WorldWideScience

Sample records for thermal transport piping

  1. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  2. Experimental study of thermal performance of heat pipe with axial trapezoidal grooves

    International Nuclear Information System (INIS)

    Suh, Jeong Se; Lee, Woon

    2003-01-01

    Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves, 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations for heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases, the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment

  3. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  4. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  5. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  6. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  7. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  8. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  9. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  10. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  11. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  12. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  13. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  14. A three-dimensional thermal-fluid analysis of flat heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bin; Faghri, Amir [Department of Mechanical Engineering, University of Connecticut, 261 Glenbrook Road, Unit 2337, Storrs, CT 06269 (United States)

    2008-06-15

    A detailed, three-dimensional model has been developed to analyze the thermal hydrodynamic behaviors of flat heat pipes without empirical correlations. The model accounts for the heat conduction in the wall, fluid flow in the vapor chambers and porous wicks, and the coupled heat and mass transfer at the liquid/vapor interface. The flat pipes with and without vertical wick columns in the vapor channel are intensively investigated in the model. Parametric effects, including evaporative heat input and size on the thermal and hydrodynamic behavior in the heat pipes, are investigated. The results show that, the vertical wick columns in the vapor core can improve the thermal and hydrodynamic performance of the heat pipes, including thermal resistance, capillary limit, wall temperature, pressure drop, and fluid velocities due to the enhancement of the fluid/heat mechanism form the bottom condenser to the top evaporator. The results predict that higher evaporative heat input improves the thermal and hydrodynamic performance of the heat pipe, and shortening the size of heat pipe degrades the thermal performance of the heat pipe. (author)

  15. A thermal study of pipes with outer transverse fins

    Directory of Open Access Journals (Sweden)

    S. Gil

    2016-10-01

    Full Text Available This paper provides results of thermal investigations on pipes with outer transverse fins produced by placing a strip, being a form of helical spring which functions as a radiator, on the basis pipe. The investigations were carried out at the facility that enables measurements with respect to both natural and forced convection. Performance of the investigated pipes was assessed in relation to a non-finned pipe and a pipe welded with the use of Metal Active Gas (MAG technology. The experiments have shown that the finned pipe welding technology does not markedly affect their thermal efficiency, which has been confirmed by performed model calculations, while the welding technology has a crucial impact on their operating performance.

  16. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  17. Experimental investigation of thermal mixing phenomena in a tee pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue; Hsieh, Huai-En; Zhang, Zhi-Yu; Pei, Bau-Shi [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    T-pipe designs have been widely used in the industry. Among them, mixing of hot and cold water is a common application. In the mixing process, cold and hot fluids are respectively injected through main and branch pipes, and are mixed in the downstream area of T-tube. High temperature hot water flows through the main pipe for a long time; hence, the pipe wall is at high temperatures. The fluid injected into the branch pipe is a cooling fluid. After mixing, the wall of the main pipe is under high thermal fluctuations causing strong thermal stresses, which will eventually lead to pipe damage and water loss. Through flow rate adjustments of the branch and main pipes, when the branch/main velocity ratio was greater than 7.8, showing that cold water hit the bottom of the main pipe and created a reverse flow. This reverse flow created large thermal stresses on the wall. Hence, the branch/main velocity ratio and the hot-water-mixing phenomenon are the focus of this study.

  18. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  19. Experiments and numerical simulations of fluctuating thermal stratification in a branch pipe

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akira; Murase, Michio; Sasaki, Toru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Takenaka, Nobuyuki; Hamatani, Daisuke [Kobe Univ. (Japan)

    2002-09-01

    Many pipes branch off from the main pipe in plants. When the main flow in the main pipe is hotter than a branch pipe that branches off downward, the hot water penetrates into the branch pipe with the cavity flow that is induced by the main flow and causes thermal stratification. If the interface of the stratification fluctuates in an occluded branch pipe, thermal fatigue may occur in pipe wall. Some experiments and numerical simulations were conducted to elucidate the mechanism of this fluctuating thermal stratification. The vortex structures were observed in the experiments of straight or bent branch pipes. When the main flow was heated and the thermal stratification interface was at the elbow, a ''burst'' phenomenon occurred in the interface in connection with large heat fluctuation. The effects of pipe shape on the length of penetration were investigated in order to modify simulation conditions. The vortex structures and the fluctuating thermal stratification at elbow in the numerical simulation showed good agreement with experiments. (author)

  20. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  1. Heat pipe thermal control of slender optics probes

    International Nuclear Information System (INIS)

    Prenger, F.C.

    1979-01-01

    The thermal design for a stereographic viewing system is presented. The design incorporates an annular heat pipe and thermal isolation techniques. Test results are compared with design predictions for a prototype configuration. Test data obtained during heat pipe startup showing temperature gradients along the evaporator wall are presented. Correlations relating maximum wall temperature differences to a liquid Reynolds number were obtained at low power levels. These results are compared with Nusselt's Falling Film theory

  2. A numerical analysis on thermal stratification phenomenon in the SCS piping

    International Nuclear Information System (INIS)

    Kim, Kwang Chu; Park, Man Heung; Youm, Hag Ki; Lee, Sun Ki; Kim, Tae Ryong

    2003-01-01

    A numerical study is performed to estimate on an unsteady thermal stratification phenomenon in the Shutdown Cooling System(SCS) piping branched off the Reactor Coolant System(RCS) piping of Nuclear Power Plant. In the results, turbulent penetration reaches to the 1 st isolation valve. At 500sec, the maximum temperature difference between top and bottom inner wall in piping is observed at the starting point of horizontal piping passing elbow. The temperature of coolant in the rear side of the 1 st isolation valve disk is very slowly increased and the inflection point in temperature difference curve for time is observed at 2700sec. At the beginning of turbulent penetration from RCS piping, the fast inflow generates the higher temperature for the inner wall than the outer wall in the SCS piping. In the case the hot-leg injection piping and the drain piping are connected to the SCS piping, the effect of thermal stratification in the SCS piping is decreased due to an increase of heat loss compared with no connection case. The hot-leg injection piping affected by turbulent penetration from the SCS piping has a severe temperature difference that exceeds criterion temperature stated in reference. But the drain piping located in the rear compared with the hot-leg injection piping shows a tiny temperature difference. In a viewpoint of designer, for the purpose of decreasing the thermal stratification effect, it is necessary to increase the length of vertical piping in the SCS piping, and to move the position of the hot-leg injection piping backward

  3. Fatigue evaluation of piping connections under thermal transients

    International Nuclear Information System (INIS)

    Aquino, C.T.E. de; Maneschy, J.E.

    1993-01-01

    In designing nuclear power plant piping, thermal transients, caused by non-steady operation conditions, should be considered. These events may reduce considerably the lifetime of the pipes, creating the necessity of using structural elements designed in such a way to minimize the acting thermal stresses. Typical examples of the usage of these elements are the connections between pipes of small and large diameters, in which it is usually used a weldolet. Nevertheless, in some situations, the thermal stresses caused by the transients are greater than the allowable limits, being, in this case, an alternative for best results, the introduction of a special fitting replacing the weldolet. Such a fitting is designed in a way to permit a better distribution of the stresses, reducing its maximum value to acceptable levels. This paper intends to present a fatigue evaluation of a connection, using the above mentioned fitting, when subjected to a load expressed in terms of a step thermal gradient, varying from 263 deg to 40 deg C. Two different methodologies are used in this analysis: (a) Determination of the temperature distribution from the heat transfer equations for piping, being the stresses calculated according to ASME III NB-3600. (b) Thermal and stress analyses using axisymmetric elements, according to the rules presented at ASME III NB-3200. In the first case, named simplified analysis, the computer code used is the PIPESTRESS, while in the second case, the ANSYS program was adopted

  4. 49 CFR 195.207 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  5. 49 CFR 192.65 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.65 Transportation of pipe. (a) Railroad...

  6. Transport of thermal water from well to thermal baths

    Science.gov (United States)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2

  7. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  8. Analysis of piping response to thermal and operational transients

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    The reactor piping system is an extremely complex three-dimensional structure. Maintaining its structural integrity is essential to the safe operation of the reactor and the steam-supply system. In the safety analysis, various transient loads can be imposed on the piping which may cause plastic deformation and possible damage to the system, including those generated from hydrodynamic wave propagations, thermal and operational transients, as well as the seismic events. At Argonne National Laboratory (ANL), a three-dimensional (3-D) piping code, SHAPS, aimed for short-duration transients due to wave propagation, has been developed. Since 1984, the development work has been shifted to the long-duration accidents originating from the thermal and operational transient. As a result, a new version of the code, SHAPS-2, is being established. This paper describes many features related to this later development. To analyze piping response generated from thermal and operational transients, a 3-D implicit finite element algorithm has been developed for calculating the hoop, flexural, axial, and torsional deformations induced by the thermomechanical loads. The analysis appropriately accounts for stresses arising from the temperature dependence of the elastic material properties, the thermal expansion of the materials, and the changes in the temperature-dependent yield surface. Thermal softening, failure, strain rate, creep, and stress ratching can also be considered

  9. LOFT blowdown loop piping thermal analysis Class I review

    International Nuclear Information System (INIS)

    Kinnaman, T.L.

    1978-01-01

    In accordance with ASME Code, Section III requirements, all analyses of Class I components must be independently reviewed. Since the LOFT blowdown loop piping up through the blowdown valve is a Class I piping system, the thermal analyses are reviewed. The Thermal Analysis Branch comments to this review are also included. It is the opinion of the Thermal Analysis Branch that these comments satisfy all of the reviewers questions and that the analyses should stand as is, without additional considerations in meeting the ASME Code requirements and ANC Specification 60139

  10. Comparative study of boron transport models in NRC Thermal-Hydraulic Code Trace

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-Juan, Nicolás; Barrachina, Teresa; Miró, Rafael; Verdú, Gumersindo; Pereira, Claubia, E-mail: nioljua@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es, E-mail: claubia@nuclear.ufmg.br [Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM). Universitat Politècnica de València (Spain); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recently, the interest in the study of various types of transients involving changes in the boron concentration inside the reactor, has led to an increase in the interest of developing and studying new models and tools that allow a correct study of boron transport. Therefore, a significant variety of different boron transport models and spatial difference schemes are available in the thermal-hydraulic codes, as TRACE. According to this interest, in this work it will be compared the results obtained using the different boron transport models implemented in the NRC thermal-hydraulic code TRACE. To do this, a set of models have been created using the different options and configurations that could have influence in boron transport. These models allow to reproduce a simple event of filling or emptying the boron concentration in a long pipe. Moreover, with the aim to compare the differences obtained when one-dimensional or three-dimensional components are chosen, it has modeled many different cases using only pipe components or a mix of pipe and vessel components. In addition, the influence of the void fraction in the boron transport has been studied and compared under close conditions to BWR commercial model. A final collection of the different cases and boron transport models are compared between them and those corresponding to the analytical solution provided by the Burgers equation. From this comparison, important conclusions are drawn that will be the basis of modeling the boron transport in TRACE adequately. (author)

  11. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  12. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  13. Experimental observations of thermal mixing characteristics in T-junction piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue, E-mail: chenms@mx.nthu.edu.tw; Hsieh, Huai-En; Ferng, Yuh-Ming; Pei, Bau-Shi

    2014-09-15

    Highlights: • The effects of flow velocity ratio on thermal mixing phenomenon are the major parameters. • The flow velocity ratio (V{sub b}/V{sub m}) is greater than 13.6, reverse flow occurs. • The flow velocity ratio is greater than 13.7, a “good” mixing quality is achieved. - Abstract: The T-junction piping is frequently used in many industrial applications, including the nuclear plants. For a pressurized water reactor (PWR), the emergency core cooling systems (ECCS) inject cold water into the primary loops if a loss-of-coolant accident (LOCA) happens. Inappropriate mixing of the two streams with significant temperature different at a junction may cause strong thermal stresses to the downstream structures in the reactor vessel. The downstream structures may be damaged. This study is an experimental investigation into the thermal mixing effect occurring at a T-junction. A small-scale test facility was established to observe the mixing effect of flows with different temperature. Thermal mixing effect with different flow rates in the main and branch pipes are investigated by measuring the temperature distribution along the main pipe. In test condition I, we found that lower main pipe flow rate leads to better mixing effect with constant branch pipe flow rate. And in conditions II and III, higher injection flow velocity would enhance the turbulence effect which results in better thermal mixing. The results will be useful for applications with mixing fluids with different temperature.

  14. Experimental investigation on thermal management of electric vehicle battery with heat pipe

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Lin Zirong; Li Fuhuo

    2013-01-01

    Highlights: ► The thermal management system of electric vehicle battery with heat pipes was designed. ► Temperature rise is a key factor for the design of power battery thermal management system. ► Temperature distribution is inevitable to reference for better design of heat pipes used for heat dissipation. ► Heat pipes are effective for power batteries thermal management within electric vehicles. - Abstract: In order to increase the cycle time of power batteries and decrease the overall cost of electric vehicles, the thermal management system equipped with heat pipes was designed according to the heat generated character of power batteries. The experimental result showed that the maximum temperature could be controlled below 50 °C when the heat generation rate was lower than 50 W. Coupled with the desired temperature difference, the heat generation rate should not exceed 30 W. The maximum temperature and temperature difference are kept within desired rang under unsteady operating conditions and cycle testing conditions. Applying heat pipes based power batteries thermal management is an effective method for energy saving in electric vehicles.

  15. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  16. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  17. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  18. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  19. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  20. Thermal ratchetting in pipes subjected to intermittent thermal downshocks at elevated temperatures

    International Nuclear Information System (INIS)

    Corum, J.M.; Young, H.C.; Grindell, A.G.

    1974-01-01

    The results of two thermal ratchetting tests on straight sections of pipe are presented. The pipes, each of which was machined from a well-characterized heat of type 304 stainless steel, were subjected to a series of thermal downshocks on their inner surface, followed by sustained periods under an internal pressure loading at a temperature of 1100 0 F. Testing was carried out in a special sodium test facility built for the purpose, and the outer surface strain histories were measured using high-temperature capacitive strain gages. The circumferential strain responses, which typify the inelastic behaviors, are presented. 7 references. (U.S.)

  1. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  2. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  3. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  4. An integrated heat pipe-thermal storage design for a solar receiver

    Science.gov (United States)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  5. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  6. Leak-before-break analysis of thermally aged nuclear pipe under different bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xuming; Li, Shilei; Zhang, Hailong; Wang, Yanli; Wang, Xitao [University of Science and Technology Beijing, Beijing (China); Wang, Zhaoxi [CPI Nuclear Power Institute, Beijing (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou (China)

    2015-10-15

    Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from 280°C to 450°C. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elastic–plastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.

  7. Titanium Heat Pipe Thermal Plane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  8. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    Science.gov (United States)

    Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.

  9. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  10. Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Chen Jinjian; Hu Yanxin; Zhang Wei

    2011-01-01

    Flat plate heat pipes (FPHPs) are one of the available technologies to deal with the high density electronic cooling problem due to their high thermal conductivity, reliability, and low weight penalty. A series of experiments were performed to investigate the effect of evaporation and condensation length on thermal performance of flat plate heat pipes. In the experiments, the FPHP had heat transfer length of 255 mm and width of 25 mm, and pure water was used as the working fluid. The results show that comparing to vapor chamber, the FPHP could realize long-distance heat transfer; comparing to the traditional heat pipe, the FPHP has large area contact with heat sources; the thermal resistance decreased and the heat transfer limit increased with the increase of evaporation section length; the FPHP would dry out at a lower heating power with the increase of condensation section length, which indicated that the heat transfer limit decreased, but the evaporator temperature also decreased; when the condensation section length approached to evaporation section length, the FPHP had a better thermal performance. - Highlights: → A strip sintered FPHP is proposed and tested. → The total heat transfer length reaches 255 mm → The efficiency of heat transport reaches 94.4%. → When the condensation section length approached to evaporation section length, the FPHP has better overall performance.

  11. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    Science.gov (United States)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  12. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  13. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  14. A novel approach to generate random surface thermal loads in piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon

    2014-01-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures

  15. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  16. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  17. Thermal expansion movements of piping during FFTF plant startup

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1981-03-01

    FFTF liquid metal piping exhibits significant displacements during heatup of the plant heat transport system. Verification of correct piping movements is important to assure that no restraints are present and to provide data for additional piping design/analysis validation. A test program is described in which a series of measurements were taken at selected piping locations. These data were obtained during Plant Acceptance Testing involving system heatup cycles to approximately 800 0 F(427 0 C). Typical test data are shown and compared to analytical predictions. Two piping system problems that were identified as a result of the testing are described along with resolutions thereof. Establishment of final baseline data is discussed

  18. Criteria for accepting piping thermal expansion movements during FFTF plant startup

    International Nuclear Information System (INIS)

    Clark, G.L.; Anderson, M.J.

    1981-03-01

    A deflection measurement program was conducted as a final step in the design qualification of the Fast Flux Test Facility liquid sodium piping. Measurements were obtained from the ambient empty position, through the 400 0 F (204 0 C) sodium fill, to an 800 0 F (427 0 C) maximum iso-thermal test condition. The program was designed to confirm that the pipe responded as predicted under both deadweight and thermal expansion loads. This paper describes the design of the test programs; the criteria used to select appropriate measurement locations from the approximately 4000 supports used on this pipe; and the criteria used to accept test results

  19. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2014-01-01

    Full Text Available Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting vector machine (SVM technology is applied to mine the data. The thermal performances of iron pipes and high-density polyethylene (HDPE pipes are compared. The data mining result shows that iron pipe has a better heat removal performance when flow rate is lower than 50 L/min. It has revealed that a turning flow rate exists for iron pipe which is 80 L/min. The prediction and classification results obtained from the data mining model agree well with the monitored data, which illustrates the validness of the approach.

  20. Experimental electro-thermal method for nondestructively testing welds in stainless steel pipes

    International Nuclear Information System (INIS)

    Green, D.R.

    1979-01-01

    Welds in austenitic stainless steel pipes are notoriously difficult to nondestructively examine using conventional ultrasonic and eddy current methods. Survace irregularities and microscopic variations in magnetic permeability cause false eddy current signal variations. Ultrasonic methods have been developed which use computer processing of the data to overcome some of the problems. Electro-thermal nondestructive testing shows promise for detecting flaws that are difficult to detect using other NDT methods. Results of a project completed to develop and demonstrate the potential of an electro-thermal method for nondestructively testing stainless steel pipe welds are presented. Electro-thermal NDT uses a brief pulse of electrical current injected into the pipe. Defects at any depth within the weld cause small differences in surface electrical current distribution. These cause short-lived transient temperature differences on the pipe's surface that are mapped using an infrared scanning camera. Localized microstructural differences and normal surface roughness in the welds have little effect on the surface temperatures

  1. Interfacial area transport of bubbly flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Takamasa, Tomoji; Ishii, Mamoru

    2001-01-01

    In relation to the development of the interfacial area transport equation, this study focused on modeling of the interfacial area transport mechanism of vertical adiabatic air-water bubbly flows in a relatively small diameter pipe where the bubble size-to-pipe diameter ratio was relatively high and the radial motion of bubbles was restricted by the presence of the pipe wall. The sink term of the interfacial area concentration was modeled by considering wake entrainment as a possible bubble coalescence mechanism, whereas the source term was neglected by assuming negligibly small bubble breakup for low liquid velocity conditions based on visual observation. One-dimensional interfacial area transport equation with the derived sink term was evaluated by using five datasets of vertical adiabatic air-water bubbly flows measured in a 9.0 mm-diameter pipe (superficial gas velocity: 0.013-0.052 m/s, superficial liquid velocity: 0.58-1.0 m/s). The modeled interfacial area transport equation could reproduce the proper trend of the axial interfacial area transport and predict the measured interfacial area concentrations within an average relative deviation of ±11.1%. It was recognized that the present model would be promising for predicting the interfacial area transport of the examined bubbly flows. (author)

  2. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  3. Thermal resistance of aluminum gravity heaГІ pipe with threaded capillary structure

    Directory of Open Access Journals (Sweden)

    Nikolaenko Yu. E.

    2017-10-01

    Full Text Available The results of an experimental study of the thermal resistance of an aluminum gravitational heat pipe with isobutane (R600a as a working fluid under conditions of heat removal of natural air convection are presented. Comparison of the thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure and the thermal resistance of an aluminum thermosyphon of the same size, having a smooth surface of the body in the evaporation zone, is given. It is shown that in the range of values of the input heat flux from 5 to 50 W the thermal resistance of the gravitational heat pipe is substantially lower than the thermal resistance of the thermosiphon. The studies were conducted both without the use of additional radiators in the condensation zone of heat transfer devices, and with the use of one, two and three radiators.

