCA and 12 Cr-1 MoVW steel in thermally convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Exposure of path A PCA alloys to thermally convective lithium for 6700 h at 600 and 570 0 C resulted in corrosion reactions that were similar to what is observed for other austenitic alloys exposed under similar conditions. It corroded more rapidly than type 316 stainless steel, and the presence of nitride stringers in PCA did not affect the measured weight losses. Consideration of the weight change and surface analysis data for 12 Cr-1 MoVW steel exposed to thermally convective lithium between 500 and 350 0 C for 10,088 h revealed that reactions with carbon and nitrogen were probably the principal corrosion processes for this alloy in this temperature range. Corrosion was not severe

  17. Numerical simulation in three space dimensions of time-dependent thermal convection in a rotating fluid

    International Nuclear Information System (INIS)

    Hathaway, D.H.; Somerville, R.C.J.; National Solar Observatory, Sunspot, NM; California Univ., La Jolla)

    1985-01-01

    Three-dimensional, time-dependent convection in a plane layer of fluid, uniformly heated from below and subject to vertical shear and to rotation about an axis tilted from the vertical, was simulated by the numerical solution of the Boussinesq equations, including all Coriolis terms. Rotation about a vertical axis produces smaller convection cells with diminished heat fluxes and considerable vorticity. When the rotation axis is tilted from the vertical to represent tropical latitudes, the convection cells become elongated in a N-S direction. Imposed flows with constant vertical shear produce convective rolls aligned with the mean flow. When the rotation vector is tilted from the vertical, the competing effects due to rotation and shear can stabilize the convective motions. 15 references

  18. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    , thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...... the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more...... of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended...

  19. Thermal and solutal stratification in mixed convection three-dimensional flow of an Oldroyd-B nanofluid

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This paper investigates the double stratified effects in mixed convection three-dimensional flow of an Oldroyd-B nanofluid. The flow is due to a bidirectional stretching surface. Mathematical analysis is carried out using the temperature and concentration stratification effects. Brownian motion, thermophoresis and chemical reaction effects are also considered. The governing nonlinear boundary layer equations are first converted into the dimensionless ordinary differential equations and then solved for the convergent series solutions of velocity, temperature and nanoparticles concentration. Convergence analysis of the obtained series solutions is also checked and verified. Effects of various emerging parameters are studied in details. Numerical values of local Nusselt and Sherwood numbers are tabulated and analyzed. It is noticed that the impact of mixed convection parameter on temperature and nanoparticles concentration is quite similar. Both temperature and nanoparticles concentration are reduced for larger mixed convection parameter. Keywords: Three-dimensional flow, Oldroyd-B fluid, Nanoparticles, Mixed convection, Thermal and solutal stratification, Chemically reactive species

  20. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  1. Thermal-hydraulic analysis of the OSURR pool for power upgrade with natural convection core cooling

    International Nuclear Information System (INIS)

    Ha, J.J.; Aldemir, T.

    1988-01-01

    Natural convection mode core cooling will be maintained in the LEU conversion/power upgrade of The Ohio State University Research Reactor (OSURR) to 250-500 kW. The pool water will be cooled by a water-glycol-air and a water-water heat exchanger. A plume disperser will be installed in the pool to minimize evaporation from the pool top and to maintain the dose rate due to N-16 activity within allowable levels. The minimization of the pool heat removal system operation costs necessitates maximizing the inlet temperature to the water-glycol-air heat exchanger. For the maximization process, the change in the pool temperature and velocity fields have to be investigated as a function of: location and orientation of the heat removal system components and the plume disperser in the pool; mass flow rate through the plume disperser. The velocity and temperature fields in the pool are determined using COMMIX-1A. The computational system model accounts for the presence of all the pool components (i.e. core, thermal column, beam ports, ion chamber, guide tubes, rabbit, neutron source etc.). The results show that: (1) Both the heat removal system inlet point and the plume disperser have to be located close to the top of the core. (2) Using a disperser system consisting of several pipes may be more feasible than a single unit. (3) For high disperser flow, the disperser jet has to be almost parallel to the top of the core to prevent flow reversal in coolant channels. (4) More than one disperser system may be necessary to create an inversion layer in the pool

  2. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    Science.gov (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental

  3. Dynamical System Analysis of Thermal Convection in a Horizontal Layer of Nanofluids Heated from Below

    Directory of Open Access Journals (Sweden)

    J. M. Jawdat

    2012-01-01

    Full Text Available The effect of nanofluids on chaotic convection in a fluid layer heated from below was studied in this paper for low Prandtl number based on the theory of dynamical systems. A low-dimensional, Lorenz-like model was obtained using Galerkin-truncated approximations. The fourth-order Runge-Kutta method was employed to solve the nonlinear system. The results show that inhibition of chaotic convection can be observed when using nanofluids.

  4. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  5. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  6. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    Science.gov (United States)

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  7. Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers

    Science.gov (United States)

    Vikhansky, A.

    2009-10-01

    We consider the effect of yield stress on the Rayleigh-Bénard convection of a viscoplastic material. First we consider the model problem of convection in a differentially heated loop, which is described by the (modified) Lorenz equations. The presence of the yield stress significantly alters the dynamics of the system. In particular, the chaotic motion can stop suddenly (sometimes, after a period of chaotic oscillations). Guided by the model equations we performed direct numerical simulations of convection of the Bingham liquid in a square cavity heated from bellow. Our interest has been concentrated on the situation when both buoyancy and plastic forces are large. The obtained results are in a reasonable agreement with the predictions by the Lorenz equations.

  8. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  9. Penetration of steady fluid motions into an outer stable layer excited by MHD thermal convection in rotating spherical shells

    Science.gov (United States)

    Takehiro, Shin-ichi; Sasaki, Youhei

    2018-03-01

    Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.

  10. Stabilization of the Rayleigh-Taylor instability by convection and thermal conduction in smooth density gradient: WKB analysis

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.

    1992-01-01

    Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig

  11. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.

  12. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  13. Thermal-hydraulic posttest analysis for the ANL/MCTF 3600 model heat-exchanger water test under mixed convection

    International Nuclear Information System (INIS)

    Yang, C.I.; Sha, W.T.; Kasza, K.E.

    1982-01-01

    As a result of the uncertainties in the understanding of the influence of thermal-buoyancy effects on the flow and heat transfer in Liquid Metal Fast Breeder Reactor heat exchangers and steam generators under off-normal operating conditions, an extensive experimental program is being conducted at Argonne National Laboratory to eliminate these uncertainties. Concurrently, a parallel analytical effort is also being pursued to develop a three-dimensional transient computer code (COMMIX-IHX) to study and predict heat exchanger performance under mixed, forced, and free convection conditions. This paper presents computational results from a heat exchanger simulation and compares them with the results from a test case exhibiting strong thermal buoyancy effects. Favorable agreement between experiment and code prediction is obtained

  14. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  15. Near-drift thermal analysis including combined modes of conduction, convection, and radiation

    International Nuclear Information System (INIS)

    Ho, C.K.; Francis, N.D.

    1995-01-01

    The performance of waste packages containing high-level nuclear wastes at underground repositories such as the potential repository at Yucca Mountain, Nevada, depends, in part, on the thermodynamic environment immediately surrounding the buried waste packages. For example, degradation of the waste packages can be caused by corrosive and microbial processes, which are influenced by both the relative humidity and temperature within the emplacement drifts. In this paper, the effects of conduction, convection, and radiation are investigated for a heat-generating waste package in an empty-drift. Simulations explicitly modeling radiation from the waste package to the drift wall are compared simulations using only conduction. Temperatures, relative humidities, and vapor mass fractions are compared at various locations within the drift. In addition, the effects of convection on relative humidity and moisture distribution within the drift are presented

  16. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    KAUST Repository

    Wright, G. B.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth\\'s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Copyright 2010 by the American Geophysical Union.

  17. Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number

    International Nuclear Information System (INIS)

    Amati, G.; Koal, K.; Massaioli, F.; Sreenivasan, K.R.; Verzicco, R.

    2006-12-01

    The results from direct numerical simulations of turbulent Boussinesq convection are briefly presented. The flow is computed for a cylindrical cell of aspect ratio 1/2 in order to compare with the results from recent experiments. The results span eight decades of Ra from 2x10 6 to 2x10 14 and form the baseline data for a strictly Boussinesq fluid of constant Prandtl number (Pr=0.7). A conclusion is that the Nusselt number varies nearly as the 1/3 power of Ra for about four decades towards the upper end of the Ra range covered. (author)

  18. Thermal convection at low Rayleigh number from concentrated sources in porous media

    International Nuclear Information System (INIS)

    Hickox, C.E.

    1980-01-01

    A simple mathematical theory is proposed for the analysis of natural convective motion, at low Rayleigh number, from a concentrated source of heat in a fluid-saturated porous medium. The theory consists of retaining only the leading terms of series expansions of the dependent variables in terms of the Rayleigh number, is thus linear, and is valid only in the limit of small Rayleigh number. Based on fundamental results for a variety of isolated sources, superposition is used to provide solutions for situations of practical interest. Special emphasis is given to the analysis of sub-seabed disposal of nuclear waste. 8 figures

  19. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  20. Attempts of Thermal Imaging Camera Usage in Estimations of the Convective Heat Loss From a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Denda Hubert

    2014-01-01

    Full Text Available In this paper a new method for determining heat transfer coefficients using a gradient method has been developed. To verify accuracy of the proposed method vertical isothermal heating plate with natural convection mechanism has been examined. This configuration was deliberately chosen, because of the fact that such case is historically the earliest and most thoroughly studied and its rich scientific documentation – the most reliable. New method is based on temperature field visualization made in perpendicular plane to the heating surface of the plate using infrared camera. Because the camera does not record temperature of air itself but the surface only, therefore plastic mesh with low thermal conductivity has been used as a detector. Temperature of each mesh cell, placed perpendicular to the vertical heating surface and rinsed with convection stream of heated air could be already recorded by infrared camera. In the same time using IR camera surface of heating plate has been measured. By numerical processing of the results matrix temperature gradient on the surface ∂T/∂x │ x=0, local heat transfer coefficients αy, and local values of Nusselt number Nuy, can be calculated. After integration the average Nusselt number for entire plate can be calculated. Obtained relation characteristic numbers Nu = 0.647 Ra 0.236 (R2 = 0.943, has a good correlation with literature reports and proves usefulness of the method.

  1. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity

    Directory of Open Access Journals (Sweden)

    Moradi Amir

    2013-01-01

    Full Text Available In this article, the simultaneous convection-radiation heat transfer of a moving fin of variable thermal conductivity is studied. The differential transformation method (DTM is applied for an analytic solution for heat transfer in fin with two different profiles. Fin profiles are rectangular and exponential. The accuracy of analytic solution is validated by comparing it with the numerical solution that is obtained by fourth-order Runge-Kutta method. The analytical and numerical results are shown for different values of the embedding parameters. DTM results show that series converge rapidly with high accuracy. The results indicate that the fin tip temperature increases when ambient temperature increases. Conversely, the fin tip temperature decreases with an increase in the Peclet number, convection-conduction and radiation-conduction parameters. It is shown that the fin tip temperature of the exponential profile is higher than the rectangular one. The results indicate that the numerical data and analytical method are in a good agreement with each other.

  2. Thermal environment in a simulated double office room with convective and radiant cooling systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Rezgals, Lauris

    2017-01-01

    anddraught rate was calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins. CCMV provided slightly more uniform thermal environment and the least sensitive to different workstation layouts than the other systems. CB provided a bit higher draught rate levels than...

  3. Design and operation of thermal-convection loops for corrosion measurements in LiF--LiCl--LiBr

    International Nuclear Information System (INIS)

    Keiser, J.R.; DeVan, J.H.

    1979-01-01

    Using a most sophisticated design of a thermal-convection loop to study the corrosion behavior of type 316 stainless steel and the salt mixture LiF--LiCl--LiBr is reported. The corrosion rate is being determined as a function of time and temperature through weight change measurements. The maximum corrosion rate measured is about 20 μm/year on removable corrosion specimens. Controlled potential voltammetry has been found to be satisfactory and is being used to monitor the oxidation potential of the salt. Measurements demonstrate the effect on the oxidation potential of impurities introduced during specimen insertion, and techniques should show the effect of a lithium addition on the oxidation potential

  4. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  5. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan

    Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.

  6. A mathematical and numerical framework for the analysis of compressible thermal convection in gases at very high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lappa, Marcello, E-mail: marcello.lappa@strath.ac.uk

    2016-05-15

    The relevance of non-equilibrium phenomena, nonlinear behavior, gravitational effects and fluid compressibility in a wide range of problems related to high-temperature gas-dynamics, especially in thermal, mechanical and nuclear engineering, calls for a concerted approach using the tools of the kinetic theory of gases, statistical physics, quantum mechanics, thermodynamics and mathematical modeling in synergy with advanced numerical strategies for the solution of the Navier–Stokes equations. The reason behind such a need is that in many instances of relevance in this field one witnesses a departure from canonical models and the resulting inadequacy of standard CFD approaches, especially those traditionally used to deal with thermal (buoyancy) convection problems. Starting from microscopic considerations and typical concepts of molecular dynamics, passing through the Boltzmann equation and its known solutions, we show how it is possible to remove past assumptions and elaborate an algorithm capable of targeting the broadest range of applications. Moving beyond the Boussinesq approximation, the Sutherland law and the principle of energy equipartition, the resulting method allows most of the fluid properties (density, viscosity, thermal conductivity, heat capacity and diffusivity, etc.) to be derived in a rational and natural way while keeping empirical contamination to the minimum. Special attention is deserved as well to the well-known pressure issue. With the application of the socalled multiple pressure variables concept and a projection-like numerical approach, difficulties with such a term in the momentum equation are circumvented by allowing the hydrodynamic pressure to decouple from its thermodynamic counterpart. The final result is a flexible and modular framework that on the one hand is able to account for all the molecule (translational, rotational and vibrational) degrees of freedom and their effective excitation, and on the other hand can guarantee

  7. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  8. Internally heated mantle convection and the thermal and degassing history of the earth

    Science.gov (United States)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  9. On the treatment of plane fusion front in lumped parameter thermal models with convection

    International Nuclear Information System (INIS)

    Le Tellier, R.; Skrzypek, E.; Saas, L.

