WorldWideScience

Sample records for thermal structure theoretical

  1. Theoretical prediction of thermal conductivity for thermal protection systems

    International Nuclear Information System (INIS)

    Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.

    2012-01-01

    The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.

  2. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  3. Electronic structure and thermal decomposition of 5-aminotetrazole studied by UV photoelectron spectroscopy and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-03-18

    Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.

  4. Thermalization and prethermalization in isolated quantum systems: a theoretical overview

    Science.gov (United States)

    Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito

    2018-06-01

    The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.

  5. Syntheses, structural elucidation, thermal properties, theoretical quantum chemical studies (DFT and biological studies of barbituric–hydrazone complexes

    Directory of Open Access Journals (Sweden)

    Amina A. Soayed

    2015-03-01

    Full Text Available Condensation of barbituric acid with hydrazine hydrate yielded barbiturichydrazone (L which was characterized using IR, 1H NMR and mass spectra. The Co(II, Ni(II and Cu(II complexes derived from this ligand have been synthesized and structurally characterized by elemental analyses, spectroscopic methods (IR, UV–Vis and ESR and thermal analyses (TGA, DTG and DTA and the structures were further elucidated using quantum chemical density functional theory. Complexes of L were found to have the ML.nH2O stoichiometry with either tetrahedral or octahedral geometry. The ESR data showed the Cu(II complex to be in a tetragonal geometry. Theoretical investigation of the electronic structure of metal complexes at the TD-DFT/B3LYP level of theory has been carried out and discussed. The fundamental vibrational wavenumbers were calculated and a good agreement between observed and scaled calculated wavenumbers was achieved. Thermal studies were performed to deduce the stabilities of the ligand and complexes. Thermodynamic parameters, such as the order of reactions (n, activation energy ΔE∗, enthalpy of reaction ΔH∗ and entropy ΔS∗ were calculated from DTA curves using Horowitz–Metzger method. The ligand L and its complexes have been screened for their antifungal and antibacterial activities and were found to possess better biological activities compared to those of unsubstituted barbituric acid complexes.

  6. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  7. Basic Theoretical Principles Pertaining to Thermal Protection of Oil Transformer

    Directory of Open Access Journals (Sweden)

    O. G. Shirokov

    2008-01-01

    Full Text Available The paper contains formulation of basic theoretical principles pertaining to thermal protection of an oil transformer in accordance with classical theory of relay protection and theory of diagnostics with the purpose of unification of terminological and analytical information which is presently available in respect of this problem. Classification of abnormal thermal modes of an oil transformer and also algorithms and methods for operation of diagnostic thermal protection of a transformer have been proposed.

  8. Heat transfer and thermal stress analysis in fluid-structure coupled field

    International Nuclear Information System (INIS)

    Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei

    2015-01-01

    In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out

  9. Design of reinforced concrete containment structures for thermal gradients effects

    International Nuclear Information System (INIS)

    Bhat, P.D.; Vecchio, F.

    1983-01-01

    The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)

  10. Thermal Structure and Mantle Dynamics of Rocky Exoplanets

    Science.gov (United States)

    Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.

    2011-12-01

    The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across

  11. Application of the thermal step method to space charge measurements in inhomogeneous solid insulating structures: A theoretical approach

    International Nuclear Information System (INIS)

    Cernomorcenco, Andrei; Notingher, Petru Jr.

    2008-01-01

    The thermal step method is a nondestructive technique for determining electric charge distribution across solid insulating structures. It consists in measuring and analyzing a transient capacitive current due to the redistribution of influence charges when the sample is crossed by a thermal wave. This work concerns the application of the technique to inhomogeneous insulating structures. A general equation of the thermal step current appearing in such a sample is established. It is shown that this expression is close to the one corresponding to a homogeneous sample and allows using similar techniques for calculating electric field and charge distribution

  12. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  13. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    Science.gov (United States)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  14. Thermal fluid-structure interaction - a few scaling considerations

    International Nuclear Information System (INIS)

    Dimitrov, B.; Schwan, H.

    1984-01-01

    Scaling laws for modeling of nuclear reactor systems primarily consider relations between thermalhydraulic parameters in the control volumes for the model and the prototype. Usually the influence of structural heat is neglected. This report describes, how scaling criteria are improved by parameters concerning structural heat, because during thermal transients there is a strong coupling between the thermalhydraulic system and the surrounding structures. Volumetric scaling laws are applied to a straight pipe of the primary loop of a pressurized water reactor (PWR). For the prototype pipe data of a KWU standard PWR with four loops are chosen. Theoretical studies and RELAP 5/MOD 1 calculations regarding the influence of structural heat on thermalhydraulic response of the fluid are performed. Recommendations are given for minimization of distortions due to influence of structural heat between model and prototype. (orig.) [de

  15. Correction: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.

  16. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  17. Theoretical Time Dependent Thermal Neutron Spectra and Reaction Rates in H2O and D2O

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1966-04-01

    The early theoretical and experimental time dependent neutron thermalization studies were limited to the study of the transient spectrum in the diffusion period. The recent experimental measurements of the time dependent thermal neutron spectra and reaction rates, for a number of moderators, have generated considerable interest in the study of the time dependent Boltzmann equation. In this paper we present detailed results for the time dependent spectra and the reaction rates for resonance detectors using several scattering models of H 2 O and D 2 O. This study has been undertaken in order to interpret the integral time dependent neutron thermalization experiments in liquid moderators which have been performed at the AB Atomenergi. The proton gas and the deuteron gas models are inadequate to explain the measured reaction rates in H 2 O and D 2 O. The bound models of Nelkin for H 2 O and of Butler for D 2 O give much better agreement with the experimental results than the gas models. Nevertheless, some disagreement between theoretical and experimental results still persists. This study also indicates that the bound model of Butler and the effective mass 3. 6 gas model of Brown and St. John give almost identical reaction rates. It is also surprising to note that the calculated reaction rate for Cd for the Butler model appears to be in better agreement with the experimental results of D 2 O than of the Nelkin model with H 2 O experiments. The present reaction rate studies are sensitive enough so as to distinguish between the gas model and the bound model of a moderator. However, to investigate the details of a scattering law (such as the effect of the hindered rotations in H 2 O and D 2 O and the weights of different dynamical modes) with the help of these studies would require further theoretical as well as experimental investigations. Theoretical results can be further improved by improving the source for thermal neutrons, the group structure and the scattering

  18. Differentiation of the molecular structure of nitro compounds as the basis for simulation of their thermal destruction processes

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V L; Pivina, Tatyana S; Sheremetev, Aleksei B [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Porollo, A A [University of Cincinnati, Cincinnati (United States); Petukhova, T V; Ivshin, Viktor P [Mari State University, Yoshkar-Ola (Russian Federation)

    2009-10-31

    Data on the experimental and theoretical studies of thermal decomposition of C- and N-nitro compounds of aliphatic, alicyclic, aromatic and heteroaromatic compounds, which formed the grounds for the development of ab initio approach to the prediction of the mechanisms of thermolysis of energetic compounds, are described systematically. The relationships between the structures and thermolysis mechanisms of compounds based on differentiation of the structural fragments depending on the functional surrounding of nitro groups are identified. Using the RRN (Recombination Reaction Network) strategy and original CASB (Computer Assisted Structure Building) software, full reaction mechanisms for the thermal destruction of nitro compounds at different thermal decomposition levels (including extensive ones) are simulated. The full set of possible mechanisms of thermal decomposition of 38 chemically different nitro compounds is presented

  19. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  20. An approach to correlate experimental and theoretical thermal conductivity of MWNT/PMMA polymer composites

    International Nuclear Information System (INIS)

    Verma, M; Patidar, D; Sharma, K B; Saxena, N S

    2015-01-01

    In this paper an effort is made to correlate temperature dependent effective thermal conductivity measured by experimental method to theoretical results obtained from different models. MWNT/PMMA polymer nanocomposites were prepared by solution casting method, with different wt% of MWNT (0, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 5, 10 wt%) dispersed in the PMMA matrix. The effective thermal conductivity from 30 °C to 110 °C is measured by Hot Disk Thermal Constant Analyser, based on transient plane source technique. Experimental study reveals that effective thermal conductivity increases with increasing concentration of MWNT in PMMA and increases exponentially at high temperatures for high (5, 10) wt% samples. This behavior of effective thermal conductivity is explained in terms of the interactions between polymer–MWNT and MWNT–MWNT. Consequently these results were found to be in agreement with theoretical models such as Series, Parallel, Lewis/Neilson and empirical formula. The discrepancy found in Lewis/Neilson model at high temperature for high wt% of MWNT in PMMA is due to some change in values of parameters incorporated in the model. (paper)

  1. On the Non-Thermal Energy Content of Cosmic Structures

    Directory of Open Access Journals (Sweden)

    Franco Vazza

    2016-11-01

    Full Text Available (1 Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales; (2 Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter; (3 Results: the impact of non-thermal energy (e.g., cosmic rays, magnetic fields and turbulent motions is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume; (4 Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles and of the origin of extragalactic magnetic fields.

  2. Ab Initio Study of Electronic, Structural, Thermal and Mechanical Characterization of Cadmium Chalcogenides

    Directory of Open Access Journals (Sweden)

    Devi Prasadh P.S.

    2017-06-01

    Full Text Available Based on Density Functional Theory, we have applied Full Potential Augmented Plane Wave plus local orbital method (FAPW+loto study the electronic, structural, optical, thermal and mechanical properties of some semiconducting materials. In this paper we discuss the Zinc blende, CdX (X = S, Se and Te compounds with the full-potential linear-augmented plane wave (FP-LAPW method within the framework of the density functional theory (DFT for electronic, structural, thermal and mechanical properties using the WIEN2k code. For the purpose of exchange-correlation energy (Exc determination in Kohn–Sham calculation, the standard local density approximation (LDA formalism is utilized. Murnaghan’s equation of state (EOS is used for volume optimization by minimizing the total energy with respect to the unit cell volume. The calculated lattice parameters and thermal parameters are in good agreement with other theoretical calculations as well as available experimental data.

  3. Theoretical Modelling Methods for Thermal Management of Batteries

    Directory of Open Access Journals (Sweden)

    Bahman Shabani

    2015-09-01

    Full Text Available The main challenge associated with renewable energy generation is the intermittency of the renewable source of power. Because of this, back-up generation sources fuelled by fossil fuels are required. In stationary applications whether it is a back-up diesel generator or connection to the grid, these systems are yet to be truly emissions-free. One solution to the problem is the utilisation of electrochemical energy storage systems (ESS to store the excess renewable energy and then reusing this energy when the renewable energy source is insufficient to meet the demand. The performance of an ESS amongst other things is affected by the design, materials used and the operating temperature of the system. The operating temperature is critical since operating an ESS at low ambient temperatures affects its capacity and charge acceptance while operating the ESS at high ambient temperatures affects its lifetime and suggests safety risks. Safety risks are magnified in renewable energy storage applications given the scale of the ESS required to meet the energy demand. This necessity has propelled significant effort to model the thermal behaviour of ESS. Understanding and modelling the thermal behaviour of these systems is a crucial consideration before designing an efficient thermal management system that would operate safely and extend the lifetime of the ESS. This is vital in order to eliminate intermittency and add value to renewable sources of power. This paper concentrates on reviewing theoretical approaches used to simulate the operating temperatures of ESS and the subsequent endeavours of modelling thermal management systems for these systems. The intent of this review is to present some of the different methods of modelling the thermal behaviour of ESS highlighting the advantages and disadvantages of each approach.

  4. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Experimental Petrology and Theoretical Geophysics. Information and Announcements Volume 22 Issue 8 August 2017 ...

  5. Structure and low temperature thermal relaxation of amorphized germanium

    International Nuclear Information System (INIS)

    Glover, C.J.; Ridgway, M.C.; Byrne, A.P.; Clerc, C.; Hansen, J.L.; Larsen, A.N.

    1999-01-01

    The structure of implantation-induced damage in amorphized Ge has been investigated using high resolution extended x-ray absorption fine structure spectroscopy (EXAFS). EXAFS data analysis was performed with the Cumulant Method, allowing a full reconstruction of the interatomic distance distribution (RDF). For the case of MeV implantation at -196 deg C, for an ion-dose range extending two orders of magnitude beyond that required for amorphization, a dose-dependent asymmetric RDF was determined for the amorphous phase including an increase in bond-length as a function of ion dose. Low-temperature thermal annealing resulted in structural relaxation of the amorphous phase as evidenced by a reduction in the centroid, asymmetry and width of the RDF. Such an effect was attributed to the formation (and subsequent annihilation) of three- and five-fold Co-ordinated atoms, comparing favourably to theoretical simulations of the structure of a-Ge

  6. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  7. Influence of the solid-gas interface on the effective thermal parameters of a two-layer structure in photoacoustic experiments

    International Nuclear Information System (INIS)

    Aguirre, N Munoz; Perez, L MartInez; Garibay-Febles, V; Lozada-Cassou, M

    2004-01-01

    From the theoretical point of view, the influence of the solid-gas interface on the effective thermal parameters in a two-layer structure of the photoacoustic technique is discussed. It is shown that the effective thermal parameters depend strongly upon the thermal resistance value associated with the solid-gas interface. New expressions for the effective thermal conductivity and thermal diffusivity in the low frequency limit are obtained. In the high frequency limit, the 'resonant' behaviour of the effective thermal diffusivity is maintained and a new complex dependence on frequency of the effective thermal conductivity is shown

  8. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  9. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    A course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Exper- imental Petrology and Theoretical Geophysics will be conducted in the Jallahalli Campus under the aegis of Indian Academy of Sciences during 20th November to 4th December, 2017. University lec- turers, Research ...

  10. Structural evaluation method study and procedure development for pressurizer surge line subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Zhang Yixiong; Yu Xiaofei; Ai Honglei

    2014-01-01

    Thermal stratification phenomenon of pressurizer surge line can lead potential threaten to plant safety. Base on the mechanism of thermal stratification occurrence, Fr number is used to judge whether the stratification occurs or not. Also the method of calculating heat transfer coefficient is investigated. Theoretically the 3-dimension thermal stress induced by thermal stratification is decoupled to 1-dimension global stress and 2-dimension local stress, and the complex 3-dimension problem is simplified into a combination of 1-dimension and 2-dimension to compute the stress. Comply with criterion RCC-M, the complete structure integrity evaluation is accomplished after combining the stress produced by thermal stratification and the stresses produced by the other loadings. In order to match the above combined analysis method, Code SYSTUS and ROCOCO are developed. By means of aforesaid evaluation method and corresponding analysis program, surge line thermal stratification of Qinshan Phase II Extension project is investigated in this paper. And the results show that structural integrity of the pressurizer surge line affected by thermal stratification still satisfies criterion RCC-M. (authors)

  11. Theoretical and Experimental Studies of Functionalized Carbon Nanotubes for Improved Thermal Conductivity

    Science.gov (United States)

    Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.

  12. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    Science.gov (United States)

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Theoretical bases on thermal stability of layered metallic systems

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.

    2003-01-01

    The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given

  14. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  15. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  16. Theoretical and experimental studies of heavy liquid metal thermal hydraulics. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-10-01

    Through the Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR), the IAEA provides a forum for exchange of information on national programmes, collaborative assessments, knowledge preservation, and cooperative research in areas agreed by the Member States with fast reactor and partitioning and transmutation development programmes (e.g. accelerator driven systems (ADS)). Trends in advanced fast reactor and ADS designs and technology development are periodically summarized in status reports, symposia, and seminar proceedings prepared by the IAEA to provide all interested IAEA Member States with balanced and objective information. The use of heavy liquid metals (HLM) is rapidly diffusing in different research and industrial fields. The detailed knowledge of the basic thermal hydraulics phenomena associated with their use is a necessary step for the development of the numerical codes to be used in the engineering design of HLM components. This is particularly true in the case of lead or lead-bismuth eutectic alloy cooled fast reactors, high power particle beam targets and in the case of the cooling of accelerator driven sub-critical cores where the use of computational fluid dynamic (CFD) design codes is mandatory. Periodic information exchange within the frame of the TWG-FR has lead to the conclusion that the experience in HLM thermal fluid dynamics with regard to both the theoretical/numerical and experimental fields was limited and somehow dispersed. This is the case, e.g. when considering turbulent exchange phenomena, free-surface problems, and two-phase flows. Consequently, Member States representatives participating in the 35th Annual Meeting of the TWG-FR (Karlsruhe, Germany, 22-26 April 2002) recommended holding a technical meeting (TM) on Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics. Following this recommendation, the IAEA has convened the Technical Meeting on Theoretical and Experimental Studies of

  17. Theoretical Time Dependent Thermal Neutron Spectra and Reaction Rates in H{sub 2}O and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1966-04-15

    group structure and the scattering model. It is easy to calculate and measure spectra and reaction rates for a resonance detector in a moderator. At the same time it is difficult to discuss them in terms of the details of the dynamics of atomic motions. Only with the help of well defined parameters one can hope to undertake a systematic study of different scattering laws and understand the importance of different dynamical modes. We have employed in this study the thermalization parameters (thermalization time constant and thermalization time), the amplitude of the reaction rate peak, and the time of occurrence of the peak to undertake a quantitative comparison of theoretical and experimental results. In addition to this list, time moments also need to be studied. Finally, we wish to emphasize that the cadmium reaction rate studies may be sensitive enough for investigating the details of dynamical modes (especially hindered rotations) in hydrogenous liquids at several temperatures. In that respect these studies would supplement neutron scattering investigations in liquids.