  4. Main factors for fatigue failure probability of pipes subjected to fluid thermal fluctuation

    International Nuclear Information System (INIS)

    Machida, Hideo; Suzuki, Masaaki; Kasahara, Naoto

    2015-01-01

    It is very important to grasp failure probability and failure mode appropriately to carry out risk reduction measures of nuclear power plants. To clarify the important factors for failure probability and failure mode of pipes subjected to fluid thermal fluctuation, failure probability analyses were performed by changing the values of a stress range, stress ratio, stress components and threshold of stress intensity factor range. The important factors for the failure probability are range, stress ratio (mean stress condition) and threshold of stress intensity factor range. The important factor for the failure mode is a circumferential angle range of fluid thermal fluctuation. When a large fluid thermal fluctuation acts on the entire circumferential surface of the pipe, the probability of pipe breakage increases, calling for measures to prevent such a failure and reduce the risk to the plant. When the circumferential angle subjected to fluid thermal fluctuation is small, the failure mode of piping is leakage and the corrective maintenance might be applicable from the viewpoint of risk to the plant. (author)

  5. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  6. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  7. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  8. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  9. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  10. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  11. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  12. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  13. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  14. Proceedings of the specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification

    International Nuclear Information System (INIS)

    1998-01-01

    This specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification, was held in June 1998 in Paris. It included five sessions. Session 1: operating experience (7 papers): Historical perspective; EDF experience with local thermohydraulic phenomena in PWRs: impacts and strategies; Thermal fatigue in safety injection lines of French PWRs: technical problems, regulatory requirements, concerns about other areas; US NRC Regulatory perspective on unanticipated thermal fatigue in LWR piping; Failure to the Residual Heat Removal system suction line pipe in Genkai unit 1 caused by thermal stratification cycling; Emergency Core Cooling System pipe crack incident at Tihange unit 1; Two leakages induced by thermal stratification at the Loviisa power plant). Session 2: thermal hydraulic phenomena (5 papers): Thermal stratification in small pipes with respect to fatigue effects and so called 'Banana effect'; Thermal stratification in the surge line of the Korean next generation reactor; Thermal stratification in horizontal pipes investigated in UPTF-TRAM and HDR facilities; Research on thermal stratification in un-isolable piping of reactor pressure boundary; Thermal mixing phenomena in piping systems: 3D numerical simulation and design considerations. Session 3: response of material and structure (5 papers): Fatigue induced by thermal stratification, Results of tests and calculations of the COUFAST model; Laboratory simulation of thermal fatigue cracking as a basis for verifying life models; Thermo-mechanical analysis methods for the conception and the follow up of components submitted to thermal stratification transients; Piping analysis methods of a PWR surge line for stratified flow; The thermal stratification effect on surge lines, The VVER estimation. Session 4: monitoring aspects (4 papers): Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants; Expected and

  15. Analysis of the thermal performance of heat pipe radiators

    Science.gov (United States)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  16. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  17. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  18. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  19. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  20. Fracture mechanics assessment of thermal aged nuclear piping based on the Leak-Before-Break concept

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya, E-mail: chenmingya@cgnpc.com.cn [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen PSI (Switzerland); Wang, Rongshan; Lu, Feng; Zhang, Guodong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China)

    2016-05-15

    Highlights: • The effects of thermal aging on crack unstable tearing are studied. • The critical size of crack unstable tearing is calculated by different methods. • The critical failure models are compared. • The conservatism of J–T diagram is shown. - Abstract: The Leak-Before-Break (LBB) concept has been accepted to design the primary piping system of the pressurized water reactor (PWR). Due to thermal aging of long term operation, the cast stainless steels (CSSs) which are used for the primary piping of PWR, suffer a significant loss of fracture toughness, and as a consequence the safety margin of the thermal aged pipe decreases. Therefore, the aged piping should be analyzed and validated by the LBB concept. In this paper, elastic–plastic fracture mechanics (EPFM) assessments of the thermal aged piping are presented according to the LBB concept. The critical break size of crack unstable tearing is calculated by the EPFM method. The crack driving force diagram (J–a diagram), the stability assessment diagram (J–T diagram) and a numerical method are applied to calculate the critical crack size of crack break. The effects of thermal aging on the plastic limit load, J–T diagram, critical crack size of the EPFM and the critical failure mode are studied. The results show that the thermal aging effect decreases the maximum allowed J-integral at a certain ductile tearing modulus by more than 50% and it increases the flow stress and plastic limit load by 11.78%. The results based on the J–T diagram are about 40% conservative than those based on the direct numerical method for the high loading case. For the thermal aged piping, it is important to consider the competition failure modes between plastic collapse and unstable ductile tearing.

  1. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon; Shawish, Samir El [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  2. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; Cizelj, Leon; Shawish, Samir El

    2013-01-01

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  3. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  4. Heat transfer characteristics and limitations analysis of heat-pipe-cooled thermal protection structure

    International Nuclear Information System (INIS)

    Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei

    2014-01-01

    The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed

  5. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  6. Numerical analysis of unsteady conjugate heat transfer for initial evolution of thermal stratification in a curved pipe

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Kim, Wee Kyung; Kim, Yun Il; Cho, Sang Jin; Choi, Seok Ki

    2000-01-01

    A detailed numerical analysis of initial evolution of thermal stratification in a curved pipe with a finite wall thickness is performed. A primary emphasis of the present study is placed on the investigation of the effect of existence of pipe wall thickness on the evolution of thermal stratification. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in Cartesian as well as non-orthogonal coordinate systems is presented. The proposed unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm and a higher-order bounded convection scheme. Calculations are performed for initial evolution of thermal stratification with high Richardson number in a curved pipe. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a specified wall thickness can be satisfactorily analyzed by using the numerical method presented in this paper. As the result, the present analysis method is considered to be effective for the determination of transient temperature distributions in the wall of curved piping system subjected to internally thermal stratification. In addition, the method can be extended to be applicable for the simulation of turbulent flow of thermally stratified fluid

  7. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Azizian, Reza

    2016-01-01

    Thermal performance of a grooved heat pipe using aqueous nitrogen-doped graphene (NDG) nanofluids was analysed. This study in particular focused on the effect of varying NDG nanosheets concentrations, heat pipe inclination angles and input heating powers. The results indicated that the inclination...... observed for NDG nanofluid with concentration of 0.06wt%, inclination angle of θ=90° and a heating power of 120W in comparison to DI-water under the exact same condition. Additionally, the surface temperature distribution was decreased by employing NDG nanosheets, which can in return increase the thermal...... performance of a grooved heat pipe. The present investigation indicated that the thermal performance of the grooved heat pipe can be improved significantly by using NDG nanofluids....

  8. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  9. Thermal aging evaluation of cast austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Kori Unit 2 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by utility company. In this paper, the methodologies and results of cast austenitic stainless steel pipe thermal aging evaluations of both units have been presented in association with aging time of 10, 20, and 30 years and operating temperature, respectively. Life extension cases respectively. As a result of this, at the operating temperature of 280 .deg. C, thermal aging was not a problem as long as Charpy V-notch room temperature minimum impact energy is concerned. However, more than 300 .deg. C and 30 years of operating condition, we should perform detailed fracture mechanics analysis with CMTR of NPP pipe

  10. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  11. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

    Directory of Open Access Journals (Sweden)

    Y. Bakhshan

    2014-09-01

    Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

  12. A new computational scheme on quantitative inner pipe boundary identification based on the estimation of effective thermal conductivity

    International Nuclear Information System (INIS)

    Fan Chunli; Sun Fengrui; Yang Li

    2008-01-01

    In the paper, the irregular configuration of the inner pipe boundary is identified based on the estimation of the circumferential distribution of the effective thermal conductivity of pipe wall. In order to simulate the true temperature measurement in the numerical examples, the finite element method is used to calculate the temperature distribution at the outer pipe surface based on the irregular shaped inner pipe boundary to be determined. Then based on this simulated temperature distribution the inverse identification work is conducted by employing the modified one-dimensional correction method, along with the finite volume method, to estimate the circumferential distribution of the effective thermal conductivity of the pipe wall. Thereafter, the inner pipe boundary shape is calculated based on the conductivity estimation result. A series of numerical experiments with different temperature measurement errors and different thermal conductivities of pipe wall have certified the effectiveness of the method. It is proved that the method is a simple, fast and accurate one for this inverse heat conduction problem.

  13. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Science.gov (United States)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  14. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Azad, E. [Iranian Research Organization for Science and Technology (IROST), Advanced Materials and Renewable Energy Department, Tehran (Iran, Islamic Republic of)

    2011-12-15

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold. (orig.)

  15. A Numerical Study on the Heat Transfer Characteristics of a Solar Thermal Receiver with High-temperature Heat Pipes

    International Nuclear Information System (INIS)

    Park, Young Hark; Jung, Eui Guk; Boo, Joon Hong

    2007-01-01

    A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. The study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as typical one that employs a molten-salt circulation loop. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. For the molten-salt circulation type receiver, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The molten salt fed through the channels by forced convection using a special pump. For the heat pipe receiver, the channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver

  16. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  17. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  18. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  19. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  20. A Study on an Evaluation of PWR Piping Thermal Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Kim, B.N.; Lee, S.K.; Jeong, I.S.; Chjung, B.S.; Lee, S.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This report presents the determination of thermal stratification phenomenon of pressurizer surge line for Kori unit No.4. With this regards, the integrity of related piping was evaluated by both various stress analysis and fatigue analysis. (author). 23 refs., 61 figs., 22 tabs.

  1. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  2. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  3. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  4. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  5. Thermal performance of a small-scale loop heat pipe for terrestrial application

    International Nuclear Information System (INIS)

    Chung, Won Bok; Boo, Joon Hong

    2004-01-01

    A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm x 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of 100 .deg. C. The minimum thermal load of 10 W (0.8 W/cm 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 .deg. C with horizontal position

  6. Calculation of piping loads due to filling procedures

    International Nuclear Information System (INIS)

    Swidersky, Harald; Thiele, Thomas

    2012-01-01

    Filling procedures in piping systems are usually not load cases that are studied by fluid dynamic and structure dynamic analyses with respect to the integrity of pipes and supports. Although, their frequency is higher than that of postulated accidental transients, therefore they have to be considered for fatigue analyses. The piping and support loads due to filling procedures are caused by the density differences if the transported fluids, for instance in flows with the transport of gas bubbles. The impact duration of the momentum forces is defined by the flow velocity and the length of discontinuities in the piping segments. Filling procedures end very often with a shock pressure, caused by the impact and decelerating of the fluid front at smaller cross sections. The suitability of the thermally hydraulics program RELAP/MOD3.3 for the calculation of realistic loads from filling procedures was studied, the results compared with experimental data. It is shown that dependent on the discretization level the loads are partial significantly underestimated.

  7. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    Science.gov (United States)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  8. Hybrid Heat Pipes for High Heat Flux Spacecraft Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Grooved aluminum/ammonia Constant Conductance Heat Pipes (CCHPs) are the standard for thermal control in zero-gravity. Unfortunately, they are limited in terms of...

  9. Development of non-destructive diagnosis technology for pipe internal in thermal power plants based on robotics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung

    2011-11-15

    The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.

  10. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  11. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  12. Large eddy simulation on thermal fluid mixing in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, R.; Laurien, E. [Stuttgart Univ. (Germany). Inst fuer Kernenergie und Energiesysteme (IKE)

    2014-11-15

    High cycle thermal fatigue damage caused in piping systems is an important problem encountered in the context of nuclear safety and lifetime management of a Nuclear Power Plant (NPP). The T-junction piping system present in the Residual Heat Removal System (RHRS) is more vulnerable to thermal fatigue cracking. In this numerical study, thermal mixing of fluids at temperature difference (?T) of 117 K between the mixing fluids is analyzed. Large Eddy Simulation (LES) is performed with conjugate heat transfer between the fluid and structure. LES is performed based on the Fluid-Structure Interaction (FSI) test facility at University of Stuttgart. The results show an intense turbulent mixing of fluids downstream of T-junction. Amplitude of temperature fluctuations near the wall region and its corresponding frequency distribution is analyzed. LES is performed using commercial CFD software ANSYS CFX 14.0.

  13. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  14. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2017-12-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  15. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  16. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  17. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    International Nuclear Information System (INIS)

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  18. Comparative study on heat pipe performance using aqueous solutions of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B. [Annamalai University, Department of Mechanical Engineering, Annamalai Nagar, Tamil Nadu (India)

    2012-12-15

    This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2 ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes. (orig.)

  19. Thermal Transport in Phosphorene.

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-03-01

    Phosphorene, a novel elemental 2D semiconductor, possesses fascinating chemical and physical properties which are distinctively different from other 2D materials. The rapidly growing applications of phosphorene in nano/optoelectronics and thermoelectrics call for comprehensive studies of thermal transport properties. In this Review, based on the theoretical and experimental progresses, the thermal transport properties of single-layer phosphorene, multilayer phosphorene (nanofilms), and bulk black phosphorus are summarized to give a general view of the overall thermal conductivity trend from single-layer to bulk form. The mechanism underlying the discrepancy in the reported thermal conductivity of phosphorene is discussed by reviewing the effect of different functionals and cutoff distances on the thermal transport evaluations. This Review then provides fundamental insight into the thermal transport in phosphorene by reviewing the role of resonant bonding in driving giant phonon anharmonicity and long-range interactions. In addition, the extrinsic thermal conductivity of phosphorene is reviewed by discussing the effects of strain and substrate, together with phosphorene based heterostructures and nanoribbons. This Review summarizes the progress of thermal transport in phosphorene from both theoretical calculations and experimental measurements, which would be of significance to the design and development of efficient phosphorene based nanoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  1. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  2. Investigation of micro-gravity effects on heat pipe thermal performance and working fluid behavior, phase B

    Science.gov (United States)

    Gier, K. D.; Smith, M. O.

    1990-01-01

    The purpose of this experiment is to develop an in-depth understanding of the behavior of heat pipes in space. Both fixed conductance heat pipes (FCHPs) with axial grooves and variable conductance heat pipes (VCHPs) with porous wicks will be investigated. This understanding will be applied to the development of improved performance heat pipes subjected to various accelerations in space, including those encountered on a lunar base or Mars mission. More efficient, reliable, and lighter weight spacecraft thermal control systems should result from these investigations.

  3. Performance testing of a hydrogen heat pipe

    International Nuclear Information System (INIS)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity 5.4 W-m (2) static wicking height 1.42 cm and (3) overall heat pipe conductance 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W

  4. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  5. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  6. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  7. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Directory of Open Access Journals (Sweden)

    Shanguo Zhao

    2018-01-01

    Full Text Available The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  8. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  9. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  10. Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires

    International Nuclear Information System (INIS)

    Wang, Zhangyuan; Qiu, Feng; Yang, Wansheng; Zhao, Xudong; Mei, Sheng

    2016-01-01

    Highlights: • Proposing a novel heat pipe BIPV/T system. • Conducting experiments to investigate the performance of the system. • Establishing the relation between the system performance and operating parameters. - Abstract: Heat pipe building integrated photovoltaic/thermal system (heat pipe BIPV/T system) can produce both the electrical and thermal energies at the same time, which have been paid enormous attentions since the energy crisis in the 1970s. In this paper, the heat pipe BIPV/T system with the metal wires filling into the space between the finned heat pipes and insulation has been proposed, which will be expected to enhance the heat transfer and improve the electrical generation of the system. To investigate the thermal performance of the system, the variations of the temperatures, e.g., flat-plate glass cover, PV panel, filling space, heat pipe, and tank water, as well as the ambient temperature, were measured, and the system’s thermal efficiency was calculated and studied for different simulated solar radiations and water flow rates. It was found that the temperatures of the flat-plate glass cover, PV panels, filling space, and heat pipe presented the similar variation pattern when the ambient temperature was stable. The tank water temperature could reach the maximum of 53.83 °C when the simulated solar radiation was at 900 W/m"2 and the water flow rate was at 200 l/h. The linear relation between the system efficiency and (T_m_e_a_n − T_a_m_b)/I had been setup. The maximum thermal efficiency was found at 44.04% with the simulated solar radiation of 300 W/m"2 and water flow rate of 200 l/h, and 7.9% for the maximum electrical efficiency. Compared with the traditional systems of the previous research, the proposed system performed well with additional features, e.g., low cost, waste materials recycling. This research will be helpful in indicating the potential research area of the low-carbon-emission and energy-saving technology for the

  11. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  12. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  13. The development of monitoring techniques for thermal stratification in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs.

  14. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  15. Thermal aging of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The long term mechanical integrity of the pipes used to carry the primary cooling water in a pressurized water nuclear reactor is of the utmost importance for safe operation. A combined atom probe field-ion microscopy (APFIM) and transmission electron microscopy (TEM) study was performed to characterize the microstructure of this cast stainless steel and to determine the changes that occur during long-term low-temperature thermal aging. The material used in this investigation was a commercial CF 8 type stainless. The steel was examined in the as-cast, unaged condition and also after aging for 7500 h at 673K. 3 refs., 4 figs., 2 tabs

  16. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  17. On The Physico-Mechanics, Thermal and Microstructure Properties of Hybrid Composite Epoxy-Geopolymer for Geothermal Pipe Application

    Directory of Open Access Journals (Sweden)

    Firawati Ira

    2017-01-01

    Full Text Available The objective of this study is to determine the effect of epoxy resin on the physico-mechanics, thermal and microstructure properties of geopolymers hybrid composites for geothermal pipe application. Hybrid composite epoxy-geopolymers pipes were produced through alkali activation method of class-C fly ash and epoxy resin. The mass of epoxy-resin was varied relative to the mass of fly ash namely 0% (SPG01, 5% (SPG02, 10% (SPG03, 15% (SPG04, and 20% (SPG05. The resulting materials were stored in open air for 28 days before conducting any measurements. The densities of the product composites were measured before and after the samples immersed in boiling water for 3 hours. The mechanical strength of the resulting geothermal pipes was measured by using splitting tensile measurement. The thermal properties of the pipes were measured by means of thermal conductivity measurement, differential scanning calorimetry (DSC and fire resistance measurements. The chemical resistance was measured by immersing the samples into 1M H2SO4 solution for 4 days. The microstructure properties of the resulting materials were examined by using x-ray diffraction (XRD and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS. The results of this study showed that hybrid composite epoxy-geopolymers SPG02 and SPG03 are suitable to be applied as geothermal pipes.

  18. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  19. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility

  20. Study on heat transfer characteristics in a mixing tee pipe to evaluate for thermal fatigue

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2016-01-01

    Thermal fatigue racking may initiate at a tee pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress fluctuations are caused by movement of a hot spot on the pipe inner surface. It is important to investigate the heat transfer from the fluid to the structure around the hot spot. The heat transfer characteristic in the mixing tee pipe was investigated by tests in this study. The unsteady heat transfer coefficients around the hot spot were estimated with the fluid and wall temperature, which were measured with thermocouples. The estimated heat transfer coefficient varied from 1.2 to 3.5 times of the steady state heat transfer coefficient. The heat transfer coefficient was 2.9 times of the steady state value at the position for the maximum stress fluctuation, which was calculated with the measured wall temperature distribution. (author)

  1. Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study

    Science.gov (United States)

    Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.

    2015-12-01

    Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.

  2. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2018-04-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  3. Experimental investigation on the effect of nanofluid on the thermal performance of symmetric sintered U shaped heat pipe

    Science.gov (United States)

    Nazarimanesh, Meysam; Yousefi, Tooraj; Ashjaee, Mehdi

    2016-07-01

    In this study, the impact of Entrance Power and Silver nanofluid concentration (with base fluid ethanol and DI-water) on heat pipe thermal performance are considered. In order to reach the aim a U-shaped sintered heat pipe is utilized which causes occupied space to decline. The length of the heat pipe is 135 mm in each branch. On account of recognition the effect of working fluid on heat pipe thermal performance, thermal resistance and overall heat transfer coefficient in base working fluid and nano-colloidal silver are measured in the shape of thermosyphon. The working fluid is with volume percentages of 70 ethanol and 30 distilled water. The average size pertaining to the nanoparticle applied is 40 nm. In addition, the influences of nanofluid concentrations are measured by comparing three concentrations 0.001, 0.005, 0.1 vol%. The range of entrance power is from 10 to 40 W and the temperature of coolant has been changed from 20 to 40 °C. The results of the experiment indicate that by increasing entrance power, the temperatures of the condenser, evaporator and working temperature experience a rise. Furthermore, this causes a decrease of thermal resistance and an increase of overall heat transfer coefficient. A comparison of three concentrations reveals that in concentration of 50 ppm, thermal resistance compared to the base fluid has decreased to 42.26 % and overall heat transfer coefficient has gone up to 1883 (W/m2·°K) . Also, due to unexpected changes in concentration of 1000 ppm, the existence of an optimized concentration for the silver nanofluid in this heat pipe with this geometry has been clear.