    2017-01-01

    Highlights: • Solid phase approximations for a two-phase Stefan fusion problem with convection are analyzed. • A reference solution combines integral conservation eqs and a FE solution of the 1D heat equation. • Numerical results are presented for a transient in light water reactor severe accident analysis. • The models performances are highlighted on fusion transients in terms of Biot and Stefan numbers. - Abstract: Within the framework of lumped parameter models for integral codes, this paper focuses on the modeling of a two-phase Stefan fusion problem with natural convection in the liquid phase. In particular, this specific Stefan problem is of interest when studying corium pool behavior in the framework of light water reactor severe accident analysis. The objective of this research is to analyze the applicability of different approximations related to the modeling of the solid phase in terms of boundary heat flux closure relations. Three different approximations are considered: a quadratic profile based model, a model where a parameter controls the power partitioning at the interface and the steady state conduction assumption. These models are compared with an accurate front-tracking solution of this plane fusion front problem. This “reference” is obtained by combining the same integral conservation equations as the approximate models with a mesh-based solution of the 1D heat equation. Numerical results are discussed for a typical configuration of interest for corium pool analysis. Different fusion transients (constructed from nondimensionalization considerations in terms of Biot and Stefan numbers) are used in order to highlight the potential and limitations of the different approximations.

  10. Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

    OpenAIRE

    Czechowski Leszek; Łosiak Anna

    2016-01-01

    Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dra...

  11. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    Science.gov (United States)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  12. Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2011-01-01

    This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.

  13. Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection

    KAUST Repository

    El-Amin, Mohamed

    2011-05-21

    This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.

  14. Thermal Comfort in Simulated Office Environment with Four Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Mustakallio, Panu; Kolencíková, Sona

    2013-01-01

    with overhead mixing ventilation (MVRC). Whole body thermal sensation (TS) and whole body TS acceptability under the four systems in a simulated office room for one hour exposure were collected. The simulated two-man office (4.12 x 4.20 x 2.89 m, L x W x H) was kept at 26 oC room air temperature. Moderate heat...... to “neutral” compared to male, whose votes were closer to the “slightly warm” thermal sensation. The whole body TS acceptability was rated close to ''clearly acceptable'' (EN 15251-2007) and was independent of subject's gender for all tested systems....

  15. Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Gargioni, E; Manfredotti, C [Torino Univ. (Italy). Dipt. di Fisica; Laitano, R F; Guerra, A S [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)

    1997-09-01

    In water calorimetry, in addition to the temperature increase due to beam energy deposition in water, unwanted thermal effects occur during and after calorimeter irradiation. This should be accounted for by applying proper corrections to the experimental results. In order to determine such corrections heat flow calculations were performed using the `finite element` method. This method applies even to complex 3D geometries with not necessarily symmetric conditions. Some preliminary results of these calculations are presented together with a description of the analytical method for the evaluation of the correction factors that should be applied to the experimental results to account for the above thermal effects. (orig.)

  16. On the Onset of Thermal Convection in a Layer of Oldroydian Visco-Elastic Fluid Saturated by Brinkman–Darcy Porous Medium

    Directory of Open Access Journals (Sweden)

    Chand Ramesh

    2015-12-01

    Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.

  17. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  18. Characterizing Thermal Augmentation of Convection-Enhanced Drug Delivery with the Fiberoptic Microneedle Device

    Directory of Open Access Journals (Sweden)

    R. Lyle Hood

    2015-09-01

    Full Text Available Convection-enhanced delivery (CED is a promising technique leveraging pressure-driven flow to increase penetration of infused drugs into interstitial spaces. We have developed a fiberoptic microneedle device for inducing local sub-lethal hyperthermia to further improve CED drug distribution volumes, and this study seeks to quantitatively characterize this approach in agarose tissue phantoms. Infusions of dye were conducted in 0.6% (w/w agarose tissue phantoms with isothermal conditions at 15 °C, 20 °C, 25 °C, and 30 °C. Infusion metrics were quantified using a custom shadowgraphy setup and image-processing algorithm. These data were used to build an empirical predictive temporal model of distribution volume as a function of phantom temperature. A second set of proof-of-concept experiments was conducted to evaluate a novel fiberoptic device capable of generating local photothermal heating during fluid infusion. The isothermal infusions showed a positive correlation between temperature and distribution volume, with the volume at 30 °C showing a 7-fold increase at 100 min over the 15 °C isothermal case. Infusions during photothermal heating (1064 nm at 500 mW showed a similar effect with a 3.5-fold increase at 4 h over the control (0 mW. These results and analyses serve to provide insight into and characterization of heat-mediated enhancement of volumetric dispersal.

  19. Thermal modeling of radiation and convection sections of primary reformer of ammonia plant

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Baheri, Ehsan

    2007-01-01

    The primary reformer is basically a furnace containing burners and tubes packed with supported nickel catalyst. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Accordingly, selection of primary reformer operating parameters has an important influence on reduction of operating costs and increasing the reactor performance (conversion efficiency). In this paper, the radiation and convection sections of primary reformer are investigated. The effects of key parameters on reformer performance are studied and the related developed software program is presented. The stirred-reactor furnace model which was used to simulate the radiation section of primary reformer was found to make substantially correct predictions of the overall heat transfer process in the furnace. Comparison of the numerical data obtained from the simulation program with the measured data collected from primary reformer of Razi petrochemical plant showed a mean difference of 0.23% in estimating produced hydrogen mole fraction, as well as 1.7% and 7.25% in computing the outlet temperature of process fluids and induced draft fan (ID) speed, respectively

  20. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  1. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.; El-Amin, Mohamed

    2011-01-01

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  2. Effects of thermal stratification on transient free convective flow of a ...

    Indian Academy of Sciences (India)

    2016-09-22

    Sep 22, 2016 ... as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically. The results are found to be in good agreement with the existing results in literature. Keywords. Nanofluid; thermal stratification; transient; isothermal vertical plate. PACS Nos 44.20.+b; 47; 44.

  3. Numerical modeling of thermal performance: Natural convection and radiation of solid state lighting

    NARCIS (Netherlands)

    Ye, H.; Gielen, A.W.J.; Zeijl, H.W. van; Werkhoven, R.J.; Zhang, G.Q.

    2011-01-01

    The increased electrical currents used to drive light emitting diode (LED) cause significant heat generation in the solid state lighting (SSL) system. As the temperature will directly affect the maximum light output, quality, reliability and the life time of the SSL system, thermal management is a

  4. A phenomenological model of thermal-hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%

  5. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    OpenAIRE

    E.Hemalatha; N. Bhaskar Reddy

    2015-01-01

    This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to desc...

  6. 2D and 3D thermal simulations for storage systems with internal natural convection for canistered spent fuel

    International Nuclear Information System (INIS)

    Yaksh, M.; Wang, C.

    2004-01-01

    In the US, the number of nuclear plants expected to implement on-site dry storage is increasing each year. As reactors burn advanced fuel assemblies to higher burnups, the dry storage systems will be required to accommodate higher heat loads. This is due to the increasing capacity of the systems and the need to store higher burnup fuel with reasonable cooling periods (i.e., five to six years). As the storage systems heat rejection design must be passive, natural convection is an efficient means for rejection of heat from the spent fuel to the surface of the canister boundary. The design presented in this paper is a canistered system that employs conduction, radiation and convection to reject heat from the canister, which is stored in a vertical concrete cask. The canister containing the spent fuel in this design is a right circular stainless steel vessel capable of storing 37 PWR fuel assemblies with a total canister heat load of 40 kW. Accompanying any design effort is the use of a numerical methodology that can accurately predict the peak-clad temperatures of the fuel and the structural components of the system. The main challenge to any analysis employing internal natural convection may be perceived as a practical limitation due to the size of the model. Since canisters are typically cylindrical, a two-dimensional model can be used to represent the canister. The fuel basket structure, which maintains the configuration of the spent fuel, is an array of square tubes, and is non-axisymmetric. Flow up through the fuel region in the basket encounters a complex cross section due to the fuel assembly rod array (up to 17 x 17). The flow region of the heated gas down the outside of the basket in the annulus between the canister shell and the basket assembly (downcomer) is also an irregular shaped area. To confirm that a two-dimensional (2D) modelling methodology is appropriate, a benchmark using results from a thermal test is required. The thermal test focuses on the

  7. Thermal analysis of fractures at Cerberus Fossae, Mars: Detection of air convection in the porous debris apron

    Science.gov (United States)

    Antoine, R.; Lopez, T.; Baratoux, D.; Rabinowicz, M.; Kurita, K.

    2011-08-01

    This study investigates the cause of high nighttime temperatures within Cerberus Fossae, a system of fractures affecting the Central Elysium Planitia. The inner parts (walls and floor) of the fractures are up to 40 K warmer than the surrounding plains. However, several temperature profiles exhibit a local temperature minima occurring in the central part of the fractures. We examined first the influence of cooling efficiency at night in the case of a strong reduction of the sky proportion induced by the fracture's geometry. However, the lack of correlation between temperature and sky proportion, calculated from extracted Mars Orbiter Laser Altimeter (MOLA) profiles argues against this hypothesis. Albedo variations were considered but appear to be limited within the fractures, and are generally not correlated with the temperatures. Variations of the thermal properties of bedrocks exposures, debris aprons and sand dunes inferred from high-resolution images do not either correlate with temperature variations within the fractures. As none of these factors taken alone, or combined, can satisfactorily explain the temperature variations within and near the fracture, we suggest that geothermal heat transported by air convection within the porous debris aprons may contribute to explain high temperatures at night and the local minima on the fracture floor. The conditions for the occurrence of the suggested phenomenon and the consequences on the surface temperature are numerically explored. A conservative geothermal gradient of 20 mW/m 2 was used in the simulations, this value being consistent with either inferred lithosphere elastic thicknesses below the shield volcanoes of the Tharsis dome or values predicted from numerical simulations of the thermal evolution of Mars. The model results indicate that temperature differences of 10-20 K between the central and upper parts of the fracture are explained in the case of high Darcy velocities which require high permeability values

  8. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    Czech Academy of Sciences Publication Activity Database

    Slezák, Ondřej; Yasuhara, R.; Lucianetti, Antonio; Vojna, David; Mocek, Tomáš

    2015-01-01

    Roč. 17, č. 6 (2015), s. 1-8, č. článku 065610. ISSN 2040-8978 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : stress-induced birefringence * thermal depolarization * high-power lasers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.847, year: 2015

  9. Numerical Investigation of the Thermal Regime of Underground Channel Heat Pipelines Under Flooding Conditions with the Use of a Conductive-Convective Heat Transfer Model

    Science.gov (United States)

    Polovnikov, V. Yu.

    2018-05-01

    This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.

  10. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  11. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  12. Formation of Al{sub 2}O{sub 3}/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanjib, E-mail: sanjib@barc.gov.in [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Paul, Bhaskar [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Chakraborty, Poulami [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Kishor, Jugal; Kain, Vivekanand [High Temperature Materials Development Section, Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Dey, Gautam Kumar [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe{sub 2}Al{sub 5}, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4–6 μm thick Al{sub 2}O{sub 3} scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al{sub 2}O{sub 3}/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation. - Highlights: •Al{sub 2}O{sub 3}/FeAl coating produced on P91 steel by pack aluminizing and heat treatment. •Corrosion tests of coated steel conducted in flowing Pb-17Li loop at 500 °C for 5000 h. •Coating was protective against molten metal corrosion during prolonged exposure. •Self-healing protective oxides formed in the cracks generated in aluminide layers.

  13. Study on convective mixing for thermal striping phenomena. Thermal-hydraulic analyses on mixing process in parallel triple-jet and comparisons between numerical methods

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki

    2000-03-01

    A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets imposes thermal fatigue on structural components, is of importance for reactor safety. In the present study, a water experiment was performed on parallel triple-jet: cold jet at the center and hot jets in both sides. Three kinds of numerical analyses based on the finite difference method were carried out to compare the similarity with the experiment by use of respective different handling of turbulence such as a k-ε two equation turbulence model (k-ε Model), a low Reynolds number stress and heat flux equation model (LRSFM) and a direct numerical simulation (DNS). In the experiment, the jets were mainly mixed due to the coherent oscillation. The numerical result using k-ε Model could not reproduce the coherent oscillating motion of jets due to rolling-up fluid. The oscillations of the jets predicted by LRSFM and DNS were in good agreements with the experiment. The comparison between the coherent and random components in experimental temperature fluctuation obtained by using the phase-averaging shows that k-ε Model and LRSFM overestimated the random component and the coherent component respectively. The ratios of coherent to random components in total temperature fluctuation obtained from DNS were in good agreements with the experiment. The numerical analysis using DNS can reproduce the coherent oscillation of the jets and the coherent / random components in temperature fluctuation. The analysis using LRSFM could simulate the mixing process of the jets with the low frequency. (author)

  14. Annular convective-radiative fins with a step change in thickness, and temperature-dependent thermal conductivity and heat transfer coefficient

    Science.gov (United States)

    Barforoush, M. S. M.; Saedodin, S.

    2018-01-01

    This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.

  15. Thermal convection and nonlinear effects of a superfluid 3He-4He mixture in a porous medium

    International Nuclear Information System (INIS)

    Chien, L.C.L.

    1986-01-01

    The convective instability of one-component classical fluids in a porous medium confined between two unbounded slabs was studied. This system behaves like a high Prandtl number bulk fluid. It has boundary conditions similar to the stress-free boundary conditions of bulk one-component classical fluids. Both the amplitude expansion method and the Galerkin method were used to investigate the nonlinear steady convection. Two dimensional rolls are the only stable motion at the onset of convection. Beyond threshold, the steady convection rolls become unstable to formation of cross-roll and zigzag instabilities. Applying the phase-dynamics approach for the zigzag instability, the author obtained the diffusion coefficient D, which can signal the onset of instability. Also investigated was the convective instability of superfluid 3 He- 4 He mixtures in porous media. Assuming no interaction between the average superflow and the porous medium and treating the normal flow in the equation of motion like a classical fluid in a porous medium, it was found that the superfluid mixtures in a porous medium. To investigate the effects of a lateral boundary, the convective instability of classical one-component fluids in porous media inside a box was studied. The zigzag instability does not exist because of the boundary conditions at the side of the box

  16. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  17. Numerical Investigation of Thermal Radiation and Viscous Effects on Entropy Generation in Forced Convection Blood Flow over an Axisymmetric Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-05-01

    Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.

  18. Rayleigh- and Prandtl-number dependence of the large-scale flow-structure in weakly-rotating turbulent thermal convection

    Science.gov (United States)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2015-11-01

    Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 Deutsche Forschungsgemeinschaft.

  19. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  20. Assessment of thermal conductivity, viscosity and specific heat of nanofluids in single phase laminar indernal forced convection

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.

    2013-01-01

    Nanofluids are considered for improving the heat exchange in forced convective flow. In literature, the benefit of nanofluids compared to the corresponding base fluid is represented by several figures-of-merit in which the heat transfer benefit and the cost of pumping the fluid are considered. These

  1. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  2. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction

    Science.gov (United States)

    Shateyi, Stanford; Marewo, Gerald T.

    2018-05-01

    We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.

  3. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  4. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  5. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Zigta B.