  18. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  19. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Dobbs-Dixon, Ian [NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Greene, Thomas, E-mail: jasmina@nyu.edu [NASA Ames Research Center, Space Sciece and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2017-10-20

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer , the Hubble Space Telescope ( HST ), and the James Web Space Telescope ( JWST ) bandpasses, covering the wavelength range between 1 and 11 μ m where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature–pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and

  20. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    Science.gov (United States)

    Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas

    2017-10-01

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the

  1. A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)

    2009-10-15

    This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)

  2. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  3. Theoretical evaluation of thermal and energy performance of tropical green roofs

    International Nuclear Information System (INIS)

    Tsang, S.W.; Jim, C.Y.

    2011-01-01

    The thermal and energy efficiency of tropical green roofs is assessed by a theoretical model to clarify the contribution of underlying factors. The suitability of 1400 high-rise public housing blocks in Hong Kong for rooftop greening was assessed by remote sensing images. Weather and microclimatic-soil monitoring data of an experimental green roof provided the basis for computations. Roof greening prevented a huge amount of solar energy at 43.9 TJ in one summer from penetrating the buildings to bring significant energy saving. Thermal performance of humid-tropical green roofs, with greater latent heat dissipation, is twice more effective than the temperate ones. The energy balance model shows that solar energy absorption by bare and green roofs depends on shortwave rather than longwave radiation. Heat flux into a building indicates a one-day time lag after a sunshine day. With restricted evapotranspiration, bare roofs have more sensible heat and heat storage than green roofs. The bare roof albedo of 0.15, comparing with 0.30 of green roof, renders 75% higher heat storage. Small increase in convection coefficient from 12 to 16 could amplify 24% and 45% of latent heat dissipation respectively for bare and green roofs. Doubling the soil water availability could halve the heat storage of green roofs. -- Highlights: → We developed a theoretical model to calculate the thermal performance of tropical green roofs. → Bare roofs have more sensible heat and heat storage than green roofs. → Latent heat dissipation of tropical green roofs is twice that of temperate counterparts. → Heat flux through the roof into a building demonstrates a one-day time lag after a long sunshine day. → Green roofs can block 43.9 TJ of solar energy penetration into public housing buildings in one summer.

  4. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  5. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  6. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  7. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  8. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  9. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  10. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  11. Anomalies of the photo-response and thermal boundary resistance of a YBaCuO/YSZ structure

    International Nuclear Information System (INIS)

    Bonch-Osmolovskii, M.M.; Galkina, T.I.; Golovashkin, A.I.; Dovydenko, K.Yu.; Klokov, A.Yu.; Krasnosvobodtsev, S.I.; Oktyabrskii, S.R.; Romanov, E.G.

    1993-01-01

    The photoresponse of a YBaCuO/ZrO 2 bolometric structure was measured under modulated (λ = 630 nm) and pulsed (τ ∼ 7-8 ns; λ = 337 nm) laser excitation. The shape of the measured photoresponse was interpreted by a thermal model; nevertheless, the pulse amplitude for vanishing YBaCuO film resistance was 5-6 times greater than predicted; the thermal boundary resistance R Bd between YBaCuO and YSZ was evaluated ≅ 10 -2 K x cm 2 /Watt, which is considerably larger than estimated theoretically for the similar situation of YBaCuO/MgO. (orig.)

  12. Theoretical development of atomic structure: Past, present and future

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1994-11-01

    Theoretical development of atomic structure is briefly discussed. The role of correlation, relativity, quantum electrodynamic (QED), finite nuclear size (FNS) and parity nonconservation (PNC) in high precision theoretical investigation of properties of atomic and ionic systems is demonstrated. At present, we do not have a comprehensive and practical atomic structure theory which accounts all these physical effects on an equal footing. Suggestions are made for future directions. (author). 108 refs, 5 figs, 9 tabs

  13. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  14. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  15. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    International Nuclear Information System (INIS)

    Paulsen, K.D.; Strohbehn, J.W.; Lynch, D.R.

    1984-01-01

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  16. The integrity of cracked structures under thermal loading

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    Previous work by Dowling and Townley on the load-carrying capacity of a cracked structure is extended so that quantitative predictions can be made about failure under thermal loading. Residual stresses can be dealt with in the same way as thermal stresses. It is shown that the tolerance of the structure to thermal stress can be quantified in terms of a parameter which defines the state of the structure. This state parameter can be deduced from the calculated performance of the structure when subjected to an external load. (author)

  17. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Termentzidis, K; Pokropivny, A; Xiong, S-Y; Chumakov, Y; Volz, S; Woda, M; Cortona, P

    2012-01-01

    We use molecular dynamics and ab-initio methods to predict the thermal and electronic properties of new materials with high figures of merit. The simulated systems are bulk bismuth tellurides with antisite and vacancy defects. Optimizations of the materials under investigation are performed by the SIESTA code for subsequent calculations of force constants, electronic properties, and Seebeck coefficients. The prediction of the thermal conductivity is made by Non-Equilibrium Molecular Dynamics (NEMD) using the LAMMPS code. The thermal conductivity of bulk bismuth telluride with different stoichiometry and with a number of substitution defects is calculated. We have found that the thermal conductivity can be decreased by 60% by introducing vacancy defects. The calculated thermal conductivities for the different structures are compared with the available experimental and theoretical results.

  18. Experimental and theoretical analyses of package-on-package structure under three-point bending loading

    International Nuclear Information System (INIS)

    Jia Su; Wang Xi-Shu; Ren Huai-Hui

    2012-01-01

    High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (PoP) is a promising three-dimensional high-density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. (condensed matter: structural, mechanical, and thermal properties)

  19. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  20. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles

    Science.gov (United States)

    Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay

    2015-06-01

    A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.

  1. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  2. Structural relaxation and thermal conductivity coefficient of liquids

    International Nuclear Information System (INIS)

    Abdurasulov, A.

    1992-01-01

    Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.

  3. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  4. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  5. A theoretical concept for a thermal-hydraulic 3D parallel channel core model

    International Nuclear Information System (INIS)

    Hoeld, A.

    2004-01-01

    A detailed description of the theoretical concept of the 3D thermal-hydraulic single- and two-phase flow phenomena is presented. The theoretical concept is based on important development lines such as separate treatment of the mass and energy from the momentum balance eqs. The other line is the establishment of a procedure for the calculation of the mass flow distributions into different parallel channels based on the fact that the sum of pressure decrease terms over a closed loop must stay, despite of un-symmetric perturbations, zero. The concept is realized in the experimental code HERO-X3D, concentrating in a first step on an artificial BWR or PWR core which may consist of a central channel, four quadrants, and a bypass channel. (authors)

  6. Theoretical analysis for the specific heat and thermal parameters of solid C60

    Science.gov (United States)

    Soto, J. R.; Calles, A.; Castro, J. J.

    1997-08-01

    We present the results of a theoretical analysis for the thermal parameters and phonon contribution to the specific heat in solid C60. The phonon contribution to the specific heat is calculated through the solution of the corresponding dynamical matrix, for different points in the Brillouin zone, and the construccion of the partial and generalized phonon density of states. The force constants are obtained from a first principle calculation, using a SCF Hartree-Fock wave function from the Gaussian 92 program. The thermal parameters reported are the effective temperatures and vibrational amplitudes as a function of temperature. Using this model we present a parametization scheme in order to reproduce the general behaviour of the experimental specific heat for these materials.

  7. Thermal imitators with single directional invisibility

    Science.gov (United States)

    Wang, Ruizhe; Xu, Liujun; Huang, Jiping

    2017-12-01

    Thermal metamaterials have been intensively studied during the past years to achieve the long-standing dream of invisibility, illusion, and other inconceivable thermal phenomena. However, many thermal metamaterials can only exhibit omnidirectional thermal response, which take on the distinct feature of geometrical isotropy. In this work, we theoretically design and experimentally fabricate a pair of thermal imitators by applying geometrical anisotropy provided by elliptical/ellipsoidal particles and layered structures. This pair of thermal imitators possesses thermal invisibility in one direction, while having thermal opacity in other directions. This work may open a gate in designing direction-dependent thermal metamaterials.

  8. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  9. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  10. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  11. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  12. Information-theoretic equilibrium and observable thermalization

    Science.gov (United States)

    Anzà, F.; Vedral, V.

    2017-03-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  13. Comparative performance study of smart structure for thermal microactuators

    Science.gov (United States)

    Yahya, Zulkarnain; Johar, Muhammad Akmal

    2017-04-01

    Thermal microactuator is one of earliest types of microactuators. Typical thermal actuators are in the form of Bimorph and Chevron structures. A bimorph thermal actuator has a complex movement direction, in arc motion and thus it is not feasible in the most MEMS designs. While Chevron actuator has a tendency to produce an off-plane movement which lead to low precision in lateral movement. A new thermal actuator design in the form of serpentine structures shows promising feature to have better performances in terms of more predictive lateral movement with smaller off-plane displacement. In MEMS chip design, areas play a critical role as it will impact with the cost of the final product. In this study, four different structures of thermal actuator were simulated using ANSYS v15. Three different set of area sizes which are 240 µm x 1000 µm, 240 µm x 1500 µm and 240 µm x 2000 µm have been analyzed. All four structures were named as Serpentine01, Serpentine02, Bimorph and Chevron. The data with regards to temperature produced by the structure and z-axis directional deformation were collected and analyzed. This paper reported the investigation result of comparison between these three types of thermal actuator structures design with a given area. From all of the result obtained, it is shown that the area 240 µm x 1500 µm showed a well balance performance in term of huge deformations and low power consumption. The Serpentine01 structure produced 16.7 µm deformation at 4mA of current. The results shows the potential of Serpentine01 structure as a new candidate for thermal microactuator for MEMS applications.

  14. Theoretical analysis of polarized structure functions

    International Nuclear Information System (INIS)

    Altarelli, G.; ); Ball, R.D.; Forte, S.; Ridolfi, G.

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD and NLO We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involving in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature. (author)

  15. A theoretical and experimental study of the thermal degradation of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Groenli, Morten G.

    1996-12-31

    This thesis relates to the thermal degradation of biomass covering a theoretical and experimental study in two parts. In the first part, there is presented an experimental and modeling work on the pyrolysis of biomass under regimes controlled by chemical kinetics, and the second part presents an experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. Five different celluloses, and hemicellulose and lignin isolated from birch and spruce have been studied by thermogravimetry. The thermo grams of wood species revealed different weight loss characteristics which can be attributed to their different chemical composition. The kinetic analysis gave activation energies between 210 and 280 kJ/mole for all the celluloses, and a model of independent parallel reactions was successfully used to describe the thermal degradation. In the second part of the thesis there is presented experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. The effect of heating conditions on the product yields distribution and reacted fraction was investigated. The experiments show that heat flux alters the pyrolysis products as well as the intra particle temperatures to the greatest extent. A comprehensive mathematical model which can simulate drying and pyrolysis of moist wood is presented. The simulation of thermal degradation and heat transport processes agreed well with experimental results. 198 refs., 139 figs., 68 abs.

  16. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan

    2014-03-15

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.

  17. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    International Nuclear Information System (INIS)

    Liang, Qi; Wei, Yuan

    2014-01-01

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model

  18. Theoretical Analysis of Polarized Structure Functions

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Ridolfi, G

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD at next-to-leading order. We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involved in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature.

  19. A first principles study of the electronic structure, elastic and thermal properties of UB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jossou, Ericmoore, E-mail: ericmoore.jossou@usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Malakkal, Linu [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Szpunar, Barbara; Oladimeji, Dotun [Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2, Saskatchewan (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada)

    2017-07-15

    Uranium diboride (UB{sub 2}) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB{sub 2} towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB{sub 2}, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB{sub 2} structure respectively. The electronic structure of UB{sub 2} was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (k{sub L}) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (k{sub el}) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along ‘a’ and ‘c’ axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB{sub 2}. - Highlights: •Prediction of electronic structure and thermophysical properties of UB

  20. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  1. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  2. Transient thermal analysis of Vega launcher structures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, F. [University of Rome ' Tor Vergata' , Rome (Italy); De Stefanis, M. [Thales Alenia Space Italia, Rome (Italy); Worek, W.M. [University of Illinois at Chicago, Chicago (United States)], E-mail: wworek@uic.edu; Minkowycz, W.J. [University of Illinois at Chicago, Chicago (United States)

    2008-12-15

    A transient thermal analysis is carried out to verify the base cover thermal protection system of Vega 2nd stage Solid Rocket Motor (SRM) and the flange coupling of the inter-stage 2/3. The analysis is performed with a finite element code. The work has developed suitable numerical Fortran subroutines to assign radiation and convection boundary conditions. The thermal behaviour of the structures is presented.

  3. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  4. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  5. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    International Nuclear Information System (INIS)

    Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R

    2016-01-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)

  6. A simple theoretical extension to the analysis of photothermal deflection signal for low thermal diffusivity evaluation

    International Nuclear Information System (INIS)

    Ravi, Jyotsna; Lekshmi, S.; Nair, K.P.R.; Rasheed, T.M.A

    2004-01-01

    A modified amplitude method to analyze the photothermal probe beam deflection signal for the determination of low thermal diffusivity values of materials is proposed. This simple theoretical model, which is an extension of the amplitude method proposed by Quelin et al., takes into account the dependence of the photothermal signal on the height of the probe beam above the sample surface which affects mirage measurements when the thermal diffusivity of the coupling medium is greater than that of the sample. The present work is similar to the modification to the phase method proposed by Bertolotti et al. for determination of low thermal diffusivity. The method can be applied irrespective of whether the sample is optically transparent or optically opaque and is independent of thickness

  7. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  8. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  9. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  10. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  11. Novel thermal management structures and their applications in new hybrid technologies and feed-through structures

    International Nuclear Information System (INIS)

    Carter, A.A.; Oliveira, R. de; Gandi, A.

    1999-01-01

    Novel techniques are described for fabricating a new thermal management structure (TMS), in the form of rigid low-mass structures with extremely high in-plane thermal conductivity. The core materials can be forms of thermally anisotropically conducting pyrolytic graphite that are directly encapsulated in a new thin-layering process. The structures can be used in a large variety of applications, including: (a) Efficient interfacing with ceramic materials and metals to provide new thermal management technologies. (b) Providing the source for a new hybrid technology where low-mass custom-designed multilayer thin-film circuits can be directly processed onto such structures. Alternatively, having been prefabricated on an independent substrate, hybrids can be efficiently interfaced to such thermal management structures. (c) Providing electrical connectivity between both sides of a TMS board through a new feedthrough technology that allows the fabrication of both single-sided and double-sided hybrids. These thermal management techniques and their applications are the subject of an international patent application number PCT/GB99/02180, filed in the names of the European Organization for Nuclear Research and Queen Mary and Westfield College, London. (orig.)

  12. A first principles study of the electronic structure, elastic and thermal properties of UB2

    Science.gov (United States)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  13. Experimental and theoretical studies of the thermal behavior of titanium dioxide-SnO2 based composites.