  4. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  5. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  6. Study on mixing behavior in a tee piping and numerical analyses for evaluation of thermal striping

    International Nuclear Information System (INIS)

    Kamide, H.; Igarashi, M.; Kawashima, S.; Kimura, N.; Hayashi, K.

    2009-01-01

    Water experiments were carried out for thermal hydraulic aspects of thermal striping in a mixing tee, which has main to branch diameter ratio of 3. Detailed temperature and velocity fields were measured by a movable thermocouple tree and particle image velocimetry. Flow patterns in the tee were classified into three groups; wall jet, deflecting jet, and impinging jet, which had their own temperature fluctuation profiles, depending on a momentum ratio between the main and branch pipes. Non-dimensional power spectrum density (PSD) of temperature fluctuation showed a unique profile, when the momentum ratio was identical. Numerical simulation based on finite difference method showed alternative vortex development, like Karman vortex series, behind the jet from the branch pipe in the wall jet case. The prominent frequency of the temperature fluctuation in the calculation was 0.2 of St number based on the branch pipe diameter and in good agreement with the experimental results. Mixing behavior in the tee was characterized by the relatively large vortex structures defined by the diameters and the velocities in the pipes

  7. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid.

    KAUST Repository

    Tsai, Tsung-Han; Chien, Hsin-Tang; Chen, Ping-Hei

    2011-01-01

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon

  8. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  9. The role of hybrid nanofluids in improving the thermal characteristics of screen mesh cylindrical heat pipes

    Directory of Open Access Journals (Sweden)

    Ramachandran Raghavan Nair

    2016-01-01

    Full Text Available Experiments were conducted to study the thermal performance of meshed wick heat pipe by varying the working fluid and heat input. In this work four screen mesh wicked heat pipes were fabricated and tested. All the heat pipes were tested for heat input from 50W to 250W each with an increment of 50W in each step. The heat input range selected in this study is commonly encountered in most of the electronic application devices. The thermal resistance of all the heat pipes charged with different working fluids such as DI water, Al2O3/DI water nanofluid of volume concentration 0.1 % and hybrid nanofluid volume concentration 0.1%( with two different combinations of (Al2O3 50%- CuO 50%/DI water and (Al2O3 25%- CuO 75%/DI waterwas determined. The maximum percentage reduction was found to be 58.87% for the hybrid nanofluid of (Al2O3 25%- CuO 75%/DI water compared to base fluid. An important observation from the study is that, use of hybrid nanofluid can raise the operating range of the heat pipe beyond 250W which makes hybrid nanofluid as a potential substitute for the conventional working fluid.

  10. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  11. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  12. Influence of void ratio on thermal performance of heat pipe receiver

    International Nuclear Information System (INIS)

    Gui Xiaohong; Tang Dawei; Liang Shiqiang; Lin Bin; Yuan Xiugan

    2012-01-01

    Highlights: ► The temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. ► Void cavity influences the process of phase change greatly. ► PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. ► The temperature gradient of PCM zone is very significant with the effect of void cavity. - Abstract: In this paper, influence of void ratio on thermal performance of heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. Numerical method is offered. The temperature field of Phase Change Material (PCM) canister is shown. Numerical results are compared with numerical ones of National Aeronautics and Space Administration (NASA). Numerical results show that the temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. Void cavity influences the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The thermal resistance of void cavity is much bigger than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall. The temperature gradient of PCM zone is very significant with the effect of void cavity. So the thermal stress of heat pipe receiver may increase, and the lifetime may decrease as void ratio increases.

  13. Modelling the transient analysis of flat miniature heat pipes in printed circuit boards using a control volume approacht

    NARCIS (Netherlands)

    Wits, W.W.; Kok, J.B.W.; van Steenhoven, A.A.; van der Meer, T.H.; Stoffels, G.G.M.

    2008-01-01

    The heat pipe is a two-phase cooling solution, offering very high thermal coefficients, for heat transport. Therefore, it is increasingly used in the design of electronic products. Flat miniature heat pipes are able to effectively remove heat from several hot spots on a Printed Circuit Board (PCB).

  14. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  15. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations

    International Nuclear Information System (INIS)

    Hemadri, Vadiraj A.; Gupta, Ashish; Khandekar, Sameer

    2011-01-01

    With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors, experimental study of embedded PHP thermal radiators, having two different effective Biot numbers respectively, and subjected to conjugate heat transfer conditions on their surface, i.e., natural convection and radiation, has been carried out under different thermo-mechanical boundary conditions. High resolution infrared camera is used to obtain spatial temperature profiles of the radiators. To complement the experimental study, detailed 3D computational heat transfer simulation has also been undertaken. By embedding PHP structures, it was possible to make the net thermal resistance of the mild steel radiator plate equivalent to the aluminum radiator plate, in spite of the large difference in their respective thermal conductivities (k Al ∼ 4k MS ). The study reveals that embedded PHP structures can be beneficial only under certain boundary conditions. The degree of isothermalization achieved in these structures strongly depends on its effective Biot number. The relative advantage of embedded PHP is appreciably higher if the thermal conductivity of the radiator plate material itself is low. The study indicates that the effective thermal conductivity of embedded PHP structure is of the order of 400 W/mK to 2300 W/mK, depending on the operating conditions. - Research highlights: → Study of radiator plates with embedded Pulsating Heat Pipe by infrared thermography. → Radiator is subjected to natural convection and radiation boundary conditions. → Experimental study is supported by 3D simulation. → Effective thermal conductivity of PHPs of the order of 2000 W/mK is obtained. → Efficacy of embedded PHPs depends on the effective Biot number of the system.

  16. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Chung, Won Bok

    2005-01-01

    A small-scale Loop Heat Pipe (LHP) with polypropylene wick was fabricated and tested for investigation of its thermal performance. The container and tubing of the system were made of stainless steel and several working fluids were tested including methanol, ethanol, and acetone. The heating area was 35 mm x 35 mm and nine axial grooves were provided in the evaporator to provide vapor passages. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 μm to 25 μm. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 mm. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. Start-up characteristics as well as steady-state performance was analyzed and discussed. The minimum thermal load of 10 W (0.8W/cam 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 deg. C with horizontal position

  17. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y C; Bright, Victor M; Sharar, Darin J; Jankowski, Nicholas R; Morgan, Brian C

    2012-01-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm 3 . The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0–10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm 2 . The effective thermal conductivity of the device was determined to range from 1653 W (m K) −1 at 0 g to 541 W (m K) −1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels. (paper)

  18. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  19. Condensation induced non-condensable accumulation in a non-vented horizontal pipe connected with an elbow and a vertical pipe

    International Nuclear Information System (INIS)

    Stevanovic, V.D.; Stosic, Z.V.; Stoll, U.

    2005-01-01

    In this paper the radiolytic gases (hydrogen and oxygen) accumulation is investigated numerically for the pipe geometry consisting of a horizontal pipe closed at one end, and connected via a downward directed elbow with a vertical pipe open at its bottom end. This configuration is a typical part of many pipeline systems or measuring lines. The steam inside the pipes is condensed due to heat losses to the surrounding atmosphere, the condensate is drained and the concentration of the remaining noncondensable radiolytic gases is increased. Three dimensional numerical simulations are performed with the thermal-hydraulic and physico-chemical code HELIO, especially developed for the simulation and analyses of radiolytic gases accumulation in pipelines. The HELIO code model is based on the mass, momentum and energy conservation equations for the gas mixture and wall condensate film flow, as well as on the transport equations for non-condensable diffusion and convection. At the liquid film surface, the phases are coupled through the no-slip velocity condition and the mass transfer due to steam condensation and non-condensable absorption and degassing. Obtained numerical results show the gas mixture and condensate liquid film flow fields. In case of here analyzed geometry, the gas mixture circulates in the elbow and the horizontal pipe due to buoyancy forces induced by concentration and related density differences. The circulation flow prevents the formation of the radiolytic gases concentration front. The non-condensable radiolytic gases are transported from the pipe through the open end by the mechanisms of diffusion and convection. The analyzed geometry is the same as in case of venting pipe mounted on the steam pipeline. The results are of practical importance since they show that radiolytic gases accumulation does not occur in the geometry of the venting pipes. (authors)

  20. Comparative study of a novel liquid–vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes – Part I: Conceptual development and theoretical analyses

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; He, Wei; Xu, Peng; Zhao, Xudong; Tan, Junyi

    2015-01-01

    31,365 W/°C m, 9,648 W/°C m and 5,042 W/°C m, respectively. This indicated that the novel heat pipe (T1) could achieve a significantly enhanced heat transport effect, relative to T2 and T3. Compared to a typical cooper rod, T1 has around 78 times higher effective thermal conductivity, indicating that T1 has the tremendous competence compared to other heat transfer components. It should be noted that this paper only reported the theoretical outcomes of the research and the second paper would report the follow-on experimental study and model validation. The research results could be directly used for design, optimisation and analyses of the new GALHP, thus promoting its wide applications in various situations to enable the enhanced thermal performance to be achieved

  1. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report contains schematic drawings for the pipe fittings for the Hanford waste tanks. Included are the modifications to the W-025 trench number-sign 31 leachate loadout piping, and also the modifications to the tanker trailers. The piping was modified to prevent spillage to the environment. The tankers were modified for loading and unloading purposes

  2. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident.

  3. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident

  4. Design of a cavity heat pipe receiver experiment

    Science.gov (United States)

    Schneider, Michael G.; Brege, Mark H.; Greenlee, William J.

    1992-01-01

    A cavity heat pipe experiment has been designed to test the critical issues involved with incorporating thermal energy storage canisters into a heat pipe. The experiment is a replication of the operation of a heat receiver for a Brayton solar dynamic power cycle. The heat receiver is composed of a cylindrical receptor surface and an annular heat pipe with thermal energy storage canisters and gaseous working fluid heat exchanger tubes surrounding it. Hardware for the cavity heat pipe experiment will consist of a sector of the heat pipe, complete with gas tube and thermal energy storage canisters. Thermal cycling tests will be performed on the heat pipe sector to simulate the normal energy charge/discharge cycle of the receiver in a spacecraft application.

  5. Transition of Gas-Liquid Stratified Flow in Oil Transport Pipes

    Directory of Open Access Journals (Sweden)

    D. Lakehal

    2011-12-01

    Full Text Available Large-Scale Simulation results of the transition of a gas-liquid stratified flow to slug flow regime in circular 3D oil transport pipes under turbulent flow conditions expressed. Free surface flow in the pipe is treated using the Level Set method. Turbulence is approached via the LES and VLES methodologies extended to interfacial two-phase flows. It is shown that only with the Level Set method the flow transition can be accurately predicted, better than with the two-fluid phase-average model. The transition from stratified to slug flow is found to be subsequent to the merging of the secondary wave modes created by the action of gas shear (short waves with the first wave mode (high amplitude long wave. The model is capable of predicting global flow features like the onset of slugging and slug speed. In the second test case, the model predicts different kinds of slugs, the so-called operating slugs formed upstream that fill entirely the pipe with water slugs of length scales of the order of 2-4 D, and lower size (1-1.5 D disturbance slugs, featuring lower hold-up (0.8-0.9. The model predicts well the frequency of slugs. The simulations revealed important parameter effects on the results, such as two-dimensionality, pipe length, and water holdup.

  6. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid.

    KAUST Repository

    Tsai, Tsung-Han

    2011-11-14

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon, in aqueous solution are used respectively. An experimental system was set up to measure the thermal resistance of the DMHP with both nanofluids and deionized [DI] water as the working medium. The measured results show that the thermal resistance of DMHP varies with the charge volume and the type of working medium. At the same charge volume, a significant reduction in thermal resistance of DMHP can be found if nanofluid is used instead of DI water.

  7. Calculation of piping loads due to filling procedures; Berechnung von Rohrleitungsbelastungen durch Fuellvorgaenge

    Energy Technology Data Exchange (ETDEWEB)

    Swidersky, Harald; Thiele, Thomas [TUeV Sued Industrie Service GmbH, Muenchen (Germany)

    2012-11-01

    Filling procedures in piping systems are usually not load cases that are studied by fluid dynamic and structure dynamic analyses with respect to the integrity of pipes and supports. Although, their frequency is higher than that of postulated accidental transients, therefore they have to be considered for fatigue analyses. The piping and support loads due to filling procedures are caused by the density differences if the transported fluids, for instance in flows with the transport of gas bubbles. The impact duration of the momentum forces is defined by the flow velocity and the length of discontinuities in the piping segments. Filling procedures end very often with a shock pressure, caused by the impact and decelerating of the fluid front at smaller cross sections. The suitability of the thermally hydraulics program RELAP/MOD3.3 for the calculation of realistic loads from filling procedures was studied, the results compared with experimental data. It is shown that dependent on the discretization level the loads are partial significantly underestimated.

  8. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  9. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  10. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  11. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  12. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  13. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  14. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  15. Thermal Characterisation of Micro Flat Aluminium Heat Pipe Arrays by Varying Working Fluid and Inclination Angle

    Directory of Open Access Journals (Sweden)

    Guanghan Huang

    2018-06-01

    Full Text Available A micro heat pipe array is desirable owing to its high heat transfer capacity, compact size, and high surface–volume ratio compared with conventional heat pipes. In this study, micro flat aluminium heat pipe arrays (MF-AHPA were developed and systematically characterised by varying working fluid and inclination angle. Three MF-AHPAs with different working fluids, i.e., acetone, cyclopentane, and n-hexane, were fabricated. The acetone MF-AHPA achieved the best thermal performance. The underlying mechanism is the small flow viscous friction and small shearing force of liquid vapour. Additionally, the experimental results show a strong dependence of MF-AHPAs’ thermal resistance on the orientation due to the gravitational effect on axial liquid distribution. Finally, a criterion is proposed to determine the optimal inclination angle of the MF-AHPA. In the present study, a volumetric fraction (αa,c of 74 ± 7% has been shown to well predict an optimal inclination angle of the MF-AHPAs with various working fluids and heat loads.

  16. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  17. Multiple-jet thermal mixing in a piping tee

    International Nuclear Information System (INIS)

    Lykoudis, P.S.; Hagar, R.C.

    1979-01-01

    Piping tees that are used to mix fluid streams at different temperatures are subjected to possibly severe thermal and mechanical stresses. There is reason to suspect that mixing in a piping tee could be improved by injecting the fluid streams into the tee through multiple jets. This paper reports the results of an experimental investigation of the effects of multiple-jet injection on mixing in a piping tee. The experimental work involves the measurement of the temperature fluctuation intensity with a hot-film sensor downstream of a simple 22.22-mm(7/8-in.)-diam tee with mixed multiple-jet injected hot and cold streams of water. The jets were provided by holes drilled in plates that partially blocked the inlet streams; 26 pairs of plates were investigated. The number of holes per plate varied from 1 to 51; the jet diameters ranged from 5 to 68% of the tee diameter. The inlet stream Reynolds number upstream of the jet plates was roughly 15 500 for each stream. The data indicated that the root mean square (rms) temperature fluctuation intensity measured at the tee outlet decreased dramatically as the jet plate cross-sectional area void fraction was decreased. When the jets emanating from the tee plates were misaligned, the reduction of the rms temperature fluctuation was not as high as when the jets were aligned. The rate of decay of the intensity downstream of the tee for most ofthe plates investigated was found to agree well with the -3/4 power decay law predicted by Corrsin's theory of scalar decay. However, unusual features in the intensity decay data were also observed, such as an increase of the intensity several diameters downstream before continuing to decay

  18. Testing in support of transportation of residues in the pipe overpack container

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.; Bronowski, D.R.

    1997-04-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plants call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The tests described here were performed to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II. Using a more robust container will assure the fissile materials in each container can not be mixed with the fissile material from the other containers and will provide criticality control. This will allow an increase in the payload of the TRUPACT-II from 325 fissile gram equivalents to 2,800 fissile gram equivalents

  19. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    OpenAIRE

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  20. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  1. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  2. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  3. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe...

  4. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is...

  5. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  6. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  7. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  8. Optimum interior area thermal resistance model to analyze the heat transfer characteristics of an insulated pipe with arbitrary shape

    International Nuclear Information System (INIS)

    Chou, H.-M.

    2003-01-01

    The heat transfer characteristics for an insulated regular polygonal (or circular) pipe are investigated by using a wedge thermal resistance model as well as the interior area thermal resistance model R th =t/K s /[(1-α)A 2 +αA 3 ] with a surface area weighting factor α. The errors of the results generated by an interior area model can be obtained by comparing with the exact results generated by a wedge model. Accurate heat transfer rates can be obtained without error at the optimum α opt with the related t/R 2 . The relation between α opt and t/R 2 is α opt =1/ln(1+t/R 2 )-1/(t/R 2 ). The value of α opt is greater than zero and less than 0.5 and is independent of pipe size R 2 /R cr but strongly dependent on the insulation thickness t/R 2 . The interior area model using the optimum value α opt with the related t/R 2 should also be applied to an insulated pipe with arbitrary shape within a very small amount of error for the results of heat transfer rates. The parameter R 2 conservatively corresponds to the outside radius of the maximum inside tangent circular pipe within the arbitrary shaped pipes. The approximate dimensionless critical thickness t cr /R 2 and neutral thickness t e /R 2 of an insulated pipe with arbitrary shape are also obtained. The accuracies of the value of t cr /R 2 as well as t e /R 2 are strongly dependent on the shape of the insulated small pipe. The closer the shape of an insulated pipe is to a regular polygonal or circular pipe, the more reliable will the values of t cr /R 2 as well as t e /R 2 be

  9. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  10. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  11. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  12. Evaluation of clamp effects on LMFBR piping systems

    International Nuclear Information System (INIS)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness

  13. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  14. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  15. Gravity-assist heat pipes for thermal control systems

    International Nuclear Information System (INIS)

    Deverall, J.E.; Keddy, E.S.; Kemme, J.E.; Phillips, J.R.

    1975-06-01

    Sodium heat pipes, operating in the gravity-assist mode, have been incorporated into irradiation capsules to provide a means for establishing and controlling a desired specimen temperature. Investigations were made of new wick structures for potassium heat pipes to operate at lower temperatures and higher heat transfer rates, and a helical trough wick structure was developed with an improved heat transfer capability in the temperature range of interest. Test results of these heat pipes led to the study of a new heat pipe limit which had not previously been considered. (12 references) (U.S.)

  16. Study of system safety evaluation on LTO of national project. Thermal fatigue evaluation of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo

    2012-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Numerical simulation methods for thermal fatigue evaluation were studied to replace structural tests. Theses knowledge was utilized to validate and justify the JSME guideline. Furthermore, new studies have been launched to apply above knowledge to enhance plant system safety. (author)

  17. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  18. Structural analysis program of plant piping system. Introduction of AutoPIPE V8i new feature. JSME PPC-class 2 piping code

    International Nuclear Information System (INIS)

    Motohashi, Kazuhiko

    2009-01-01

    After an integration with ADLPipe, AutoPIPE V8i (ver.9.1) became the structural analysis program of plant piping system featured with analysis capability for the ASME NB Class 1 and JSME PPC-Class 2 piping codes including ASME NC Class 2 and ASME ND Class 3. This article described analysis capability for the JSME PPC-Class 2 piping code as well as new general features such as static analysis up to 100 thermal, 10 seismic and 10 wind load cases including different loading scenarios and pipe segment edit function: join, split, reverse and re-order segments. (T. Tanaka)

  19. Flow structure in a downward branch pipe with a closed end. Characteristics of flow velocity in the branch pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Takenaka, Nobuyuki

    2016-01-01

    Many pipes branch off from a main pipe in industrial plants. The penetration of hot water into the branch pipe causes thermal stratification. The thermal stratification layer fluctuates and causes thermal fatigue. The characteristics of velocity distributions in the branch pipe for inner diameters from D_b=21 mm to 43 mm were investigated by laser Doppler velocimetry in this paper. As for the flow in the branch pipe at L=4D_b, the mean velocity of the spiral flow was a simple forced vortex which indicated a straight velocity distribution. The maximum circumferential velocity U_θ _m_a_x and minimum axial velocity U_z _m_i_n at L=4D_b were expressed with D_b and main flow velocity. Empirical formulas were proposed for estimating the distributions of U_θ _m_a_x and U_z _m_i_n in the axial direction. (author)

  20. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  1. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongbing, E-mail: liuhb07@mails.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Du, Dong, E-mail: dudong@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Huang, An; Chang, Baohua; Han, Zandong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); He, Ayada [Shanghai Electric Power Generation Group Shanghai Generator Works, Shanghai 200240 (China)

    2016-08-15

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  2. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Huang, An; Chang, Baohua; Han, Zandong; He, Ayada

    2016-01-01

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  3. Load-deflection characteristics of small bore insulated pipe clamps

    International Nuclear Information System (INIS)

    Severud, L.K.; Clark, G.L.