    2017-12-01

    Full Text Available This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  6. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Science.gov (United States)

    Zigta, B.; Koya, P. R.

    2017-12-01

    This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  7. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  8. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    Science.gov (United States)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  9. Structural mechanical studies on the 12% Cr-steel X 18CrMoVNb 12 1 (1.4914) in liquid Pb-17Li eutecticum

    International Nuclear Information System (INIS)

    Grundmann, M.

    1990-02-01

    The possible application of the martensitic 12%-Cr steel 1.4914 as structural material of the fusion reactor blanket is examinated within this study. The superimposure of mechanical stresses and chemical dissolution processes and its consequences for the material properties of steel 1.4914 is simulated and studied in the experiments. Therefore, tensile, creep, low-cycle fatigue and fatigue crack growth tests in the liquid metal have been performed. The test parameters have been varied in a wide range as well as the external state of the material related to the real operational conditions. The examination of the test results and of the numerous examinations of the material (measurement of hardness, metallographic studies and analyses using the scanning and transmission electron microscope, microprobe and AUGER microprobe, GDOS and classical chemical methods) made it sure that the liquid alloy Pb-17Li has an influence on the mechanical properties of the steel only under certain conditions. Necessary conditions are a high temperature (> 500deg C), a long lasting contact with the liquid metal and a minimum degree of deformation. If these conditions are fulfilled, an earlier end of life time occurs in Pb-17Li compared to gaseous environment (air or argon) due to the loss of material caused by the dissolution processes in the liquid alloy. (orig./MM) [de

  10. Alloying of aluminum and its influence on the properties of aluminide coatings: oxidation behavior and the chemical stability in Pb-17Li

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Peric, Z.; Borgstedt, H.U.

    1996-01-01

    Electrical insulation of the structural material is necessary to reduce the MHD pressure drop in a self-cooled liquid metal blanket. This coating has to be compatible with liquid Pb-17Li up to 450 C. Specimens with different types of coatings were exposed to static Pb-17Li for 1200 h at 450 C in order to study their compatibility. Iron and a ferritic steel were coated with an aluminide layer by means of an aluminizing process. Iron metal plate was hot dip aluminized at Thyssen, Germany. The preheated sheet was coated for this purpose by exposing for a few seconds to a melt of Al with 10 wt% Si. The ferritic steel, MANET, was immersed into a melt of the same composition. In this case, cold specimens were dipped into the melt at 700 C for up to 10 min. The formation of the required oxide scale on top of the aluminide layer was performed by using two different methods: high temperature oxidation in air and anodic oxidation at room temperature. All the exposed specimens were examined before and after the corrosion experiments. The analytical method used is EDX measurements on the cut of the specimens and metallographical examinations. (orig.)

  11. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants' thermal perception. The results revealed that the differences in the thermal conditions achieved...

  12. Validation of Numerical Schemes in a Thermal-Hydraulic Analysis Code for a Natural Convection Heat Transfer of a Molten Pool

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Hwan Yeol; Park, Rae Joon; Song, Jin Ho

    2010-01-01

    It is postulated that a fuel of a water-cooled nuclear reactor can be melted during a hypothetical severe accident. There are two strategies for cooling the molten corium, which are in-vessel corium cooling and exvessel corium cooling. They can be chosen depending on cooling characteristics of the reactor. The coolability of the molten pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the molten pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the corium pool. Many correlations have been developed by conducting experiments for the natural convection of a pool. The main parameters of the heat transfer by the natural convection are Rayleigh (Ra) number, Prandtl (Pr) number and the geometry of the pool. Sometimes, the use of the correlations for the evaluation of the thermal load from the molten pool is limited by a high Ra number of the pool and its different shape from the existing correlations. Computational fluid dynamics (CFD) has been used for the analysis of the heat transfer by a natural convection. In principle, CFD is applicable to the corium pool analysis. But unfortunately, some difficulties are encountered during the analysis, which are from numerical and physical instabilities. The physical instability is from turbulence fluctuation and inverted thermal layer near the upper surface of the volumetric-heated molten pool with a high Ra number. In order to resolve turbulent natural convection, buoyancy-modified two-equation turbulence models such as a k-e or k-w model with time-averaged Navier- Stokes equations are commonly used. Because an unsteadiness of a natural convection becomes nontrivial in a high Ra number pool, it is very difficult to get accurate heat flux on the pool surface with the time averaged turbulence model. Recently

  13. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  14. Gravity modulation effect on the onset of thermal buoyancy convection in a horizontal layer of the Oldroyd fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, Tatyana; Kovalevskaya, Kseniya, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    The effect of gravity modulation on the onset of convection in a horizontal layer of viscoelastic Oldroyd fluid heated from below is considered. The analytical solution of the problem has been obtained for the case of stress-free boundaries and rectangular modulation. It has been shown that depending on the parameter values, the modulation can produce either stabilizing or destabilizing effects. The deformation retardation always exerts a stabilizing effect, which is most pronounced in the shortwave range. The numerical results obtained by the solution of full nonlinear problems agree well with the results of linear stability analysis. (paper)

  15. Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation

    Science.gov (United States)

    Sithole, Hloniphile; Mondal, Hiranmoy; Sibanda, Precious

    2018-06-01

    This study addresses entropy generation in magnetohydrodynamic flow of a second grade nanofluid over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. The second grade fluid is assumed to be electrically conducting and is permeated by an applied non-uniform magnetic field. We further consider the impact on the fluid properties and the Nusselt number of homogeneous-heterogeneous reactions and a convective boundary condition. The mathematical equations are solved using the spectral local linearization method. Computations for skin-friction coefficient and local Nusselt number are carried out and displayed in a table. It is observed that the effects of the thermophoresis parameter is to increase the temperature distributions throughout the boundary layer. The entropy generation is enhanced by larger magnetic parameters and increasing Reynolds number. The aim of this manuscript is to pay more attention of entropy generation analysis with heat and fluid flow on second grade nanofluids to improve the system performance. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of the second grade nanofluid parameter.

  16. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  17. The Earth's mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources

    Science.gov (United States)

    Fourel, Loïc; Limare, Angela; Jaupart, Claude; Surducan, Emanoil; Farnetani, Cinzia G.; Kaminski, Edouard C.; Neamtu, Camelia; Surducan, Vasile

    2017-08-01

    Convective motions in silicate planets are largely driven by internal heat sources and secular cooling. The exact amount and distribution of heat sources in the Earth are poorly constrained and the latter is likely to change with time due to mixing and to the deformation of boundaries that separate different reservoirs. To improve our understanding of planetary-scale convection in these conditions, we have designed a new laboratory setup allowing a large range of heat source distributions. We illustrate the potential of our new technique with a study of an initially stratified fluid involving two layers with different physical properties and internal heat production rates. A modified microwave oven is used to generate a uniform radiation propagating through the fluids. Experimental fluids are solutions of hydroxyethyl cellulose and salt in water, such that salt increases both the density and the volumetric heating rate. We determine temperature and composition fields in 3D with non-invasive techniques. Two fluorescent dyes are used to determine temperature. A Nd:YAG planar laser beam excites fluorescence, and an optical system, involving a beam splitter and a set of colour filters, captures the fluorescence intensity distribution on two separate spectral bands. The ratio between the two intensities provides an instantaneous determination of temperature with an uncertainty of 5% (typically 1K). We quantify mixing processes by precisely tracking the interfaces separating the two fluids. These novel techniques allow new insights on the generation, morphology and evolution of large-scale heterogeneities in the Earth's lower mantle.

  18. The thermo-mechanical design of the water cooled PB-17Li test blanket module for ITER

    International Nuclear Information System (INIS)

    Nardi, C.; Palmieri, A.; Pinna, T.; Porfini, M.T.; Rapisarda, M.; Roccella, M.; Futterer, M.; Lucca, F.

    1998-01-01

    The Water Cooled Lithium Lead (WCLL) blanket is one of the two European concepts to be further developed. A Test Blanket Module (TBM) representative of the DEMO blanket shall be tested in ITER. This paper reports on the activities related to the thermo-mechanical design analysis, taking into account the electromagnetic and neutronic loads in normal and off normal conditions. These loads were applied to a finite elements model of the structure, and the structural response was compared to the allowable value, dependent on the operating conditions. Besides the loads assumed by the design specifications (pressure, temperature, etc), electro-mechanical and thermal loads have been evaluated. A model of the TBM has been performed to compute the loads related to the electromagnetic effects of a centered plasma disruption. The thermal loads have been evaluated considering the heat deposition from the plasma and from the neutrons. The neutronic analysis has been carried out also in order to evaluate the shielding characteristics of the TBM. Taking into account the thermal and mechanical loads a fracture mechanics analysis has been carried out. From this analysis the J Ic parameter was evaluated at the crack tip and compared with the allowable value. The work carried out showed that the TBM present design fulfills ITER normal operation requirements. (authors)

  19. Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Khilap Singh

    2016-01-01

    Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.

  20. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  1. NAK WP-cave project: Thermally induced convective motion in groundwater in the near field of the WP-cave after filling and closure

    International Nuclear Information System (INIS)

    Hopkirk, R.J.

    1989-04-01

    The thermal convective motion induced in groundwater due to the decay heat generated by the high-level waste in the WP-Cave has been studied by means of coupled thermo-hydraulic numerical models. The WPC concept is proposed as an alternative to the KBS-3 repository concept for construction in crystalline rock. However, in the absence of specific site fissure data, the rock mass has been modelled as a quasi-porous medium. The repository was assumed to be filled 40 years after unloading of the spent fuel. For a further 100 years the whole repository is cooled, before being backfilled and sealed off. Maximum waste temperatures and the fluid fluxes crossing the backfilled bentonite diffusion barrier were monitored to 3000 years after fuel unloading. At the same time, the effects of the hydraulic cage and of a highly permeable rock zone beneath the central storage volume on the induced fluid flows have been assessed. (orig.)

  2. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  3. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    Science.gov (United States)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  4. 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, Nitin [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2016-08-15

    Highlights: • Investigation of three-dimensional natural convection and thermal stratification inside large water pool. • Effect of inclination (α) of condenser tube on fluid flow and heat transfer. • The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. • Laminar-turbulent natural convection and heat transfer in the presence of longitudinal vortices. - Abstract: Many advanced nuclear reactors adopt methodologies of passive safety systems based on natural forces such as gravity. In one of such system, the decay heat generated from a reactor is removed by isolation condenser (ICs) submerged in a large water pool called the Gravity Driven Water Pool (GDWP). The objective of the present study was to design an IC for the passive decay heat removal system (PDHRS) for advanced nuclear reactor. First, the effect of inclination of IC tube on three dimensional temperature and flow fields was investigated inside a pilot scale (10 L) GDWP. Further, the knowledge of these fields has been used for the quantification of heat transfer and thermal stratification phenomenon. In a next step, the knowledge gained from the pilot scale GDWP has been extended to design an IC for real size GDWP (∼10,000 m{sup 3}). Single phase CFD simulation using open source CFD code [OpenFOAM-2.2] was performed for different tube inclination angles (α) (w.r.t. to vertical direction) in the range 0° ⩽ α ⩽ 90°. The results indicate that the heat transfer coefficient increases with increase in tube inclination angle. The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. This behavior is due to the interaction between the primary flow (due to pressure gradient) and secondary flow (due to buoyancy force). The primary flow enhanced the fluid sliding motion at the tube top whereas the secondary flow resulted in enhancement in fluid motion along the circumference of tube. As the angle of inclination (α) of the tube was increased, the

  5. Study of the efficiency of the anti-convective thermal barrier of the Super-Phenix vessels inter space

    International Nuclear Information System (INIS)

    Durin, M.; Mejane, A.

    1983-08-01

    In the LMFBR Phenix reactor, the junction between the primary vessel and the roof slab is a region of large thermal gradients. In order to limit the gradient in the primary vessel, a thermal barrier has been installed between the primary and the safety vessel. The purpose of this barrier is to prevent the penetration of hot gas in the upper part of the vessels inter space. Experimental results have been obtained on a full scale model representing a 25 0 vessel sector of the reactor. Different geometrical configurations have been tested for a large range of boundary condition: - perfectly tight barrier - no thermal barrier; - simulation of leakages on the barrier [fr

  6. Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)

    2016-03-15

    A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.

  7. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir

    The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.

  8. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  9. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  10. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  11. Gas mixing under the influence of thermal-dynamic parameters such as buoyancy, jet momentum and fan-induced convection

    International Nuclear Information System (INIS)

    Chan, C.K.; Jones, S.C.A.

    1994-01-01

    Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)

  12. Thermal radiation and chemical reaction effects on MHD free convection heat and mass transfer in a micropolar fluid

    International Nuclear Information System (INIS)

    Srinivasacharya, D.; Mendu, Upendar

    2011-01-01

    The steady laminar free convection heat and mass transfer boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate in the presence of a homogeneous first order chemical reaction and a radiation with transverse magnetic field has been reported. It has been established that the flow problem has similarity solutions when the variation in temperature of the plate and variation in concentration of the fluid are linear functions of the distance from the leading edge measured along the plate. The nonlinear governing equations of the flow along with their appropriate boundary conditions are initially cast into dimensionless forms using similarity transformations which are used to reduce the governing partial differential equations into ordinary differential equations. The resulting system of equations thus formed is then solved numerically by using the Keller-box method. The non-dimensional Nusselt number, Sherwood number and the skin friction coefficient and wall couple stress at the plate are derived, and a parametric study of the governing parameters, namely the magnetic field strength parameter, radiation parameter, chemical reaction parameter, Sherwood number profiles against to the coupling number as well as the skin friction coefficient, wall couple stress coefficient is conducted. (author)

  13. A linear stability analysis of thermal convection in spherical shells with variable radial gravity based on the Tau-Chebyshev method

    International Nuclear Information System (INIS)

    Avila, Ruben; Cabello-González, Ares; Ramos, Eduardo

    2013-01-01

    Highlights: • The Tau-Chebyshev method solves the linear fluid flow equations in spherical shells. • The fluid motion is driven by a central force proportional to the radial position. • The full Navier–Stokes equations are solved by the spectral element method. • The linear results are verified with the solution of the Navier–Stokes equations. • The solution of the linear problems is used to initiate non-linear calculations. -- Abstract: The onset of thermal convection in a non-rotating spherical shell is investigated using linear theory. The Tau-Chebyshev spectral method is used to integrate the linearized equations. We investigate the onset of thermal convection by considering two cases of the radial gravitational field (i) a local acceleration, acting radially inward, that is proportional to the distance from the center r, and (ii) a radial gravitational central force that is proportional to r −n . The former case has been widely analyzed in the literature, because it constitutes a simplified model that is usually used, in astrophysics and geophysics, and is studied here to validate the numerical method. The latter case was analyzed since the case n = 5 has been experimentally realized (by means of the dielectrophoretic effect) under microgravity condition, in the experimental container called GeoFlow, inside the International Space Station. Our study is aimed to clarify the role of (i) a radially inward central force (either proportional to r or to r −n ), (ii) a base conductive temperature distribution provided by either a uniform heat source or an imposed temperature difference between outer and inner spheres, and (iii) the aspect ratio η (ratio of the radii of the inner and outer spheres), on the critical Rayleigh number. In all cases the surface of the spheres has been assumed to be rigid. The results obtained with the linear theory based on the Tau-Chebyshev spectral method are compared with those of the integration of the full non

  14. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  15. Numerical analysis for MHD thermal and solutal stratified stagnation point flow of Powell-Eyring fluid induced by cylindrical surface with dual convection and heat generation effects

    Science.gov (United States)

    Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.