    Science.gov (United States)

    Voga, G P; Coelho, M G; de Lima, G M; Belchior, J C

    2011-04-07

    In this paper we report experimental and theoretical studies concerning the thermal behavior of some organotin-Ti(IV) oxides employed as precursors for TiO(2)/SnO(2) semiconducting based composites, with photocatalytic properties. The organotin-TiO(2) supported materials were obtained by chemical reactions of SnBu(3)Cl (Bu = butyl), TiCl(4) with NH(4)OH in ethanol, in order to impregnate organotin oxide in a TiO(2) matrix. A theoretical model was developed to support experimental procedures. The kinetics parameters: frequency factor (A), activation energy, and reaction order (n) can be estimated through artificial intelligence methods. Genetic algorithm, fuzzy logic, and Petri neural nets were used in order to determine the kinetic parameters as a function of temperature. With this in mind, three precursors were prepared in order to obtain composites with Sn/TiO(2) ratios of 0% (1), 15% (2), and 30% (3) in weight, respectively. The thermal behavior of products (1-3) was studied by thermogravimetric experiments in oxygen.

  14. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  15. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  16. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  17. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  18. Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1996-01-01

    Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.

  19. Synthesis, Structural Characterization, and Thermal Properties of the Poly(methylmethacrylate/δ-FeOOH Hybrid Material: An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Silviana Corrêa

    2016-01-01

    Full Text Available The δ-FeOOH/PMMA nanocomposites with 0.5 and 2.5 wt.% of δ-FeOOH were prepared by grafting 3-(trimethoxysilylpropyl methacrylate on the surface of the iron oxyhydroxide particles. The FTIR spectra of the δ-FeOOH/PMMA nanocomposites showed that the silane monomers were covalently attached to the δ-FeOOH particles. Because of the strong interaction between the PMMA and δ-FeOOH nanoparticles, the thermal stability of the δ-FeOOH/PMMA nanocomposites was improved compared to the pure PMMA. The SEM analysis conferred the size agglomerate of particles regarding the morphology of samples. The theoretical study enabled a better understanding of the interaction of the polymer with the iron oxyhydroxide. The DFT-based calculations reinforce the radical trapping mechanism of stabilization of nanocomposites; that is, Fe3+ species might be able to accept electrons coming from the organic phase that decomposes via radical unzipping. The radical scavenge effect delays the weight loss of polymer.

  20. The thermal structure of Titan's atmosphere

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1989-01-01

    The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.

  1. Charging/discharging processes in nanocrystaline MOS structures - Theoretical study

    International Nuclear Information System (INIS)

    Tanous, D; Mazurak, A; Majkusiak, B

    2016-01-01

    We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)

  2. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    Science.gov (United States)

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  3. Theoretical Neuroanatomy:Analyzing the Structure, Dynamics,and Function of Neuronal Networks

    Science.gov (United States)

    Seth, Anil K.; Edelman, Gerald M.

    The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more.

  4. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  5. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  6. Methods to determine stratification efficiency of thermal energy storage processes–Review and theoretical comparison

    DEFF Research Database (Denmark)

    Haller, Michel; Cruickshank, Chynthia; Streicher, Wolfgang

    2009-01-01

    This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification...... during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage...

  7. Adjustable thermal resistor by reversibly folding a graphene sheet.

    Science.gov (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  8. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  9. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  10. The Theoretical Foundations of Structural Changes in Economy

    Directory of Open Access Journals (Sweden)

    Khaustova Viktoriia Ye.

    2017-12-01

    Full Text Available The article is aimed at defining the theoretical foundations of structural changes in economy. It has been proved that structural policy of the State is one of the main directions influencing the structure of economy, balancing its proportions, and ensuring progressive development. The components of structural policy have been defined. Genesis of scientific directions of researching the structure of economy was considered. The interpretation of the concept of «structure of economy» in the works of scientists was studied. The classification of particular structures of the national industrial complex was considered. It has been proved that the main role in the analysis of structural changes should be given to the structure of economy (of industrial complex, according to the types of economic activity. The interpretations of the concepts of «structural transformations», «structural shifts», «structural changes», «structural crisis» in the economy have been clarified. The functions of structural crises have been considered. The dynamics of changes in structural shifts were researched. The classification of structural shifts in the economy was considered. An interpretation of progressive structural changes has been suggested.

  11. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    Directory of Open Access Journals (Sweden)

    Jianyi Liu

    2014-09-01

    Full Text Available This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc. that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

  12. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  13. Theoretical nuclear structure. Progress report for 1997

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Strayer, M.R.

    1997-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops

  14. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  15. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  16. Sodium fires: French strategy - theoretical and experimental developments

    International Nuclear Information System (INIS)

    Descombes; Thomann; Malet, J.C.; Rzekiecki, R.

    1985-01-01

    After a description of the needs relating to LMFBR safety analysis and design in terms of prevention, detection and protection, the French strategy concerning sodium fires it presented. It includes theoretical developments supported with relevant experimental program, to allow reliable calculations and predictions for safety and design. The following physical phenomena are detailed: (1) sodium fire (mechanical and thermal effects); (2) sodium-structures interactions; (3) aerosols behavior

  17. Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector

    International Nuclear Information System (INIS)

    Riffat, S.B.; Zhao, X.; Doherty, P.S.

    2005-01-01

    A thin membrane heat-pipe solar collector was designed and constructed to allow heat from solar radiation to be collected at a relatively high efficiency while keeping the capital cost low. A theoretical model incorporating a set of heat balance equations was developed to analyse heat transfer processes occurring in separate regions of the collector, i.e., the top cover, absorber and condenser/manifold areas, and examine their relationship. The thermal performance of the collector was investigated using the theoretical model. The modelling predictions were validated using the experimental data from a referred source. The test efficiency was found to be in the range 40-70%, which is a bitter lower than the values predicted by modelling. The factors influencing these results were investigated

  18. Structural and thermal properties of LaMnO3 from neutron diffraction and first principles studies

    International Nuclear Information System (INIS)

    Wdowik, Urszula D; Ouladdiaf, Bachir; Chatterji, Tapan

    2011-01-01

    Neutron diffraction experiments have been performed on powder samples of LaMnO 3 below and above the Jahn-Teller transition temperature of 750 K. Experimental investigations are assisted by density functional theory calculations. Theoretical studies are carried out for the orbitally ordered state of LaMnO 3 which allows one to compare the behavior of the orbitally ordered and disordered structures as a function of temperature. The temperature dependences of the structural parameters characterizing the Jahn-Teller distortions are reported and discussed. A gradual departure of the experimental data from theoretical predictions is observed above 650 K. In this range of temperatures, anions surrounding the Jahn-Teller active cations perform more isotropic thermal motion. The onset of structural phase transition induces a reduction of the crystal volume by about 0.4% which follows from the structural transformations yielding more regular oxygen octahedra formed above the phase transformation. It is found that above the Jahn-Teller transition the distortions of the MnO 6 octahedra are not completely removed. The non-vanishing distortions are accompanied by the lifted degeneracy of the Mn e g states. Weak residual distortions can be assigned to the short-range orbital order that persists within a local scale but it seems quenched on average giving rise to a disappearance of the long-range order coherency of the Jahn-Teller effect.

  19. Thermal oxidation effect on structural and optical properties of heavily doped phosphorus polycrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, B.; Madi, D. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Cite Ouled Aissa, BP 98, Jijel (Algeria)

    2011-08-15

    The study reported in this paper contributes to better understanding the thermal oxidation effect on structural and optical properties of polycrystalline silicon heavily in situ P-LPCVD films. The deposits, doped at levels 3 x 10{sup 19} and 1.6 x 10{sup 20} cm{sup -3}, have been elaborated from silane decomposition (400 mTorrs, 605 C) on monosilicon substrate oriented left angle 111 right angle. The thermal oxidation was performed at temperatures: 850 C during 1 hour, 1000, 1050, and 1100 C during 15 minutes. The XRD spectra analysis pointed out significant left angle 111 right angle texture evolution, while in the case of left angle 220 right angle and left angle 311 right angle textures, the intensities are practically invariant (variations fall in the uncertainty intervals). The optical characterizations showed that refractive index and absorption coefficient are very sensitive to the oxidation treatment, mainly when the doping level is not very high. We think that atomic oxygen acts as defects passivating agent leading to carriers' concentration increasing. Besides, the optical behavior is modeled in visible and near infrared, by a seven-term polynomial function n {sup 2}=f({lambda} {sup 2}), with alternate signs, instead of theoretically unlimited terms number from Drude's model. It has been shown that fitting parameters fall on Gaussian curves like they do in the theoretical model. (orig.)

  20. THEORETICAL AND EXPERIMENTAL STUDY OF STRUCTURES SUBJECTED TO EARTHQUAKES

    Energy Technology Data Exchange (ETDEWEB)

    Soubirou, A.

    1967-12-31

    The object of the study was the investigation of the behaviour of structures subject to earthquakes. After .describing and analysing seismic movements, useful concepts for earthquake-proofing structures are lintroduced. Then, the dynamic behaviour of systems with n degrees of freedom was studied in order to evolve the theoretical computation of seismic behaviour, a typical application being reticulated structures. The next stage was showing the computational procedure for seismic spectra and the natural frequencies of buildings, an attempt being made to define earthquake-proofing criteria for a special type of reinforced-concrete construction. . The last matter dealt with is elastoplastic behaviour of structures, a study of increasingly growing importance.

  1. High thermal load structure

    International Nuclear Information System (INIS)

    Tsujimura, Seiichi; Toyota, Masahiko.

    1995-01-01

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.)

  2. High thermal load structure

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiichi; Toyota, Masahiko

    1995-06-16

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.).

  3. Local thermal energy as a structural indicator in glasses

    Science.gov (United States)

    Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran

    2017-07-01

    Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal ω4ω4 density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field—a “softness field”—is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

  4. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  5. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  6. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  7. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  8. Thermal phonon scattering in silicon doped with Li, P and Li-O; influence of the electronic structure of the impurities

    International Nuclear Information System (INIS)

    Fortier, Dominique.

    1976-07-01

    Besides the three phonon scattering mechanisms generally considered in insulators, i.e. boundary effect, isotopic scattering and phonon-phonon interaction, the electron-phonon scattering mechanism was studied with special reference to the scattering of thermal phonons by donor impurities in silicon. In order to demonstrate clearly the effect of the electronic structure of the impurity on this scattering, three donor centres were investigated: Li, Li-O and P. On the basis of the calculated relaxation times it was possible from theoretical analysis to account for the main results and to explain why the Li centre scatters thermal phonons more efficiently than Li-O and P centres in the isolated impurity range [fr

  9. Integral Parameters of the Thermal Neutron Scattering Law

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1964-09-01

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M 2 ), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M 2 , the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H 2 O, is presented. Theoretical results for different scattering models of H 2 O are compared with the measurements of integral experiments. A set of integral parameters for D 2 O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H 2 O and D 2 O in the study of integral parameters has also been discussed

  10. Experimental and theoretical evidence of a supercritical-like transition in an organic semiconductor presenting colossal uniaxial negative thermal expansion.

    Science.gov (United States)

    van der Lee, Arie; Roche, Gilles H; Wantz, Guillaume; Moreau, Joël J E; Dautel, Olivier J; Filhol, Jean-Sébastien

    2018-04-28

    Thermal expansion coefficients of most materials are usually small, typically up to 50 parts per million per kelvin, and positive, i.e. materials expand when heated. Some materials show an atypical shrinking behavior in one or more crystallographic directions when heated. Here we show that a high mobility thiophene-based organic semiconductor, BHH-BTBT , has an exceptionally large negative expansion between 95 and 295 K (-216 BTBT , a much studied organic semiconductor with a closely related molecular formula and 3D crystallographic structure. Complete theoretical characterization of BHH-BTBT using ab initio molecular dynamics shows that below ∼200 K two different α and β domains exist of which one is dominant but which dynamically exchange around and above 210 K. A supercritical-like transition from an α dominated phase to a β dominated phase is observed using DSC measurements, UV-VIS spectroscopy, and X-ray diffraction. The origin of the extreme negative and positive thermal expansion is related to steric hindrance between adjacent tilted thiophene units and strongly enhanced by attractive S···S and S···C interactions within the highly anharmonic mixed-domain phase. This material could trigger the tailoring of optoelectronic devices highly sensitive to strain and temperature.

  11. Thermal modeling and design of the anisogrid morphing structure for a modular optical telescope concept

    Science.gov (United States)

    Phoenix, Austin A.

    2017-10-01

    To meet the requirements for the next generation of optical space telescopes, a paradigm shift is required from current structures that are static, heavy, and stiff toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A morphing or adaptive structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The adaptive anisogrid structure is actuated through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables mission architectures. This effort expands on the author's previous work by incorporating the impact of thermal coupling and demonstrating an updated architecture. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure to enable control of the thermal losses between active members. To evaluate the isolation design, the stiffness and thermal conductivity of these isolating interfaces is addressed. This paper determines that the applied morphing error remains below 5% across all stiffnesses if the joint thermal conductivity is below 0.2 W/(mK). This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties and determines the linear operational regime.

  12. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  13. Thermal properties of composite materials with a complex fractal structure

    International Nuclear Information System (INIS)

    Cervantes-Álvarez, F; Reyes-Salgado, J J; Dossetti, V; Carrillo, J L

    2014-01-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell–Garnett effective media approximation for composite materials. (paper)

  14. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...

  15. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  16. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.

  17. Rapid thermal process by RF heating of nano-graphene layer/silicon substrate structure: Heat explosion theory approach

    Science.gov (United States)

    Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.

    2018-03-01

    RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.

  18. Experimental-theoretical investigation of the thermal explosion

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    It is suggested that thermal explosions are caused by the latent heat of fusion liberated when the heat transfer at the surface of the molten metal mass is sufficiently intensive to subcool the metal below the solidification point. From a couple of experiments performed by the authors on different metals brought into contact in the molten state with cold water as well as from experiments of the same kind in other laboratories it can be concluded that thermal explosions appear only under special, precisely determined conditions. The experimental techniques applied in this work comprise measurement of the temperature history during the thermal interaction of the hot and the cold liquid and simultaneously observe and record the phenomena by fast photography

  19. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  20. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and

  1. Conductivity-limiting bipolar thermal conductivity in semiconductors

    Science.gov (United States)

    Wang, Shanyu; Yang, Jiong; Toll, Trevor; Yang, Jihui; Zhang, Wenqing; Tang, Xinfeng

    2015-01-01

    Intriguing experimental results raised the question about the fundamental mechanisms governing the electron-hole coupling induced bipolar thermal conduction in semiconductors. Our combined theoretical analysis and experimental measurements show that in semiconductors bipolar thermal transport is in general a “conductivity-limiting” phenomenon, and it is thus controlled by the carrier mobility ratio and by the minority carrier partial electrical conductivity for the intrinsic and extrinsic cases, respectively. Our numerical method quantifies the role of electronic band structure and carrier scattering mechanisms. We have successfully demonstrated bipolar thermal conductivity reduction in doped semiconductors via electronic band structure modulation and/or preferential minority carrier scatterings. We expect this study to be beneficial to the current interests in optimizing thermoelectric properties of narrow gap semiconductors. PMID:25970560

  2. Using Simplified Thermal Inertia to Determine the Theoretical Dry Line in Feature Space for Evapotranspiration Retrieval

    Directory of Open Access Journals (Sweden)

    Sujuan Mi

    2015-08-01

    Full Text Available With the development of quantitative remote sensing, regional evapotranspiration (ET modeling based on the feature space has made substantial progress. Among those feature space based evapotranspiration models, accurate determination of the dry/wet lines remains a challenging task. This paper reports the development of a new model, named DDTI (Determination of Dry line by Thermal Inertia, which determines the theoretical dry line based on the relationship between the thermal inertia and the soil moisture. The Simplified Thermal Inertia value estimated in the North China Plain is consistent with the value measured in the laboratory. Three evaluation methods, which are based on the comparison of the locations of the theoretical dry line determined by two models (DDTI model and the heat energy balance model, the comparison of ET results, and the comparison of the evaporative fraction between the estimates from the two models and the in situ measurements, were used to assess the performance of the new model DDTI. The location of the theoretical dry line determined by DDTI is more reasonable than that determined by the heat energy balance model. ET estimated from DDTI has an RMSE (Root Mean Square Error of 56.77 W/m2 and a bias of 27.17 W/m2; while the heat energy balance model estimated ET with an RMSE of 83.36 W/m2 and a bias of −38.42 W/m2. When comparing the coeffcient of determination for the two models with the observations from Yucheng, DDTI demonstrated ET with an R2 of 0.9065; while the heat energy balance model has an R2 of 0.7729. When compared with the in situ measurements of evaporative fraction (EF at Yucheng Experimental Station, the ET model based on DDTI reproduces the pixel scale EF with an RMSE of 0.149, much lower than that based on the heat energy balance model which has an RMSE of 0.220. Also, the EF bias between the DDTI model and the in situ measurements is 0.064, lower than the EF bias of the heat energy balance model

  3. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  4. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  5. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  6. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  7. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  8. Photocatalytical Properties and Theoretical Analysis of N, Cd-Codoped TiO2 Synthesized by Thermal Decomposition Method

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2012-01-01

    Full Text Available N, Cd-codoped TiO2 have been synthesized by thermal decomposition method. The products were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, UV-visible diffuse reflectance spectra (DRS, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET specific surface area analysis, respectively. The products represented good performance in photocatalytic degradation of methyl orange. The effect of the incorporation of N and Cd on electronic structure and optical properties of TiO2 was studied by first-principle calculations on the basis of density functional theory (DFT. The impurity states, introduced by N 2p or Cd 5d, lied between the valence band and the conduction band. Due to dopants, the band gap of N, Cd-codoped TiO2 became narrow. The electronic transition from the valence band to conduction band became easy, which could account for the observed photocatalytic performance of N, Cd-codoped TiO2. The theoretical analysis might provide a probable reference for the experimentally element-doped TiO2 synthesis.