    1982-01-01

    High temperature LMFBR piping is subject to rapid temperature changes during transient events. Typically, this pipe is supported by specially designed insulated pipe clamps to prevent excessive thermal stress from developing during these transients. The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427 0 C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps

  4. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  5. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  6. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  7. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  8. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration

  9. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  10. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  11. Numerical simulation of temperature and thermal stress for nuclear piping by using computational fluid dynamics analysis and Green’s function

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)

    2017-05-15

    Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.

  12. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  13. Pipes of glassfiber reinforced plastics and prestressed concrete for hot-water transportation

    International Nuclear Information System (INIS)

    Schmeling, P.; Roseen, R.

    1980-06-01

    The report constitutes stage 2-3 of a project for the evaluation of pipes made from glass reinforced plastics and prestressed concrete. This stage was made possible through funds from the Swedish National Board for Energy Source Development and the participation of three industrial firms. Experimental pipes of large dimensions (O.D. 0.5 m) were tested at elevated temperatures and pressures. The glass reinforced plastic tubes showed in general an acceptable short term strength at 100-110 degree C. Further long term testing is needed in order to predict the life time; their manufacture requires a strictrly controlled process. The pipes made from prestressed concrete were tested at 95 and 110 degree C for more than a year with good results, and their resistence to thermal shocks was shown to be acceptable. Long term stress relaxation of the EPDM rubber for the joints was measured at 125 and 110 degree C. The best rubbers can be used for 3 years at 110 degree C and a compression of 35 percent, a longer life time is most probable but cannot be foreseen until results from continued testing have been collected. It was demonstrated that the relaxation rate is lowered in water with low oxygen contents. (author)

  14. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  15. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  16. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  17. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  18. Heat pipe applications for future Air Force spacecraft

    International Nuclear Information System (INIS)

    Mahefkey, T.; Barthelemy, R.R.

    1980-01-01

    This paper summarizes the envisioned, future usage of high and low temperature heat pipes in advanced Air Force spacecraft. Thermal control requirements for a variety of communications, surveillance, and space defense missions are forecast. Thermal design constraints implied by survivability to potential weapons effects are outlined. Applications of heat pipes to meet potential low and high power spacecraft mission requirements and envisioned design constraints are suggested. A brief summary of past Air Force sponsored heat pipe development efforts is presented and directions for future development outlined, including those applicable to advanced photovoltaic and nuclear power subsystem applications of heat pipes

  19. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  20. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.; AbuElela, Ayman; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M.; Buttner, Ulrich; Majid, Mohammed Abdul; Ng, Tien Khee; Merzaban, Jasmeen; Ooi, Boon S.

    2016-01-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  1. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.

    2016-11-23

    Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  2. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    Science.gov (United States)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  3. How partial nitrification could improve reclaimed wastewater transport in long pipes.

    Science.gov (United States)

    Delgado, S; Alvarez, M; Rodríguez-Gómez, L E; Elmaleh, S; Aguiar, E

    2001-01-01

    Reclaimed wastewater transport is studied in a concrete-lined cast iron pipe, where a nitrification-denitrification process occurs. The pipe is part of the Reuse System of Reclaimed Wastewater of South Tenerife (Spain), 0.6 m in diameter and 61 km long. In order to improve wastewater quality, at 10 km from the inlet there is injection of fresh water saturated in dissolved oxygen (DO), after which a fast nitrification process usually appears (less than two hours of space time). The amount of oxidized nitrogen compounds produced varies between 0.8 and 4.4 mg/l NOx(-)-N. When DO has disappeared, a denitrification process begins. The removal of nitrite is complete at the end of the pipe, whereas the nitrate does not disappear completely, leaving a concentration of about 0.4-0.5 mg/l. For a COD/NOx(-)-N ratio higher than 5, a first order nitrification rate in NOx(-)-N has resulted, with the constant k20 = 0.079 h-1, for a NOx(-)-N concentration range of 0.8-4.4 mg/l. Finally the following temperature dependency for the first order denitrification rate constant has been found: k = k20 x 1 x 15T-20. Although nitrogen could be used as nutrient in the agricultural reuse, its removal from reclaimed wastewater could be useful in order to diminish the chlorine needs for reclaimed wastewater disinfection.

  4. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  5. Bypass line assisted start-up of a loop heat pipe with a flat evaporator

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Jung, Eui Guk

    2009-01-01

    Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10 .deg. C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed

  6. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  7. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

    Science.gov (United States)

    Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.

    2015-06-01

    Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

  8. Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Jung Seob; Heo, Jae Sil [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Cho, Sun Young [KLES, Daejeon (Korea, Republic of); Heo, Jeong Yeol; Lee, Seong Kee [Korea South-East Power Co., Seoul (Korea, Republic of)

    2009-10-15

    High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of 'Y' thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  9. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  10. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  11. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  12. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  13. Modelling and performance of heat pipes with long evaporator sections

    Science.gov (United States)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-11-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling through a fan-based heat sink. Successful heat pipe operation and experimental performances are determined for seven heating configurations, considering active bottom, middle and top sections, and four orientation angles (0°, 30°, 60° and 90°). For all heating sections active, the heat pipe oriented vertically in an evaporator-down mode and a power input of 150 W, the overall thermal resistance was 0.014 K/W at a thermal gradient of 2.1 K and an average operating temperature of 50.7 °C. Vertical operation showed best results, as can be expected; horizontally the heat pipe could not be tested up to the power limit and dry-out occurred between 20 and 80 W depending on the heating configuration. Heating configurations without the bottom section active demonstrated a dynamic start-up effect, caused by heat conduction towards the liquid pool and thereafter batch-wise introducing the working fluid into the two-phase cycle. By analysing the heat pipe limitations for the intended operating conditions, a suitable heat pipe geometry was chosen. To predict the thermal performance a thermal model using a resistance network was created. The model compares well with the measurement data, especially for higher input powers. Finally, the thermal model is used for the design of a 1 kW planar system-level electronics cooling infrastructure featuring six 1 m heat pipes in parallel having a long ( 75%) evaporator section.

  14. Nanoscale thermal transport. II. 2003-2012

    Science.gov (United States)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  15. South African performance based standards (PBS) vehicle to transport steel pipes

    CSIR Research Space (South Africa)

    Dessein, T

    2010-03-01

    Full Text Available measures the vehicle?s rollover stability. Rearward Amplification (RA) ? Measures the degree to which the lateral accelerations experienced by trailing units are amplified in comparison to that of the towing unit in a high speed evasive single lane...-speed 90? turn high-speed travel along a 1.0km long straight road with uneven road surface a pulse-steer test HVTT11: A South African PBS Vehicle to Transport Pipes 10 a constant radius turn at slowly increasing speed an evasive lane change...

  16. Heats pipes for temperature homogenization: A literature review

    International Nuclear Information System (INIS)

    Blet, Nicolas; Lips, Stéphane; Sartre, Valérie

    2017-01-01

    Highlights: • This paper is a review based on more than sixty references. • The review is sorted into various application fields. • Quantitative values of thermal gradients are compared with and without heat pipes. • Specificities of mentioned heat pipes are compared to other functions of heat pipes. - Abstract: Heat pipes offer high effective heat transfer in a purely passive way. Other specific properties of heat pipes, like temperature homogenization, can be also reached. In this paper, a literature review is carried out in order to investigate the existing heat pipe systems mainly aiming the reduction of temperature gradients. The review gathering more than sixty references is sorted into various application fields, like thermal management of electronics, of storage vessels or of satellites, for which the management of the temperature uniformity differs by the isothermal surface area, temperature ranges or the targeted precision of the temperature flattening. A summary of heat pipe characteristics for this function of temperature homogenization is then performed to identify their specificities, compared to other applications of heat pipes.

  17. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  18. Investigation of thermal hydraulic mixing mechanism in T-junction pipe with a 90-degree bend in upstream side for mitigation and controlling of thermal-striping phenomena (Joint research)

    International Nuclear Information System (INIS)

    Yuki, Kazuhisa; Hashizume, Hidetoshi; Tanaka, Masaaki; Muramatsu, Toshiharu

    2006-03-01

    In T-junction pipe, where two fluids of different temperatures mix together, temperature fluctuation is induced due to unstable fluid mixing. Since there is a possibility that high cycle thermal fatigue in structural materials is caused by this temperature fluctuation in fluid, the development of the mitigation and control techniques for the thermal fatigue is one of the most important issues in the future plant design. If a 90-degree bend exists in the upstream of T-junction pipe, a secondary flow formed in the bend makes the fluid mixing phenomena even more complex. This study aims to clarify the effects of curvature ratio of the bend on the temperature fluctuation in T-junction pipe, by the flow visualization with PIV (Particle Image Velocimetry) and the measurement of fluid temperature in the vicinity of wall with thermo couples. From the visualization, it is clarified that a jet from branch pipe swings and sways near the wall and they brings strong temperature fluctuation in comparison of the case without the 90-degree bend. In the case of the short curvature bend, in which there exists flow separation, the fluid mixing and the temperature fluctuation characteristics are completely different from those in the case of the long curvature bend. Furthermore, in the case of long curvature bend, in which the flow separation doesn't occur, there are cautionary conditions that the temperature fluctuation is maximized in a transition regime of a stratified flow and a turn-jet flow. It seems that the cause for this phenomena is the repetition of generation and disappearance of a circulating flow formed behind the jet, due to the oscillation of jet caused by an interaction between unsteady behavior of a secondary flow and the wakes formed behind the jet. In the experiments, experimental correlation equations to predict the temperature fluctuation were obtained in each flow pattern. By using these equations, it's possible to predict the suitable flow condition and piping

  19. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  20. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  1. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  2. Determination of the optimum temperature history of inlet water for minimizing thermal stresses in a pipe by the multiphysics inverse analysis

    International Nuclear Information System (INIS)

    Kubo, S; Uchida, K; Ishizaka, T; Ioka, S

    2008-01-01

    It is important to reduce the thermal stresses for managing and extending the lives of pipes in plants. In this problem, heat conduction, elastic deformation, heat transfer, liquid flow should be considered, and therefore the problem is of a multidisciplinary nature. An inverse method was proposed by the present authors for determining the optimum thermal load history which reduced transient thermal stress considering the multidisciplinary physics. But the obtained solution had a problem that the temperature increasing rate of inner surface of the pipe was discontinuous at the end time of heat up. In this study we introduce temperature history functions that ensure the continuity of the temperature increasing rate. The multidisciplinary complex problem is decomposed into a heat conduction problem, a heat transfer problem, and a thermal stress problem. An analytical solution of the temperature distribution of radial thickness and thermal hoop stress distribution is obtained. The maximum tensile and compressive hoop stresses are minimized for the case where inner surface temperature T s (t) is expressed in terms of the 4th order polynomial function of time t. Finally, from the temperature distributions, the optimum fluid temperature history is obtained for reducing the thermal stresses.

  3. Analytical expression of the thermal stresses in a vessel or pipe with cladding submitted to any thermal transient

    International Nuclear Information System (INIS)

    Marie, Stephane

    2004-01-01

    This article proposes an extension of the known analytical solution for the temperature and stresses in the event of a linear shock in a pipe containing a fluid. The intention is to propose a simple solution for any variation of the temperature in the fluid and to cover the influence of cladding on the inner surface. The approach consists of breaking down the fluid temperature variation into a succession of linear shocks. Using the linear shock resolution approach, it is possible to propose a simple analytical solution, using the same constant (Biot number B, etc.). The proposed solution is compared with finite element analysis: the solution is found to be reliable for any thermal shock or cyclic variation of fluid temperature, and can even replicate the transient regime. The following stage has made it possible to account for the effect of cladding on the inner surface of the piping on temperature distribution. The second part gives analytical expressions for the elastic stresses due to the temperature field alone

  4. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH... ELECTRONICS THERMAL MANAGEMENT 5a. CONTRACT NUMBER FA8650-15-C-7517 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Samuel...seeded sample (NRL 010516, Die A5). The NCD membrane and Al layer thicknesses, tNCD, were measured via transmission electron microscopy (TEM). The

  5. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  6. Radiation-resistance of polyurethane pipes for cooling liquid in BES III

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Ji Quan; Wu Ping; Wang Li

    2009-01-01

    Gamma ray radiation and neutron radiation are predominant in the working conditions of BES III, and the radiation-resistance aging of polyurethane pipes is very important in this condition, as the pipes of cooling liquid for beam pipe and SCQ (superconducting quadrupole) vacuum pipe in BESIII. Polyester polyurethane pipes and polyether polyurethane pipes were irradiated by gamma ray and neutron. The radiation doses were as much as ten years' doses in BES. Pressure test, FTIR and thermal analysis were used to study the radiation-resistance of these two kinds of polyurethane pipes. The results show that the radiation-resistance and thermal stability of polyester polyurethane pipes are prior to those of polyether polyurethane pipes, and the pressure resistance of polyester polyurethane pipes is almost maintained after the irradiation by gamma ray and neutron, but the polyether polyurethane pipes can be aged and ruptured after the irradiation by neutron. (authors)

  7. 49 CFR 195.424 - Pipe movement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipe movement. 195.424 Section 195.424... PIPELINE Operation and Maintenance § 195.424 Pipe movement. (a) No operator may move any line pipe, unless... in the line section involved are joined by welding unless— (1) Movement when the pipeline does not...

  8. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  9. Pipe conveyors transport bulk material efficiently over long distances; Rohrgurtfoerderer transportieren Schuettgut effizient ueber lange Strecken

    Energy Technology Data Exchange (ETDEWEB)

    Will, Frank [BEUMER Maschinenfabrik GmbH und Co. KG, Beckum (Germany); Staribacher, Josef [KOCH Material Handling GmbH, Schwechat (Australia)

    2011-05-15

    The specific characteristics of a pipe conveyor, which are due to its operating principle, allow transportation solutions which are not possible with other conveyor systems; or if they are possible, then only with considerable restrictions or additional expenses. The enclosed design of the pipe conveyor protects the material from the environment and the environment from the conveyed material. The system, thus, makes a valuable contribution towards achieving environmental protection objectives and in meeting official regulations. The pipe conveyor handles both tight curve radiuses and steep inclines. This permits a very flexible route and also allows existing obstacles to be bypassed. Consequently, solutions can often be found which do not require any changes to be made to the existing terrain or plant structures. The investment costs of just the conveyor can sometimes be slightly higher for a pipe conveyor than for a conventional troughed belt conveyor. But if the pipe conveyor can take full advantage of its special features, then these additional costs become quite relative very quickly. And if, for example, transfer points, alterations of existing facilities, earthwork, or expensive dust and noise protection measures can be avoided due to the very flexible route layout of the pipe conveyor, then these savings on part of the customer are much higher than the additional costs for this perfect conveyor system. All told, it is possible to solve challenging conveying tasks with great efficiency while also saving resources when the pipe conveyor is used; thus, producing a sustained benefit to both the operator and the environment. (orig.)

  10. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  11. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  12. 49 CFR 178.348-3 - Pumps, piping, hoses and connections.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps, piping, hoses and connections. 178.348-3... FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348-3 Pumps, piping, hoses and connections. Each pump and all piping, hoses and connections on each cargo tank motor...

  13. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Science.gov (United States)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  14. Regulatory philosophy and intent of radioactive material transport

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.; Chou, C.K.

    1990-01-01

    This book contains papers presented at the 1990 Pressure Vessels and Piping Conference. Included are the following papers: Thermal testing of solid neutron shielding materials, Collapse analysis of toroidal shell, Decision process involved in preparing the Shippingport reactor pressure vessel for transport

  15. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  16. Analytical studies of blowdown thrust force and dynamic response of pipe at pipe rupture accident

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki

    1985-01-01

    The motion of a pipe due to blowdown thrust when the pipe broke is called pipe whip. In LWR power plants, by installing restraints, the motion of a pipe when it broke is suppressed, so that the damage does not spread to neighboring equipment by pipe whip. When the pipe whip of a piping system in a LWR power plant is analyzed, blowdown thrust and the dynamic response of a pipe-restraint system are calculated with a computer. The blowdown thrust can be calculated by using such physical quantities as the pressure, flow velocity, density and so on in the system at the time of blowdown, obtained by the thermal-fluid analysis code at LOCA. The dynamic response of a piping-restraint system can be determined by the stress analysis code using finite element method taking the blowdown thrust as an external force acting on the piping. In this study, the validity of the analysis techniques was verified by comparing with the experimental results of the measurement of blowdown thrust and the pipe whip of a piping-restraint system, carried out in the Japan Atomic Energy Research Institute. Also the simplified analysis method to give the maximum strain on a pipe surface is presented. (Kako, I.)

  17. Economic optimization of the energy transport component of a large distributed solar power plant

    Science.gov (United States)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  18. Thermal transport across graphene and single layer hexagonal boron nitride

    International Nuclear Information System (INIS)

    Zhang, Jingchao; Hong, Yang; Yue, Yanan

    2015-01-01

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs

  19. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Lee, Bo-Young; Kim, Jae-Seong; Lee, Sang-Yul; Kim, Yeong K.

    2012-01-01

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  20. The role of heat pipes in intensified unit operations

    International Nuclear Information System (INIS)

    Reay, David; Harvey, Adam

    2013-01-01

    Heat pipes are heat transfer devices that rely, most commonly, on the evaporation and condensation of a working fluid contained within them, with passive pumping of the condensate back to the evaporator. They are sometimes referred to as ‘thermal superconductors’ because of their exceptionally high effective thermal conductivity (substantially higher than any metal). This, together with several other characteristics make them attractive to a range of intensified unit operations, particularly reactors. The majority of modern computers deploy heat pipes for cooling of the CPU. The application areas of heat pipes come within a number of broad groups, each of which describes a property of the heat pipe. The ones particularly relevant to chemical reactors are: i. Separation of heat source and sink. ii. Temperature flattening, or isothermalisation. iii. Temperature control. Chemical reactors, as a heat pipe application area, highlight the benefits of the heat pipe based on isothermalisation/temperature flattening device and on being a highly effective heat transfer unit. Temperature control, done passively, is also of relevance. Heat pipe technology offers a number of potential benefits to reactor performance and operation. The aim of increased yield of high purity, high added value chemicals means less waste and higher profitability. Other intensified unit operations, such as those employing sorption processes, can also profit from heat pipe technology. This paper describes several variants of heat pipe and the opportunities for their use in intensified plant, and will give some current examples. -- Highlights: ► Heat pipesthermal superconductors – can lead to improved chemical reactor performance. ► Isothermalisation within a reactor vessel is an ideal application. ► The variable conductance heat pipe can control reaction temperatures within close limits. ► Heat pipes can be beneficial in intensified reactors

  1. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  2. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    International Nuclear Information System (INIS)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    1997-01-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300 degrees C. Two important observations of the experiments are - appreciable drop in maximum load at 300 degrees C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis

  3. High-performance heat pipes for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  4. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications

    International Nuclear Information System (INIS)

    Hu, Bo-wen; Wang, Qian; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel gravity-assisted heat pipe thermal storage unit (GAHP-TSU) is presented and tested. • Composite granular solid–liquid PCM is piled up as the porous medium layer in GAHP-TSU. • GAHP-TSU avoids the major obstacle of low thermal conductivity of the PCM. • GAHP-TSU enables the thermal storage unit with outstanding heat transfer performance. - Abstract: In this study, a novel gravity-assisted heat pipe type thermal storage unit (GAHP-TSU) has been presented for the potential application in solar air conditioning and refrigeration systems, in which composite granular solid–liquid PCMs compounded by RT100 and high-density polyethylene with phase change temperature of 100 °C are piled up as a porous PCMs medium layer. Water is used as heat transfer fluid in the GAHP-TSU. The heat transfer mechanism of heat storage/release in the GAHP-TSU is similar to that of the gravity-assisted heat pipe, which is superior to traditional direct-contact or indirect-contact thermal storage units. The properties of start-up, heat transfer characteristics on the stages of heat absorption and release of the GAHP-TSU are studied in detailed, including necessary calculations based on heat transfer theory. The results show that the whole system is almost isothermal at the temperature over 70 °C and the heat transfer properties are excellent both for heat absorption and release stages. The GAHP-TSU device with low thermal conductivity of the PCMs is promising in potential industry applications

  5. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  6. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  7. Load-deflection characteristics of small-bore insulated-pipe clamps

    International Nuclear Information System (INIS)

    Severud, L.K.; Clark, G.L.