    The current analysis reports the untapped characteristics of magneto-hydrodynamic dual convection boundary layer stagnation point flow of Powell-Eyring fluid by way of cylindrical surface. Flow exploration is carried out with the combined effects of thermal and solutal stratification. The strength of temperature and concentration adjacent to the cylindrical surface is assumed to be greater than the ambient fluid. Flow conducting mathematically modelled equations are fairly transformed into system of coupled non-linear ordinary differential equations with the aid of suitable transformations. The computations are made against these resultant coupled equations through shooting technique by the support of fifth order Runge-Kutta algorithm. A parametric study is performed to examine the effect logs of various pertinent flow controlling parameters on the velocity, temperature and concentration flow regime. The achieved outcomes are validated by developing comparison with existing published literature. In addition, numerical values of skin friction coefficient and Nusselt number are presented graphically for two different geometries namely, plate and cylinder.

  16. Influence of Thermal Radiation on Unsteady Free Convection MHD Flow of Brinkman Type Fluid in a Porous Medium with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.

  17. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  18. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  19. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    KAUST Repository

    Prasad, Vallampati Ramachandra Ramachandra

    2012-02-01

    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via second order Forchheimer drag force term in the momentum boundary layer equation. The surface of the sphere is maintained at a constant temperature and concentration and is permeable, i.e. transpiration into and from the boundary layer regime is possible. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. Increasing porosity (ε) is found to elevate velocities, i.e. accelerate the flow but decrease temperatures, i.e. cool the boundary layer regime. Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters. © 2011 Elsevier B.V.

  20. Experimental study for thermal striping phenomena of parallel triple-jet. Effects of the difference between hot jets and cold jet in discharged temperature and velocity on convective mixing

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Tokuhiro, A.; Miyakoshi, Hiroyuki

    1996-10-01

    Elucidation on thermal hydraulic behavior of Thermal Striping is of importance for a reactor safety, which is arisen form exit temperature difference of fuel subassemblies. Since its temperature fluctuation may cause thermal cycle fatigue on upper internal structure (UIS). A series of experiments was performed using the Thermal Striping water test facility in order to investigate the mixing phenomena on three vertical jets with exit velocity and temperature differences. The parameters were the velocity and temperature of the jets at discharge nozzles. The local velocities were measured by Ultrasound Velocity Profile (UVP) monitor and Laser Doppler Anemometry (LDA), and temperature distributions were measured by thermocouples. This report mainly examined the experimental results of temperature measurements. There is a typical region where the gradient of the temperature variation in the triple-jet: that is the Convective Mixing region. This region is independent of the discharged temperature difference, and spreads with larger velocity difference among the jets. For isovelocity discharge conditions, non-dimensional temperature fields are almost independent of discharged temperature differences within Convective Mixing region. Consequently, the effect of temperature difference is negligible compared to that of velocity difference on the flow field. There are remarkable frequencies of 2-5Hz in temperature fluctuation due to a oscillation of the central jet (cold jet) for this condition. While, for non-isovelocity discharge condition, there are no remarkable frequencies. Hence, it is clear that there is the region where a large thermal fatigue is imposed by Thermal Striping against structures of Fast Reactor. It is suggested that the structures have to be placed outside of Convective Mixing region. Also, it is considered that typical frequencies in temperature fluctuation are controlled by giving a discharge velocity difference between cold and hot jets. (J.P.N.)

  1. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  2. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  3. Thermal convection loop experiments and analysis of mass transport process in Lithium/Fe-12Cr-1MoVW systems

    International Nuclear Information System (INIS)

    Bell, G.E.C.

    1988-01-01

    Lithium is an attractive coolant and breeder material for first- generation fusion reactor blankets. The compatibility of lithium with structural alloys, in the form of mass transport and deposition, may impose restrictions on blanket operating parameters such as temperature and lithium purity. A ferritic steel, such as Fe-12CrlMoVW, is a candidate for use as a structural alloy in a self-cooled lithium blanket design. Experimental data on mass transport in lithium/Fe-12CrlMoVW were obtained from two thermal convection loops which spanned the fusion relevant temperature range; one operated from 360 to 505/degree/C for 3040 hours and the other from 525 to 655/degree/C for 2510 hours. The experimental effort was supported by analysis of the mechanisms and processes of mass transport and deposition. It was found that mass transport and deposition, as measured by specimen weight change, were not simple functions of temperature for the entire temperature range investigated. The mass transfer behavior and surface morphology at low temperatures were dominated by impurity reactions of nitrogen and carbon in the lithium with the steel. In the experiment between 360 and 505/degree/C, nitrogen levels were sufficient below 450/degree/C to allow the formation of the adherent, protective corrosion product Li 9 CrN 5 . Weight losses in the 360 to 505/degree/C experiment were insensitive to temperature below 450/degree/C. Between 450 and 505/degree/C, the precipitation of carbon in the form of chromium-rich M 23 C 6 (M = Fe or Cr) carbides, due to the formation of Li 9 CrN 5 and corresponding release of carbon, resulted in weight gains for the highest temperature specimens in the experiment. 98 refs., 83 figs., 9 tabs

  4. The creep-rupture behaviour of the martensitic steel X18CrMoVNb 121 (no.1.4914) in liquid Pb-17 Li at 550 and 6000C

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.; Schirra, M.

    1988-01-01

    One of the candidate structural materials for the NET blanket is the martensitic steel X18 CrMoVNb 12 1 (no.1.4914). Its compatibility with the molten eutectic Pb-17Li, which might be used as liquid breeder and coolant in a self-cooled liquid metal blanket, should be satisfying even under superimposed mechanical stress. The mechanical high-temperature strength of the steel should not be significantly reduced by the interaction with the liquid metal which is in close contact with the surface of the components of such a blanket. The corrosion behaviour of this steel in flowing Pb-17Li eutectic is also studied, results will be presented at this conference. A certain influence of a liquid metal environment on the creep-rupture behaviour of steels was observed earlier in a study on the mechanical properties of austenitic stainless steel in liquid sodium. Therefore, a test programme was initiated to evaluate the effects of liquid Pb-17Li alloy on the creep strength of the steel no. 1.4914. Liquid lithium environment showed an influence on the fracture of this material in short time tests at moderate temperature

  5. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  6. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  7. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  8. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  9. Constant system for by-channel thermal-hydraulic calculation of fuel assembly operational conditions in reactors with natural and mixed convection

    International Nuclear Information System (INIS)

    Bogatyrev, I.L.; Bogoslovskaya, G.P.; Zhukov, A.V.; Sorokin, A.P.; Titov, P.A.

    1992-01-01

    System of constants for mass, impulse and energy conservation equations (drag, mixing, heat transfer coefficients, azimuthal unquality of temperature) is reported in region with small Re number for wide range of geometrical assembly parameters. This system can be used in subchannel calculations of assemblies with natural and mixed convection under conditions with loss of flow accident. The formulae are compared with experimental data. 30 refs.; 12 figs.; 1 tab

  10. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  11. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  12. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  13. Analytical model of unsteady-state convective heat transfer between the heat carrier and the finite sizes plate adjusted for the thermal relaxation

    Directory of Open Access Journals (Sweden)

    Makarushkin Danila

    2017-01-01

    Full Text Available A hyperbolic boundary value problem of the thermal conduction of a two-dimensional plate with the third kind boundary conditions is formulated. The transient thermal process in the plate is due to the temperature changes of the external medium over time and along the plate length, and also by a multiple step change of the plate surface heat transfer coefficient throughout the transient process. An analytical solution with improved convergence adjusted for thermal relaxation and thermal damping is obtained for the temperature field in the plate.

  14. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  15. Thermal boundary condition effects on forced convection heat transfer. Application of a numerical solution of an adjoint problem; Kyosei tairyu netsudentatsu mondai ni okeru netsuteki kyokai joken no eikyo. Zuihan mondai no suchi kai wo mochiita kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Momose, K.; Saso, K.; Kimoto, H. [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1997-11-25

    We propose a numerical solution for the adjoint operator of a forced convection heat transfer problem to evaluate mean heat transfer characteristics under arbitrary thermal conditions. Using the numerical solutions of the adjoint problems under Dirichlet and Neumann conditions, both of which can be computed using a conventional CFD code, the influence function of the local surface temperature on the total heat transfer and that of the local surface heat flux on the mean surface temperature are obtained. As a result, the total heat fluxes for arbitrary surface temperature distributions and the mean surface temperatures for arbitrary surface heat flux distributions can be calculated using these influence functions. The influence functions for a circular cylinder and for an in-line square rod array are presented. 14 refs., 9 figs., 1 tab.

  16. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Pandit K. K.

    2017-12-01

    Full Text Available An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  17. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Science.gov (United States)

    Pandit, K. K.; Sarma, D.; Singh, S. I.

    2017-12-01

    An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  18. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  19. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  20. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  1. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  2. A comparative study of mixed convection and its effect on partially active thermal zones in a two sided lid-driven cavity filled with nanofluid

    Directory of Open Access Journals (Sweden)

    Sumit Malik

    2016-09-01

    Full Text Available In the present study, a two sided lid-driven mixed convection nanofluid flow with discrete heat sources have been numerically investigated. A two dimensional computational visualization technique is used to study the flow behavior using four different cases; depending on the direction of moving vertical walls with fixed upper and lower walls. Two discrete heat sources of equal lengths are taken on the lower wall and the rest of it is kept insulated. The other walls are kept at constant low temperature. The effect of flow governing parameters such as Reynolds number 1⩽Re⩽100, Richardson number 0.1⩽Ri⩽10 and solid volume fraction 0.0⩽ϕ⩽0.2 with Prandtl number Pr=6.2 is studied to understand the fluid flow pattern and the heat transfer effect using isotherms and average Nusselt number.

  3. HEXEREI: a multi-channel heat conduction convection code for use in transient thermal hydraulic analysis of high-temperature, gas-cooled reactors. Interim report

    International Nuclear Information System (INIS)

    Giles, G.E.; DeVault, R.M.; Turner, W.D.; Becker, B.R.

    1976-05-01

    A description is given of the development and verification of a generalized coupled conduction-convection, multichannel heat transfer computer program to analyze specific safety questions involving high temperature gas-cooled reactors (HTGR). The HEXEREI code was designed to provide steady-state and transient heat transfer analysis of the HTGR active core using a basic hexagonal mesh and multichannel coolant flow. In addition, the core auxiliary cooling systems were included in the code to provide more complete analysis of the reactor system during accidents involving reactor trip and cooling down on the auxiliary systems. Included are brief descriptions of the components of the HEXEREI code and sample HEXEREI analyses compared with analytical solutions and other heat transfer codes

  4. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Directory of Open Access Journals (Sweden)

    Abdallah I. A.

    2009-07-01

    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  5. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  6. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  7. Experimental study of the effect of an electric field on thermal exchanges under forced convection with gaseous carbon anhydride in presence of the radiation of the Melusine pile; Etude experimentale de l'effet d'un champ electrique sur les echanges thermiques en convection forcee avec l'anhydride carbonique gazeux en presence du rayonnement de la pile Melusine

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Rebiere, J.; Verdier, J.

    1961-01-21

    Previous studies showed that, under free or forced convection, the application of a non-uniform electric field with a sufficient intensity at the neighbourhood of the heating elements resulted in a significant improvement of the thermal exchange coefficient under some flow rate and pressure conditions. But these improvements first required the creation of ions in the gas (shock ionization and existence of a corona effect above a sufficient voltage). This document therefore report further studies performed at the neighbourhood of the Melusine atomic pile which would provide ionizing radiations of much greater intensity. The objectives were, on the one hand, a global verification of work hypotheses imagined for the exchange improvement mechanism, and, on the other hand, to obtain data on the conditions under which this exchange improvement mechanism could be used in channels of a reactor. The authors present the instrumentation (measurement cells, gas circuit, heating circuit, high voltage circuit), describe how physical values are measured (pressure, gas flow rate, temperature of the heating element, gas temperature, high voltage). They describe how they compare powers exchanged under forced convection between dioxide carbon and a heated wire with or without external ionizing radiations, and report the various performed calculations (power supplied to the gas, temperature shift, Nusselt and Reynolds numbers). They report and discuss experimental results obtained outside the pile without ionizing radiations, and within the pile in presence of a ionizing radiation [French] Les essais ont ete effectues dans les conditions suivantes: nombres de Reynolds variant de 20.000 a 80.000, pression de 11 a 21 kg/cm{sup 2}, temperatures moyennes de l'element chauffant de 200 a 600 deg. C, tension electrique de 0 a 30 kV eff et intensite maximum du rayonnement γ, 3x10{sup 7} roentgen/h. On a confirme, hors pile, que l'augmentation de la puissance echangee, au dessus du seuil d

  8. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  9. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  10. Convective losses through an air-filled gap

    Energy Technology Data Exchange (ETDEWEB)

    Baum, V A; Ovezsakhatov, N

    1976-01-01

    Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.

  11. Unravelling convective heat transfer in the Rotated Arc Mixer

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.

  12. Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Musilová, Věra; Skrbek, L.

    2011-01-01

    Roč. 107, č. 1 (2011), 014302:1-4 ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011

  13. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  14. Convectively driven flow past an infinite moving vertical cylinder with ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... tical cylinder with combined effects of heat and mass transfer is an ... presented a numerical study of free convective flow of a viscous ... models. The simultaneous effects of thermal and mass stratifications have application.

  15. Revisiting coupled Shukla-Varma and convective cell mode in classical and quantum dusty magnetoplasmas

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida

    2010-08-01

    The coupled Shukla-Varma (SV) and convective cell mode is revisited in classical and quantum dusty magnetoplasmas. It is shown that the inclusion of electron thermal effects modifies the original coupled SV and convective cell mode. It is also discussed how the quantum effects can be incorporated in the coupled SV and convective cell mode.