  9. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  10. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  11. Integral Parameters of the Thermal Neutron Scattering Law

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1964-09-15

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M{sub 2}), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M{sub 2}, the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H{sub 2}O, is presented. Theoretical results for different scattering models of H{sub 2}O are compared with the measurements of integral experiments. A set of integral parameters for D{sub 2}O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H{sub 2}O and D{sub 2}O in the study of integral parameters has also been discussed.

  12. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    José Díaz-Álvarez

    2014-06-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRPs composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

  13. Thermal Condensate Structure and Cosmological Energy Density of the Universe

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.

  14. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  15. Ab-initio theoretical predictions of structural properties of semiconductors

    International Nuclear Information System (INIS)

    Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.

    1983-01-01

    Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt

  16. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  17. Structure of halo nuclei - overview of theoretical status

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.

    2003-01-01

    The past decade has seen an explosion of theoretical interest in the structure and dynamics of halo nuclei. Their basic defining features of weak binding and large radial extent due to the extended tail in their densities is now well-described within few-body models. This has led to impressive advances in few-body reaction theories which crucially take into account this few-body nature. This paper will review some of the recent advances in both structure and reaction studies, and will focus on the issues currently of interest along with possible directions for future advances. On the structure side, improvements to few-body models are being explored to take into account the role of antisymmetrization more accurately and the importance of core polarization and excitation. The successes of fully microscopic approaches will also be reviewed. (orig.)

  18. Simple models of the thermal structure of the Venusian ionosphere

    International Nuclear Information System (INIS)

    Whitten, R.C.; Knudsen, W.C.

    1980-01-01

    Analytical and numerical models of plasma temperatures in the Venusian ionosphere are proposed. The magnitudes of plasma thermal parameters are calculated using thermal-structure data obtained by the Pioneer Venus Orbiter. The simple models are found to be in good agreement with the more detailed models of thermal balance. Daytime and nighttime temperature data along with corresponding temperature profiles are provided

  19. A study on thermal ratcheting structure test of 316L test cylinder

    International Nuclear Information System (INIS)

    Lee, H. Y.; Kim, J. B.; Koo, G. H.

    2001-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to 550 .deg. C and the temperature differences of about 500 .deg. C. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests

  20. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    Science.gov (United States)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  1. Theoretical models for recombination in expanding gas

    International Nuclear Information System (INIS)

    Avron, Y.; Kahane, S.

    1978-09-01

    In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven

  2. Reduction of thermal conductivity in phononic nanomesh structures.

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  3. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  4. Experimental and theoretical evidence for the chaotic dynamics of complex structures

    International Nuclear Information System (INIS)

    Agop, M; Dimitriu, D G; Poll, E; Niculescu, O; Radu, V

    2013-01-01

    This paper presents the experimental results on the formation, dynamics and evolution towards chaos of complex space charge structures that emerge in front of a positively biased electrode immersed in a quiescent plasma. In certain experimental conditions, we managed to obtain the so-called multiple double layers (MDLs) with non-concentric configuration. Our experiments show that the interactions between each MDL's constituent entities are held responsible for the complex dynamics and eventually for its transition to chaos through cascades of spatio-temporal sub-harmonic bifurcations. Further, we build a theoretical model based on the fractal approximation (scale relativity theory) in order to reproduce the experimental results (plasma self-structuring and scenario of evolution to chaos). Comparing the experimental results with the theoretical ones, we observe a good correlation between them. (paper)

  5. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Science.gov (United States)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  6. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Azad, E. [Iranian Research Organization for Science and Technology (IROST), Advanced Materials and Renewable Energy Department, Tehran (Iran, Islamic Republic of)

    2011-12-15

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold. (orig.)

  7. Bounds of thermal stability of infinite cylindrical structures with non-uniform internal heat generation

    International Nuclear Information System (INIS)

    Gadalla, M.A.

    1992-01-01

    This paper presents an overview analyses of the thermal instability or thermal viability of infinite cylindrical structures with non-linear and non-uniform internal heat generation. The structure may be subjected to different and combined boundary conditions. An analytical solution is obtained for the generalized problem in spite of the non-linearity and the non-homogeneity of the source term. Four case studies with different boundary conditions are presented. The analyses show that the critical parameter for thermal stability may be though of as an altitude of surface below which the cylindrical structure will be thermally stable and performance worthy. The results also show that the bounds of thermal stability of a cylindrical structure system (solid or hollow) is eminently determined by the boundary conditions to which the system is subjected and can significantly alter the life-span of the structure

  8. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  9. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  10. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  11. Optimizing thermal shock resistance of layered refractories

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Jarno; Kuna, Meinhard [Institute of Mechanics and Fluid Dynamics, Technical University Bergakademie Freiberg, Lampadiusstrasse 4, 09599 Freiberg (Germany)

    2012-06-15

    Severe thermal shocks may cause critical thermal stresses and failure in refractories or ceramic materials. To increase the thermal shock resistance, layered material structures are suggested. In order to optimize properties of these alternative structures, thermo-mechanical simulations are required. In this study, a finite difference method (FDM) is used for solving the partial differential equation of heat conduction with spatially varying parameters. The optimization of the strip's thermal shock resistance is exemplarily done on a 10 layered strip subjected to constant temperature jump on the top surface. Each layer can be set with different porous Al{sub 2}O{sub 3} and MgO ceramics, whose material properties are theoretically determined. In this study, an improved optimization method is developed that consists of a combination and sequence of Monte Carlo simulations and evolution strategies to overcome certain disadvantages of both techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Theoretical description of the photopyroelectric technique in the slanted detector configuration for thermal diffusivity measurements in fluids

    International Nuclear Information System (INIS)

    Rojas-Trigos, J.B.; Marín, E.; Mansanares, A.M.; Cedeño, E.; Juárez-Gracia, G.; Calderón, A.

    2014-01-01

    Highlights: • A model for photopyroelectric thermal characterization of fluids is presented. • A slanted detector configuration is considered with a finite measurement cell. • The mean temperature distribution in the photopyroelectric detector, as function of the beam spot position, is calculated. • The influence of the excitation beam spot size, the thermal diffusion length and size of the sample is discussed. • The high lateral resolution of the method observed in experiments is explain. - Abstract: This work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface

  13. Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika [Department of Physics, Panjab University Chandigarh-160014, Chandigarh (India); Singh, Sukhwinder [Department of Physics, Govt. College for Girls, Ludhiana-141008, Ludhiana (India)

    2016-05-23

    The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.

  14. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space.

    Science.gov (United States)

    Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco

    2015-06-01

    The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.

  15. A theoretical inquiry into the question of W and Ta (100) atomic structures

    International Nuclear Information System (INIS)

    Treglia, G.; Spanjaard, D.

    1983-01-01

    In spite of the very large number of experiments (LEED, AES, UPS, MeV He + scattering, work function, FIM) carried out on W (100), no structural model consistent with all the data has been proposed yet: in particular, the question of the reconstruction thermally induced when the sample is cooled below room temperature remains a puzzling problem. Furthermore, from a theoretical point of view, no definitive answer has been given. Actually, either the mechanism invoked for the reconstruction is too weak, or some contributions are omitted or calculated without sufficient care. The surface energy of W (100) is computed taking into account the band term treated in the tight binding approximation, a pairwise repulsive potential of the Born-Mayer type and the electronic correlation contribution obtained from a perturbation treatment of the Hubbard model in the band limit. This energy is then fully minimised with respect to all coordinates of surface atoms, keeping all atoms neutral for any displace,ment. It is found that the unreconstructed surface is the most stable at T = 0 K and discuss this unexpected result. A similar calculation for Ta (100) leads to opposite conclusions. (author)

  16. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  17. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  18. Thermal structure and geodynamics of subduction zones

    Science.gov (United States)

    Wada, Ikuko

    The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid

  19. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  20. Experimental and theoretical investigations of structural and optical properties of CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, M., E-mail: chandramohan59@yahoo.co.in [Department of Physics, Park college of Engineering and Tecknology, Coimbatore-641 659 (India); Velumani, S., E-mail: vels64@yahoo.com [Centro de Investigacion y de Estudios Avanzados del I.P.N.(CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico D.F (Mexico); Venkatachalam, T., E-mail: atvenkatachalam@yahoo.com [Department of Physics, Coimbatore Institute of Technology, Coimbatore-14. India (India)

    2010-10-25

    Experimental and theoretical studies of the structural and optical properties of Copper Indium Gallium diSelenide thin films have been performed. Thin films of CIGS were deposited on glass substrates by chemical bath deposition. From the XRD results of the films, it is found that the films are of chalcopyrite type structure. The lattice parameter were determined as a = 5.72 A and c = 11.462 A. The optical properties of the thin films were carried out with the help of spectrophotometer. First principles density functional theory calculations of the band structure, density of states and effective masses of electrons and holes of the CIGS crystals have been done by computer simulations. The experimental data and theoretically calculated data have demonstrated good agreement.

  1. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  2. STRUCTURAL AND METHODICAL MODEL OF INCREASING THE LEVEL OF THEORETICAL TRAINING OF CADETS USING INFORMATION AND COMMUNICATION TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Vladislav V. Bulgakov

    2018-03-01

    Full Text Available Features of training in higher educational institutions of system of EMERCOM of Russia demand introduction of the new educational techniques and the technical means directed on intensification of educational process, providing an opportunity of preparation of cadets at any time in the independent mode and improving quality of their theoretical knowledge. The authors have developed a structural and methodological model of increasing the level of theoretical training of cadets using information and communication technologies. The proposed structural and methodological model that includes elements to stimulate and enhance cognitive activity, allows you to generate the trajectory of theoretical training of cadets for the entire period of study at the University, to organize a systematic independent work, objective, current and final control of theoretical knowledge. The structural and methodological model for improving the level of theoretical training consists of three main elements: the base of theoretical questions, functional modules "teacher" and "cadet". The basis of the structural and methodological model of increasing the level of theoretical training of cadets is the base of theoretical issues, developed in all disciplines specialty 20.05.01 – fire safety. The functional module "teacher" allows you to create theoretical questions of various kinds, edit questions and delete them from the database if necessary, as well as create tests and monitor their implementation. The functional module "cadet" provides ample opportunities for theoretical training through independent work, testing for current and final control, the implementation of the game form of training in the form of a duel, as well as for the formation of the results of the cadets in the form of statistics and rankings. Structural and methodical model of increasing the level of theoretical training of cadets is implemented in practice in the form of a multi-level automated system

  3. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  4. Structure and thermal properties of nanospheres obtained by ethoxy silanes copolymerization

    International Nuclear Information System (INIS)

    Pedroso, Marcos A.S.; Mothe, Cheila G.; Dias, Marcos L.

    2001-01-01

    Thermal and structural characterization of organophylic nano spherical copolymers of tetra ethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) or dimethyldiethoxysilane (DMDEOS) obtained by sol-gel reaction terminated by trimethylchlorosilane are described. 29 Si NMR, wide angle X-ray scattering (WAXS) and thermal analysis (TG/DTG and DTA) were employed. Due to the high reactivity of TEOS, the copolymers are silica-silicon hybrids showing bilayer structure where silica constitutes a core and a alkyl-rich chemical structure constitutes the external layer. The copolymers present higher mass lost at high temperatures than TEOS homopolymer. (author)

  5. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  6. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    Science.gov (United States)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  7. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  8. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  9. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    Science.gov (United States)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  10. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    International Nuclear Information System (INIS)

    Kawai, E; Umeno, Y

    2017-01-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses. (paper)

  11. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  12. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  13. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  14. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    International Nuclear Information System (INIS)

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A.

    1994-01-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken

  15. Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design

    International Nuclear Information System (INIS)

    Boudjemai, A.; Mankour, A.; Salem, H.; Amri, R.; Hocine, R.; Chouchaoui, B.

    2014-01-01

    Mechanical joints and fasteners are essential elements in joining structural components in mechanical systems. The thermal coupling effect between the adjacent inserts depends to a great extent on the thermal properties of the inserts and the clearance. In this paper the Finite-Element Method (FEM) has been employed to study the insert thermal coupling behaviour of the hexagonal honeycomb panel. Fully coupled thermal analysis was conducted in order to predict thermal coupling phenomena caused by the adjacent inserts under extreme thermal loading conditions. Detailed finite elements models for a honeycomb panel are developed in this study including the insert joints. New approach of the adhesive joint is modelled. Thermal simulations showed that the adjacent inserts cause thermal interference and the adjacent inserts are highly sensitive to the effect of high temperatures. The clearance and thermal interference between the adjacent inserts have an important influence on the satellite equipments (such as the electronics box), which can cause the satellite equipments failures. The results of the model presented in this analysis are significant in the preliminary satellites structural dimensioning which present an effective approach of development by reducing the cost and the time of analysis. - Highlights: •In this work we perform thermal analysis of honeycomb plates using finite element method. •Detailed finite elements models for honeycomb panel are developed in this study including the insert joints. •New approach of the adhesive joint is modelled. •The adjacent inserts cause the thermal interference. •We conclude that this work will help in the analysis and the design of complex satellite structures

  16. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    Science.gov (United States)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  17. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Administrator

    2013-07-28

    Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.

  18. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  19. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  20. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    Science.gov (United States)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  1. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  2. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  4. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...

  5. Theoretical study of structure of electric field in helical toroidal plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2001-06-01

    A set of transport equations is analyzed, including the bifurcation of the electric field. The structure of the electric field is studied by use of the theoretical model for the anomalous transport diffusivities. The steep gradient of the electric field is obtained at the electric domain. The suppression of the anomalous transport diffusivity is studied in the presence of the strong shear of the electric field. The hard transition with the multiple ambipolar solutions is examined in the structure of the radial electric field. The details of the structure of the electric domain interface are investigated. (author)

  6. R and D on thermal hydraulics of core and core-bottom structure

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hino, Ryutaro; Kunitomi, Kazuhiko; Takase, Kazuyuki; Ioka, Ikuo; Maruyama, So

    2004-01-01

    Thermal hydraulic tests on the core and core-bottom structure of the high-temperature engineering test reactor (HTTR) were carried out with the helium engineering demonstration loop (HENDEL) under simulated reactor operating conditions. The HENDEL was composed of helium gas circulation loops, mother sections (M 1 and M 2 ) and adaptor section (A), and two test sections, i.e. the fuel stack test section (T 1 ) and in-core structure test section (T 2 ). In the T 1 test section simulating a fuel stack of the core, thermal and hydraulic performances of helium gas flowing through a fuel block were investigated for thermal design of the HTTR core. In the T 2 test section simulating the core-bottom structure, demonstration tests were performed to verify the structural integrity of graphite and metal components, seal performance against helium gas leakage among the graphite permanent blocks and thermal mixing performance of helium gas. The above test results in the T 1 and T 2 test sections were applied to the detailed design and licensing works of the HTTR and the HENDEL-loop was dismantled in 1999

  7. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  8. Theoretical study of a melting curve for tin

    International Nuclear Information System (INIS)

    Feng, Xi; Ling-Cang, Cai

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)

  9. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...... finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...