    1981-12-01

    The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427 0 C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps

  8. Heat and Mass Transport in Heat Pipe Wick Structures

    OpenAIRE

    Iverson, B. D.; Davis, T. W.; Garimella, S V; North, M. T.; Kang, S.

    2007-01-01

    Anovel experimental approach is developed for characterizing the performance of heat pipe wick structures. This approach simulates the actual operation of wick structures in a heat pipe. Open, partially submerged, sintered copper wicks of varying pore size are studied under the partially saturated conditions found in normal heat pipe operation. A vertical wick orientation, where the capillary lift is in opposition to gravity, is selected to test the wicks under the most demanding conditions. ...

  9. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  10. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  11. 49 CFR 192.321 - Installation of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  12. 49 CFR 192.121 - Design of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  13. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  14. The effects of linear accelerations on the maximum heat transfer capacity of micro pipes with triangular grooves

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Kahrobaian, A.; Tabandeh, N.; Jalilvand, A.

    2002-01-01

    Micro heat pipes are widely used for the thermal control of spacecraft and their electronic components. In this paper the influence of linear accelerations in micro grooves has been studied. A mathematical model for predicating the minimum meniscus radius and the maximum heat transport in triangular groove under the influence of linear acceleration is presented and method for determining the theoretical minimum meniscus radius is developed. It is shown that both, the direction and the magnitude of the acceleration have a great effect upon heat transfer capability of micro heat pipes. The analysis presented here provides a mechanism where by the groove geometry can be optimized with respect to the length of the heat pipe and direction and magnitude of linear acceleration

  15. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  16. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  17. Heat pipe with PCM for electronic cooling

    International Nuclear Information System (INIS)

    Weng, Ying-Che; Cho, Hung-Pin; Chang, Chih-Chung; Chen, Sih-Li

    2011-01-01

    This article experimentally investigates the thermal performances of a heat pipe with phase change material for electronic cooling. The adiabatic section of heat pipe is covered by a storage container with phase change material (PCM), which can store and release thermal energy depending upon the heating powers of evaporator and fan speeds of condenser. Experimental investigations are conducted to obtain the system temperature distributions from the charge, discharge and simultaneous charge/discharge performance tests. The parameters in this study include three kinds of PCMs, different filling PCM volumes, fan speeds, and heating powers in the PCM cooling module. The cooling module with tricosane as PCM can save 46% of the fan power consumption compared with the traditional heat pipe.

  18. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  19. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  20. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  1. The evaluation of stress and piping support loads on RSG-GAS secondary cooling system

    International Nuclear Information System (INIS)

    Pustandyo, W.; Sitandung, Y. B.; Sujalmo, S.

    1998-01-01

    The evaluation of stress and piping support loads was evaluated on piping segment of secondary cooling water piping. In this paper, the analysis methods are presented with the use of computer code PS + CAEPIPE Version 3. 4. 05. W. From the selected pipe segment, the data of pipe characteristic, material properties, operation and design condition, equipment and support were used as inputs. The result of analysis show that stress and support loads if using location, kind and number of support equal with the system that have been installed for sustain load 3638 psi (node 160), thermal 13517 psi (node 90) and combination of sustain and thermal (node 90) 16747 psi. Meanwhile,if the optimization support, stress and support load for sustain load are respectively 4238 psi (node 10), thermal 13517 psi (node 90) and combination of sustain + thermal (node 90) 17350 psi. The limit values of permitted support based on Code PS+CAEPIPE of sustain load are 15000 psi, thermal 22500 psi and combination of sustain + thermal 37500 psi. The conclusion of evaluation result, that stress support load of pipe secondary cooling system are sufficiently low and using support show excessive and not economic

  2. Team effort leads to versatile handling solution for pipe manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    This article discussed the development of a new pipe-handling system that resulted in increased efficiencies in plant-to-yard transport for a custom steel pipe manufacturer. In the previous system, loaders would move finished pipe to the yard for storage. However, for transport loading, the pipe would have to be brought back indoors because only the inside cranes could handle loading the pipe without damaging the special outer coating on the pipe. In the new pipe-handling system, the loader is replaced with a Sennebogen 850 M rubber-tired material handler, which was developed for the steel recycling industry. The generator that comes on the material handler is retrofitted to power a purpose-built pipe-handler attachment. The machine's higher lifting reach allows for higher stacking, effectively increasing the capacity of the yard. The new pipe-handling machine allows trucks to be loaded right in the yard, eliminating the need to double-handle the pipe. 1 fig.

  3. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Leandro C.; Crispim, Verginia R. [Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Ferreira, Francisco J. O. [National Nuclear Energy Commission, CNEN/IEN, Division Reactors, Rio de Janeiro (Brazil)

    2017-06-15

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

  4. Visualization of crust in metallic piping through real-time neutron radiography obtained with low intensity thermal neutron flux

    International Nuclear Information System (INIS)

    Luiz, Leandro C.; Crispim, Verginia R.; Ferreira, Francisco J. O.

    2017-01-01

    The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows

  5. Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves

    Science.gov (United States)

    Qu, Jian; Li, Xiaojun; Xu, Qian; Wang, Qian

    2017-11-01

    This paper presents an experimental investigation to compare the thermal performance of three closed loop oscillating heat pipes (OHPs) with and without internal helical microgrooves at vertical and horizontal orientations. All of these OHPs were made from copper tubes and have three turns with lengths of 70, 230 and 110 mm at the evaporator, adiabatic and condenser sections, respectively. Deionized water was used as the working fluid at a volumetric filling ratio of 50%. The internal diameters (IDs) of two smooth-tube OHPs are 4.0 and 4.8 mm, respectively, and the internal diameter of micro-grooved OHP without groove structures is about 4.5 mm. Experimental results demonstrated that the addition of groove structures make the OHP remarkably outperform smooth-tube OHPs in both effective thermal conductivity and thermal resistance. The thermal resistance of vertically-oriented micro-grooved OHP could be lowered to 0.057 °C/W associated with an effective thermal conductivity of 6.1 × 104 W/ (m·K) at the input heat flux of 3.8 × 104 W/m2. Compared to smooth-tube OHPs, preliminary mechanism analysis reveals that local heat transfer coefficients both at the heating and cooling sections of micro-grooved OHP could be significantly improved. Moreover, enhanced liquid backflow to the evaporator due to microgroove-induced capillarity is also responsible for the OHP performance enhancement.

  6. Experimental and numerical study of back-cooling car-seat system using embedded heat pipes to improve passenger’s comfort

    International Nuclear Information System (INIS)

    Hatoum, Omar; Ghaddar, Nesreen; Ghali, Kamel; Ismail, Nagham

    2017-01-01

    Graphical abstract: Heat pipe assembly (a) with the insulation layer (b) without the insulation layer; and (c) thermal manikin test on the heat pipe chair. - Highlights: • A new back cooling system for a car seat using embedded heat pipes was modeled numerically. • The heat-pipe seat model was experimentally validated using heated thermal manikin. • An integrated heat pipe model and bio-heat model was used to predict local thermal comfort. • The heat pipe system reduced the back skin temperature by 1 °C compared to seat without heat pipes. • The heat pipe system increased the overall thermal comfort of the passenger by 30%. - Abstract: This work develops a back-cooling system for a car seat using seat embedded heat pipes to improve passenger comfort. The heat pipe system utilizes the temperature difference between the passenger back and the car cabin air to remove heat from the human body and enhance the comfort state. The developed seat heat-pipe model was validated experimentally using a thermal manikin with controlled constant skin temperature mode in a climatic chamber. Good agreement was found between the measured and the numerically predicted values of base panel temperature. By integrating the validated heat pipe with a bio-heat model, the back segmental skin temperature as well as the overall thermal comfort was predicted and compared with the conventional seat case without the heat pipe system. The heat pipes were able to reduce the skin temperature by 1 °C and to increase the overall thermal comfort of the body by 30%. In addition, a parametric study was performed to determine the optimal number of heat pipes that ensure the thermal comfort of the passenger.

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Lowry, W.

    1994-01-01

    The objective for the development of the Pipe Explorer trademark radiological characterization system is to achieve a cost effective, low risk means of characterizing gamma radioactivity on the inside surface of pipes. The unique feature of this inspection system is the use of a pneumatically inflated impermeable membrane which transports the detector into the pipe as it inverts. The membrane's internal air pressure tows the detector and tether through the pipe. This mechanism isolates the detector and its cabling from the contaminated surface, yet allows measurement of radioactive emissions which can readily penetrate the thin plastic membrane material (such as gamma and high energy beta emissions). In Phase 1, an initial survey of DOE facilities was conducted to determine the physical and radiological characteristics of piping systems. The inverting membrane deployment system was designed and extensively tested in the laboratory. A range of membrane materials was tested to evaluate their ruggedness and deployment characteristics. Two different sizes of gamma scintillation detectors were procured and tested with calibrated sources. Radiation transport modeling evaluated the measurement system's sensitivity to detector position relative to the contaminated surface, the distribution of the contamination, background gamma levels, and gamma source energy levels. In the culmination of Phase 1, a field demonstration was conducted at the Idaho National Engineering Laboratory's Idaho Chemical Processing Plant. The project is currently in transition from Phase 1 to Phase 2, where more extensive demonstrations will occur at several sites. Results to date are discussed

  8. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  9. Development of interfacial area transport equation

    International Nuclear Information System (INIS)

    Kim, Seung Jin; Ishii, Mamoru; Kelly, Joseph

    2005-01-01

    The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to churn-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical air-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired in vertical co-current downward air-water two-phase flow through round pipes of two different sizes

  10. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  11. Nanoscale thermal transport. II. 2003–2012

    OpenAIRE

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2013-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of th...

  12. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  13. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  14. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    significant temperature movements have taken place. Consequently, no damage to the unprotected foam was seen. Neither could any signs be seen of deterioration of the PUR foam's mechanical and thermal insulation properties. Long-term effects from moisture exposure have though not been studied explicitly. With respect to production and transportation of the pipes, some sort of casing is probably necessary. But it seems possible to use casing free pipes, given that the foam is free from defects where liquid water may enter. As regards the extension of a moisture damaged zone, it is actually beneficial with no vapour tight casing present. The humidity may then diffuse outwards instead of along the pipe. A possible scenario would be to use some sort of simpler casing for pipes which are not to be laid in coarse grained backfill and are not subject to extensive temperature variations.

  15. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  16. Stochastic modelling of thermal fatigue crack growth for applying in the structural reliability of nuclear piping

    International Nuclear Information System (INIS)

    Radu, V.

    2016-01-01

    The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)

  17. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  18. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  19. Constant load supports attenuating shocks and vibrations for networks of pipes submitted to large thermal dilatation

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Panait; Adrian; Serban, Viorel; Ciocan, George; Androne, Marian; Florea, Ioana; State, Elena

    2004-01-01

    Full text: To avoid some drawbacks in the classical supports employed currently in networks of pipes it was conceived, designed, built and experimentally tested a new type of constant load supports which attenuate largely the shocks and vibrations for networks of pipes subjected to large thermal dilatation. These supports are particularly needed for solving the severe problems of the vibrations in networks of pipes in thermoelectric stations, nuclear power plants, or heavy water production plants. These supports allow building networks of new types, more reliable and of lower cost. The new type of support was developed on the basis of a number of patents protected by OSIM. It has a simple structure, ensures a secure functioning without blocking or other kinds of failures and is resistant to a very large variety of stresses. The new type of support of constant load avoids the drawbacks in classical supports i.e. the stress/deformation diagram is practically independent of stress level. The characteristic of the support is geometrically non-linear and presents a plateau with a small slope over a rather large deformation range which results from a serially mounted structure of sandwiches the deformation of which is controlled by a system of deforming central and peripheral pieces. The new supports of constant load, called SERB-PIPE, present a controlled elasticity and a high degree of damping as the package of elastic blades (the sandwich structure) is made of two sub-packages with relative movements what ensure the attenuation of the shocks and vibrations produced by the fluid flow within the pipes and or by seismic motions. By contrast with classical supports, the new supports have a simple structure and a high reliability. Breakdown under stress leading to severe changes in the stress distribution in pipe networks, which could generate overloads in pipes and over-loading in other supports, cannot occur. One can also mention that these supports can be built in a

  20. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  1. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  2. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  3. The Analysis of Nonlinear Vibrations of Top-Tensioned Cantilever Pipes Conveying Pressurized Steady Two-Phase Flow under Thermal Loading

    Directory of Open Access Journals (Sweden)

    Adeshina S. Adegoke

    2017-11-01

    Full Text Available This paper studied the nonlinear vibrations of top-tensioned cantilevered pipes conveying pressurized steady two-phase flow under thermal loading. The coupled axial and transverse governing partial differential equations of motion of the system were derived based on Hamilton’s mechanics, with the centerline assumed to be extensible. Using the multiple-scale perturbation technique, natural frequencies, mode shapes, and first order approximate solutions of the steady-state response of the pipes were obtained. The multiple-scale assessment reveals that at some frequencies the system is uncoupled, while at some frequencies a 1:2 coupling exists between the axial and the transverse frequencies of the pipe. Nonlinear frequencies versus the amplitude displacement of the cantilever pipe, conveying two-phase flow at super-critical mixture velocity for the uncoupled scenario, exhibit a nonlinear hardening behavior; an increment in the void fractions of the two-phase flow results in a reduction in the pipe’s transverse vibration frequencies and the coupled amplitude of the system. However, increases in the temperature difference, pressure, and the presence of top tension were observed to increase the pipe’s transverse vibration frequencies without a significant change in the coupled amplitude of the system.

  4. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  5. 49 CFR 393.124 - What are the rules for securing concrete pipe?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What are the rules for securing concrete pipe? 393... Specific Securement Requirements by Commodity Type § 393.124 What are the rules for securing concrete pipe? (a) Applicability. (1) The rules in this section apply to the transportation of concrete pipe on...

  6. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  7. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  8. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  9. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  10. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  11. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  12. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  13. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  14. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  15. 49 CFR 192.311 - Repair of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed. [Amdt. 192-93, 68 FR 53900, Sept. 15, 2003] ...

  16. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Science.gov (United States)

    Wotzka, Daria

    2017-10-01

    Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa) and negative temperature (-100°C) of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  17. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Directory of Open Access Journals (Sweden)

    Wotzka Daria

    2017-01-01

    Full Text Available Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa and negative temperature (-100̊C of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  18. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  19. Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe

    Science.gov (United States)

    Zhang, Renping

    2018-03-01

    A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.

  20. Thermal energy harvesting for application at MEMS scale

    CERN Document Server

    Percy, Steven; McGarry, Scott; Post, Alex; Moore, Tim; Cavanagh, Kate

    2014-01-01

    This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power.  A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.

  1. Numerical investigation on thermal striping conditions for a tee junction of LMFBRE coolant pipes. 7. Effect of the 'Turbulence promoter' on the fluid mixing

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Muramatsu, Toshiharu

    2004-06-01

    It is important to evaluate thermal-striping phenomena, which is the thermal fatigue issue in the structure generated by the temperature fluctuation due to the fluid mixing. Especially, the high amplitude and the high number of repetitions of the temperature fluctuation are needed to take into consideration. Moreover, it is necessary to consider the comparatively low frequency components of fluid temperature fluctuation, since the influence to structure material is large. Therefore, it is required to know the generating mechanism and conditions of the high amplitude and the low frequency component of fluid temperature fluctuation. In Japan Nuclear Cycle Development Institute, basic research on the promote system for fluid mixing is conducted, which system ('Turbulence promoter') is expected to reduce the large amplitude and low frequency components of fluid temperature fluctuation in T junction pipe. In this investigation, it is aimed to validate the effect and to generalize the mixing characteristics of 'Turbulence promoter' on the fluid mixing in T-junction pipe, and to contribute the knowledge to the rational design of LMFBR. In this report, numerical simulation for the existing experiment was conducted using a quasi-direct simulation code (DINUS-3). From the numerical simulation, the following results are obtained. (1) Numerical calculations could simulate well the flow patterns observed in the visualization experiment, in impinging jet case (Pattern-C) and deflecting jet cases (Pattern-B1 and Pattern-B). (2) By installing Turbulence promoter', cross-section area of main pipe after the mixing point is narrowed, and the fluid of main pipe is accelerated and flows along the slope of the promoter on the opposite side of branch pipe. this accelerated flow acts to prevent the collision of the branch pipe flow to the promoter. Therefore, the branch pipe flow conditions in deflecting jet category are extended. (3) At the throat of the main pipe, the flow was separated

  2. Investigation of Freeze and Thaw Cycles of a Gas-Charged Heat Pipe

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Krimchansky, Alexander

    2012-01-01

    The traditional constant conductance heat pipes (CCHPs) currently used on most spacecraft run the risk of bursting the pipe when the working fluid is frozen and later thawed. One method to avoid pipe bursting is to use a gas-charged heat pipe (GCHP) that can sustain repeated freeze/thaw cycles. The construction of the GCHP is similar to that of the traditional CCHP except that a small amount of non-condensable gas (NCG) is introduced and a small length is added to the CCHP condenser to serve as the NCG reservoir. During the normal operation, the NCG is mostly confined to the reservoir, and the GCHP functions as a passive variable conductance heat pipe (VCHP). When the liquid begins to freeze in the condenser section, the NCG will expand to fill the central core of the heat pipe, and ice will be formed only in the grooves located on the inner surface of the heat pipe in a controlled fashion. The ice will not bridge the diameter of the heat pipe, thus avoiding the risk of pipe bursting during freeze/thaw cycles. A GCHP using ammonia as the working fluid was fabricated and then tested inside a thermal vacuum chamber. The GCHP demonstrated a heat transport capability of more than 200W at 298K as designed. Twenty-seven freeze/thaw cycles were conducted under various conditions where the evaporator temperature ranged from 163K to 253K and the condenser/reservoir temperatures ranged from 123K to 173K. In all tests, the GCHP restarted without any problem with heat loads between 10W and 100W. No performance degradation was noticed after 27 freeze/thaw cycles. The ability of the GCHP to sustain repeated freeze/thaw cycles was thus successfully demonstrated.

  3. Experimental benchmark for piping system dynamic-response analyses

    International Nuclear Information System (INIS)

    1981-01-01

    This paper describes the scope and status of a piping system dynamics test program. A 0.20 m(8 in.) nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Particular attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed

  4. Experimental benchmark for piping system dynamic response analyses

    International Nuclear Information System (INIS)

    Schott, G.A.; Mallett, R.H.

    1981-01-01

    The scope and status of a piping system dynamics test program are described. A 0.20-m nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed. 3 refs

  5. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  6. Diagnosis and on-line displacement monitoring for critical pipe of fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, J. S.; Hyun, J. S. [Korea Electric Power Corporation, Seoul (Korea, Republic of); Heo, J. R.; Lee, S. K.; Cho, S. Y. [Korea South-East Power Co., Ltd., Seoul (Korea, Republic of)

    2009-07-01

    High temperature steam pipes of fossil power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue mechanisms and poor or malfunctional support assemblies can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical pipe system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-Dimensional piping displacement monitoring system was developed with using he aluminum alloy rod and rotary encoder type sensors, this system was installed and operated on the 'Y' fossil power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  7. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  8. On the whistling of corrugated pipes with narrow cavities

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; González Diez, N.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes with a corrugated inner surface, as used inflexible pipes for gas production and transport, can be subject to Flow-Induced Pulsations when the flow velocities are higher than a certain onset velocity. The onset velocity for classical corrugated pipes can be predicted on basis of the geometry

  9. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure...

  10. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    Science.gov (United States)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  11. 49 CFR 192.193 - Valve installation in plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...

  12. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  13. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Patel, Vipul M.; Gaurav; Mehta, Hemantkumar B.