  16. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  17. Patterns flow and thermal analysis of the natural convection in a still laboratory; Patrones de flujo y analisis termico de la conveccion natural en un destilador de laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Espana Estrada, Juan M; Poujol Galvan, Federico T [Universidad Autonoma de Baja California Sur, Mexico, La Paz, B.C.S. (Mexico); Fernandez Zayas, Jose L [Instituto de Ingenieria de la UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    A preliminary study transient on the natural convection that occurs within a laboratory still is presented. The reason for this work was to have a better understanding of the transport phenomena, to determine the manner in which it produces an effect in the operation of booth type still. The evolution of the temperature patterns and relation to the flow that is visualized in the interior of the still, with a constant temperature increase on the base of the same analyzed. The still used is composed of a stainless steel base of 1 x 0.5 m under which distilled water is made to circulate at a given temperature. The upper walls, that form an isosceles triangle of 45 Celsius degrees with a height of 0.40 m, are composed two layers of transparent glass in the middle of which the water is made to circulate at a controlled temperature. The flow patterns were visualized using smoke, illuminated with a laser sheet. Likewise, measurements of the temperatures taken with thermocouples strategically situated in the interior of the experimental device were registered. The experimental results demonstrated the initial evolution of the movement of the fluid, as well as the variation of temperature at different positions within the laboratory still throughout the course of the test. [Spanish] Se presentan los avances de un estudio preliminar sobre la conveccion natural en estado transitorio, que ocurre dentro de un destilador de laboratorio. El motivo de este trabajo fue comprender mejor los fenomenos de transporte, para determinar su influencia en la operacion de destiladores solares tipo caseta. Se analiza la evolucion de los patrones de temperatura y su relacion con el flujo que se visualiza en el interior del destilador, el cual esta llenado con agua destilada, bajo condiciones controladas en las paredes del destilador, con un incremento constante de temperatura en la base del mismo. El destilador utilizado consta de una base de acero inoxidable de 1 x 0.5 m debajo de la cual se

  18. Preliminary Study of the Onset of Nucleate Boiling (ONB) for the Thermal-hydraulic Design of HANARO Irradiation non-instrumented Capsule during the Natural Convection

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The HANARO reactor is an open-tank-in-pool type for easy access, and the capsules are being utilized for the irradiation test of materials and nuclear fuel in HANARO. The concept of the capsule is the direct contact with the coolant to cool the temperature of specimen down. To successfully accomplish the irradiation test, it is essential that the capsule should be designed considering the thermal margin such as the margin to Onset of Nucleate Boiling (ONB), the margin to Departure from Nucleate Boiling (DNB). In this paper, the preliminary study was performed by focusing on the ONB and the capsule design will be performed using the heat flux and temperature at ONB condition calculated in this paper. In this paper, the temperature and heat flux under ONB condition are simply calculated for the thermal design of fuel capsule for irradiation test. These values will be considered to design the non-instrumented capsule for natural circulation. To confirm the calculated value, detailed calculation will be performed using the one dimensional and multi-dimensional codes.

  19. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  20. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  1. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  2. Lattice BGK simulation of natural convection

    International Nuclear Information System (INIS)

    Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)

  3. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  4. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  5. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  6. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  7. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  8. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  9. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  10. Influence of the process control on the thermal energy requirement of convection dryers in the brick industry; Einfluss der Prozessfuehrung auf den thermischen Energiebedarf von Konvektionstrocknern in der Ziegelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Tretau, Anne

    2008-06-10

    Brick manufacturing demands high amount of energy. The energy flow analysis inside the brick factory shows that the convective drying of green bricks consumes more than half of the total thermal energy required for brick manufacturing. Therefore this paper deals with the theoretical analysis and investigation for the energy requirement of green bricks. For this, a physical-based model has been developed, which describes the dependence of drying-kinetics as well as the energy-requirement interims of the process parameter like mass of the supply air. It turns out that the specific energy requirement substantially depends on temperature and humidity of the ambience air and also supply air mass flow and its temperature. Due to the continuous temperature rise of the green bricks during the second drying section the specific energy requirement increases significantly with the progressive motion of the drying in a chamber dryer. This is due to the fact that the green brick as well as the air conditioning distance more and more from the cooling limit. Just a low part of the dryer exhaust air is saturated. The exhaust air is continuously sucked out and the green bricks are pulled inside the dryer. So the exhaust air has a relatively higher water saturation. On general, continuous dryers have a lower energy requirement than chamber dryer. For the both types of dryers, the mathematical model shows that the increasing of the supply air temperature combined with a commensurate subsidence of supply air mass flow, results in a reduction of drying energy requirement. The change of other essential parameters of drying like green brick thickness, and density as well as the moisture diffusion coefficient, and the vapour diffusity which are only important in the second drying section are of comparatively negligible effect. The developed mathematical model is successfully implemented for the energy investigation in the industrial dryers. The increase in supply air temperature results

  11. Measurement of the Convective Heat-Transfer Coefficient

    Science.gov (United States)

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  12. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...

  13. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  14. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  15. Modeling approaches to natural convection in porous media

    CERN Document Server

    Su, Yan

    2015-01-01

    This book provides an overview of the field of flow and heat transfer in porous medium and focuses on presentation of a generalized approach to predict drag and convective heat transfer within porous medium of arbitrary microscopic geometry, including reticulated foams and packed beds. Practical numerical methods to solve natural convection problems in porous media will be presented with illustrative applications for filtrations, thermal storage and solar receivers.

  16. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  17. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  18. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  19. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  20. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  1. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  2. Thermal convection for large Prandtl numbers

    NARCIS (Netherlands)

    Grossmann, Siegfried; Lohse, Detlef

    2001-01-01

    The Rayleigh-Bénard theory by Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] is extended towards very large Prandtl numbers Pr. The Nusselt number Nu is found here to be independent of Pr. However, for fixed Rayleigh numbers Ra a maximum in the Nu(Pr) dependence is predicted. We moreover offer

  3. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  4. Experimental study on cavity flow natural convection in porous medium, saturated with an Al(sub2)0(sub3) 60% EG-40% water nanofluid

    CSIR Research Space (South Africa)

    Grobler, Carla

    2015-07-01

    Full Text Available Natural convection is convection where the fluid motion is driven by buoyancy forces. Porous media and nanofluids have an impact on the heat transfer capabilities of thermal systems. The present experimental study is part of ongoing research...

  5. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  6. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  7. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  8. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  9. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  10. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  11. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  12. Convection in a colloidal suspension in a closed horizontal cell

    International Nuclear Information System (INIS)

    Smorodin, B. L.; Cherepanov, I. N.

    2015-01-01

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined

  13. Induced convection cylindrical probe conductivity measurements on permeable media

    International Nuclear Information System (INIS)

    Fodemesi, S.P.; Beck, A.E.

    1983-01-01

    This chapter presents results from a program of investigation using the transient needle probe thermal conductivity technique on fluid saturated permeable media with a glass bead matrix. Uses eight additional radially located sensors in order to correlate the convection effects on the temperature sensor in the heater probe with convection behavior in the medium; all were scanned frequently with a data acquisition system, from the start of the experiment through a few hours of experimental time. Points out that with typical conditions encountered in oceanic heat flow work, induced convection may commence as early as 60 s from the start of the experiment. Finds that the convection effects are worse when the needle probe is oriented horizontally than when it is oriented vertically (gradients orthogonal to the gravitational field), and a correlation is made between permeability and the time of onset and the extent of convective effects. Indicates errors in conductivity as large as 40%. Suggests empirical techniques for detecting and correcting for thermal convection using probe sensor data alone

  14. Convective effects in a regulatory and proposed fire model

    International Nuclear Information System (INIS)

    Wix, S.D.; Hohnstreiter, G.F.

    1995-01-01

    Radiation is the dominant mode of heat transfer in large fires. However, convection can be as much as 10 to 20 percent of the total heat transfer to an object in a large fire. The current radioactive material transportation packaging regulations include convection as a mode of heat transfer in the accident condition scenario. The current International Atomic Energy Agency Safety Series 6 packaging regulation states ''the convection coefficient shall be that value which the designer can justify if the package were exposed to the specified fire''. The current Title 10, Code of Federal Regulations, Part 71 (10CFR71) packaging regulation states ''when significant, convection heat input must be included on the basis of still, ambient air at 800 degrees C (1475 degrees F)''. Two questions that can arise in an analysts mind from an examination of the packaging regulations is whether convection is significant and whether convection should be included in the design analysis of a radioactive materials transportation container. The objective of this study is to examine the convective effects on an actual radioactive materials transportation package using a regulatory and a proposed thermal boundary condition

  15. Performance and optimum design of convective-radiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base

    International Nuclear Information System (INIS)

    Aziz, Abdul; Beers-Green, Arlen B.

    2009-01-01

    This paper investigates the performance and optimum design of a longitudinal rectangular fin attached to a convectively heated wall of finite thickness. The exposed surfaces of the fin lose heat to the environmental sink by simultaneous convection and radiation. The tip of the fin is assumed to lose heat by convection and radiation to the same sink. The analysis and optimization of the fin is conducted numerically using the symbolic algebra package Maple. The temperature distribution, the heat transfer rates, and the fin efficiency data is presented illustrating how the thermal performance of the fin is affected by the convection-conduction number, the radiation-conduction number, the base convection Biot number, the convection and radiation Biot numbers at the tip, and the dimensionless sink temperature. Charts are presented showing the relationship between the optimum convection-conduction number and the optimum radiation-conduction number for different values of the base convection Biot number and dimensionless sink temperature and fixed values of the convection and radiation Biot numbers at the tip. Unlike the few other papers which have applied the Adomian's decomposition and the differential quadrature element method to this problem but give illustrative results for specific fin geometry and thermal variables, the present graphical data are generally applicable and can be used by fin designers without delving into the mathematical details of the computational techniques.

  16. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  17. The control of convection by fuelling and pumping in the JET pumped divertor

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, P J; Andrew, P; Campbell, D; Clement, S; Davies, S; Ehrenberg, J; Erents, S K; Gondhalekar, A; Gadeberg, M; Gottardi, N; Von Hellermann, M; Horton, L; Loarte, A; Lowry, C; Maggi, C; McCormick, K; O` Brien, D; Reichle, R; Saibene, G; Simonini, R; Spence, J; Stamp, M; Stork, D; Taroni, A; Vlases, G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    Convection from the scrape-off layer (SOL) to the divertor will control core impurities, if it retains them in a cold, dense, divertor plasma. This implies a high impurity concentration in the divertor, low at its entrance. Particle flux into the divertor entrance can be varied systematically in JET, using the new fuelling and pumping systems. The convection ratio has been estimated for various conditions of operation. Particle convection into the divertor should increase thermal convection, decreasing thermal conduction, and temperature and density gradients along the magnetic field, hence increasing the frictional force and decreasing the thermal force on impurities. Changes in convection in the SOL, caused by gaseous fuelling, have been studied, both experimentally in the JET Mk I divertor and with EDGE2/NIMBUS. 1 ref., 4 figs., 1 tab.

  18. Natural convection in enclosures. Proceedings of the nineteenth national heat transfer conference, Orlando, FL, July 27-30, 1980

    International Nuclear Information System (INIS)

    Torrance, K.E.; Catton, I.

    1980-01-01

    Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres

  19. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  20. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  1. Thermal study by conduction and convection in an elongated tilted cavity with a semitransparent cover; Estudio termico por conveccion y conduccion en una cavidad alargada inclinada con una cubierta semitransparente

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Rosas, Tannia Renee; Alvarez Garcia, Gabriela del S.; Xaman Villasenor, Jesus Perfecto [Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET), Departamento de Mecanica, Cuernavaca, Morelos (Mexico)]. E-mail:Tann1a@live.com.mx; gaby@cenidet.edu.mx; jxaman@cenidet.edu.mx

    2010-11-15

    In this paper a two dimensional numerical study on heat transfer by conduction and convection in a shallow inclined cavity with a semi-transparent wall is presented, where the region between the glass cover (GC) and the absorber plate resembles a cavity. The absorber plate is considered an isothermal surface at hot temperature; whereas the vertical walls were considered adiabatic. The thermal physical and optical properties of the glass cover (GC) were taken into account for the analysis. Inclination angles from 15 degrees to 35 degrees, aspect ratios (A) of 8 and 12 and Rayleigh numbers 10 4, 10 5 and 10 6 were combined to construct the cases. The governing equations of mass, moment and energy were discretized by the use of the Finite Volume method solving the algebraic equations with the SIMPLE algorithm. Results displayed include isotherms and streamlines inside the cavity, as well as temperature distribution on the inside surface of the glass cover (GC) and Nusselt number variations regarding the inclination angle for the two aspect ratios. The results show that the heat transfer increases while the inclination angle rise up, except for the cases where A=8,12, Ra=10 4 and {lambda}=30 where a transition of the flow pattern occurs, and the heat transfer diminishes with the aspect ratio for a fixed Rayleigh. [Spanish] Se presenta el estudio numerico bidimensional de la transferencia de calor por conduccion y conveccion en una cavidad alargada inclinada con pared semitransparente, simulando como una cavidad, la region comprendida entre la cubierta de vidrio (GC) y la placa absorbedora, de un captador solar, con aire en su interior. La placa absorbedora se considero isoterma a una temperatura caliente, se tomo en cuenta las propiedades termofisicas y opticas de la cubierta de vidrio (GC), mientras las paredes verticales se consideraron adiabaticas. Las ecuaciones de conservacion de masa, momentum y energia se resolvieron usando el metodo de Volumen Finito mediante

  2. Mixed convective heat transfer from a vertical plate embedded in a ...

    Indian Academy of Sciences (India)

    Melting effect with heat and mass transfer in porous media has much ... convection boundary layer flow about a vertical surface embedded in a porous medium, ..... Salama A 2008 Combined effect of thermal dispersion and radiation on free.

  3. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  4. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  5. Natural convection between two concentric spheres

    International Nuclear Information System (INIS)

    Blondel-Roux, Marie

    1983-01-01

    After an overview of researches on natural convection in a confined or semi-confined environment, this research thesis reports the use of the Caltagirone and Mojtabi numerical model and the study of its validity for different values of the Rayleigh and Prandtl numbers. Results obtained with this model are compared with experimental ones. Thermal transfer curves are presented and discussed, as well as the different temperature fields numerically obtained, flow function fields, velocities in the fluid layer, and temperature profiles with respect to the Rayleigh number [fr

  6. Parametric modulation of thermomagnetic convection in magnetic fluids.

    Science.gov (United States)

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  7. Vigorous convection as the explanation for Pluto's polygonal terrain.

    Science.gov (United States)

    Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

    2016-06-02

    Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

  8. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10"3 to 6*10"4 and Ri=10"-"4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  9. Convection and crystal settling in sills

    Science.gov (United States)

    Gibb, Fergus G. F.; Henderson, C. Michael B.

    1992-02-01

    It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.