  10. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  11. Thermal induced structural transformation of bimetallic AuPd nanoparticles

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2014-01-01

    High Angle Annular Dark Field Scanning Transmission Electron Microscope (HAADF-STEM) has been employed for the study of thermal effects of structural transformation of AuPd nanoparticles produced by physical vapour deposition. Depending on the duration of annealing at a temperature of 500 K, atomic resolved imaging analysis reveals the formation of various structure morphologies from the ordered L1 2 superlattice to the core-shell structure. The effects of Pd-oxides are also discussed

  12. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  13. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  14. The effects of local blowing perturbations on thermal turbulent structures

    Science.gov (United States)

    Liu, Can; Araya, Guillermo; Leonardi, Stefano; Castillo, Luciano

    2013-11-01

    Blowing is an active flow control technique with several industrial applications, particularly in film cooling of turbine blades. In the past, the effects of localized blowing have been mostly analyzed on the velocity field and its influence of the flow parameters and turbulence structures (Krogstad and Kourakine, 2000). However, little literature can be found on the effects of blowing on the coherent thermal structures. In the present study, an incompressible turbulent channel flow with given steady blowing at the wall is simulated via DNS by means of five spanwise holes. The Reynolds number based on the friction velocity and half channel height is approximately Re = 394 and the molecular Prandtl number is Pr = 0.71. Temperature is considered a passive scalar with isothermal conditions at the wall. Different blowing amplitudes and perturbing angles (with respect to the streamwise direction) are applied to find out their effects on the turbulent thermal structures by means of a two-point correlation analysis. In addition, local reduction and increase of drag are connected to vorticity. The corresponding influence of perturbing amplitudes and angles on the energy budget of thermal fluctuations and turbulent Prandtl numbers are also shown and discussed.

  15. Evaluating in situ thermal transmittance of green buildings masonries—A case study

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2014-01-01

    The paper presents the results of a measurement campaign of in situ thermal transmittance, performed in some buildings in the Umbria Region (Italy, designed implementing bio-architecture solutions. The analyzed walls were previously monitored with thermographic surveys in order to assess the correct application of the sensors. Results of the investigation show that in situ thermal transmittance measurements and theoretical calculated U-value are not in perfect agreement. The mismatch becomes important for monolithic structures such as walls made of thermal blocks without insulating layers.

  16. Theoretical-experimental study of the non-thermal effects of the polarized laser radiation in living tissues

    International Nuclear Information System (INIS)

    Ribeiro, M.S.

    1991-01-01

    In the present research we had as a fundamental objective to analyse the non-thermal effects of the laser polarized light in biological tissues. These effects were performed with low power laser output. The theoretical procedure consisted in looking for a simple model which connects the effect of light polarized with microscopically rough tissues using well established physical concepts. Experimentally, we created artificial wounds on the back of animals using liquid nitrogen (this method was chosen because it does not interfere in the biochemistry of the animal tissue). For the wound irradiation we have utilized a He-Ne attached to an optical system. (author)

  17. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cihan, Ebru [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Özoğul, Alper [Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey); Baykara, Mehmet Z., E-mail: mehmet.baykara@bilkent.edu.tr [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey)

    2015-11-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  18. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  19. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    Science.gov (United States)

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  1. A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    Science.gov (United States)

    Zheng, Z. M.; Wang, B.

    2018-06-01

    Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

  2. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  3. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  4. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  5. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  6. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs

    Directory of Open Access Journals (Sweden)

    Lila Bouëssel du Bourg

    2014-12-01

    Full Text Available Theoretical studies on the experimental feasibility of hypothetical Zeolitic Imidazolate Frameworks (ZIFs have focused so far on relative energy of various polymorphs by energy minimization at the quantum chemical level. We present here a systematic study of stability of 18 ZIFs as a function of temperature and pressure by molecular dynamics simulations. This approach allows us to better understand the limited stability of some experimental structures upon solvent or guest removal. We also find that many of the hypothetical ZIFs proposed in the literature are not stable at room temperature. Mechanical and thermal stability criteria thus need to be considered for the prediction of new MOF structures. Finally, we predict a variety of thermal expansion behavior for ZIFs as a function of framework topology, with some materials showing large negative volume thermal expansion.

  7. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    Science.gov (United States)

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  8. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    Science.gov (United States)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  9. Radiators in hydronic heating installations structure, selection and thermal characteristics

    CERN Document Server

    Muniak, Damian Piotr

    2017-01-01

    This book addresses key design and computational issues related to radiators in hydronic heating installations. A historical outline is included to highlight the evolution of radiators and heating technologies. Further, the book includes a chapter on thermal comfort, which is the decisive factor in selecting the ideal heating system and radiator type. The majority of the book is devoted to an extensive discussion of the types and kinds of radiators currently in use, and to identifying the reasons for the remarkable diversity of design solutions. The differences between the solutions are also addressed, both in terms of the effects of operation and of the thermal comfort that needs to be ensured. The book then compares the advantages and disadvantages of each solution, as well as its potential applications. A detailed discussion, supported by an extensive theoretical and mathematical analysis, is presented of the computational relations that are used in selecting the radiator type. The dynamics of radiator hea...

  10. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  11. Thermal changes of the environment and their influence on reinforced concrete structures

    Science.gov (United States)

    Fojtik, R.; Cajka, R.

    2018-04-01

    The thermal expansion of concrete elements concerns both monolithic and prefabricated structures. Inappropriate design of dilation segments may cause minor but even larger failures. Critical environment factors are temperature-changing operations, such as unheated underground garages, where temperature fluctuations may occur depending on the exterior conditions. This paper numerically and experimentally analyses the thermal deformation of selected girders in the underground garages and the consequent structure failures, their causes, possible prevention and appropriate remediation.

  12. Thermally Conductive Structural 2D Composite Materials

    Science.gov (United States)

    2012-08-14

    Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and

  13. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  14. 3D structure and conductive thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  15. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  16. Information-theoretic equilibrium and observable thermalization

    OpenAIRE

    Anza, Fabio; Vedral, Vlatko

    2015-01-01

    To understand under which conditions thermodynamics emerges from the microscopic dynamics is the ultimate goal of statistical mechanics. Despite the fact that the theory is more than 100 years old, we are still discussing its foundations and its regime of applicability. A point of crucial importance is the definition of the notion of thermal equilibrium, which is given as the state that maximises the von Neumann entropy. Here we argue that it is necessary to propose a new way of describing th...

  17. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  18. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  19. Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach

    International Nuclear Information System (INIS)

    Kantar, Ersin; Keskin, Mustafa

    2014-01-01

    We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found

  20. Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2014-01-15

    We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found.

  1. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  2. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  3. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors

    Directory of Open Access Journals (Sweden)

    Vinet Jean-Yves

    2009-07-01

    Full Text Available The sensitivity of present ground-based gravitational wave antennas is too low to detect many events per year. It has, therefore, been planned for years to build advanced detectors allowing actual astrophysical observations and investigations. In such advanced detectors, one major issue is to increase the laser power in order to reduce shot noise. However, this is useless if the thermal noise remains at the current level in the 100 Hz spectral region, where mirrors are the main contributors. Moreover, increasing the laser power gives rise to various spurious thermal effects in the same mirrors. The main goal of the present study is to discuss these issues versus the transverse structure of the readout beam, in order to allow comparison. A number of theoretical studies and experiments have been carried out, regarding thermal noise and thermal effects. We do not discuss experimental problems, but rather focus on some theoretical results in this context about arbitrary order Laguerre–Gauss beams, and other “exotic” beams.

  4. Study on the Thermal Resistance of Multi-chip Module High Power LED Packaging Heat Dissipation System

    Directory of Open Access Journals (Sweden)

    Kailin Pan

    2014-10-01

    Full Text Available Thermal resistance is a key technical index which indicates the thermal management of multi-chip module high power LED (MCM-LED packaging heat dissipation system. In this paper, the prototype structure of MCM-LED packaging heat dissipation system is proposed to study the reliable thermal resistance calculation method. In order to analyze the total thermal resistance of the MCM-LED packaging heat dissipation system, three kinds of thermal resistance calculation method including theoretical calculation, experimental testing and finite element simulation are developed respectively. Firstly, based on the thermal resistance network model and the principle of steady state heat transfer, the theoretical value of total thermal resistance is 6.111 K/W through sum of the thermal resistance of every material layer in the major direction of heat flow. Secondly, the thermal resistance experiment is carried out by T3Ster to obtain the experimental result of total thermal resistance, and the value is 6.729 K/W. Thirdly, a three-dimensional finite element model of MCM-LED packaging heat dissipation system is established, and the junction temperature experiment is also performed to calculated the finite element simulated result of total thermal resistance, the value is 6.99 K/W. Finally, by comparing the error of all the three kinds of result, the error of total thermal resistance between the theoretical value and experimental result is 9.2 %, and the error of total thermal resistance between the experimental result and finite element simulation is only about -3.9 %, meanwhile, the main reason of each error is discussed respectively.

  5. Information–theoretic implications of quantum causal structures

    DEFF Research Database (Denmark)

    Chaves, Rafael; Majenz, Christian; Gross, David

    2015-01-01

    . However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information–theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well...... as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture......It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution...

  6. Diffusion in liquids a theoretical and experimental study

    CERN Document Server

    Tyrrell, H J V

    1984-01-01

    Diffusion in Liquids: A Theoretical and Experimental Study aims to discuss the principles, applications, and advances in the field of diffusion, thermal diffusion, and thermal conduction in liquid systems. The book covers topics such as the principles of non-equilibrium thermodynamics; diffusion in binary and multicompetent systems; and experimental methods of studying diffusion processes in liquids. Also covered in the book are topics such as the theoretical interpretations of diffusion coefficients; hydrodynamic and kinetic theories; and diffusion in electrolyte systems. The text is recommen

  7. Test and analysis of thermal ratcheting deformation for 316L stainless steel cylindrical structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Lee, Jae Han

    2002-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 550 degree C with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79 mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests

  8. Survey of evaluation methods for thermal striping in FBR structures

    International Nuclear Information System (INIS)

    Miura, Naoki; Nitta, Akito; Take, Kohji

    1988-01-01

    In the upper core structures or the sodium mixing tee of Fast Breeder Reactors, sodium mixing streams which are at different temperatures produce rapid temperature fluctuations, namely 'thermal striping', upon component surfaces, and it is apprehended that the high-cycle thermal fatigue causes the crack initiation and propagation. The thermal striping is one of the factors which is considered in FBR component design, however, the standard evaluation method has not built up yet because of the intricacy of that mechanism, the difficulty of an actual proof, the lack of data, and so on. In this report, it is intended to survey of the datails and the present situation of the evaluation method of crack initiation and propagation due to thermal striping, and study the appropriate method which will be made use of the rationalization of design. So it is ascertained that the method which use a quantitative prediction of crack propagation is optimum to evaluate the thermal striping phenomenon. (author)

  9. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  10. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  11. Structural adjustment programmes on the African continent : the theoretical foundations of IMF/World Bank reform policies

    NARCIS (Netherlands)

    Meilink, H.A.

    2003-01-01

    Since the early 1980s the majority of countries in sub-Saharan Africa embarked on the implementation of IMF/World Bank designed 'structural adjustment programmes' (SAPs). This paper examines the theoretical underpinnings of the SAPs. It shows that IMF policies are based on a theoretical framework

  12. Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications

    Directory of Open Access Journals (Sweden)

    Jessica Manzi

    2015-12-01

    Full Text Available Olivine-type lithium metal phosphates (LiMPO4 are promising cathode materials for lithium-ion batteries. LiFePO4 (LFP is commonly used in commercial Li-ion cells but the Fe3+/Fe2+ couple can be usefully substituted with Mn3+/Mn2+, Co3+/Co2+, or Ni3+/Ni2+, in order to obtain higher redox potentials. In this communication we report a systematic analysis of the synthesis condition of LiCoPO4 (LCP using a solvo-thermal route at low temperature, the latter being a valuable candidate to overcome the theoretical performances of LFP. In fact, LCP shows higher working potential (4.8 V vs. 3.6 V compared to LFP and similar theoretical capacity (167 mAh·g−1. Our goal is to show the effect of the synthesis condition of the ability of LCP to reversibly cycle lithium in electrochemical cells. LCP samples have been prepared through a solvo-thermal method in aqueous-non aqueous solvent blends. Different Co2+ salts have been used to study the effect of the anion on the crystal growth as well as the effect of solution acidity, temperature and reaction time. Materials properties have been characterized by Fast-Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopies. The correlation between structure/morphology and electrochemical performances has been investigated by galvanostatic charge-discharge cycles.

  13. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

    Science.gov (United States)

    Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    Summary This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695

  14. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  15. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  16. Thermal-structural analysis for ITER in-wall shielding block

    International Nuclear Information System (INIS)

    Hao Junchuan; Song Yuntao; Wu Weiyue; Du Shuangsong; Wang, X.; Ioki, K.

    2012-01-01

    Highlights: ► IWS blocks shall withstand various types of mechanical loads including EM loads, inertial loads and thermal loads. ► Due to the complicated geometry, the finite element method is the suitable tool to solve the problem. ► Contact element has been selected to simulate the friction between the different components. ► At baking phase, secondary stresses due to preloading and temperature difference predominate in the total stress. ► At plasma operation phase, secondary stresses due to preloading and thermal loads were deducted from the total stresses. - Abstract: In order to verify the design strength of the in-wall shielding (IWS) blocks of the ITER, thermal-structural analyses of one IWS block under vacuum vessel (VV) baking and plasma operation conditions have been respectively performed with finite element (FE) method. Among the complicated operation scenarios of the ITER, two critical types of combined loads required by the load specification of IWS were applied on the shielding block. The stress of the block is judged by American Society of Mechanical Engineers (ASME) criterion. Results show that the structure of this block has enough safety margin, and it also supplies detailed information of the stress distribution in concerned region under certain loads.

  17. USING OF THERMAL STRUCTURE MAPS FOR VEGETATION MAPPING (CASE OF ALTACHEYSKY WILDLIFE AREA

    Directory of Open Access Journals (Sweden)

    L. A. Abramova

    2014-01-01

    Full Text Available Thermal infrared imagery contains considerable amount of qualitative information about ground objects and landscapes. In spite of it, this type of data is often used to derive quantitative information such as land or sea surface temperatures. This paper describes the examination of Altacheysky wildlife area situated in the southern part of Buryatia Republic, Mukhorshibirsky district based on Landsat imagery and ground observations. Ground observations were led to study the vegetation cover of the area. Landsat imagery were used to make multitemporal thermal infrared image combined of 7 ETM+ scenes and to make multispectral image combined of different zones of a OLI scene. Both images were classified. The multitemporal thermal infrared classification result was used to compose thermal structure map of the wildlife area. Comparison of the map, multispectral image classification result and ground observations data reveals that thermal structure map describes better the particularities of Altacheysky wildlife area vegetation cover.

  18. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  19. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  20. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures

    Science.gov (United States)

    Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu

    2018-02-01

    Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.

  1. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    International Nuclear Information System (INIS)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds

  2. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  3. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    Science.gov (United States)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  4. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  5. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  6. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  7. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  8. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  9. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  10. Active Radiative Thermal Switching with Graphene Plasmon Resonators.

    Science.gov (United States)

    Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A

    2018-03-27

    We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.