    2017-01-01

    Highlights: • Startup mechanism and thermal performance of a CLPHP is reported. • Influence of pure fluids, water-based binary fluids and surfactant solutions are investigated. • Startup heat flux is observed lower for acetone and higher for water compared to all other working fluids. • Thermal resistance is observed to decrease with increase in heat input irrespective of working fluids. • CLPHP is observed to perform better with acetone, water-acetone, water-45 PPM and water-60 PPM surfactant solutions. - Abstract: Development of efficient cooling system is a tricky and challenging task in the field of electronics. Pulsating heat pipe has a great prospect in the upcoming days for an effective cooling solution due to its excellent heat transfer characteristics. Experimental investigations are reported on a Closed Loop Pulsating Heat Pipe (CLPHP). The influence of working fluids on startup mechanism and thermal performance of a CLPHP are carried out on 2 mm, nine turn copper capillary. Total eleven (11) working fluids are prepared and investigated. Deionized (DI) Water (H_2O), ethanol (C_2H_6O), methanol (CH_3OH) and acetone (C_3H_6O) are used as pure fluids. The water-based mixture (1:1) of acetone, methanol and ethanol are used as binary fluids. Sodium Dodecyl Sulphate (SDS, NaC_1_2H_2_5SO_4) is used as a surfactant to prepare the water-based surfactant solutions of 30 PPM, 45 PPM, 60 PPM and 100 PPM. The filling ratio is kept as 50%. The vertical bottom heating position of a CLPHP is considered. Heat input is varied in the range of 10–110 W. Significant influence is observed for water-based binary fluids and surfactant solutions on startup mechanism and thermal performance of a CLPHP compared to DI water used as the pure working fluid.

  14. Characterization of pipes, drain lines, and ducts using the pipe explorer system

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Cramer, E.

    1997-01-01

    As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer trademark system are presented. The heart of the system is SEA's pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer trademark. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D ampersand D. Future improvements and extensions of their capabilities are discussed

  15. Thermal transport in Si and Ge nanostructures in the 'confinement' regime.

    Science.gov (United States)

    Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-21

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  16. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... facility. (g) Diesel fuel piping systems from the surface shall only be used to transport diesel fuel... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric...

  17. Kovar Micro Heat Pipe Substrates for Microelectronic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Burchett, Steven N.; Kravitz, Stanley H.; Robino, Charles V.; Schmidt, Carrie; Tigges, Chris P.

    1999-04-01

    We describe the development of a new technology for cooling microelectronics. This report documents the design, fabrication, and prototype testing of micro scale heat pipes embedded in a flat plate substrate or heat spreader. A thermal model tuned to the test results enables us to describe heat transfer in the prototype, as well as evaluate the use of this technology in other applications. The substrate walls are Kovar alloy, which has a coefficient of thermal expansion close to that of microelectronic die. The prototype designs integrating micro heat pipes with Kovar enhance thermal conductivity by more than a factor of two over that of Kovar alone, thus improving the cooling of micro-electronic die.

  18. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  19. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  20. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  1. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  2. 49 CFR 192.123 - Design limitations for plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe used...

  3. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    Science.gov (United States)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation

  4. Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-01-01

    A cryogenic oscillating heat pipe (OHP) made of a bended copper capillary tube is manufactured. The lengths of the condenser section, adiabatic section and evaporator section are 100, 280 and 100 mm, respectively. Neon is used as the working fluid. Effects of liquid filling ratio and condenser temperature on the thermal performance of the OHP are studied. A correlation based on the available experimental data sets is proposed to predict the thermal performance of the neon cryogenic OHP with different filling ratios and condenser temperature. Compared with the experimental data, the average standard deviation of the correlation is about 15.0%, and approximately 92.4% of deviations are within ±30%.

  5. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  6. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  7. Calculation of loading on pipes during filling processes

    International Nuclear Information System (INIS)

    Thiele, Thomas; Swidersky, Harald

    2013-01-01

    Filling processes in pipe systems do normally not belong to load design cases for which the integrity of pipelines and their mountings are verified with fluid- and structure-dynamic analysis. However, their frequency of occurrence is several times higher than those of the postulated incident-induced transients. That is why they have to be taken into consideration within fatigue analysis. The loading on pipes or rather on their mountings during filling processes originates from differences in the density of the transported fluids, e.g. at transport of gas slugs within water flow. The exposure time of the flow momentum force is fixed by the height of the flow velocity and by the length of discontinuities in the pipeline sections. Filling procedures frequently end with a pressure surge which was caused by the impingement and decelaration of the water plug at orifices in pipe systems. The calculation of such processes with 1D fluid-dynamic or rather thermal-hydraulic programs requires an idealization of the real form of the two phase flow or respectively of the two phase interface. In the past, several two phase flow regime maps were developed and implemented in codes for this. In this paper, the applicability of the thermo-hydraulic program RELAP5/MOD3.3 which is established in nuclear engineering is examined in order to calculate realistic loads from plug flows during the filling processes. For this, post-test calculations of experiments have been performed and the results have been compared with the experimental results as well as with the classical analytical approach according to Joukowsky. The comparison shows that, dependent on the discretization, the calculated loads are indeed partly underestimated, though the calculation results according to the Joukowsky-approach lie above the measurements. (orig.)

  8. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  9. Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    1998-01-01

    Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)

  10. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified by...

  11. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  12. Minimization of transport and distribution cost for district heating study of particular cases

    International Nuclear Information System (INIS)

    Barreau, A.; Caizergues, R.; Moret Bailly, J.

    1977-01-01

    The transport and distribution of hot pressurized water involve different sets of criteria: transport networks, heat distribution networks, storages. The minimization of transport cost is studied together with the distribution of thermal energy. The same parameters are introduced into these programs. The same method is used for rate of flow calculations, but mathematical methods of pipe diameter calculation are different. Some transport and distribution networks are studied with the corresponding computed programs: 52 branches networks-27 terminations; 287 branches networks-148 terminations

  13. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  14. Experimental study and numerical modelling of density currents resulting from thermal transients in a non rectilinear pipe flow

    International Nuclear Information System (INIS)

    Viollet, P.L.

    1985-01-01

    The present study found its motivation in the application to sodium secondary bond of Fast Reactors. The field of application of the methods proposed in this report is larger and can include, by example, the study of some fluid flows in pipes of water cooled reactors. In a U-shaped pipe (the water experiment STRATUS), are studied the density effects following a change in the inlet temperature. Stratus reproduces at the scale 1/4 the geometry of the U situated at the Super Phenix Steam generator outlet. When the flow rate is small and the temperature difference high, thermal stratifications appear. The two-dimensional numerical modelling (computer code ULYSSE) uses finite difference methods with a curvilinear grid, and k-epsilon models for turbulence. The computation allows to predict with good accuracy the phenomena which are observed from experiment [fr

  15. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  16. Thermalization through parton transport

    International Nuclear Information System (INIS)

    Zhang Bin

    2010-01-01

    A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

  17. Thermal analysis and entropy generation of pulsating heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Azizinia, Nazli; Razmara, Nayyer; Mobadersani, Farrokh

    2016-01-01

    Highlights: • Performance of PHP containing 0.5% Al_2O_3, CuO and silver nanofluids is reported. • The rate of entropy generation of PHP is investigated for different nanofluids. • The effects of particle volume concentration on the entropy generation of PHP are studied. • The appropriate volume concentration for the best thermal efficiency is 0.5–1%. • Al_2O_3 and CuO nanofluids show approximately same rate of entropy generation. - Abstract: Demanding of high-performance cooling systems is one of the most challenging and virtual issues in the industry and pulsating heat pipes (PHPs) are effective solutions for this concern. Nanofluids also have attracted attentions, due to its superior heat transfer properties in recent years. In the present study, the flow, heat transfer and entropy generation based on the second law of thermodynamics have been investigated and compared with the flow of Al_2O_3, CuO, Ag nanofluid and pure water through PHPs. The results show that, silver nanofluid provides the highest entropy generation. Also, the effects of different particle volume concentrations on the heat and flow characteristics of Al_2O_3 nanofluid have been studied. It is indicated that the optimal volume concentration of nanoparticles is about 0.5–1% to minimize the entropy generation and appropriate thermal operation.

  18. Cooling Acoustic Transcucer with Heat Pipes

    Science.gov (United States)

    2009-07-19

    circuits to a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an...integral heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft ...2) Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the

  19. Cooling Acoustic Transducer with Heat Pipes

    Science.gov (United States)

    2009-07-29

    a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an integral...heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft includes...Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the build

  20. High temperature superconducting current lead test facility with heat pipe intercepts

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-01-01

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections

  1. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  2. An evaluation of thermal-hydrodynamics for condensation pool and piping system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Bum; Lee, B. E.; Baek, S. C.; Joo, S. Y.; Lee, D. E.; Woo, S. W. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-03-15

    If the steam with high pressure and high temperature at APR-1400 is discharged into IRWST through, the spargers submerged into it to release the pressure of coolant system 10 accident. The shock wave accompanying unsteady flow motion is propagated through the various piping system, it exerts high pressure load on units and may cause the structural problems and severe vibration. From the viewpoint of nuclear power plant safety, The analysis of flow behaviors 10 the IRWST and piping system is essential to achieve the technology for the evaluation of safety. And also he evaluation methods by the analysis of thermal hydrodynamic behaviors through the sparger is established. The results obtained show that the initial shock wave experienced reflection, diffraction and interaction with shock-induced vortex. The time-dependent maximum load exerted on the wall is largest 10 the T-junction, while the smallest 10 the branch. It is found that because there is nearly no change 10 pressure at condensation pool during water clearing, the system appears to be safe. However, calculations of the air clearing for 0.2 second were performed using VOF model to analyze air that coexist with water between load reduction and sparger head. In addition, since actual POSRV opening takes finite time of 1.7 second, it is expected that the flow field will be different from the that of instant opening the valve. Therefore, now the grid generation is proceeded for the case of POSRV opening at finite time of 1.7 second consecutively. The future study alms at flow analysis of POSRV opening at finite time, changing boundary conditions for wall into pressure inlet.

  3. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  4. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  5. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  6. Incrustations detection system for petroleum transport pipes based on gamma transmission

    International Nuclear Information System (INIS)

    Soares, Milton

    2014-01-01

    The scale formed over the inner walls of the ducts conveying the extracted product from offshore oil wheels is a major cause of losses to companies and in some cases even the safety is affected. The consequence of such fouling is the duct's square section reduction that causes extraction flow decrease and can also cause an increase in pressure inside the wheel, with serious consequences for safety. The objective of this work is to propose a mobile inspection system, which can be transported by underwater robots to inspect the lines of ducts in the outputs of the oil wheels. The measurement method to be adopted will be the gamma rays' beam attenuation at a predetermined position of the pipe. This transmission value compared to a clear pipe reading will show if the thickness of the inlay is larger or smaller than an assumed thickness. To carry out the measurements it was designed and built an electronic system comprising power supply, amplifier, single channel analyzer and a counter timer that was connected to a CsI scintillator detector coupled to a PIN photodiode. The system was set up to perform measurements with constant accuracy of ±1%. Tests during the study demonstrated the effectiveness of the proposed method with the obtained results with a carbon steel duct section of 270 mm diameter, removed from the field, with asymmetric BaSO4 inlay. (author)

  7. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  8. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    CERN Document Server

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  9. Necessary calorific energy during the in-service welding of pipelines for petroleum transport; Energia calorifica necesaria durante la soldadura en servicio de tuberias para el transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Morales, Felix; Scott, Alejandro Duffus; Rodriguez Perez, Manuel; Diza Cedre, Eduardo; Pozo Morejon, Juan A. [Universidad Central Marta Abreu de las Villas, Santa Clara, Villa Clara (Cuba). Centro de Investigaciones de Soldadura

    2009-01-15

    The thermal behavior during in service repair welding of oil transportation pipes was studied by finite element analysis in the present paper. Regression equations that relate peak temperature at the inner surface of the pipe and cooling time between 800 and 500 deg C in the heat affected zone to the welding heat input, preheat temperature, and convection heat transfer coefficient were obtained. The former parameters govern, respectively, the possibility of burn through and cold cracking, and the latter parameters define the thermal behavior during welding. The existence of conditions that simultaneously satisfy the obtained equations, for different combinations of related variables, was proved. Graphical representations of relevant practical importance that were developed from the solution of obtained equations are presented. (author)

  10. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    Science.gov (United States)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  11. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  12. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  13. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  14. Experimental Study of Weepage in Multi-layer Glass Reinforced Piping

    KAUST Repository

    Al Sinan, Hussain

    2014-05-01

    Glass Reinforced Polymer pipes, commonly used in water transport applications, are prone to long term weepage. Weepage is defined as the transfer of fluid through the pipe and is considered a functional failure. An experimental investigation of weepage in multi-layered GRP pipes was carried out in two parts aiming to understand the phenomenon to help enhance the weepage resistance of manufactured pipes. First, liner surface profilometry investigation was carried out to identify microscopic features that might serve in initiating weepage. Second, MRI and x-ray tomography and SEM imaging of pipe samples aged with water and dye penetrant was carried out to capture weepage development through the pipe thickness. Diffusion through liner fiber/resin interface, propagation in the direction of poorly wetted hoop fibers and transverse cracks were found to be the likely causes of accelerating weepage in the samples. Fiber rich zones in the liner were considered weak spots that water can use for fast penetration of the liner. Finally, polyester netting used to hold core layer was found to help in water accumulation and transport through the pipe increasing the chances of failure.

  15. Experimental Study of Weepage in Multi-layer Glass Reinforced Piping

    KAUST Repository

    Al Sinan, Hussain

    2014-01-01

    Glass Reinforced Polymer pipes, commonly used in water transport applications, are prone to long term weepage. Weepage is defined as the transfer of fluid through the pipe and is considered a functional failure. An experimental investigation of weepage in multi-layered GRP pipes was carried out in two parts aiming to understand the phenomenon to help enhance the weepage resistance of manufactured pipes. First, liner surface profilometry investigation was carried out to identify microscopic features that might serve in initiating weepage. Second, MRI and x-ray tomography and SEM imaging of pipe samples aged with water and dye penetrant was carried out to capture weepage development through the pipe thickness. Diffusion through liner fiber/resin interface, propagation in the direction of poorly wetted hoop fibers and transverse cracks were found to be the likely causes of accelerating weepage in the samples. Fiber rich zones in the liner were considered weak spots that water can use for fast penetration of the liner. Finally, polyester netting used to hold core layer was found to help in water accumulation and transport through the pipe increasing the chances of failure.

  16. A leak-before-break strategy for CANDU primary piping systems

    International Nuclear Information System (INIS)

    Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.

    1986-01-01

    Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)

  17. Heat pipes and solid sorption transformations fundamentals and practical applications

    CERN Document Server

    Vasiliev, LL

    2013-01-01

    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  18. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    Science.gov (United States)

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  19. Thermal loading studies using cooling enhancement and ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1993-01-01

    Thermal loading studies are presented for short vertical emplacement, application of cooling enhancement, and drift ventilation. Two 25-m-long heat pipes upward oriented at 45 deg are installed at each emplacement borehole to promote heat transport into the pillar area. In addition, ventilation of the emplacement drifts is assumed for a 2- to 20-yr period. It is concluded that the maximum borehole temperature can be reduced from 230 to 136 C using only the heat pipes, and to 110 C applying the heat pipes together with moderate air cooling. The ventilation along without heat pipes can reduce the temperature to only ∼200 C. It is also demonstrated that the heat transferred from the container area to farther distances into the pillar raises rock temperatures significantly, by 10 to 20 C, and the increase in temperature remains noticeable for at least 1,000 yr. In addition, because of the more efficient heat distribution caused by the heat pipes, lower temperatures will be achieved in the container area together with improved drying and permanent as well as temporary water removal in the pillar area

  20. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  1. Alpha detection in pipes using an inverting membrane scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  2. Theory and application of a three-dimensional code SHAPS to complex piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1983-01-01

    This paper describes the theory and application of a three-dimensional computer code SHAPS to the complex piping systems. The code utilizes a two-dimensional implicit Eulerian method for the hydrodynamic analysis together with a three-dimensional elastic-plastic finite-element program for the structural calculation. A three-dimensional pipe element with eight degrees of freedom is employed to account for the hoop, flexural, axial, and the torsional mode of the piping system. In the SHAPS analysis the hydrodynamic equations are modified to include the global piping motion. Coupling between fluid and structure is achieved by enforcing the free-slip boundary conditions. Also, the response of the piping network generated by the seismic excitation can be included. A thermal transient capability is also provided in SHAPS. To illustrate the methodology, many sample problems dealing with the hydrodynamic, structural, and thermal analyses of reactor-piping systems are given. Validation of the SHAPS code with experimental data is also presented

  3. Experimental and analytical studies on creep failure of reactor coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Akio; Maruyama, Yu; Hashimoto, Kazuichiro; Harada, Yuhei; Shibazaki, Hiroaki; Kudo, Tamotsu; Hidaka, Akihide; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, N.

    1999-07-01

    Thermal and structural responses of reactor coolant piping under and elevated internal pressure and temperature are being investigated in WIND project at JAERI. In a recent failure test in which a nuclear grade type 316 stainless steel pipe with an outer diameter of 114.3 mm and a wall thickness of 13.5 mm was used and an internal pressure was kept at approximately 15 MPa. A failure of the piping was observed when the temperature was sustained at 970degC for one hour. In parallel with conducting the tests, post-test analyses were performed. The objective of the analyses is to assess analytical models for the creep deformation and failure of the piping at elevated internal pressure and temperature simulating thermal-hydraulic conditions during a severe accident. The major material properties needed for the analysis were measured at elevated temperatures. Coefficients of a creep constitutive equation including the tertiary stage were determined with the measured creep data and incorporated into ABAQUS code. The analysis reasonably reproduced the time history of the enlargement of the piping diameter, and the wall thickness and the diameter of the piping at the failure. It was also found that the piping failure timing obtained from the analysis agreed well with the test result. (author)

  4. Experimental and analytical studies on creep failure of reactor coolant piping

    International Nuclear Information System (INIS)

    Maeda, Akio; Maruyama, Yu; Hashimoto, Kazuichiro; Harada, Yuhei; Shibazaki, Hiroaki; Kudo, Tamotsu; Hidaka, Akihide; Sugimoto, Jun; Nakamura, N.

    1999-01-01

    Thermal and structural responses of reactor coolant piping under and elevated internal pressure and temperature are being investigated in WIND project at JAERI. In a recent failure test in which a nuclear grade type 316 stainless steel pipe with an outer diameter of 114.3 mm and a wall thickness of 13.5 mm was used and an internal pressure was kept at approximately 15 MPa. A failure of the piping was observed when the temperature was sustained at 970degC for one hour. In parallel with conducting the tests, post-test analyses were performed. The objective of the analyses is to assess analytical models for the creep deformation and failure of the piping at elevated internal pressure and temperature simulating thermal-hydraulic conditions during a severe accident. The major material properties needed for the analysis were measured at elevated temperatures. Coefficients of a creep constitutive equation including the tertiary stage were determined with the measured creep data and incorporated into ABAQUS code. The analysis reasonably reproduced the time history of the enlargement of the piping diameter, and the wall thickness and the diameter of the piping at the failure. It was also found that the piping failure timing obtained from the analysis agreed well with the test result. (author)

  5. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    Science.gov (United States)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  6. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  7. Development of FBR piping bellows joint

    International Nuclear Information System (INIS)

    Tsukimori, Kazuyuki; Iwata, Koji

    1991-01-01

    Reduction of construction cost is one of the most important problems to realize a FBR (Fast Breeder Reactor) Plant. Significant reduction of the construction cost of a reactor building, related equipments and facilities can be expected by shortening the length of its long cooling pipes. Since the bellows has a great capacity for absorbing thermal expansion displacement, application of bellows expansion joints is considered as the most influential measure for reduction of the piping length. To confirm technological possibilities of application and practical use of bellows joints in the main piping systems, extensive R and D's, development of various methods for evaluating the strength of bellows, establishment of inspection and maintenance techniques, studies on safety logic, etc., were carried out by PNC from 1983 to 1988. Through these studies, technological possibilities of bellows joints were confirmed and the results were summarized in the 'Structural Design Guide for Class 1 Piping Bellows Expansion Joints of Fast Breeder Reactor for Elevated Temperature Service' and the 'Inspection and Maintenance Standards of Piping bellows expansion Joints'. (author)

  8. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  9. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  10. Cleanings of the silica scale settled in the transportation-pipes of the geothermal hot water of the Onuma Geothermal Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J

    1978-09-01

    At the Onuma Geothermal Power Station, silica scale deposits in the hot water transportation pipes between production wells and injection wells, increased the thickness. The operations for cleaning the scale were effectively carried out by the following three methods. (1) Poli-Pig method: The shell-shaped plastic foam sponge mass named Poli-Pig was pressed in the pipes. Various shaped Poli-Pig such as armed by the steel spikes made scratches on the surface of the scale, and then stripped off. This method is effective when thickness of the scale is thinner than 20 mm. (2) Impact-Cutter method. Various shaped steel cutter blocks were attached at the end of a flexible shaft, and gave continuous impact by rotation on the scale and then smashing it away. This method is effective for various thickness, but pipes had to be cut off matched to the length of the flexible shaft. (3) Water-jet method. High pressured water jet through the special nozzle smashed away the scale. For this method the pipe had to be cut off at every joint.