  10. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    Science.gov (United States)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  11. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    International Nuclear Information System (INIS)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  12. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  13. Temperature-Driven Convection

    Science.gov (United States)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  14. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  15. Simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux

    Science.gov (United States)

    Zubair, M.; Waqas, M.; Hayat, T.; Ayub, M.; Alsaedi, A.

    2018-03-01

    In this communication we utilized a modified Fourier approach featuring thermal relaxation effect in nonlinear convective flow by a vertical exponentially stretchable surface. Temperature-dependent thermal conductivity describes the heat transfer process. Thixotropic liquid is modeled. Convergent local similar solutions by homotopic approach are obtained. Graphical results for emerging parameters of interest are analyzed. Skin friction is calculated and interpreted. Consideration of larger local buoyancy and nonlinear convection parameters yields an enhancement in velocity distribution. Temperature and thermal layer thickness are reduced for larger thermal relaxation factor.

  16. Convective and conduction heat transfer study on a mig-type electron gun

    International Nuclear Information System (INIS)

    Patire Junior, H.; Barroso, J.J.

    1996-01-01

    A convective and conducting heat transfer study of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal probe to determine the air velocity and the convective heat transfer coefficient has been constructed to determine the external boundary condition of the ceramic shell and external flanges. A study the contact resistance for all the gun elements has been made to minimize the conduction thermal losses. A software has been used to simulate a thermal model considering the three processes of thermal transfer, namely, conduction, convection and radiation and the influence of the physical properties of the materials used. (author). 7 refs., 5 figs., 1 tab

  17. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  18. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  19. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    Directory of Open Access Journals (Sweden)

    Mehta C.B.

    2018-02-01

    Full Text Available Thermal Instability (Benard’s Convection in the presence of uniform rotation and uniform magnetic field (separately is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  20. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  1. Water-induced convection in the Earth's mantle transition zone

    Science.gov (United States)

    Richard, Guillaume C.; Bercovici, David

    2009-01-01

    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  2. Convection in the Labrador Sea

    National Research Council Canada - National Science Library

    Davis, R

    1997-01-01

    The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...

  3. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  4. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  5. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  6. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    Science.gov (United States)

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  7. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    Science.gov (United States)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  8. Rotating Rayleigh-Bénard convection at low Prandtl number

    Science.gov (United States)

    Aguirre Guzman, Andres; Ostilla-Monico, Rodolfo; Clercx, Herman; Kunnen, Rudie

    2017-11-01

    Most geo- and astrophysical convective flows are too remote or too complex for direct measurements of the physical quantities involved, and thus a reduced framework with the main physical constituents is beneficial. This approach is given by the problem of rotating Rayleigh-Bénard convection (RRBC). For large-scale systems, the governing parameters of RRBC take extreme values, leading to the geostrophic turbulent regime. We perform Direct Numerical Simulations to investigate the transition to this regime at low Prandtl number (Pr). In low- Pr fluids, thermal diffusivity dominates over momentum diffusivity; we use Pr = 0.1 , relevant to liquid metals. In particular, we study the convective heat transfer (Nusselt number Nu) as a function of rotation (assessed by the Ekman number Ek). The strength of the buoyant forcing (Rayleigh number Ra) is Ra = 1 ×1010 to ensure turbulent convection. Varying Ek , we observe a change of the power-law scaling Nu Ekβ that suggests a transition to geostrophic turbulence, which is likely to occur at Ek = 9 ×10-7 . The thermal boundary layer thickness, however, may suggest a transition at lower Ekman numbers, indicating that perhaps not all statistical quantities show a transitional behaviour at the same Ek .

  9. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  10. Hydrodynamical simulation of the core helium flash with two-dimensional convection

    International Nuclear Information System (INIS)

    Cole, P.W.

    1981-01-01

    The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures

  11. Improved Performance of Personalized Ventilation by Control of the Convection Flow around Occupant Body

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, Miroslav

    2009-01-01

    This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection developm......This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection......-scale test room with background mixing ventilation. Thermal manikin with realistic free convection flow was used. The PV supplied air from front/above towards the face. All measurements were performed under isothermal conditions at 20 °C and 26 °C. The air in the test room was mixed with tracer gas, while...

  12. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  13. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  14. Model of two-temperature convective transfer in porous media

    Science.gov (United States)

    Gruais, Isabelle; Poliševski, Dan

    2017-12-01

    In this paper, we study the asymptotic behaviour of the solution of a convective heat transfer boundary problem in an ɛ -periodic domain which consists of two interwoven phases, solid and fluid, separated by an interface. The fluid flow and its dependence with respect to the temperature are governed by the Boussinesq approximation of the Stokes equations. The tensors of thermal diffusion of both phases are ɛ -periodic, as well as the heat transfer coefficient which is used to describe the first-order jump condition on the interface. We find by homogenization that the two-scale limits of the solutions verify the most common system used to describe local thermal non-equilibrium phenomena in porous media (see Nield and Bejan in Convection in porous media, Springer, New York, 1999; Rees and Pop in Transport phenomena in porous media III, Elsevier, Oxford, 2005). Since now, this system was justified only by volume averaging arguments.

  15. Peculiarities of natural convective heat removal from complex pools

    International Nuclear Information System (INIS)

    Groetzbach, Guenther

    2002-01-01

    Considerable sensitivities are investigated in using natural convection for cooling large pools. Such a flow occurred in a sump cooling concept for a water cooled reactor. The related SUCOS model experiments were analyzed by means of the FLUTAN code. The numerical interpretations show, the natural convection in large pools is strongly influenced by local thermal disturbances, either due to structures in the fluid domain, or by bounding structures interacting thermally with the fluid. These experiment specific disturbances must be recorded in the numerical model in order to achieve adequate simulations of the heat transport. Some geometric imperfections of horizontal coolers or heaters could also have tremendous influences. As a consequence, not only the numerical model has to record all relevant phenomena as realistic as possible, but also the model experiment. (author)

  16. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  17. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    Science.gov (United States)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  18. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  19. Natural convection between parallel vertical plates; Convection naturelle entre plaques paralleles verticales

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Schwab, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    In the thermal study of a 'swimming-pool' type of pile, the flow of water between vertical plates of 'combustible' material must be investigated. Therefore starting from general equations of natural convection, we have determined, the law of distribution of velocities, then that of temperatures, and finally the value of the Biot-Nusselt number, assuming steady-state conditions (both dynamic and thermal) and a constant heat flow at the surface. An abacus (fig. 7, 8 and 9) allows working power to be related to the average velocity and to the heating of the water which passes through the pile. For purposes of comparison, the curves on the calculation presented by S. GLASSTONE (31) have been drawn. (author) [French] L'etude thermique d'une pile du type 'piscine' necessite l'etude de l'ecoulement de l'eau entre les plaques verticales de materiau 'combustible'. Nous avons donc, a partir des equations generales de la convection naturelle, determine la loi de repartition des vitesses, puis celle des temperatures et enfin la valeur du nombre de Biot-Niisselt, en supposant les regimes, dynamique et thermique, etablis et la densite de flux calorifique a la paroi constante. Un abaque (fig. 7, 8 et 9) permet de relier a la puissance de fonctionnement, la vitesse moyenne de l'echauffement de l'eau qui traverse la pile. On a trace a titre de comparaison, les courbes du calcul presente par S. GLASSTONE (3). (auteur)

  20. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  1. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  2. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  3. Convection in porous media

    CERN Document Server

    Nield, Donald A

    2017-01-01

    This updated edition of a widely admired text provides a user-friendly introduction to the field that requires only routine mathematics. The book starts with the elements of fluid mechanics and heat transfer, and covers a wide range of applications from fibrous insulation and catalytic reactors to geological strata, nuclear waste disposal, geothermal reservoirs, and the storage of heat-generating materials. As the standard reference in the field, this book will be essential to researchers and practicing engineers, while remaining an accessible introduction for graduate students and others entering the field. The new edition features 2700 new references covering a number of rapidly expanding fields, including the heat transfer properties of nanofluids and applications involving local thermal non-equilibrium and microfluidic effects. Recognized as the standard reference in the field Includes a comprehensive, 350-page reference list Cited over 5900 times to date in its various editions Serves as an introduction ...

  4. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  5. Forced heat convection in annular spaces; Convection forcee de la chaleur dans les espaces annulaires

    Energy Technology Data Exchange (ETDEWEB)

    Pelce, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-02-15

    This report deals with the experimental study of forced heat convection in annular spaces through which flow of air is passing when a uniform heat flux is dissipated across the inner wall. These observations took place chiefly in the region where thermal equilibrium are not yet established. Amongst other things it became apparent that, both in the region where thermal equilibrium conditions are on the way to establishment and where they are already established, the following relationship held good: the longitudinal temperature gradient, either on the wall or in the fluid stream, is proportional to the heat flux dissipated q, and inversely proportional to the average flow rate V: dT/dx = B (q/V). From this result the next step is to express the variations of the local convection coefficient {alpha} (or of the Margoulis number M) in a relationship of the form: 1/M = {psi}(V) + F(x). If this relationship is compared with the classical empirical relationship {alpha} = KV{sup n} (where n is close to 0.8), the relationship: 1/M = {xi}V{sup 1-n} + F(x) is obtained ({xi} is a constant for a given annular space); from this it was possible to coordinate the whole set of experimental results. (author) [French] Il s'agit precisement de l'etude experimentale de la convection forcee de la chaleur dans des espaces annulaires parcourus par de l'air en ecoulement turbulent, lorsqu'on dissipe a travers la paroi interieure un flux de chaleur uniforme. Ces observations ont eu lieu principalement dans la region ou le regime thermique n'est pas encore etabli. Il est apparu, entre autre, qu'il existait, tant dans la region ou le regime thermique est en voie d'etablissement qu'en regime etabli, la relation suivante: le gradient longitudinal des temperatures, que ce soit sur la paroi ou dans l'ecoulement fluide, est proportionnel au flux de la chaleur dissipee q, et inversement proportionnel a la vitesse moyenne V de l'ecoulement: dT/dx = B (q/V). Ce resultat a pour consequence de traduire

  6. A phenomenological model of the thermal-hydraulics of convective boiling during the quenching of hot rod bundles: Part 2, Assessment of the model with steady-state and transient post-CHF data

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completing the thermal-hydraulic model developed in a companion paper, we performed assessment calculations of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. Among the four Winfrith runs selected to assess the hot-patch model, the average deviation in hot-patch power predictions was 15.4%, indicating reasonable predictions of the amount of energy transferred to the fluid by the hot patch. The interfacial heat-transfer model tended to slightly under-predict the vapor temperatures. The maximum difference between calculated and measured vapor superheats was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall superheats were in reasonable agreement with measured data with a maximum relative error of less than 13%. The effects of pressure, test section power, and flow rate on the axial variation of tube wall temperature are predicted reasonably well for a large range of operating parameters. A comparison of the predicted and measured local wall. The thermal-hydraulic model in TRAC/PF1-MOD2 was used to predict the axial variation of void fraction as measured in Winfrith post-CHF tests. The predictions for reflood calculations were reasonable. The model correctly predicted the trends in void fraction as a result of the effect of pressure and power, with the effect of pressure being more apparent than that of power. 13 refs

  7. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  8. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  9. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  10. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    Science.gov (United States)

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  11. A numerical method for investigating crystal settling in convecting magma chambers

    Science.gov (United States)

    Verhoeven, J.; Schmalzl, J.

    2009-12-01

    Magma chambers can be considered as thermochemically driven convection systems. We present a new numerical method that describes the movement of crystallized minerals in terms of active spherical particles in a convecting magma that is represented by an infinite Prandtl number fluid. The main part focuses on the results we obtained. A finite volume thermochemical convection model for two and three dimensions and a discrete element method, which is used to model granular material, are combined. The new model is validated with floating experiments using particles of different densities and an investigation of single and multiparticle settling velocities. The resulting velocities are compared with theoretical predictions by Stokes's law and a hindered settling function for the multiparticle system. Two fundamental convection regimes are identified in the parameter space that is spanned by the Rayleigh number and the chemical Rayleigh number, which is a measure for the density of the particles. We define the T regime that is dominated by thermal convection. Here the thermal driving force is strong enough to keep all particles in suspension. As the particles get denser, they start settling to the ground, which results in a C regime. The C regime is characterized by the existence of a sediment layer with particle-rich material and a suspension layer with few particles. It is shown that the presence of particles can reduce the vigor of thermal convection. In the frame of a parameter study we discuss the change between the regimes that is systematically investigated. We show that the so-called TC transition fits a power law. Furthermore, we investigate the settling behavior of the particles in vigorous thermal convection, which can be linked to crystal settling in magma chambers. We develop an analytical settling law that describes the number of settled particles against time and show that the results fit the observations from numerical and laboratory experiments.

  12. Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection

    International Nuclear Information System (INIS)

    Li, Y; Inagaki, T; Suzuki, S; Yamauchi, N

    2014-01-01

    We measured the thermophysical properties of suspensions of carbon nanotubes in water as a type of nanofluid, and experimentally investigated their heat transfer characteristics in a horizontal, closed rectangular vessel. Using a previously constructed system for high- reliability measurement, we quantitatively determined their thermophysical properties and the temperature dependence of these properties. We also investigated the as yet unexplained mechanism of heat transport in carbon-nanotube nanofluids and their flow properties from a thermal perspective. The results indicated that these nanofluids are non-Newtonian fluids, whose high viscosity impedes convection and leads to a low heat transfer coefficient under natural convection, despite their high thermal conductivity

  13. Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability

    KAUST Repository

    El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.

    2011-01-01

    The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.

  14. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  15. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  16. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  17. Laser speckle imaging based on photothermally driven convection

    Science.gov (United States)

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  18. Direct simulation of natural convection in square porous enclosure

    International Nuclear Information System (INIS)

    Pourshaghaghy, A.; Hakkaki-Fard, A.; Mahdavi-Nejad, A.

    2007-01-01

    In this article, natural convection in a square porous enclosure is simulated by a direct numerical method. The solution method is based on a random distribution of solid blocks, which resembles the porous media within the cavity. The Navier-Stokes equations are solved directly in the fluid region without the assumption of volume averaging. The no-slip condition is applied on the surface of any solid particle, and the energy transport equation is solved separately for the solid phase and fluid flow. The local and average Nusselt numbers are presented for steady state for two different cases of thermal boundary conditions of the cavity walls. An oscillatory solution is observed for the local Nu number on the surface of the enclosure, and the critical Ra numbers are found in which natural convection flow is started within the cavity

  19. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  20. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  1. The role of the velocity gradient in laminar convective heat transfer through a tube with a uniform wall heat flux

    International Nuclear Information System (INIS)

    Wang Liangbi; Zhang Qiang; Li Xiaoxia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer

  2. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    International Nuclear Information System (INIS)

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab

  3. Fluid convection, constraint and causation

    Science.gov (United States)

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  4. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  5. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  6. Translation and convection of Earth's inner core

    Science.gov (United States)

    Monnereau, M.; Calvet, M.; Margerin, L.; Mizzon, H.; Souriau, A.