  11. Atomic and electronic structure of surfaces theoretical foundations

    CERN Document Server

    Lannoo, Michel

    1991-01-01

    Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

  12. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  13. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2012-01-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  14. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2013-04-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  15. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The thermal Virasoro formula

    International Nuclear Information System (INIS)

    Fujisaki, Haruo

    1991-01-01

    The thermal stability of non-planar duality is described at any finite temperature through the new-fashioned four-tachyon tree amplitude of closed bosonic thermal strings within the dispersion theoretic approach based upon the thermofield dynamics. (author)

  17. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    Science.gov (United States)

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity

  18. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  19. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  20. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    International Nuclear Information System (INIS)

    Kaltsoyannis, Nikolas; Hay, P.J.; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-01-01

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833, a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic structure of actinide systems have developed in concert with the experimental

  1. Theoretical investigation on structural and electronic properties of PdO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, E.; Sundareswari, M., E-mail: sund-uday@yahoo.co.in, E-mail: sundare65@gmail.com; Jayalakshmi, D. S.; Manjula, M. [Department of Physics, Sathyabama University, Jeppiaar Nagar, OMR, Chennai-600119 (India)

    2015-06-24

    Theoretical studies on rutile type Palladium Dioxide were carried out with the aim of analyzing structural and electronic properties at ambient condition using the first principle calculation based on density functional theory. Within the framework of density functional theory, we used full potential linearized augmented plane wave method(FP-LAPW) in Wien 2k code. The exchange and correlation effect is treated with generalized gradient approximation (GGA) using the Perdew, Burke and Eruzeroff form. The charge density plots, density of states and band structure are plotted and discussed.

  2. Determination of dimensions and theoretical evaluation of the performance of electron accelerator structures

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Setrao, V.A.

    1987-03-01

    A method to calculate the dimensions of a constant gradient disk-loaded structure of a linear accelerator is presented. The method is based on a description of the RF power flux along the structure axis and involves a particular dispersion that includes details of the iris geometry. The dimensions of the v p = c structure and of the buncher section of the CURUMIM linear accelerator, have been determined as an application of the above method. The theoretical performance of the accelerating structure has been evaluated for electron pulse widths ranging from 10 ns to 2 μs and for peak currents up to 10 A. (author) [pt

  3. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    Science.gov (United States)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  4. Spectroscopic studies, theoretical models and structural characterization. II. Synthesis and X-ray powder diffraction of the elpasolites Cs2NaSmCl6

    International Nuclear Information System (INIS)

    Poblete, V.; Acevedo, R.

    1998-01-01

    In this research work, we report the synthesis and structural characterization of the stoichiometric elpasolite Cs 2 NaSmCl 6 . The synthesis was performed under a solid state reaction in nitrogen atmosphere from the chemicals CsCl, NaCl and SmCl 3 weighted stoichiometrically. The best possible crystallization temperature was obtained using thermal studies of the type DTA/TGA (the thermal treatment was allowed to proceed for 2.5 hours at 755 Centigrade, showing a temperature gradient of 10 Centigrade/minute). The structural characterization by powder X-ray diffraction (XDR) indicates that this elpasolite belongs to the Fm 3m (O h 5 ) space group and the optimized structural parameters are as follows: a 0 = 10.8342 Armstrong, V 1271.72 Armstrong 3 , Z=4, M=651.88, D x =3.406 y D exp=3.41 ± 0.01. The profile refinement, using the Rietveld method, allowed us to fit the experimental and the calculated intensities of a total of 32 lines. The above result indicates that the condition R exp 2+ + 3Cl -1 and the counter ions filling the octahedral holes, in full agreement with anti fluorite type crystal. According to the above description, these elpasolite adopt the form (M 1/3 □ 2/3 ) 4 X 2 , where M labels the central metal, X stand for the chlorine ions and □ represent the vacancies, which may accommodate a significant amount of defects without collapsing. This experimental study provides the necessary input to test theoretical models against experimental data. (Author)

  5. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  6. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  7. Thermal Transport in Phosphorene.

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-03-01

    Phosphorene, a novel elemental 2D semiconductor, possesses fascinating chemical and physical properties which are distinctively different from other 2D materials. The rapidly growing applications of phosphorene in nano/optoelectronics and thermoelectrics call for comprehensive studies of thermal transport properties. In this Review, based on the theoretical and experimental progresses, the thermal transport properties of single-layer phosphorene, multilayer phosphorene (nanofilms), and bulk black phosphorus are summarized to give a general view of the overall thermal conductivity trend from single-layer to bulk form. The mechanism underlying the discrepancy in the reported thermal conductivity of phosphorene is discussed by reviewing the effect of different functionals and cutoff distances on the thermal transport evaluations. This Review then provides fundamental insight into the thermal transport in phosphorene by reviewing the role of resonant bonding in driving giant phonon anharmonicity and long-range interactions. In addition, the extrinsic thermal conductivity of phosphorene is reviewed by discussing the effects of strain and substrate, together with phosphorene based heterostructures and nanoribbons. This Review summarizes the progress of thermal transport in phosphorene from both theoretical calculations and experimental measurements, which would be of significance to the design and development of efficient phosphorene based nanoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct photons and thermal dileptons: A theoretical review

    OpenAIRE

    Gale, Charles

    2001-01-01

    We discuss the measurement of electromagnetic radiation produced in heavy ion collisions at SPS energies. We review the low invariant mass dilepton sector, the real photon data, and the spectra of intermediate mass dimuons. Along with this, we discuss the theoretical interpretations of those observables.

  9. Simulation of the structure and calculation of the thermal conductivity of napped composites

    International Nuclear Information System (INIS)

    Berezko, S.N.; Zarichnyak, Yu.P.; Korenev, P.A.

    1995-01-01

    We propose a model of the structure of a napped composite. Characteristic trends in the structure of the material are delineated, and the effective thermal conductivity of the model structure is calculated for these trends with allowance for conduction and radiation

  10. Thermal history of the universe after inflation

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)

    2016-06-21

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  11. Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate

    Science.gov (United States)

    Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman

    2011-08-01

    Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.

  12. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  13. Coupled heat conduction and thermal stress formulation using explicit integration

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kulak, R.F.

    1982-06-01

    The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data

  14. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  15. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    Science.gov (United States)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  16. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  17. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  18. Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations

    International Nuclear Information System (INIS)

    Atzberger, Paul J.

    2011-01-01

    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.

  19. Preparation, structure and thermal stability of Cu/LDPE nanocomposites

    International Nuclear Information System (INIS)

    Xia Xianping; Cai Shuizhou; Xie Changsheng

    2006-01-01

    Copper/low-density-polyethylene (Cu/LDPE) nanocomposites have been prepared using a melt-blending technique in a single-screw extruder. Their structure and thermal characteristics are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and SEM-EDS Cu-mapping show that the nanocomposites are a hybrid of the polymer and the copper nanoparticles, and the copper nanoparticles aggregates were distributed uniformly in general. The results also show that the nanocomposites and the base resin, the pure LDPE, have a different crystalline structure and the same oriented characteristics owing to the presence of copper nanoparticles and the same cooling condition. The results of DSC show that the incorporation of copper nanoparticles can decrease the melting temperatures but increase the crystallization temperatures, and can lower the crystallinity degree of the matrix of the composites. The results of TGA show that the presence of copper nanoparticles can improve the thermal stability of the nanocomposites, a maximum increment of 18 deg. C is obtained comparing with the pure LDPE in this experiment. The results of TGA also show that the influence of the incorporation of the copper nanoparticles on the thermal stability of the Cu/LDPE nanocomposites is different from that of the non-metal nanoparticles on the polymer/non-metal nanocomposites and the copper microparticles on the Cu/LDPE microcomposites. The increase of the thermal stability of the Cu/LDPE nanocomposites will decrease when the content of the copper nanoparticles is more than 2 wt.%. The difference might be caused by the fact that the activity of the metal nanoparticles is much more higher than that of the non-metal nanoparticles, and the different size effect the different copper particles has

  20. Theoretical and Empirical Review of Asset Pricing Models: A Structural Synthesis

    Directory of Open Access Journals (Sweden)

    Saban Celik

    2012-01-01

    Full Text Available The purpose of this paper is to give a comprehensive theoretical review devoted to asset pricing models by emphasizing static and dynamic versions in the line with their empirical investigations. A considerable amount of financial economics literature devoted to the concept of asset pricing and their implications. The main task of asset pricing model can be seen as the way to evaluate the present value of the pay offs or cash flows discounted for risk and time lags. The difficulty coming from discounting process is that the relevant factors that affect the pay offs vary through the time whereas the theoretical framework is still useful to incorporate the changing factors into an asset pricing models. This paper fills the gap in literature by giving a comprehensive review of the models and evaluating the historical stream of empirical investigations in the form of structural empirical review.

  1. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    Science.gov (United States)

    Huang, Wenwen

    Spider silk is a remarkable natural block copolymer, which offers a unique combination of low density, excellent mechanical properties, and thermal stability over a wide range of temperature, along with biocompatibility and biodegrability. The dragline silk of Nephila clavipes, is one of the most well understood and the best characterized spider silk, in which alanine-rich hydrophobic blocks and glycine-rich hydrophilic blocks are linked together generating a functional block copolymer with potential uses in biomedical applications such as guided tissue repair and drug delivery. To provide further insight into the relationships among peptide amino acid sequence, block length, and physical properties, in this thesis, we studied synthetic proteins inspired by the genetic sequences found in spider dragline silks, and used these bioengineered spider silk block copolymers to study thermal, structural and morphological features. To obtain a fuller understanding of the thermal dynamic properties of these novel materials, we use a model to calculate the heat capacity of spider silk block copolymer in the solid or liquid state, below or above the glass transition temperature, respectively. We characterize the thermal phase transitions by temperature modulated differential scanning calorimetry (TMDSC) and thermogravimetric analysis (TGA). We also determined the crystallinity by TMDSC and compared the result with Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). To understand the protein-water interactions with respect to the protein amino acid sequence, we also modeled the specific reversing heat capacity of the protein-water system, Cp(T), based on the vibrational, rotational and translational motions of protein amino acid residues and water molecules. Advanced thermal analysis methods using TMDSC and TGA show two glass transitions were observed in all samples during heating. The low temperature glass transition, Tg(1), is related to

  2. Synthesis of {gamma}-aluminium oxynitride spinel using thermal plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Pravuram; Singh, S. K.; Sinha, S. P. [School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India); Advanced Materials Technology Department, IMMT (CSIR), Bhubaneswar 751013 (India); School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India)

    2012-07-23

    The synthesis technique of {gamma}-AlON in NH{sub 3} plasma using extended arc thermal plasma reactor have been reported. Dense cubic AlON spinel was synthesized in liquid state by fusion of mixture of Al{sub 2}O{sub 3} and AlN powder under thermal plasma. The density of the fused AlON was found to be 3.64 g/cc which is 98.11% of theoretical value. The formation of AlON was confirmed from XRD and Raman studies. Well faceted structure of plasma fused AlON was observed in FE-SEM micrograph.

  3. Thermal analysis of reservoir structure versus capillary pumped loop

    International Nuclear Information System (INIS)

    Lin Hungwen; Lin Weikeng

    2009-01-01

    Capillary pumped loop (CPL) was already used in man-made satellites and space aircrafts with proven heat control technology. However, small-sized CPL had not yet made a breakthrough application in electronic components owing to poor heat-absorption capacity of evaporator structure. Hence, a small-scale CPL was designed for server in this research. The evaporator was designed with a circular groove and embedded with a high density polyethylene (HDPE) as a capillary structure to absorb working fluid. The influence of reservoir upon thermal resistance was also analyzed. The experimental results showed that, under a filling level of 72%, CPL with optimized design could remove 110 W energy while maintaining its temperature at 80 deg. C. Comparison of CPL with/without reservoir, the loop thermal resistance R th,loop was reduced by 0.14 deg. C/W and was able to increase the stability of CPL, too, the results confirmed that reservoir could enhance CPL performance and this technology will probably find application in electronics cooling for electronic devices

  4. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  5. Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM

    Science.gov (United States)

    Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa

    2018-02-01

    Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.

  6. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    Science.gov (United States)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  7. POST-CASKETSS: a graphic computer program for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-12-01

    A computer program POST-CASKETSS has been developed for the purpose of calculation result representation for thermal and structural analysis computer code system CASKETSS (CASKETSS means a modular code system for CASK Evaluation code system for Thermal and Structural Safety). Main features of POST-CASKETSS are as follows; (1) Function of calculation result representation for thermal and structural analysis computer programs is provided in the program. (2) Two and three dimensional graphic representation for finite element and finite difference programs are available in the program. (3) The capacity of graphics of geometry, temperature contor and temperature-time curve are provided for thermal analysis. (4) The capacity of graphics of geometry, deformation, stress contor, displacement-time curve, velocity-time curve, acceleration-time curve, stress-time curve, force-time curve and moment-time curve are provided for structural analysis. (5) This computer program operates both the time shearing system and the batch system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  8. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  9. Statistics of turbulent structures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej

    2005-01-01

    Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  10. Entropy Generation in Thermal Radiative Loading of Structures with Distinct Heaters

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-09-01

    Full Text Available Thermal loading by radiant heaters is used in building heating and hot structure design applications. In this research, characteristics of the thermal radiative heating of an enclosure by a distinct heater are investigated from the second law of thermodynamics point of view. The governing equations of conservation of mass, momentum, and energy (fluid and solid are solved by the finite volume method and the semi-implicit method for pressure linked equations (SIMPLE algorithm. Radiant heaters are modeled by constant heat flux elements, and the lower wall is held at a constant temperature while the other boundaries are adiabatic. The thermal conductivity and viscosity of the fluid are temperature-dependent, which leads to complex partial differential equations with nonlinear coefficients. The parameter study is done based on the amount of thermal load (presented by heating number as well as geometrical configuration parameters, such as the aspect ratio of the enclosure and the radiant heater number. The results present the effect of thermal and geometrical parameters on entropy generation and the distribution field. Furthermore, the effect of thermal radiative heating on both of the components of entropy generation (viscous dissipation and heat dissipation is investigated.

  11. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Sarojini, B. K. [Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Somashekar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore - 570006 (India)

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  12. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  13. Role of magnesium in ZnS structure: Experimental and theoretical investigation

    Directory of Open Access Journals (Sweden)

    M. Y. Shahid

    2016-02-01

    Full Text Available Wide band gap semiconductor materials are extending significant applications in electronics and optoelectronics industry. They are showing continued advancement in ultraviolet to infrared LEDs and laser diodes. Likewise the band gap tunability of ZnS with intentional impurities such as Mg and Mn are found useful for optoelectronic devices. Information from literature indicates slight blue shift in the band gap energy of ZnS by Mg doping but nevertheless, we report a reasonable red shift (3.48 eV/356 nm to 2.58 eV/480 nm in ZnS band gap energy in Mg-ZnS structure. Theoretical model based on first principle theory using local density approximation revealed consistent results on Mg-ZnS structure. Similarly, structural, morphological, optical and electrical properties of the as grown Mg-ZnS were studied by XRD, SEM, FTIR, EDS, UV-Vis Spectrophotometer and Hall measurement techniques.

  14. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  15. Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method

    Science.gov (United States)

    Singh, R.; Mellinger, A.

    2015-04-01

    Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.

  16. Experimental and theoretical investigations of soil-structure interaction effect at HDR-reactor-building

    International Nuclear Information System (INIS)

    Wassermann, K.

    1983-01-01

    Full-scale dynamic testing on intermediate and high levels was performed at the Heissdampfreaktor (HDR) in 1979. Various types of dynamic forces were applied and response of the reactor containment structure and internal components was measured. Precalculations of dynamic behaviour and response of the structure were made through different mathematical models for the structure and the underlying soil. Soil-Structure Interaction effects are investigated and different theoretical models are compared with experimental results. In each model, the soil is represented by springs attached to the structural model. Stiffnesses of springs are calculated by different finite-element idealizations and half-space approximations. Eigenfrequencies and damping values related to interaction effects (translation, rocking, torsion) are identified from test results. The comparisons of dynamic characteristic of the soil-structure system between precalculations and test results show good agreement in general. (orig.)

  17. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    Science.gov (United States)

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  18. Mesoscopic structure prediction of nanoparticle assembly and coassembly: Theoretical foundation

    KAUST Repository

    Hur, Kahyun

    2010-01-01

    In this work, we present a theoretical framework that unifies polymer field theory and density functional theory in order to efficiently predict ordered nanostructure formation of systems having considerable complexity in terms of molecular structures and interactions. We validate our approach by comparing its predictions with previous simulation results for model systems. We illustrate the flexibility of our approach by applying it to hybrid systems composed of block copolymers and ligand coated nanoparticles. We expect that our approach will enable the treatment of multicomponent self-assembly with a level of molecular complexity that approaches experimental systems. © 2010 American Institute of Physics.