  11. Development of prototype reactor maintenance. (2) Application to piping support of sodium-cooled reactor prototype

    International Nuclear Information System (INIS)

    Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira

    2017-01-01

    A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)

  12. Heat pipe thermodynamic cycle and its applications

    International Nuclear Information System (INIS)

    Kobayashi, Y.

    1985-01-01

    A new type of thermodynamic cycle originating from extended application of the heat pipe principle is proposed and its thermal cycle is discussed from the viewpoint of theoretical thermal efficiency and Coefficient of Performance. An idealized structure that will meet the basic function for thermal systems is also suggested. A significant advantage of these systems is their use with lowtemperature energy sources found in nature or heat rejected from industrial sites

  13. Damping considerations in CANDU feeder pipe design and analysis

    International Nuclear Information System (INIS)

    Usmani, S.A.; Saleem, M.A.; So, G.

    1990-01-01

    Recent developments in pipe damping indicate a trend towards more realistic and less conservative values, which result in less rigid and safer pipe designs. The CANDU-PHW (Canada deuterium uranium, pressurized heavy water) reactor feeder pipe designs have applied similar approaches which permit seismic qualifications without overly restraining these compact arrays of pipes to cater for the large creep and thermal anchor movement. This paper reviews the feeder design aspects, especially pertaining to the design provisions, experimental verification and analytical modelling for seismic qualification in the light of recent pipe dynamic developments. Using illustrative examples, comparison of seismic analysis results is provided for the ASME Code Case N-411 dampings, and those traditionally used in the feeder seismic qualification. The results confirm acceptability of the traditional approach which permit simplified analysis to demonstrate seismic qualificationqualification of CANDU feeder pipes

  14. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  15. Development of integrated insulation joint for cooling pipe in tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Abe, Tetsuya; Kawamura, Masashi; Yamazaki, Seiichiro.

    1994-08-01

    In a tokamak fusion reactor, an electrically insulated part is needed for an in-vessel piping system in order to break an electric circuit loop. When a closed loop is formed in the piping system, large induced electromagnetic forces during a plasma disruption (rapid plasma current quench) could give damages on the piping system. Ceramic brazing joint is a conventional method for the electric circuit break, but an application to the fusion reactor is not feasible due to its brittleness. Here, a stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been proposed and developed as an integrated insulation joint of the piping system. Both sides of the joint can be welded to the main pipes, and expected to be reliable even in the fusion reactor environment. When the FGM joint is manufactured by way of a sintering process, a residual thermal stress is the key issue. Through detailed computations of the residual thermal stress and several trial productions, tubular elements of FGM joints have been successfully manufactured. (author)

  16. Efficient simulation of flow and heat transfer in arbitrarily shaped pipes

    OpenAIRE

    Rosen Esquivel, P.I.

    2012-01-01

    The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances, etc. Nonetheless, the introduction of pipes with corrugated walls increases the difficulty of simulating flow and heat transfer in these type of pipes. The present thesis addresses the development...

  17. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining procedure...

  18. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  19. Structural consideration for hot and cold pipe clamps in LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.; Huang, S.N.; Kappauf, H.; Wagner, S.E.; Wirtz, K.H.

    1983-01-01

    A series of analytical studies are described which evaluate stress levels induced in a 600 mm high temperature, thin-wall sodium pipeline by two alternate clamp designs. The first design consists of a band mounted directly on the pipe and is called the hot clamp. The second design consists of a band mounted using insulation standoffs and is called the cold clamp. Pipe stress levels induced by transient thermal dead weight and seismic loads are discussed. Pipe stress levels and system dynamic spring rates are presented. Procedures utilized to combine clamp induced pipe stress with other short and long term pipe system stresses are detailed. Recommendations for practical application in LMFBR pipe systems are made

  20. Structural considerations for hot and cold pipe clamps in LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.; Huang, S.N.; Wagner, S.E.; Kappauf, H.; Wirtz, K.H.

    1983-01-01

    A series of analytical studies are described which evaluate stress levels induced in a 600 mm high temperature, thin-wall sodium pipeline by two alternate clamp designs. The first design consists of a band mounted directly on the pipe and is called the hot clamp. The second design consists of a band mounted using insulation standoffs and is called the cold clamp. Pipe stress levels induced by transient thermal dead weight and seismic loads are discussed. Pipe stress levels and system dynamic spring rates are presented. Procedures utilized to combine clamp induced pipe stress with other short and long term pipe system stresses are detailed. Recommendations for practical application in LMFBR pipe systems are made

  1. Experimental Analysis of the Effects of Inclination Angle and Working Fluid Amount on the Performance of a Heat Pipe

    Science.gov (United States)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2016-11-01

    Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.

  2. Experimental study on the thermal stratification in the branch of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Nyung; Hwang, Seong Hong [Kyunghee Univ., Seoul (Korea, Republic of)

    2004-02-15

    As more experience is accumulated in the operation of existing nuclear power plants, the long term effects of thermal-hydraulic phenomena, unaccounted in the original designs, have been observed. One such phenomenon is thermal stratification, which has caused through-wall cracks, thermal fatigue, unexpected piping displacements and pipe support damage. Thermal stratification is a phenomenon as temperature layers are formed in the component or piping due to the density difference between hot and cold water. The thermal stratification phenomena in nuclear power plant observed in the pressurizer surge line, and in the piping of feedwater system, Safety Injection System(SIS), residual heat removal system (or shutdown cooling system), and chemical and volume control system during the design transients. A set of experiment has been performed to predict the temperature distribution in the branch piping of nuclear power plant(Ulchin unit 3 and 4) due to the turbulent penetration, the heat transfer through valve disk and valve leakage. The test facility scaled down to 1/10 has been designed and constructed to simulate the thermal stratification in the piping of safety injection system and shutdown cooling system of Ulchin 3 and 4. The experimental results show that the turbulent penetration depth could be : extended to the end of the vertical pipe, and thermal stratification due to the heat transfer through the valve disk to the end of horizontal pipe behind the valve disk. Finally, thermal stratification could effected by the location of valve leakage.

  3. Experimental investigation on EV battery cooling and heating by heat pipes

    International Nuclear Information System (INIS)

    Wang, Q.; Jiang, B.; Xue, Q.F.; Sun, H.L.; Li, B.; Zou, H.M.; Yan, Y.Y.

    2015-01-01

    Enhancing battery safety and thermal behaviour are critical for electric vehicles (EVs) because they affect the durability, energy storage, lifecycle, and efficiency of the battery. Prior studies of using air, liquid or phase change materials (PCM) to manage the battery thermal environment have been investigated over the last few years, but only a few take heat pipes into account. This paper aims to provide a full experimental characterisation of heat pipe battery cooling and heating covering a range of battery ‘off-normal’ conditions. Two representative battery cells and a substitute heat source ranging from 2.5 to 40 W/cell have been constructed. Results show that the proposed method is able to keep the battery surface temperature below 40 °C if the battery generates less than 10 W/cell, and helps reduce the battery temperature down to 70 °C under uncommon thermal abuse conditions (e.g. 20–40 W/cell). Additionally, the feasibility of using sintered copper-water heat pipes under sub-zero temperatures has been assessed experimentally by exposing the test rig to −15 °C/−20 °C for more than 14 h. Data indicates that the heat pipe was able to function immediately after long hours of cold exposure and that sub-zero temperature conditions had little impact on heat pipe performance. We therefore conclude that the proposed method of battery cooling and heating via heat pipes is a viable solution for EVs

  4. Criteria for accepting piping vibrations measured during FFTF plant startup

    International Nuclear Information System (INIS)

    Huang, S.N.

    1981-03-01

    Piping in the Fast Flux Test Facility is subjected to low-amplitude, high cycle vibration over the plant lifetime. Excitation sources include the mechanical vibration induced by main centrifugal pumps, auxiliary reciprocating pumps, EM pumps and possible flow oscillations. Vibration acceptance criteria must be established which will prevent excessive pipe and support fatigue damage when satified. This paper describes the preparation of such criteria against pipe failure used for acceptance testing of the Fast Flux Test Facility main heat transport piping

  5. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  6. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  7. 46 CFR 151.20-1 - Piping-general.

    Science.gov (United States)

    2010-10-01

    ... applicable American National Standards Institute, Inc., pressure/temperature relations) not less than the..., expansion joints, etc., to protect the piping and tank from excessive stress due to thermal movement and/or...

  8. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery

    International Nuclear Information System (INIS)

    Tran, Thanh-Ha; Harmand, Souad; Desmet, Bernard; Filangi, Sebastien

    2014-01-01

    In this paper, the use of flat heat pipe as an effective and low-energy device to mitigate the temperature of a battery module designed for a HEV application was investigated. For this purpose, nominal heat flux generated by a battery module was reproduced and applied to a flat heat pipe cooling system. The thermal performance of the flat heat pipe cooling system was compared with that of a conventional heat sink under various cooling conditions and under several inclined positions. The results show that adding heat pipe reduced the thermal resistance of a common heat sink of 30% under natural convection and 20% under low air velocity cooling. Consequently, the cell temperature was kept below 50 °C, which cannot be achieved using heat sink. According to the space allocated for the battery pack in the vehicle, flat heat pipe can be used in vertical or horizontal position. Furthermore, flat heat pipe works efficiently under different grade road conditions. The transient behaviour of the flat heat pipe was also studied under high frequency and large amplitude variable input power. The flat heat pipe was found to handle more efficiently instant increases of the heat flux than the conventional heat sink. -- Highlights: • Constant heat flux was applied to a flat heat pipe cooling system. • Its thermal performance was compared with that of a heat sink under several cooling conditions. • The influence of the inclination was evaluated. • The heat pipe transient behaviour was also studied under variable input power. • Heat pipe was found to be an effective and low-energy solution for HEV/EV battery cooling

  9. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  10. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  11. Study on finned pipe performance as a ground heat exchanger

    Science.gov (United States)

    Lin, Qinglong; Ma, Jinghui; Shi, Lei

    2017-08-01

    The GHEs (ground heat exchangers) is an important element that determines the thermal efficiency of the entire ground-source heat-pump system. The aim of the present study is to clarify thermal performance of a new type GHE pipe, which consists straight fins of uniform cross sectional area. In this paper, GHE model is introduced and an analytical model of new type GHE pipe is developed. The heat exchange rate of BHEs utilizing finned pips is 40.42 W/m, which is 16.3% higher than normal BHEs, based on simulation analyses.

  12. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by EPRI. (orig./HP)

  13. Structural and stress analysis of nuclear piping systems

    International Nuclear Information System (INIS)

    Hata, Hiromichi

    1982-01-01

    The design of the strength of piping system is important in plant design, and its outline on the example of PWRs is reported. The standards and guides concerning the design of the strength of piping system are shown. The design condition for the strength of piping system is determined by considering the requirements in the normal operation of plants and for the safety design of plants, and the loads in normal operation, testing, credible accident and natural environment are explained. The methods of analysis for piping system are related to the transient phenomena of fluid, piping structure and local heat conduction, and linear static analysis, linear time response analysis, nonlinear time response analysis, thermal stress analysis and fluid transient phenomenon analysis are carried out. In the aseismatic design of piping system, it is desirable to avoid the vibration together with a building supporting it, and as a rule, to make it into rigid structure. The piping system is classified into high temperature and low temperature pipings. The formulas for calculating stress and the allowable condition, the points to which attention must be paid in the design of piping strength and the matters to be investigated hereafter are described. (Kako, I.)

  14. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  15. Heat losses estimation associated with the physical state of the thermal insulation of pipes vaporductos network in Cerro Prieto geothermal field; Estimacion de perdidas de calor asociadas al estado fisico del aislamiento termico de las tuberias de la red de vaporductos del campo geotermico Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Ovando Castelar, Rosember; Martinez Estrella, Juan Ignacio; Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rovando@iie.org.mx; jime@iie.org.mx; aggarcia@iie.org.mx; Canchola Felix, Ismael; Miranda Herrera, Carlos; Jacobo Galvan, Paul [Campo Geotermico de Cerro Prieto, Comision Federal de Electricidad, Mexicali, B.C. (Mexico)

    2010-11-15

    The Cerro Prieto Geothermal Field (CPGF) steam transportation network is constituted by 140 km of pipes with diameters ranging from 8 to 48 inches, which transport the steam of 165 producing wells to 13 power plants which have a total installed capacity of 720 MWe. Originally, the pipes are thermally insulated with a mineral wool or fiber glass layer and an external aluminum or iron cover. Due to the insulation material has been exposed to weather conditions during the field operation it shows nowadays different grades of wear-out, or even it is lacking in some parts of the network, causing higher heat losses from the pipes to the environment. In this work, the magnitude of the heat losses related with the present condition of the thermal insulation throughout the pipeline network is assessed. This involved determining the longitude and diameter, as well as the insulation condition of each single pipeline section, and the calculation of the heat transfer coefficients for the different thermal insulation conditions defined for this study. [Spanish] La red de transporte de vapor del campo geotermico Cerro Prieto (CGCP) esta constituida por aproximadamente 140 km de tuberias de 8 a 48 pulgadas de diametro, las cuales conducen el vapor producido por 165 pozos hacia 13 plantas generadoras, cuya capacidad instalada es de 720 MWe. Originalmente, estas tuberias son aisladas termicamente con una capa de 2 pulgadas de material aislante a base de lana mineral o fibra de vidrio, y una proteccion exterior de aluminio o hierro. Debido principalmente al impacto de las condiciones meteorologicas durante el tiempo de operacion del campo, en algunas porciones de la red el aislante presenta actualmente distintos grados de deterioro, o incluso se encuentra ausente, lo cual se traduce en una mayor perdida de calor desde las tuberias hacia el medio ambiente. En el presente trabajo se evalua la magnitud de las perdidas de calor asociadas al estado fisico del aislamiento termico de las

  16. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  17. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  18. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    Science.gov (United States)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  19. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  20. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  1. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  2. Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ri-Guang Chi

    2018-03-01

    Full Text Available The heat generation of lithium ion batteries in electric vehicles (EVs leads to a degradation of energy capacity and lifetime. To solve this problem, a new cooling concept using an oscillating heat pipe (OHP is proposed. In the present study, an OHP has been adopted for Li-ion battery cooling. Due to the limited space in EVs, the cooling channel is installed on the bottom of the battery module. In the bottom cooling method with an OHP, generated heat can be dissipated easily and conveniently. However, most studies on heat pipes have used bottom heating and top or side cooling methods, so we investigate the various effects of parameters with a top heating/bottom cooling mode with the OHP, i.e., the inclination angle of the system, amount of working fluid charged, the heating amount, and the cold plate temperature with ethanol as a working fluid. The experimental results show that the thermal resistance (0.6 °C/W and uneven pulsating features influence the heat transfer performance. A heater used as a simulated battery was sustained under 60 °C under 10 W and 14 W heating conditions. This indicates that the proposed cooling system with the bottom cooling is feasible for use as an EV’s battery cooling system.

  3. Analysis of the main causes of failures in the Atucha I PWR moderator circuit branch piping

    International Nuclear Information System (INIS)

    Porto, J.; Sarmiento, G.S.

    1983-01-01

    From 1977 to 1979 four through cracks were detected in the auxiliary connection of the moderator piping with the coolant circuit in the PWR Atucha I Nuclear Plant. The failures were observed to occur systematically in the same place of the pipe, where mechanical stresses were detected experimentally and thermal stresses were calculated based on temperature values measured on the pipe. The temperature field in steady state conditions as well as during thermal shocks was modelled by finite element codes, and the corresponding thermal stresses were than numerically calculated. Considering those thermal and mechanical solicitations, a crack propagation analysis based on the elastoplastic fracture mechanics and the finite element method is now being developed. Among other causes such as fatigue corrosion and vibrations, the results of the analysis show that the most preponderant factors determining the cracking are mechanical stress, thermal stress and thermal fatigue

  4. Study on flow phenomena at a mixing tee pipe in plants

    International Nuclear Information System (INIS)

    Maeda, Shogo; Kubota, Hiroki; Sugimoto, Katsumi; Takenaka, Nobuyuki; Miyoshi, Koji

    2016-01-01

    Thermal fatigue cracking may initiate at a tee pipe in plants where high and low temperature fluids flow in. The thermal stress fluctuation is caused by the wall temperature fluctuation due to heat transfer of the fluid temperature fluctuation near the wall. In order to elucidate the flow phenomena at a mixing tee pipe to cause temperature fluctuation, a visualization experiment of the flow in mixing section was conducted using a rectangular test section made of acrylic. As a result, the flow pattern was classified by momentum ratio M_R of the main and branch pipes, and it changed from wall jet to deflecting jet on M_R=3.70, and from deflecting jet to impinging jet on M_R=0.64. The jet flow from the branch pipe is swaying at a period of from about 5 s to 10 s. The relationship between the periods of fluctuation and M_R was investigated. The period decreased as M_R increased. (author)

  5. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  6. Severe slugging in gas-liquid two-phase pipe flow

    NARCIS (Netherlands)

    Malekzadeh, R.

    2012-01-01

    transportation facilities. In an offshore oil and gas production facility, pipeline-riser systems are required to transport two-phase hydrocarbons from subsurface oil and gas wells to a central production platform. Severe slugs reaching several thousands pipe diameters may occur when transporting

  7. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by the Electric Power Research Institute

  8. 49 CFR 195.585 - What must I do to correct corroded pipe?

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness...; or (2) Repair the pipe by a method that reliable engineering tests and analyses show can permanently...

  9. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  10. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  11. The stress analysis evaluation and pipe support layout for pressurizer discharge system

    International Nuclear Information System (INIS)

    Mao Qing; Wang Wei; Zhang Yixiong

    2000-01-01

    The author presents the stress analysis and evaluation of pipe layout and support adjustment process for Qinshan phase II pressurizer discharge system. Using PDL-SYSPIPE INTERFACE software, the characteristic parameters of the system are gained from 3-D CAD engineering design software PDL and outputted as the input date file format of special pipe stress analysis program SYSPIPE. Based on that, SYSPIPE program fast stress analysis function is applied in adjusting pipe layout , support layout and support types. According to RCC-M standard, the pipe stress analysis and evaluation under deadweight, internal pressure, thermal expansion, seismic, pipe rupture and discharge loads are fulfilled

  12. Transport device for nuclear fuel powder

    International Nuclear Information System (INIS)

    Adelmann, M.

    1987-01-01

    The transport device for nuclear fuel powder, which does not disintegrate during transport, has a transport pipe which starts with its entry end from the floor or a closed container and opens with its outlet end at the top into a closed separation container connect via a powder filter to a suction pump. By alternate regular opening and closing of a first control valve for transport gas fitted to a transport pipe to a supply duct and a second control valve for transport gas fitted to the container to an additional supply duct, alternating plugs of nuclear fuel powder and transport gas cushions are formed and are transported to the outlet end of the transport pipe. (orig./HP) [de

  13. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  14. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  15. On the shakedown analysis of welded pipes

    International Nuclear Information System (INIS)

    Li Tianbai; Chen Haofeng; Chen Weihang; Ure, James

    2011-01-01

    This paper presents the shakedown analysis of welded pipes subjected to a constant internal pressure and a varying thermal load. The Linear Matching Method (LMM) is applied to investigate the upper and lower bound shakedown limits of the pipes. Individual effects of i) geometry of weld metal, ii) ratio of inner radius to wall thickness and iii) all material properties of Weld Metal (WM), Heat Affected Zone (HAZ) and Parent Material (PM) on shakedown limits are investigated. The ranges of these variables are chosen to cover the majority of common pipe configurations. Corresponding individual influence functions on the shakedown limits are generated. These are then combined to allow the creation of a safety shakedown envelope, which can be used for the design of any welded pipes within the specified ranges. The effect of temperature-dependent yield stress (in PM, HAZ and WM) on these shakedown limits is also investigated.

  16. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    International Nuclear Information System (INIS)

    HECHT, S.L.

    2000-01-01

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase

  17. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  18. Passive cryogenic cooling of electrooptics with a heat pipe/radiator.