    2012-12-01

    outer core. Translation is a particular solution of Navier-Stokes equation with permeable boundary conditions, but depending on the viscosity of the solid core, modes with higher spherical harmonics degree can develop. At low viscosity, these modes can be dominant and dissipate the degree l=1 of thermal heterogeneities. Hence, a viscosity threshold may be expected below which translation cannot take place, thereby constraining the viscosity of iron at inner core conditions. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions. Our numerical simulations show the dominance of pure translation for viscosities of the inner core higher than 5 x 1018 Pas. Translation is almost completely hampered by convective motions for viscosities lower than 1017 Pas and the phase change becomes an almost impermeable boundary. Between these values, a well developed circulation at the harmonic degree l=1 persists, but composed of localized cold downwellings, a passive upward flow taking place on the opposite side (the melting side). Such a convective structure remains compatible with the seismic asymmetry. Alboussiere, T., Deguen, R., Melzani, M., 2010. Nature 466 (7307), 744-U9. Monnereau, M., Calvet, M., Margerin, L., Souriau, A., 2010. Science 328 (5981), 1014-1017.

  7. Experimental Investigation of Temperature Distribution along the Length of Uniform Area Fin for Forced and Free Convection

    Science.gov (United States)

    Kannojiya, Vikas; Sharma, Riya; Gaur, Rahul; Jangra, Anil; Yadav, Pushpender; Prajapati, Pooja

    2018-03-01

    The overheating of an industrial component sometimes may leads to system failure. The convection heat transfer from a heated surface can be effectively enhanced by employing fins on that surface. This Paper emphasizes on the experimental investigation of temperature distribution along the length of pin shaped fin. The analysis is performed on a 100 mm long fin made up of brass with 19.6 mm diameter having thermal conductivity as 111 W/m.K. Temperature at different section of the fin along its length is evaluated experimentally and theoretically. The influence of convection mode viz natural & forced convection and variable heat input on the temperature distribution is evaluated. The result outcomes are then compared with the widely accepted analytical relations. A comparison of convective heat transfer coefficient for uniform and non-uniform area fin is also presented. The results by experimental and analytical method are found to be in good agreement for free convection phenomenon.

  8. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  9. Optimization of convective-radiative fins by using differential quadrature element method

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Rahideh, H.; Karami, G.

    2006-01-01

    A first endeavor to exploit the differential quadrature element method (DQEM) as a simple, accurate and computationally efficient numerical tool for the shape optimization of convective-radiating extended surfaces or fins is made. The formulations are general so that the spatial and spatial-temperature dependent geometrical and thermal parameters can easily be implemented. The thermal conductivity of the fin is assumed to vary as a linear function of the temperature. The effects of a convective-radiative condition at the fin tip and effective convective condition at the fin base are considered. The optimization of fins with uniform and step cross-sections is investigated. The accuracy of the method is demonstrated by comparing its results with those generated by Adomian's decomposition technique, Taylor transformation technique and finite difference method. It is shown that, using few grid points, highly accurate results are obtained. Less computational effort of the method with respect to the finite difference method is shown

  10. Long-lived magnetism from solidification-driven convection on the pallasite parent body

    DEFF Research Database (Denmark)

    Bryson, James F.J.; Nichols, Claire I. O.; Herrero-Albillos, Julia

    2015-01-01

    of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed.We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measuredmagnetic field......Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, themolten metallic cores ofmany small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally...... characteristics and cooling rates. Solidification-driven convectionwas probably commonamong small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among...

  11. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  12. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  13. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  14. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  15. Optimization of fin geometry in heat convection with entransy theory

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Xu Xiang-Hua; Liang Xin-Gang; Zhang Qin-Zhao

    2013-01-01

    The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection. Based on a two-dimensional model, the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed. On the other hand, when the heat flux of the heating surface is fixed, the minimum thermal resistance corresponds to the minimum average temperature of the heating surface. The entropy optimization is also given for the heat transfer processes. It is observed that the minimum entropy generation, the minimum entropy generation number, and the minimum revised entropy generation number do not always correspond to the best heat transfer performance. In addition, the influence factors on the optimized aspect ratio of the plate fin are also discussed. The optimized ratio decreases with the enhancement of heat convection, while it increases with fin thermal conductivity increasing. (general)

  16. MODELING OF CONVECTIVE FLOWS IN PNEUMOBASED OBJECTS. Part 1

    Directory of Open Access Journals (Sweden)

    B. M. Khrustalyov

    2014-01-01

    Full Text Available A computer modeling process of three-dimensional forced convection proceeding from computation of thermodynamic parameters of pneumo basic buildings (pneumo supported structures is presented. The mathematical model of numerical computation method of temperature and velocity fields, pressure profile in the object is developed using the package Solid works and is provided by grid methods on specified software. Special Navier–Stokes, Clapeyron–Mendeleev, continuity and thermal-conductivity equations are used to calculate parameters in the building with four supply and exhaust channels. Differential equations are presented by algebraic equation systems, initial-boundary conditions are changed by differential conditions for mesh functions and their solutions are performed by algebraic operations. In this article the following is demonstrated: in pneumo basic buildings convective and heat flows are identical structures near the surfaces in unlimited space, but in single-multiply shells (envelopescirculation lines take place, geometrical sizes of which depend on thermal-physical characteristics of gas(airin envelopes, radiation reaction with heated surfaces of envelopes with  sphere, earth surface, neighboring buildings. Natural surveys of pneumo-basic buildings of different purposes were carried out in Minsk, in different cities of Belarus and Russia, including temperature fields of external and internal surfaces of air envelopes, relative humidity, thermal (heatflows, radiation characteristics and others.The results of research work are illustrated with diagrams of temperature, velocity, density and pressure dependent on coordinates and time.

  17. Convection causes enhanced magnetic turbulence in accretion disks in outburst

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Shigenobu [Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Kanagawa 236-0001 (Japan); Blaes, Omer; Coleman, Matthew S. B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sano, Takayoshi, E-mail: shirose@jamstec.go.jp [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-05-20

    We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio α, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the α-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.

  18. Water in geodynamical models of mantle convection and plate tectonics

    Science.gov (United States)

    Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.

    2017-12-01

    The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.

  19. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  20. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  1. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Grossmann, Siegfried; Lohse, Detlef

    2009-01-01

    The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the

  2. Self-sustained large-scale flow in turbulent cryogenic convection

    Czech Academy of Sciences Publication Activity Database

    Niemela, J. J.; Skrbek, Ladislav; Sreenivasan, K. R.; Donnelly, R. J.

    2002-01-01

    Roč. 126, 1/2 (2002), s. 297-302 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * turbulence * cryogenic Subject RIV: BK - Fluid Dynamics Impact factor: 1.139, year: 2002

  3. Stability analysis of natural convection in superposed fluid and porous layers

    International Nuclear Information System (INIS)

    Hirata, S.C.; Goyeau, B.; Gobin, D.; Cotta, R.M.

    2005-01-01

    A linear stability analysis of the onset of thermal natural convection in superposed fluid and porous layers is called out. The resulting eigenvalue problem is solved using a integral transformation technique. The effect of the variation of the Darcy number on the stability of the system is analyzed. (authors)

  4. Stability analysis of natural convection in superposed fluid and porous layers

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S.C.; Goyeau, B.; Gobin, D. [Paris-11 Univ. - Paris-6, FAST - UMR CNRS 7608, 91 - Orsay (France); Cotta, R.M. [Rio de Janeiro Univ. (LTTC/PEM/EE/COPPE/UFRJ), RJ (Brazil)

    2005-07-01

    A linear stability analysis of the onset of thermal natural convection in superposed fluid and porous layers is called out. The resulting eigenvalue problem is solved using a integral transformation technique. The effect of the variation of the Darcy number on the stability of the system is analyzed. (authors)

  5. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology .... third kind for flow over a flat plate and in the thermal entrance region of a rectangular channel. ... on mixed convection in a vertical channel using Robin boundary conditions was ... Hajmohammadi and Nourazar (2014) studied the effect of a thin gas layer in ...

  6. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  7. Scale analysis of convective clouds

    Directory of Open Access Journals (Sweden)

    Micha Gryschka

    2008-12-01

    Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.

  8. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  9. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  10. Combination technique for improving natural convection cooling in electronics

    Energy Technology Data Exchange (ETDEWEB)

    Florio, L.A.; Harnoy, A. [Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2007-01-15

    The combination of an appropriately placed cross-flow opening and a strategically positioned transversely vibrating plate is proposed as a means of augmenting pure natural convection in a vertical channel. This method is intended to provide a more efficient, reliable, and consumer conscious alternative to conventional techniques for lower power dissipating devices where standard natural convection cooling proves insufficient. Two-dimensional numerical simulations are employed to investigate this combination method using models consisting of a vertical channel containing two rectangular heat sources which are attached to a vertical mounting board, as well as a transversely oscillating plate and a cross-flow opening in the mounting board area between the two heat sources. Varied parameters and geometric configurations are studied. The results indicate the combined effects of the vibrating plate and the opening flow have the potential to cause significant improvement in the thermal conditions over pure natural convection. As much as a 70% improvement in the local heat transfer coefficient from that for a system with a board opening but without a vibrating plate was attained. (author)

  11. Fuzzy logic controllers and chaotic natural convection loops

    International Nuclear Information System (INIS)

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  12. Natural convection in enclosures containing lead-bismuth and lead

    International Nuclear Information System (INIS)

    Dzodzo, M.; Cuckovic-Dzodzo, D.

    2001-01-01

    The design of liquid metal reactors such as Encapsulated Nuclear Heat Source (ENHS) which are based predominantly on the flow generated by natural convection effects demands knowledge of velocity and temperature fields, distribution of the local Nusselt numbers and values of the average Nusselt numbers for small coolant velocity regimes. Laminar natural convection in rectangular enclosures with different aspect ratios, containing lead-bismuth and lead is studied numerically in this paper. The numerical model takes into account variable properties of the liquid metals. The developed correlation for average Nusselt numbers is presented. It is concluded that average Nusselt numbers are lower than in 'normal' fluids (air, water and glycerol) for the same values of Rayleigh numbers. However, the heat flux, which can be achieved, is greater due to the high thermal conductivity of liquid metals. Some specific features of the flow fields generated by natural convection in liquid metals are presented. Their consequences on the design of heat exchangers for liquid metals are discussed. An application of the obtained results to the design of a new type of steam generator, which integrates the intermediate heat exchanger and secondary pool functions of the ENHS reactor, is presented. (authors)

  13. Dynamical behaviour of natural convection in closed loops

    International Nuclear Information System (INIS)

    Ehrhard, P.

    1988-04-01

    A one dimensional model is presented together with experiments, which describe the natural convective flow in closed loops heated at the bottom and cooled in the upper semicircle. Starting from a single loop, mechanical and thermal coupling with a second loop is discussed. The experiments and the theoretical model both concurrently demonstrate that the investigated natural convection is clearly influenced by non-linear effects. Beside the variety of stable steady flows there are extensive subcritical ranges of convective flow. In these parameter ranges subcritical instabilities of the steady state flow could occur in the presence of finite amplitude disturbances. However, the supercritical, global unstable range is characterized by chaotic histories of the variables of state. Non-symmetric heating generates an imperfect bifurcation out of the steady solution with zero velocity in the loop. This effect stabilizes the flow in the preferred direction. The flow in the opposite direction only remains stable in a small isolated interval of the heating parameter. Furthermore the calculations with the model equations demonstrate that a stable periodic behaviour of the flow is possible in a small parameter window. However, it has not been possible to verify this particular effect in the experiments conducted to date. (orig./GL) [de

  14. Thermal Nanosystems and Nanomaterials

    CERN Document Server

    Volz, Sebastian

    2009-01-01

    Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.

  15. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    International Nuclear Information System (INIS)

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program

  16. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  17. Cloud-Resolving Modeling Intercomparison Study of a Squall Line Case from MC3E - Properties of Convective Core

    Science.gov (United States)

    Fan, J.; Han, B.; Varble, A.; Morrison, H.; North, K.; Kollias, P.; Chen, B.; Dong, X.; Giangrande, S. E.; Khain, A.; Lin, Y.; Mansell, E.; Milbrandt, J.; Stenz, R.; Thompson, G.; Wang, Y.

    2016-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult to (1) further our understanding of deep convection and (2) define "benchmarks" and then limit their use in parameterization developments. A constrained model intercomparsion study on a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes to understand specific processes that lead to the large spreads of simulated convection and precipitation. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area but a much narrower stratiform area. The magnitudes of virtual potential temperature drop, pressure rise, and wind speed peak associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations generally overestimate the vertical velocity and radar reflectivity in convective cores compared with the retrievals. The modeled updraft velocity and precipitation have a significant spread across eight schemes. The spread of updraft velocity is the combination of both low-level pressure perturbation gradient (PPG) and buoyancy. Both PPG and thermal buoyancy are small for simulations of weak convection but both are large for those of strong convection. Ice-related parameterizations contribute majorly to the spread of updraft velocity, while they are not the reason for the large spread of precipitation. The understandings gained in this study can help to focus future observations and parameterization development.

  18. Impact of personal factors and furniture arrangement on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2007-01-01

    . The results reveal that the convective heat loss from the body changes inverse proportionally to the clothing thermal insulation and affects the enthalpy excess in the plume. Chair design changes the ratio between convection and radiation heat losses from the body and has significant impact on the thermal...

  19. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell

    Science.gov (United States)

    Vial, M.; Hernández, R. H.

    2017-07-01

    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  20. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  1. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  2. Computational simulation of turbulent natural convection in a corium pool

    International Nuclear Information System (INIS)

    Vieira, Camila B.; Su, Jian; Niceno, Bojan

    2013-01-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  3. Computational simulation of turbulent natural convection in a corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety

    2013-07-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  4. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  5. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    Science.gov (United States)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  6. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  7. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  8. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  9. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  10. An experimental study of mixed convection; Contribution a l'etude experimentale de la convection mixte

    Energy Technology Data Exchange (ETDEWEB)

    Saez, M.

    1998-10-20

    The aim of our study is to establish a reliable database for improving thermal hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re = 10{sup 3} to 6.10{sup 4} and Ri = 10{sup -4} to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed database of turbulent mixed flow of free and forced convection. Part 2 presents the installation and the calibration system intended for probes calibration. Part 3 describes the measurement technique (constant temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part 4 relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part 5 presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the fluid structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part 5 gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author)

  11. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  12. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  13. Improvement of thermal comfort by cooling clothing in warm climate

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Melikov, Arsen Krikor; Kolencíková, Sona

    2014-01-01

    on the inner surface. We conducted experiments with human subjects in climate chambers maintained at 30 °C and RH 50% to compare the effectiveness of the cooling clothing with that of other convective cooling devices. The use of cooling clothing with a convective cooling device improved the subjects’ thermal...... comfort compared to convective cooling alone. The supply of a small amount of water allowed the cooling clothing to provide a continuous cooling effect, whereas the effect of convective cooling alone decreased as sweat dried. However, the controllability of the cooling clothing needs to be improved....