  19. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution.

    Science.gov (United States)

    Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo

    2017-12-19

    Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  1. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  2. Theoretical study of the pressure dependent rate constants of the thermal decomposition of β-propiolactone

    Directory of Open Access Journals (Sweden)

    Abolfazl Shiroudi

    2015-09-01

    Full Text Available A theoretical study of the thermal decomposition of β-propiolactone is carried out using ab initio molecular orbital (MO methods at the MP2/6-311+G∗∗ level and Rice–Ramsperger–Kassel–Marcus (RRKM theory. The reported experimental results showed that decomposition of β-propiolactone occurred by three competing homogeneous and first order reactions. For the three reactions, the calculation was also performed at the MP2/6-311+G∗∗ level of theory, as well as by single-point calculations at the B3LYP/6-311+G∗∗//MP2/6-311+G∗∗, and MP4/6-311+G∗∗//MP2/6-311+G∗∗ levels of theory. The fall-off pressures for the decomposition in these reactions are found to be 2.415, 9.423 × 10−2 and 3.676 × 10−3 mmHg, respectively.

  3. Designing Efficient Solar-Thermal Fuels with [n.n](9,10)Anthracene Cyclophanes: A Theoretical Perspective.

    Science.gov (United States)

    Ganguly, Gaurab; Sultana, Munia; Paul, Ankan

    2018-01-18

    Molecular solar thermal storage (MOST) systems have been largely limited to three classes of molecular motifs: azo-benzene, norbornadiene, and transition metal based fulvalene-tetracarbonyl systems. Photodimerization of anthracene has been known for a century; however, this photoprocess has not been successfully exploited for MOST purposes due to its poor energy storage. Using well-calibrated theoretical methods on a series of [n.n](9,10)bis-anthracene cyclophanes, we have exposed that they can store solar energy into chemical bonds and can release in the form of heat energy on demand under mild conditions. The storage is mainly attributed to the strain in the rings formed by the alkyl linkers upon photoexcitation. Our results demonstrate that the gravimetric energy storage density for longer alkyl-chain linkers (n > 3) are comparable to those for the best-known candidates; however, it lacks some of the deleterious attributes of known systems, thus making the proposed molecules desirable targets for MOST applications.

  4. Thermally activated 3D to 2D structural transformation of [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O flexible coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Nebojša N. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Institute of General and Physical Chemistry, Belgrade (Serbia); Blagojević, Vladimir A. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Ostojić, Sanja B.; Radulović, Aleksandra M. [Institute of General and Physical Chemistry, Belgrade (Serbia); Poleti, Dejan [Faculty of Technology and Metallurgy, University of Belgrade (Serbia); Minić, Dragica M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade (Serbia); Department of Biomedical Sciences, State University of Novi Pazar (Serbia)

    2015-01-15

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system.

  5. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  6. A review of theoretical and experimental studies underlying the thermal-hydraulic design of fast reactor fuel elements

    International Nuclear Information System (INIS)

    McAreavey, C.G.; Betts, C.

    1979-01-01

    The economic performance of fast reactors is closely linked to the achievable burn-up of heavy atoms, that is to the endurance life of the fuel pins. The safety case must also be concerned with the integrity of the cladding, since this is the primary containment envelope for fission products. It is thus important to ensure that cladding temperatures during reactor operation are limited to levels which incur no serious impairment of mechanical properties. The function of thermal-hydraulic analysis is to provide fuel element designers with the means of achieving this objective. This paper reviews the theoretical approaches which have been developed and applied in the UK in the design of LMFBR fuel and breeder sub-assemblies, control rods and experimental clusters. It also presents results of experimental studies undertaken to develop a better understanding of coolant flow distribution and mixing problems in these components, and to provide essential data for computer codes. Problem areas in this field are highlighted, particularly the difficulties arising due to irradiation induced distortions. Reference is made to the experimental and theoretical developments which are in progress, or may be required, to provide adequate predictions of fuel pin temperatures at high burn-up. (author)

  7. Lifetime prediction of structures submitted to thermal fatigue loadings

    International Nuclear Information System (INIS)

    Amiable, S.

    2006-01-01

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  8. Theoretical and experimental investigation of atomic radiative lifetimes and hyperfine structures

    International Nuclear Information System (INIS)

    Joensson, Per.

    1992-01-01

    Atomic radiative lifetimes and hyperfine structures as well as other properties, such as total energy and specific mass shift, have been studied theoretically and experimentally. Computer programs to calculate hyperfine structure constants from non-relativistic multiconfiguration Hartree-Fock (MCHF) and relativistic multi-configuration Dirac-Fock (MCDF) wavefunctions have been written. Using these programs large-scale calculations of hyperfine structures in lithium and sodium have been performed. It is shown, that the MCHF method is able to predict hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex sodium atom an accuracy of a few per cent is obtainable. For lithium convergence of the total energy, ionization energy, specific mass shift and hyperfine parameters has been studied with the MCHF method. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay curves following VUV excitation, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver were measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest P states in sodium and silver

  9. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    Science.gov (United States)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  10. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Department of Physics, Sri Sarada College for Women, Salem-16 (India); Guru Prasad, L. [Department of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Mathammal, R. [Department of Physics, Sri Sarada College for Women, Salem-16 (India)

    2016-11-15

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The {sup 1}H and {sup 13}C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  11. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    Science.gov (United States)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  12. Influence of synthesis route in structural, thermal and morphological characteristics of perovskite materials

    International Nuclear Information System (INIS)

    Fernandes, I.A.; Araujo, E.M. de; Santos, T.L.; Viana, K.M.S.; Borges, M.M.; Ruiz, J.A.C.

    2016-01-01

    Oxides with perovskite structure are interesting objects of study because of their optical, magnetic, electrical properties and its possible application, for example, as automotive catalyst. Various methods have been proposed to synthesise materials with this structure in order to achieve better structural and morphological characteristics and therefore improved properties. In this study, the mixed oxide of the perovskite type La 0.8 Ca 0.2 MnO 3 was synthesized by three different routes: the polymeric precursors, also known as the Pechini, method of gelatin modified rout and combustion method. Ceramic materials were evaluated thermally morphologically and structurally through thermal gravimetric analysis (TG), scanning electron microscopy (SEM) and diffraction X-ray (XRD). The catalytic tests has been released, the material synthesized by the Pechini method had the best performance in relation to conversion and stability, two important properties for catalysts. (author)

  13. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  14. Theoretical Challenges for Distance Education in the 21st Century: A shift from structural to transactional issues

    Directory of Open Access Journals (Sweden)

    Randy Garrison

    2000-06-01

    Full Text Available The premise of this article is that theoretical frameworks and models are essential to the long-term credibility and viability of a field of practice. In order to assess the theoretical challenges facing the field of distance education, the significant theoretical contributions to distance education in the last century are briefly reviewed. This review of distance education as a field of study reveals an early preoccupation with organizational and structural constraints. However, the review also reveals that the theoretical development of the field is progressing from organizational to transactional issues and assumptions. The question is whether distance education has the theoretical foundation to take it into the 21st century and whether distance education theory development will keep pace with innovations in technology and practice.

  15. Temperature dependence of OSL decay curves: Experimental and theoretical aspects

    DEFF Research Database (Denmark)

    McKeever, S.W.S.; Bøtter-Jensen, L.; Agersnap Larsen, N.

    1997-01-01

    ; (2) thermally assisted optical stimulation; (3) thermal quenching; and (4) localized donor-acceptor type recombination. Experimental OSL data from natural quartz and feldspars, stimulated with both green and infra-red light, are examined in the light of the theoretical considerations. (C) 1997...

  16. Shallow Crustal Thermal Structures of Central Taiwan Foothills Region

    Directory of Open Access Journals (Sweden)

    Shao-Kai Wu

    2013-01-01

    Full Text Available Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.

  17. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs

  18. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai

    2017-10-17

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually translates into a small fluorescence oscillator strength, which can significantly decrease the emission quantum yield and limit efficiency in organic light-emitting diode devices. Here, based on the results of quantum-chemical calculations on TADF emitters composed of carbazole donor and 2,4,6-triphenyl-1,3,5-triazine acceptor moieties, a new strategy is proposed for the molecular design of efficient TADF emitters that combine a small ΔEST with a large fluorescence oscillator strength. Since this strategy goes beyond the traditional framework of structurally twisted, charge-transfer type emitters, importantly, it opens the way for coplanar molecules to be efficient TADF emitters. Here, a new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions. The synthesis of this hexamethylazatriangulene-triazine (HMAT-TRZ) emitter and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.

  19. Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches

    Science.gov (United States)

    Song, Dean; Sun, Huiqing; Jiang, Xiaohua; Kong, Fanyu; Qiang, Zhimin; Zhang, Aiqian; Liu, Huijuan; Qu, Jiuhui

    2018-01-01

    As an emerging environmental contaminant, the herbicide quinclorac has attracted much attention in recent years. However, a very fundamental issue, the acid dissociation of quinclorac has not yet to be studied in detail. Herein, the pKa value and the corresponding structures of quinclorac were systematically investigated using combined experimental and theoretical approaches. The experimental pKa of quinclorac was determined by the spectrophotometric method to be 2.65 at 25 °C with ionic strength of 0.05 M, and was corrected to be 2.56 at ionic strength of zero. The molecular structures of quinclorac were then located by employing the DFT calculation. The anionic quinclorac was directly located with the carboxylic group perpendicular to the aromatic ring, while neutral quinclorac was found to be the equivalent twin structures. The result was further confirmed by analyzing the UV/Vis and MS-MS2 spectra from both experimental and theoretical viewpoints. By employing the QSPR approach, the theoretical pKa of QCR was determined to be 2.50, which is excellent agreement with the experimental result obtained herein. The protonation of QCR at the carboxylic group instead of the quinoline structure was attributed to the weak electronegative property of nitrogen atom induced by the electron-withdrawing groups. It is anticipated that this work could not only help in gaining a deep insight into the acid dissociation of quinclorac but also offering the key information on its reaction and interaction with others.

  20. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  1. Thermal and structural limitations for impurity-control components in FED/INTOR

    International Nuclear Information System (INIS)

    Majumdar, S.; Cha, Y.; Mattas, R.; Abdou, M.; Cramer, B.; Haines, J.

    1983-02-01

    The successful operation of the impurity-control system of the FED/INTOR will depend to a large extent on the ability of its various components to withstand the imposed thermal and mechanical loads. The present paper explores the thermal and stress analyses aspects of the limiter and divertor operation of the FED/INTOR in its reference configuration. Three basic limitations governing the design of the limiter and the divertor are the maximum allowable metal temperature, the maximum allowable stress intensity and the allowable fatigue life of the structural material. Other important design limitations stemming from sputtering, evaporation, melting during disruptions, etc. are not considered in the present paper. The materials considered in the present analysis are a copper and a vanadium alloy for the structural material and graphite, beryllium, beryllium oxide, tungsten and silicon carbide for the coating or tile material

  2. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    International Nuclear Information System (INIS)

    Olivera, J.; Provencio, M.; Prida, V.M.; Hernando, B.; Santos, J.D.; Perez, M.J.; Gorria, P.; Sanchez, M.L.; Belzunce, F.J.

    2005-01-01

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process

  3. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  4. Mechanical and thermal stability of graphene and graphene-based materials

    Science.gov (United States)

    Galashev, A. E.; Rakhmanova, O. R.

    2014-10-01

    Graphene has rapidly become one of the most popular materials for technological applications and a test material for new condensed matter ideas. This paper reviews the mechanical properties of graphene and effects related to them that have recently been discovered experimentally or predicted theoretically or by simulation. The topics discussed are of key importance for graphene's use in integrated electronics, thermal materials, and electromechanical devices and include the following: graphene transformation into other sp^2 hybridization forms; stability to stretching and compression; ion-beam-induced structural modifications; how defects and graphene edges affect the electronic properties and thermal stability of graphene and related composites.

  5. Theoretical modeling for optimizing horizontal production well placement in thermal recovery environments to maximize recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, D.J. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2008-07-01

    Heavy oil has a high viscosity and a low API gravity rating. Since it is difficult to get a fluid of this nature to flow, enhanced oil recovery techniques are required to extract the oil from the reservoir. Thermal recovery strategies such as steam assisted gravity drainage (SAGD) and cyclic steam injection stimulation (CSS) can be used. These techniques involve injecting steam into a formation which heats up the fluid in place decreasing its viscosity and allowing it to flow into the producing well bore. In order to maximize hydrocarbon recovery from this type of geological environment, the placement of the horizontal production well bore relative to the base of the reservoir is important. In conventional oil and gas plays, well placement methods involving directional deep resistivity logging while drilling (DDR-LWD) measurements to map formation contacts while drilling have enabled wells to be placed relative to formation boundaries. This paper discussed a study that presented some theoretical resistivity inversion and forward modeling results generated from a three-dimensional geocellular model to confirm that this evolving DDR-LWD technology may be applicable to western Canada's Athabasca heavy oil drilling environments. The paper discussed the effect of well bore position, thermal recovery, and pro-active well placement. Resistivity modeling work flow was also presented. It was concluded that being able to drill a horizontal production well relative to the base of the formation could help minimize abandoned oil ultimately leading to better recovery. 4 refs., 8 figs.

  6. The effect of thermal velocities on structure formation in N-body simulations of warm dark matter

    Science.gov (United States)

    Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia

    2017-11-01

    We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.

  7. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Science.gov (United States)

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  9. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  10. High-pressure behaviour of selenium-based spinels and related structures - an experimental and theoretical study

    International Nuclear Information System (INIS)

    Waskowska, A; Gerward, L; Olsen, J Staun; Feliz, M; Llusar, R; Gracia, L; Marques, M; Recio, J M

    2004-01-01

    The high-pressure structural behaviour of the cubic spinel CdCr 2 Se 4 (space group Fd3barm) and tetragonal CdGa 2 Se 4 (I4bar) has been investigated experimentally and theoretically in order to understand the large difference in compressibility between the two selenides. The experimental values of the bulk modulus for these compounds are 101(2) and 48(2) GPa, respectively. These values compare well with 92 and 44 GPa obtained from first-principles calculations based on the density functional theory formalism. The observed difference in compressibility between the cubic and tetragonal structures can be understood in terms of polyhedral analysis. In a hypothetical cubic spinel structure Fd3barm), the calculated bulk modulus for CdGa 2 Se 4 is 85 GPa. This value together with the experimental and theoretical results for CdCr 2 Se 4 suggest that the selenium-based cubic spinels should have a bulk modulus about 100 GPa, which is half the value found for the oxide spinels

  11. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  12. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    Science.gov (United States)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  13. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  14. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  15. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    Science.gov (United States)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  16. Computational tools for experimental determination and theoretical prediction of protein structure

    Energy Technology Data Exchange (ETDEWEB)

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  17. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  18. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  19. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Directory of Open Access Journals (Sweden)

    Zhelykh Vasil

    2016-06-01

    Full Text Available The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented.

  20. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates

    Science.gov (United States)

    Yuan, Chao; Ding, Zhen; Wang, T. J.; Dunn, Martin L.; Qi, H. Jerry

    2017-10-01

    This paper studies a novel method to fabricate three-dimensional (3D) structure from 2D thermo-responsive shape memory polymer (SMP)/elastomer bilayer laminate. In this method, the shape change is actuated by the thermal mismatch strain between the SMP and the elastomer layers upon heating. However, the glass transition behavior of the SMP locks the material into a new 3D shape that is stable even upon cooling. Therefore, the second shape becomes a new permanent shape of the laminate. A theoretical model that accounts for the temperature-dependent thermomechanical behavior of the SMP material and thermal mismatch strain between the two layers is developed to better understand the underlying physics. Model predictions and experiments show good agreement and indicate that the theoretical model can well predict the bending behavior of the bilayer laminate. The model is then used in the optimal design of geometrical configuration and material selection. The latter also illustrates the requirement of thermomechanical behaviors of the SMP to lock the shape. Based on the fundamental understandings, several self-folding structures are demonstrated by the bilayer laminate design.