    Science.gov (United States)

    Nelson, B E; Goldstein, G A

    1974-09-01

    The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.

  19. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  20. 49 CFR 178.345-9 - Pumps, piping, hoses and connections.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps, piping, hoses and connections. 178.345-9 Section 178.345-9 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-9 Pumps...

  1. Phonon Transport through Nanoscale Contact in Tip-Based Thermal Analysis of Nanomaterials.

    Science.gov (United States)

    Dulhani, Jay; Lee, Bong Jae

    2017-07-28

    Nanomaterials have been actively employed in various applications for energy and sustainability, such as biosensing, gas sensing, solar thermal energy conversion, passive radiative cooling, etc. Understanding thermal transports inside such nanomaterials is crucial for optimizing their performance for different applications. In order to probe the thermal transport inside nanomaterials or nanostructures, tip-based nanoscale thermometry has often been employed. It has been well known that phonon transport in nanometer scale is fundamentally different from that occurred in macroscale. Therefore, Fourier's law that relies on the diffusion approximation is not ideally suitable for describing the phonon transport occurred in nanostructures and/or through nanoscale contact. In the present study, the gray Boltzmann transport equation (BTE) is numerically solved using finite volume method. Based on the gray BTE, phonon transport through the constriction formed by a probe itself as well as the nanoscale contact between the probe tip and the specimen is investigated. The interaction of a probe and a specimen (i.e., treated as a substrate) is explored qualitatively by analyzing the temperature variation in the tip-substrate configuration. Besides, each contribution of a probe tip, tip-substrate interface, and a substrate to the thermal resistance are analyzed for wide ranges of the constriction ratio of the probe.

  2. Application of the cracked pipe element to creep crack growth prediction

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)

    1997-04-01

    Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

  3. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    Science.gov (United States)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  4. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    factors to this may be the smaller dry well volume per blowdown pipe ratio and the lack of dry well internal structures in the PPOOLEX facility. Furthermore, the pipe material seemed to have an effect on the condensation process inside the pipe. Polycarbonate has two orders of magnitude smaller thermal conductivity than steel. (Author)

  5. Neutron Streaming in D{sub 2}O Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J; Randen, K

    1962-07-01

    An investigation has been carried out concerning the attenuation of neutrons inside D{sub 2}O-filled pipes penetrating a concrete shield. As the purpose has been to simulate the conditions around a heavy water power reactor, pipes surrounded by an annular air gap have also been considered. Thermal, epithermal and fast neutron fluxes have been measured in three separate pipes (15, 22 and 28 cm in diameter and 100 cm long) with annulii ranging from 0 to 9.7 cm in width. The thermal flux distribution has been predicted theoretically by assuming it to be composed of three components originating from a fast exponential volume source and two surface sources at the origin; a 1/E-distributed source and a thermal source, of which the latter proved to be negligible. The fast flux distribution has been approximated by a single exponential expression for the configuration with no annulus and with the sum of two exponentials when an annulus is present. The agreement between measured and calculated values for the thermal flux is better than a factor 1.5 after about 10 cm. For deep penetration (>40 cm) the agreement is within 20 % and only the fast volume source contributes appreciably to the thermal flux. This holds for all cases both with and without annulus. The agreement in the case of the fast flux is within a factor 1.3 (>40 cm) for no annulus geometry and about 2-3 with annulus. Curves are presented for obtaining necessary parameters ('removal' cross section and extrapolated radius) for other geometries than those covered in this report.

  6. Control and metallurgical examination on safety injection piping

    International Nuclear Information System (INIS)

    Thebault, Y.; Grandjean, Y.; Gauthier, V.; Lambert, B.; Debustcher, B.

    1998-01-01

    From 1992 until 1997, cracking phenomena by thermal fatigue regarding safety injection piping were evidenced on several PWR 900 MW reactors. These events led EDF to the implementation of a first maintenance programme. In December 1996, a new leak occurred on an EDF 900 MW PWR in operation and was located on a safety injection pipe. In site inspections and metallurgical examinations carried out in the EDF hot Laboratory evidenced defects inside the pipe, out of the welding areas. These degradations are the consequence of a fatigue cracking phenomenon with thermal cycling linked to permanent tensile stresses. Following this incident, a programme of non destructive testing was implemented on all the EDF 900 MW plants. These inspections exhibited the same defects on other PWR 900 MW units. The results of the metallurgical examinations and also in site inspection results allowed EDF to understand the phenomenon and to validate an inspection programme on the one hand and a modification of the design of the circuits on the other hand. (authors)

  7. Experimental investigation of cryogenic oscillating heat pipes

    Science.gov (United States)

    Jiao, A.J.; Ma, H.B.; Critser, J.K.

    2010-01-01

    A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased. PMID:20585410

  8. Analytical study of residual stress improvement method, delta-T process for small-diameter pipe

    International Nuclear Information System (INIS)

    Tsuruki, Masaki; Aoike, Satoru; Okido, Shinobu; Fukuda, Yuka; Oritani, Naohiko

    2012-01-01

    In order to prevent initiation of stress corrosion cracking (SCC) at the inner surface of the butt-weld region of a small-diameter pipe, a residual stress improvement process called delta-T process has been developed. During delta-T process, the outer surface of pipe is heated by an external device and the inner surface is rapidly cooled by flashing water. The large thermal stress due to temperature difference between outer and inner surface could improve tensile stress to compressive one at inner surface. In this paper, the thermal elasto-plastic finite element analysis (FEA) was conducted to clarify the mechanism of delta-T process for piping system with 50A schedule 80 in nominal pipe size. The FEA results showed good agreements with experimentally measurements of temperature and residual stress in delta-T process. In addition, the management criterion to verify the application of delta-T process to piping system by measurement of temperature at outer surface of pipe was discussed by various parametric numerical analyses. (author)

  9. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Shakiba, Ali, E-mail: Shakiba7858@yahoo.com [Department of Mechanical Engineering, Mazandaran Institute of Technology, Babol (Iran, Islamic Republic of); Vahedi, Khodadad, E-mail: Khvahedi@ihu.ac.ir [Department of Mechanical Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2016-03-15

    This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe{sub 3}O{sub 4}) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Re{sub ff}=50 is between Mn=1.33×10{sup 6} and Mn=2.37×10{sup 6}. So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger. - Highlights: • Effect of applying non-uniform transverse magnetic field on a ferrofluid for enhancing the cooling process in a double pipe heat exchanger is investigated. • Heat exchanger is exposed to a non-uniform transverse magnetic field with different intensities. • The magnetic field is generated by an electric current going through a wire located parallel to inner tube and between two pipes. • Applying this field produces kelvin force to change axial velocity profile and creating a pair of vortices increasing Nusselt number, friction factor and pressure drop.

  10. Efficient simulation of flow and heat transfer in arbitrarily shaped pipes

    NARCIS (Netherlands)

    Rosen Esquivel, P.I.

    2012-01-01

    The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances,

  11. Advances in Integrated Heat Pipe Technology for Printed Circuit Boards

    NARCIS (Netherlands)

    Wits, Wessel Willems; te Riele, Gert Jan

    2010-01-01

    Designing thermal control systems for electronic products has become very challenging due to the continuous miniaturization and increasing performance demands. Two-phase cooling solutions, such as heat pipes or vapor chambers, are increasingly used as they offer higher thermal coefficients for heat

  12. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  13. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  14. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  15. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  16. Pipe Explorer surveying system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The US Department of Energy's (DOE) Chicago Operations Office and the DOE's Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer trademark system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals

  17. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  18. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  19. Analysis of a piping system for requalification

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Tang, Yu.

    1992-01-01

    This paper discusses the global stress analysis required for the seismic/structural requalification of a reactor secondary piping system in which minor defects (flaws) were discovered during a detailed inspection. The flaws in question consisted of weld imperfections. Specifically, it was necessary to establish that the stresses at the flawed sections did not exceed the allowables and that the fatigue life remained within acceptable limits. At the same time the piping system had to be qualified for higher earthquake loads than those used in the original design. To accomplish these objectives the nominal stress distributions in the piping system under the various loads (dead load, thermal load, wind load and seismic load) were determined. First a best estimate finite element model was developed and calculations were performed using the piping analysis modules of the ANSYS Computer Code. Parameter studies were then performed to assess the effect of physically reasonable variations in material, structural, and boundary condition characteristics. The nominal stresses and forces so determined, provided input for more detailed analyses of the flawed sections. Based on the reevaluation, the piping flaws were judged to be benign, i.e., the piping safety margins were acceptable inspite of the increased seismic demand. 13 refs

  20. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  1. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  2. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  3. Evaluation of LBB margin of nuclear piping systems

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun; Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok

    1999-04-01

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material

  4. Evaluation of LBB margin of nuclear piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun [Seoul Nationl Univ., Seoul (Korea, Republic of); Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-04-15

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material.

  5. The Canadian approach to protection against postulated primary heat transport piping failures

    International Nuclear Information System (INIS)

    Jarman, B.L.

    1985-10-01

    In Canada, the Atomic Energy Control Act and Regulations stipulate in broad terms the requirements to be met by licensees. In addition, AECB staff have prepared licensing guides to amplify those requirements. For nuclear reactors, these include providing suitable protection against the consequences of failure of any pipe in the reactor cooling system. The suggested means of limiting the damage caused by whipping pipes or steam jets is by separation of equipment, installing barriers, or restraining piping. If, however, the designer can demonstrate that restraints are impractical or detrimental to safety, AECB staff may consider alternate arguments based on a demonstration that piping is likely to crack and then leak for a long time prior to rupture. This alternative approach would not be considered for ruptures having a high probability of defeating containment, damaging essential safety systems, or of disrupting flow to the core to the extent that fuel cooling could not be maintained

  6. Evaluation of the influence of water and oil derivatives absorption on PVC pipes

    International Nuclear Information System (INIS)

    Carpio, D.C.F. del; D'Almeida, J.R.M.

    2010-01-01

    PVC is the only polymer of large consume that is not totally obtained from petroleum, since it contains 57% of chlorine. As chlorine containing materials are resistant to bacteria rich environments, such as buried pipes, PVC is being used for fluid transportation, principally water, but it can also be considered as an alternative material for the transportation of other fluids. This work analyzes the aging behavior of PVC exposed to water, ethanol and diesel oil, using TGA, DSC, FT-IR and DR-X techniques. The results showed that the chemical structure of PVC is not affected by exposure to water and ethanol. For these fluids a dipolar interaction could be occurring, increasing at the beginning of the absorption process, the polymer thermal stability. The diesel oil caused plasticization, with reduction of the Tg since the beginning of the aging process. (author)

  7. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  8. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant

    2018-05-17

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  9. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant; Shervin, Shahab; Sun, Haiding; Yarali, Milad; Chen, Jie; Lin, Ronghui; Li, Kuang-Hui; Li, Xiaohang; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2018-01-01

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  10. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  11. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports

  12. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  13. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    Science.gov (United States)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  14. Technical note on drainage systems:design of pipes and detention facilities for rainwater

    OpenAIRE

    Bentzen, Thomas Ruby

    2014-01-01

    This technical note will present simple but widely used methods for the design of drainage systems. The note will primarily deal with surface water (rainwater) which on a satisfactorily way should be transport into the drainage system. Traditional two types of sewer systems exist: A combined system, where rainwater and sewage is transported in the same pipe, and a separate system where the two types of water are transported in individual pipe. This note will only focus on the separate rain/st...

  15. Study on residual stress across the pipes' thickness using outer surface rapid heating. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression plastic strain generates near the outer surface and the tensile plastic strain generates near the inner surface of pipes. The compression stress occurs near the inner surface of pipes by the plastic deformation. In this paper, the theoretical equation which calculates residual stress distribution from the inherent strain distribution in the thickness of pipes is derived. And, the relation between the distribution of temperature and the residual stress in the thickness is examined for various pipes size. (1) By rapidly heating from the outer surface, the residual stress near the inner surface of the pipe is improved to the compression stress. (2) Pipes size hardly affects the distribution of the residual stress in the stainless steel pipes for piping (JISG3459). (3) The temperature rising area from the outside is smaller, the area of the compression residual stress near the inner surface becomes wider. (author)

  16. Assessment of thermal fatigue crack propagation in safety injection PWR lines

    International Nuclear Information System (INIS)

    Simos, N.; Reich, M.; Costantino, C.J.; Hartzman, M.

    1990-01-01

    Cyclic thermal stratification resulting in alternating thermal stresses in pipe cross sections has been identified as the primary cause of high cycle thermal fatigue failure. A number of piping lines in operating plants around the world, susceptible to thermal stratification, have experienced circumferential cracking as a result of high levels of alternating bending stresses. This paper addresses the mechanisms of crack initiation and crack growth and provides estimates of fatigue cycles to failure for a typical safety injection line with such cyclic load history. Utilizing a 3-D finite element analysis, the temperature profile and the corresponding thermal stress field of a complete thermal cycle in a safety injection line consisting of a horizontal pipe section and an elbow, is obtained. Since the observed cracking occurred in the region of the elbow-to-horizontal pipe weld, the analysis performed assessed (1) the impact of the level of local geometric discontinuities on the initiation of an inside surface flaw is greatest and (2) the number of thermal cycles required to drive a small surface crack through the pipe wall. 12 refs., 14 figs., 2 tabs

  17. Thermal fatigue evaluation of partially cooled pipes

    International Nuclear Information System (INIS)

    Kawasaki, N.; Kasahara, N.; Takasho, H.

    2004-01-01

    Concerning thermal striping phenomenon with a cold/hot spot, effect of the thermal spot on fatigue strength was investigated. The thermal spot causes membrane stress and enhances bending stress in the structure. Increased stress shortens the fatigue life and accelerates the crack propagation rate. The mechanism to increase stress was found to be the structural constraint of thermal strain by the thermal spot. To consider this mechanism, constraint efficiency factors were introduced to the thermal stress evaluation method based on frequency transfer functions developed by authors. Proposed method with these factors was validated through comparisons with cyclic FEA considering thermal spots. (orig.)

  18. Periodic large-amplitude thermal oscillations occurring in a buoyant plume

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1983-01-01

    Reactor events such as N-1 loop operation in conjunction with a leaky check valve in the down loop can cause flow to be convected back into the reactor outlet nozzle/piping region and to be back-flushed into the reactor outlet plenum. The preceding results in a temperature difference between pipe inflow and plenum. This temperature difference causes buoyancy forces which if large enough can cause: a pipe backflow and recirculation loop; and a thermal plume in the plenum. Both phenomena are being studied because they can produce undesirable pipe, nozzle and plenum wall thermal distributions, and hence undesirable thermal stresses. This paper discusses some features of the plume

  19. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  20. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  1. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  2. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  3. Evaluation of the influence of seismic restraint characteristics on breeder reactor piping systems

    International Nuclear Information System (INIS)

    Mello, R.M.; Pollono, L.P.

    1979-01-01

    For the Clinch River Breeder Reactor Plant (CRBRP) heat transport system piping within the reactor containment building, dynamic analyses of the piping loops have been performed to study the effect of restraint stiffness on the dynamic behavior of the piping. In addition, analysis and testing of typical CRBRP restraint system components have been performed for the purpose of quantifying and verifying the basic characteristics of the restraints used in the piping system dynamic analysis

  4. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  5. Thermal transport measurements of uv laser irradiated spherical targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Delettrez, J.; Henke, B.L.; Richardson, M.C.

    1985-01-01

    New measurements are presented of thermal transport in spherical geometry using time-resolved x-ray spectroscopy. We determine the time dependence of the mass ablation rate m(dot) by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6 and 12 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m(dot) after the peak of the laser pulse. Non-uniform laser irradiation of the target results in the anomalously high values of m(dot) measured in these experiments

  6. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    International Nuclear Information System (INIS)

    Ferrer, J; García-Suárez, V M; Rodríguez-Ferradás, R; Lambert, C J; Manrique, D Zs; Visontai, D; Grace, I; Bailey, S W D; Gillemot, K; Sadeghi, Hatef; Algharagholy, L A; Oroszlany, L

    2014-01-01

    We have developed an efficient simulation tool ‘GOLLUM’ for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as local density approximation +U (LDA+U) and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects, and pulling curves and conductance histograms for mechanically-controlled break-junction experiments. (paper)

  7. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  8. Energy transport in cooling device by magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroshi, E-mail: hyamaguc@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyo-tanabe, Kyoto 610-0321 (Japan); Iwamoto, Yuhiro [Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  9. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  10. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.

    1985-01-01

    The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping

  11. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  12. Transportation tolls, services and capacity : report from TransCanada PipeLines Limited on its changing mainline system

    International Nuclear Information System (INIS)

    McPherson, J.

    2003-01-01

    This presentation described the measures that TransCanada PipeLines Limited has taken to change its business model while lowering operating costs. The company is concerned about keeping tolls as low as possible to maintain competitiveness. Demand for pipeline capacity over the next five years is expected to be as high as 1.0 Bcf. Incremental capacity will be required to serve the markets. The market drivers for transportation were described as being reliability, greater price certainty, optionality, and stability in terms of contracts, service and regulations. 1 fig

  13. Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2018-03-01

    The recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics (MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.

  14. Influence of the inter-layer adhesion on the structural strength of sandwich pipes; Influencia da adesao entre camadas na resistencia estrutural de dutos sanduiche

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Xavier; Estefen, Segen [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Oceanica

    2005-07-01

    Sandwich pipes composed of two steel layers separated by a polypropylene annulus can be used for the transport of oil and gas in deep waters, combining high structural resistance with thermal insulation in order to prevent blockage by paraffin and hydrates. In this work, sandwich pipes with typical inner diameters of those employed in the offshore production are analyzed numerically regarding to the influence of the inter-layer adhesion of steel pipes and polymer on the limit strength under external pressure and longitudinal bending as well as the bending and straightening process representative of the reeling installation method. The numerical model incorporates geometric and material non-linearity, which had been based on previous works of the authors. Tests of specimens under tension and segments of sandwich pipes are carried through to evaluate the maximum shear stresses of the interfaces metal-polymer. The adhesion is modeled by contact adopting a maximum shear stress value to allow the relative displacement between the layers. It was observed that the structural resistance of the sandwich pipe is strongly dependent on the shear stress acting at the interface, occurring the collapse of the pipe when the maximum shear stress is reached. The results obtained are analyzed to determine the minimum shear strength at the union which provides adequate structural resistance for the sandwich pipe under representative conditions of the installation and operation loading phases. (author)

  15. NIM gas controlled sodium heat pipe

    Science.gov (United States)

    Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.

    2013-09-01

    Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.

  16. Application of miniature heat pipe for notebook PC cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.H.; Hwang, G.; Choy, T.G. [Electronics and Telecommunications research Institute, Taejeon (Korea)

    2001-06-01

    Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4 mm diameter is pressed to 2 mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness of pressing is shown to be within the range of 2 mm {approx} 2.5 mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4 mm is reduced to 0.25 mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool notebook PC shows the stability as cooling system since T{sub j}(Temperature of Processor Junction) satisfy a demand condition of 0 {approx} 100 deg.C under 11.5 W of CPU heat. (author). 6 refs., 7 figs.

  17. Waste pipe calculus

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1978-01-01

    A rapid method is presented for calculating transport in a network of one-dimensional flow paths or ''pipes''. The method defines a Green's function for each flow path and prescribes a method of combining these Green's functions to produce an overall Green's function for the flow path network. A unique feature of the method is the use of the Laplace transform of these Green's functions to carry out most of the calculations

  18. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  19. Removal, transportation and disposal of the Millstone 2 neutron thermal shield

    International Nuclear Information System (INIS)

    Snedeker, D.F.; Thomas, L.S.; Schmoker, D.S.; Cade, M.S.

    1985-01-01

    Some PWR reactors equipped with neutron thermal shields (NTS) have experienced severe neutron shield degradation to the extent that removal and disposal of these shields has become necessary. Due to the relative size and activation levels of the thermal shield, disposal techniques, remote material handling and transportation equipment must be carefully evaluated to minimize plant down time and maintain disposal costs at a minimum. This paper describes the techniques, equipment and methodology employed in the removal, transportation and disposal of the NTS at the Millstone 2 Nuclear Generating Station, a PWR facility owned and operated by Northeast Utilities of Hartford, CT. Specific areas addressed include: (1) remote underwater equipment and tooling for use in segmenting and loading the thermal shield in a disposal liner; (2) adaptation of the General Electric IF-300 Irradiated Fuel Cask for transportation of the NTS for disposal; (3) equipment and techniques used for cask handling and liner burial at the Low Level Radioactive Waste (LLRW) disposal facility