  14. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  15. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  16. Comparison of the Thermal Performance of Radiative and Convective Terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per

    2012-01-01

    can provide a better indoor climate, and be more energy efficient because they can make use of low-grade sources. The output of this conceptual approach is a better understanding of the advantages and drawbacks of the two technologies under different conditions. The analysis has been performed...

  17. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  18. Introduction to modeling convection in planets and stars magnetic field, density stratification, rotation

    CERN Document Server

    Glatzmaier, Gary

    2013-01-01

    This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura

  19. [Constitutive correlations for wire-wrapped subchannel analysis under forced and mixed convection conditions]. Part II

    International Nuclear Information System (INIS)

    Cheng, S.K.; Todreas, N.E.

    1984-08-01

    A new version of the ENERGY series code, ENERGY-IV, was written for predicting coolant temperature distributions in wire-wrapped rod assemblies used in the Liquid Metal Fast Breeder Reactor. The ENERGY-IV Code is applicable to both steady-state forced and mixed convection operation for a single isolated assembly. (The SUPERENERGY Code, [Basehore (1980)] is applicable to core wide forced convection analysis.) ENERGY-IV is an empirical code designed to be fast running. Hence the core designer can use it as an inexpensive thermal hydraulic design or diagnosis tool

  20. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  1. Convective heat transfer analysis in aggregates rotary drum reactor

    International Nuclear Information System (INIS)

    Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe

    2013-01-01

    Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage

  2. Reassessment of forced convection heat transfer correlations for refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; Cuomo, M.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    In the frame of a Refrigerant-12 experiment on postulated accidental transients in Pressurized Water Reactors under way at Heat Transfer Laboratory (ENEA Casaccia Research Center), an assessment of the main correlation available in scientific literature, for the different heat transfer regions encountered when a liquid is boiled in a confined heated channel, has been performed. Considering a vertical tube uniformly heated over its length with CHF at the exit, the following heat transfer regimes may be individuated: convective heat transfer to liquid, subcooled boiling, saturated nucleate boiling, forced convective heat transfer through liquid film (annular flow regime) and thermal crisis. From the comparison of computed values with an original ENEA dataset, the best correlations in predicting Refrigerant-12 data have been individuated. In a few cases, though preserving the original structure of the correlations, mainly developed for water, it was necessary to adjust some coefficients by means of best-fit procedures through our experimental data. The work has been performed in the frame of the ENEA Thermal Reactor Department Safety Research Project

  3. Numerical modelling of convective heat transport by air flow in permafrost talus slopes

    Directory of Open Access Journals (Sweden)

    J. Wicky

    2017-06-01

    Full Text Available Talus slopes are a widespread geomorphic feature in the Alps. Due to their high porosity a gravity-driven internal air circulation can be established which is forced by the gradient between external (air and internal (talus temperature. The thermal regime is different from the surrounding environment, leading to the occurrence of permafrost below the typical permafrost zone. This phenomenon has mainly been analysed by field studies and only few explicit numerical modelling studies exist. Numerical simulations of permafrost sometimes use parameterisations for the effects of convection but mostly neglect the influence of convective heat transfer in air on the thermal regime. In contrast, in civil engineering many studies have been carried out to investigate the thermal behaviour of blocky layers and to improve their passive cooling effect. The present study further develops and applies these concepts to model heat transfer in air flows in a natural-scale talus slope. Modelling results show that convective heat transfer has the potential to develop a significant temperature difference between the lower and the upper parts of the talus slope. A seasonally alternating chimney-effect type of circulation develops. Modelling results also show that this convective heat transfer leads to the formation of a cold reservoir in the lower part of the talus slope, which can be crucial for maintaining the frozen ground conditions despite increasing air temperatures caused by climate change.

  4. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  5. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The main problems regarding the AST-500 NHR thermal-hydraulics are considered. Basic thermal data of the reactor plant are given and peculiarities of coolant parameters at natural convection in the primary circuit are discussed. The in-reactor instrumentation system is briefly describes, as well as the results of natural-convective flow characteristics investigations using reactor test models. (author). 4 refs, 5 figs.

  6. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  7. Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing

    Directory of Open Access Journals (Sweden)

    Susie Wright

    2017-07-01

    Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

  8. Transient thermal analysis of Vega launcher structures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, F. [University of Rome ' Tor Vergata' , Rome (Italy); De Stefanis, M. [Thales Alenia Space Italia, Rome (Italy); Worek, W.M. [University of Illinois at Chicago, Chicago (United States)], E-mail: wworek@uic.edu; Minkowycz, W.J. [University of Illinois at Chicago, Chicago (United States)

    2008-12-15

    A transient thermal analysis is carried out to verify the base cover thermal protection system of Vega 2nd stage Solid Rocket Motor (SRM) and the flange coupling of the inter-stage 2/3. The analysis is performed with a finite element code. The work has developed suitable numerical Fortran subroutines to assign radiation and convection boundary conditions. The thermal behaviour of the structures is presented.

  9. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  10. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  11. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  12. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  13. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  14. Experimental study of effective thermal conductivity of stainless steel fiber felt

    International Nuclear Information System (INIS)

    Li, W.Q.; Qu, Z.G.

    2015-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of porous stainless steel fiber felt under different operating pressures. The total effective thermal conductivity was studied by analyzing matrix heat conduction, air natural convection, and matrix thermal radiation at ambient pressure. The contribution of air natural convection was experimentally obtained by changing the ambient pressure to vacuum condition and the solid matrix heat conduction was evaluated using a theoretical model. The ratios of the three mechanisms to the total effective thermal conductivity were approximately 40%, 37.9%, and 22.1%, respectively. In addition, the effects of fiber diameter and porosity on the three mechanisms and on the total effective thermal conductivity were studied. The air natural convection was found to gradually intensify when the operating pressure increases from vacuum condition (15 Pa) to ambient pressure (1.0 × 10 5  Pa). With an increase in fiber diameter under fixed porosity, the solid matrix heat conduction remained unchanged, and air natural convection and thermal radiation decreased, thereby resulting in reduced effective thermal conductivity. With an increase in porosity under fixed fiber diameter, the air natural convection was almost unchanged, and solid matrix heat conduction and thermal radiation were reduced, thereby resulting in reduced effective thermal conductivity. - Highlights: • Matrix conduction, radiation and air convection were in the same order of magnitude. • Air natural convection was suppressed by reducing operating pressure. • Intensity of air convection was more sensitive to fiber diameter than porosity. • Surface area and permeability was comparable in air convection as fiber diameter fixed. • Interfacial area exerted dominant role in radiation and air convection as porosity fixed

  15. Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.Y., E-mail: c.y.zhao@warwick.ac.u [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Dai, L.N.; Tang, G.H.; Qu, Z.G.; Li, Z.Y. [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2010-10-15

    A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous media (porous metals). The accuracy of this method is validated by the benchmark solutions. The detailed flow and heat transfer at the pore level are revealed. The effects of pore density (cell size) and porosity on the natural convection are examined. Also the effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer will be enhanced by lowering the porosity and cell size. The square porous medium can have a higher heat transfer performance than spheres due to the strong flow mixing and more surface area.

  16. Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools

    International Nuclear Information System (INIS)

    Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools

  17. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  18. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    2018-06-01

    Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

  19. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  20. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  1. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  2. Controls on sublithospheric small-scale convection on Curie depths

    Science.gov (United States)

    Likerman, Jeremias; Zlotnik, Sergio; Chun-Feng, Li

    2017-04-01

    As the ocean lithosphere cools and thickens, its bottom layer goes unstable leading to sub-lithospheric small-scale convection (SSC). Since SSC was originally proposed, there have been considerable efforts regarding the understanding of the physics that rules the thermal instabilities of the SSC (e.g. Dumoulin et al, 1999; Solomatov and Moresi, 2000). Over the last several years, it is understood that the interaction between the plate movement and the SSC tends to form longitudinal (LRs or also called 'Richter rolls') and transverse rolls (TRs), of which the axis is parallel and perpendicular to the plate motion, respectively. The geometry of these rolls have been been recently inferred by Li et al (2013) using Curie depths from the North Atlantic as proxies for plates temperatures. They showed that Curie depths have a large oscillating and heterogeneous patterns that could be related to SSC. In the North Atlantic transverse rolls seem predominant. In this work we analyze, by means of 3D dynamical numerical simulations, the influence of SSC on the Curie depths patterns observed in the North Atlantic and Pacific plates. We investigate the behaviour of the Curie isotherms trying to determine if SSC is able to reproduce the observed data, and the influence of several poorly constrained rheological parameters. Our numerical simulations show that: a) using realistic laboratory-constrained rheologies and temperature it is possible to modify temperatures as low as those at Curie depths; b) transverse rolls are generated as well as longitudinal rolls on those isotherms; c) the spreading rate is a first order control on the developing of transverse rolls. References Dumoulin, C., Doin, M. P., & Fleitout, L. (1999). Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology. Journal of Geophysical Research: Solid Earth, 104(B6), 12759-12777. Li, C. F., Wang, J., Lin, J., & Wang, T. (2013). Thermal evolution of the

  3. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  4. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  5. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    Science.gov (United States)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  6. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  7. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  8. Ignition in Convective-Diffusive Systems

    National Research Council Canada - National Science Library

    Law, Chung

    1999-01-01

    ... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...

  9. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  10. Antartic observations of plasma convection

    International Nuclear Information System (INIS)

    Hansen, H.J.

    1983-01-01

    This thesis is concerned with the use of whistler duct tracking as a diagnostic for the behaviour of plasma in the plasmasphere. As a setting for the results given in the thesis, a broad review is presented which embraces pertinent aspects of previous experimental and theoretical studies of the plasmasphere. From a study of 24 hours of continuous whistler data recorded at Sanae, (L = 3,98), it is shown that associated with quiet magnetic conditions (Av Ksub(p)=1), there exists two plasmasphere bulges centred on about 1700 and 0100 UT. There is evidence that these plasmasphere bulge structures are part of a ground-state or reference base drift pattern. Electric field measurements provide some evidence that quiet time plasmasphere drift behaviour is controlled by the internal ionospheric current systems of dynamo origin, rather than being controlled by magnetospheric convection. Finally, this thesis describes an application of the whistler duct tracking technique to whistler data recorded simultaneously at two ground-based stations (Sanae (L = 3,98) and Halley (L = 4,23)). The identification of common whistler components on each station's data set provides a means of estimating the lifetimes of the associated whistler ducts. Duct lifetimes of as little as 30 minutes are found. Such short lived ducts have important implications for current theories of duct formation

  11. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  12. Interface Shape and Convection During Solidification and Melting of Succinonitrile

    Science.gov (United States)

    Degroh, Henry C., III; Lindstrom, Tiffany

    1994-01-01

    An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.

  13. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  14. Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid

    Energy Technology Data Exchange (ETDEWEB)

    Teamah, M.A. [Faculty of Engineering, Alexandria University, Mech. Eng. Dept, Alexandria (Egypt); El-Maghlany, W.M. [Faculty of Engineering, Suez Canal University, Ismailia (Egypt)

    2010-09-15

    The present study is concerned with the mixed convection in a rectangular lid-driven cavity under the combined buoyancy effects of thermal and mass diffusion. Double-diffusive convective flow in a rectangular enclosure with moving upper surface is studied numerically. Both upper and lower surfaces are being insulated and impermeable. Constant different temperatures and concentration are imposed along the vertical walls of the enclosure, steady state laminar regime is considered. The transport equations for continuity, momentum, energy and spices transfer are solved. The numerical results are reported for the effect of Richardson number, Lewis number, and buoyancy ratio on the iso-contours of stream line, temperature, and concentration. In addition, the predicted results for both local and average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study was done for 0.1 <= Le <= 50 and Prandtl number Pr = 0.7. Through out the study the Grashof number and aspect ratio are kept constant at 10{sup 4} and 2 respectively and -10 <= N <= 10, while Richardson number has been varied from 0.01 to 10 to simulate forced convection dominated flow, mixed convection and natural convection dominated flow. (authors)

  15. EXPERIMENTAL STUDY IN NATURAL CONVECTION

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    The study of thermal and ventilation parameters, obtained in a transient, laminar solar chimney of reduced dimensions, (1 < m <3) m with a square collector (side = 2m) is presented. Experimental measurements has been made to determine the temperature of the absorber and the fluid in the collector, it is shown that at the ...

  16. Analysis of a molten pool natural convection in the APR1400 RPV at a severe accident

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Park, Rae Joon; Kim, Sang Baik

    2005-01-01

    During a hypothetical severe accident, reactor fuel rods and structures supporting them are melted and relocated in the lower head of the reactor vessel. These relocated molten materials could be separated by their density difference and construct metal/oxide stratified pools in the lower head. A decay heat generated from the fuel material is transferred to the vessel wall and upper structures remaining in the reactor vessel by natural convection. As shown in Fig. 1 two-layered stratified molten pool is developed in the reactor lower vessel. The oxidic pool usually constructed by the mixture of uranium oxide and zirconium oxide. The melting temperature of the oxidic material is very high compared to the steel vessel and metallic layer. And highly turbulent natural convection generated by the decay heat enhances heat transfer to the boundary of the oxidic pool. By this thermal mechanism, oxide curst is developed around the oxidic layer as shown in Fig. 1. The oxidic pool is bounded thermally and fluid-dynamically by the developed crust. By this boundedness, the heat transfer structure in the stratified oxidic/metallic pool can be solved separately. The thermal boundary condition of the oxidic pool is isothermal with constant melting temperature of the oxidic material. The decay heat is transfer to side wall and upper interface between oxidic and metallic layer. Turbulent natural convection is dominant heat transfer mechanism in the oxidic pool. The heat transferred from the bottom oxidic layer is imposed to the upper metallic layer. This transferred heat in the metallic pool is removed through side and upper surface, which is augmented also by natural convection developed in the pool. In this study, a molten pool natural convection in the APR1400 RPV during a severe accident is simulated using the Lilac code and the calculated heat flux distribution on the reactor vessel wall is compared with a lumped-parameter (LP) prediction

  17. Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi

    Directory of Open Access Journals (Sweden)

    Ahmed F. Alfahaid, R.Y. Sakr

    2012-10-01

    Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.

  18. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  19. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    Science.gov (United States)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  20. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kang; Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.