  1. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  2. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  3. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  4. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  5. Theoretical Studies on Electronic States of Rh-C60. Possibility of a Room-temperature Organic Ferromagnet

    Directory of Open Access Journals (Sweden)

    K. Yamaguchi

    2004-08-01

    Full Text Available A possible mechanism for a ferromagnetic interaction in the rhombic (Rh formof C60 (Rh-C60 is suggested on the basis of theoretical studies in relation to cage distortionof the C60 unit in the polymerized 2D-plane. Band structure calculations on Rh-C60 showthat cage distortion leads to competition between diamagnetic and ferromagnetic states,which give rise to the possibility of thermally populating the ferromagnetic state.

  6. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  7. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    Science.gov (United States)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  8. A theoretical probe of high-valence uranium and transuranium silylamides: Structural and redox properties

    Science.gov (United States)

    Zhong, Yu-Xi; Guo, Yuan-Ru; Pan, Qing-Jiang

    2016-02-01

    Relativistic density functional theory was used to explore the structural and redox properties of 18 prototypical actinyl silylamides including a variation of metals (U, Np and Pu), metal oxidation states (VI and V) and equatorial ligands. A theoretical approach associated with implicit solvation and spin-orbit/multiplet corrections was proved to be reliable. A marked shift of reduction potentials of actinyl silylamides caused by changes of equatorial coordination ligands and implicit solvation was elucidated by analyses of electronic structures and single-electron reduction mechanism.

  9. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  10. Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  11. Thermal conductivity of leaf compost used in biofilters: An experimental and theoretical investigation

    International Nuclear Information System (INIS)

    Chandrakanthi, M.; Mehrotra, A.K.; Hettiaratchi, J.P.A.

    2005-01-01

    Thermal conductivity is an important property that governs the behaviour of leaf compost biofilters used in treating gaseous pollutants. Measurements were carried out for the thermal conductivity (K) of 44 samples of leaf compost, covering wide ranges of the volume fractions of water (ξ w ), solids (ξ s ) and air (ξ a ), at 20 deg. C using an unsteady state thermal probe. The results indicated that the compost thermal conductivity increased with an increase in ξ w , with a decrease in ξ a , and with an increase in the degree of saturation (defined as the volumetric fraction of water in the total void space). The predictions from the Woodside-Messmer quadratic parallel (QP) model for the thermal conductivity of leaf compost were higher than the experimental values. A simple linear relationship was developed between the thermal conductivity and the degree of saturation, which provided a satisfactory correlation for the data measured in this study as well as those reported recently for sandy and clay loams. -Thermal conductivity of compost exhibits a linear relationship with the degree of saturation of the matrix

  12. Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers

    International Nuclear Information System (INIS)

    Zhang Hai-Tao; Hao Jie; Yan Ping; Gong Ma-Li; Chen Dan

    2015-01-01

    In this paper, a theoretical model to analyze the mode coupling induced by heat, when the fiber amplifier works at high power configuration, is proposed. The model mainly takes into consideration the mode field change due to the thermally induced refractive index change and the coupling between modes. A method to predict the largest average output power of fiber is also proposed according to the mode coupling theory. The largest average output power of a large pitch fiber with a core diameter of 190 μm and an available pulse energy of 100 mJ is predicted to be 540 W, which is the highest in large mode field fibers. (paper)

  13. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  14. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    Science.gov (United States)

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  15. Thermal resistance of aluminum gravity heaГІ pipe with threaded capillary structure

    Directory of Open Access Journals (Sweden)

    Nikolaenko Yu. E.

    2017-10-01

    Full Text Available The results of an experimental study of the thermal resistance of an aluminum gravitational heat pipe with isobutane (R600a as a working fluid under conditions of heat removal of natural air convection are presented. Comparison of the thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure and the thermal resistance of an aluminum thermosyphon of the same size, having a smooth surface of the body in the evaporation zone, is given. It is shown that in the range of values of the input heat flux from 5 to 50 W the thermal resistance of the gravitational heat pipe is substantially lower than the thermal resistance of the thermosiphon. The studies were conducted both without the use of additional radiators in the condensation zone of heat transfer devices, and with the use of one, two and three radiators.

  16. Investigation of the thermal decomposition of a new titanium dioxide material

    Czech Academy of Sciences Publication Activity Database

    Palkovská, Monika; Slovák, V.; Šubrt, Jan; Boháček, Jaroslav; Barbieriková, Z.; Brezová, V.; Fajgar, Radek

    2016-01-01

    Roč. 125, č. 3 (2016), s. 1071-1078 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Titanium dioxide * Rod-shaped structure * Thermal analysis * Evolved gas analysis * EPR spectroscopy Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 1.953, year: 2016

  17. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    Science.gov (United States)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2018-06-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  18. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  19. Numerical thermal analysis of the vertical external partition made as the frame thin-walled steel structure

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-01-01

    Full Text Available The article presents numerical thermal analysis of the vertical external partitions made in the lightweight steel framing technology. Steel posts that perform the structural role lead to the formation of linear thermal bridges and have a negative effect on the level of thermal transmittance U. Therefore, optimal solutions are being explored for such technologies. One of the solutions is to use perforated Thermo sections. The effect of perforated Thermo sections on energy loss was verified through comparison to the wall made of solid sections. Furthermore, the calculations analysed the effect of linear thermal bridges that are formed on wall connections in the corner. Computer simulation was employed to emphasize the significant differences in the temperature distribution in both analysed wall structures that resulted from constructional solutions.

  20. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  1. Simulation of the diffusion of implanted impurities in silicon structures at the rapid thermal annealing

    International Nuclear Information System (INIS)

    Komarov, F.F.; Komarov, A.F.; Mironov, A.M.; Makarevich, Yu.V.; Miskevich, S.A.; Zayats, G.M.

    2011-01-01

    Physical and mathematical models and numerical simulation of the diffusion of implanted impurities during rapid thermal treatment of silicon structures are discussed. The calculation results correspond to the experimental results with a sufficient accuracy. A simulation software system has been developed that is integrated into ATHENA simulation system developed by Silvaco Inc. This program can simulate processes of the low-energy implantation of B, BF 2 , P, As, Sb, C ions into the silicon structures and subsequent rapid thermal annealing. (authors)

  2. Thermal Conductivity in Soil: Theoretical Approach by 3D Infinite Resistance Grid Model

    Science.gov (United States)

    Changjan, A.; Intaravicha, N.

    2018-05-01

    Thermal conductivity in soil was elementary characteristic of soil that conduct heat, measured in terms of Fourier’s Law for heat conduction and useful application in many fields: such as Utilizing underground cable for transmission and distribution systems, the rate of cooling of the cable depends on the thermal properties of the soil surrounding the cable. In this paper, we investigated thermal conductivity in soil by infinite three dimensions (3D) electrical resistance circuit concept. Infinite resistance grid 3D was the grid of resistors that extends to infinity in all directions. Model of thermal conductivity in soil of this research was generated from this concept: comparison between electrical resistance and thermal resistance in soil. Finally, we investigated the analytical form of thermal conductivity in soil which helpful for engineering and science students that could exhibit education with a principle of physics that applied to real situations.

  3. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    Science.gov (United States)

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  5. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    Science.gov (United States)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  6. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  7. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  8. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  9. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  10. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  11. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  12. Synthesis and characterization of JBW structure and its thermal transformation

    International Nuclear Information System (INIS)

    Hegazy, Eman Z.; Kosa, Samia A.; Abd El Maksod, Islam Hamdy

    2012-01-01

    In this paper, JBW zeolite prepared from Egyptian kaolin was investigated by means of XRD, IR, SEM, EDX and ion exchange of some heavy metals. Adsorption isotherms were used to investigate the structure and properties of the prepared zeolite. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. SEM images showed that the JBW crystallised in a cylindrical shape. However, spherical agglomerates were observed at lower magnifications. The ion exchange isotherms with Cu 2+ , Ni 2+ and Co 2+ were found to follow a Freundlich isotherm. In addition, it shows higher affinity towards Cu 2+ than other ions. - Graphical abstract: JBW zeolite structure was prepared from Egyptian kaolin and characterised. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. Highlights: ► Egyptian kaolin was successfully used to prepare pure phase of JBW Structure. ► JBW is stable till 2+ , Ni 2+ , and Co 2+ followed up Freundlich isotherm. ► Selectivity towards Cu 2+ is much higher than Co 2+ or Ni 2+ .

  13. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    Science.gov (United States)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  14. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    Science.gov (United States)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  16. Institutional and structural barriers to HIV testing: elements for a theoretical framework.

    Science.gov (United States)

    Meyerson, Beth; Barnes, Priscilla; Emetu, Roberta; Bailey, Marlon; Ohmit, Anita; Gillespie, Anthony

    2014-01-01

    Stigma is a barrier to HIV health seeking, but little is known about institutional and structural expressions of stigma in HIV testing. This study examines evidence of institutional and structural stigma in the HIV testing process. A qualitative, grounded theory study was conducted using secondary data from a 2011 HIV test site evaluation data in a Midwestern, moderate HIV incidence state. Expressions of structural and institutional stigma were found with over half of the testing sites and at three stages of the HIV testing visit. Examples of structural stigma included social geography, organization, and staff behavior at first encounter and reception, and staff behavior when experiencing the actual HIV test. Institutional stigma was socially expressed through staff behavior at entry/reception and when experiencing the HIV test. The emerging elements demonstrate the potential compounding of stigma experiences with deleterious effect. Study findings may inform future development of a theoretical framework. In practice, findings can guide organizations seeking to reduce HIV testing barriers, as they provide a window into how test seekers experience HIV test sites at first encounter, entry/reception, and at testing stages; and can identify how stigma might be intensified by structural and institutional expressions.

  17. Theoretical study of flow in a thermal countercurrent centrifuge

    International Nuclear Information System (INIS)

    Durivault, Jean; Louvet, Pierre.

    1976-03-01

    This paper deals with the flow calculation in a thermal countercurrent centrifuge at total reflux. Matched asymptotic expansions are used to find approximate solutions of Navier-Stokes equations which are assumed to be valid in the whole domaine. Convection and viscous dissipation disappear because of linearization, but compressibility is taken into account. Let epsilon be the Ekman number. The equations are solved in the inviscid core, in the horizontal Ekman layers of thickness 0 (epsilonsup(1/2) and in the Stewartson layer of thickness 0 (epsilonsup(1/3)), parallel to the axis. As the thermal convection is neglected, the Stewartson layer of thickness 0 (epsilon sup(1/4)) does not occur. The results show the importance of the recirculating mass-flow rate of order 0 (epsilonsup(1/3)) in front of the countercurrent mass-flow rate of order 0 (epsilonsup(1/2)). The temperature profile rules the pattern and the intensity of the recirculating flow [fr

  18. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    Science.gov (United States)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the

  19. Theoretical Physics Division

    International Nuclear Information System (INIS)

    This report is a survey of the studies done in the Theoretical Physics Division of the Nuclear Physics Institute; the subjects studied in theoretical nuclear physics were the few-nucleon problem, nuclear structure, nuclear reactions, weak interactions, intermediate energy and high energy physics. In this last field, the subjects studied were field theory, group theory, symmetry and strong interactions [fr

  20. Experimental and theoretical exploration of mechanical stability of Pt/NbO2 interfaces for thermoelectric applications

    International Nuclear Information System (INIS)

    Music, Denis; Schmidt, Paul; Saksena, Aparna

    2017-01-01

    Mechanical stability criteria for metallic contacts, namely a minimised thermal stress and an enhanced interfacial strength, have been appraised for sputtered, x-ray amorphous NbO 2 thermoelectric thin films in contact with a polycrystalline Pt electrode utilising experimental and theoretical methods. Thermal stress built at these Pt/NbO 2 interfaces with approximately 50 MPa is minute even at 800 °C, the maximum operation temperature. There are no coordination changes of Pt and its metallic character is only marginally altered upon the interface formation. In addition, Nb–O bonds at the interface sustain their covalent-ionic dioxide bonding nature. Hence, even though there are no considerable modifications in the electronic structure of the individual components at these interfaces, Pt/NbO 2 interfacial bonds of metallic and partly covalent character are strong with a work of separation reaching 2 J m −2 . Based on the synergic experimental and theoretical results, it is therefore expected that these interfaces are mechanically stable during operation of these thermoelectric devices. This strategy is of general importance for designing mechanically stable electrical contacts. (paper)

  1. Model of thermal conductivity of anisotropic nanodiamond

    International Nuclear Information System (INIS)

    Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.

    2014-01-01

    Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data

  2. CASKETSS-2: a computer code system for thermal and structural analysis of nuclear fuel shipping casks (version 2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-08-01

    A computer program CASKETSS-2 has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS-2 means a modular code system for CASK Evaluation code system Thermal and Structural Safety (Version 2). Main features of CASKETSS-2 are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) There are simplified computer programs and a detailed one in the structural analysis part in the code system. (3) Input data generator is provided in the code system. (4) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  3. Thermal structure of the Western Indian Ocean during the southwest monsoon, 1983

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Sarma, M.S.S.; Rao, L.V.G.

    The thermal structure and the variability of heat content of the upper 400 m of the Western Indian Ocean were examined using the expendable bathythermograph (XBT) data collected onboard RV Sagar Kanya during July-August, 1983. Vertical displacement...

  4. Thermal linear expansion coefficient of structural graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    1995-01-01

    The data now available on radiation induced changes of linear thermal expansion coefficients (CTE) for native structural carbon materials (SCM) irradiated with high fluences are summarized. For different types of native and foreign SCM dose dependences of CTE changes in the temperature range of 300...1600 K and at fluences up to (2...3)x10 22 n/cm 2 (E>0.18 meV) are compared. On the base of this comparison factors defined the CTE changes under neutron irradiation are revealed and the explanation of observed phenomena is offered. Large number of the factors revealed does not allowed to calculate CTE radiation induced changes. 39 refs.; 16 figs.; 5 tabs

  5. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  6. Study on thermal stability and chemical structure of polyamide blended with small amount of Cu

    International Nuclear Information System (INIS)

    Arai, Tsuyoshi; Ueno, Tomonaga; Kajiya, Takafumi; Ishikawa, Tomoyuki; Takeda, Kunihiko

    2007-01-01

    The thermal stability and the chemical structure of Polyamide 66 (PA66) blended with a small amount of copper have been studied. The thermal degradation of the blend with 35 ppm or more of copper was restrained and no strong influence of the concentration of copper was observed. The molecular weight of PA66 decreased by the thermal aging process but the amount of decrease of the blend was smaller than that of the non-blend. The water uptake of the blend increased. The chemical structure, which was observed by IR and NMR, changed slightly by blending with copper after aging at higher temperatures. Multiple items influenced the thermal stability of PA66 blended with a small amount of copper instead of just one. Namely, the main chain of PA66 is cut by heat and the degree of the cut is restrained by the copper. The diffusion time of copper atoms that disperse uniformly in the PA66 matrix is short enough to cover the individual amide groups and the effect enlarges the entire configuration of the PA66 chain to enhance the thermal stability. (author)

  7. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  8. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Dongming [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Hou, Peipei; Liu, Chang [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuerong [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Luodong [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.

  9. Synthesis, characterization, thermal properties and theoretical investigation on Bis(guanidinium) 4,4‧- Azo-1H-1,2,4-triazol-5-one

    Science.gov (United States)

    Cao, Wen-li; Guo, Jia-jia; Chen, Xiang; Ding, Zi-mei; Xu, Kang-zhen; Song, Ji-rong; Fan, An; Huang, Jie

    2017-11-01

    Bis(guanidinium) 4,4‧-Azo-1H-1,2,4-triazol-5-one [G2(ZTO)] was synthesized and characterized by X-ray single crystal diffraction, elemental analyzer and Fourier Transform Infrared (FT-IR) spectrometer. The result from X-ray single crystal diffraction indicates that G2(ZTO) crystallizes in the monoclinic space group P2(1)/c with parameters of a = 4.779(2) Å, b = 9.081(4) Å, c = 14.676(6) Å, α = 90.00°, β = 92.43(7)°, γ = 90.00°, V = 636.4(5) Å3, Z = 2, μ(Mo Kα) = 0.131, F(000) = 328, S = 1.071, Dc = 1.640 g·cm-3, R1 = 0.0510 and wR2 = 0.1389. Interestingly enough, its structure does not contain crystallization water, which is a unique characteristic in this material. Besides, the molecular geometry of the compound was optimized by using Density Functional Theory (DFT) method at B3LYP/6-31G (d, p) level in the ground state, revealing that the obtained geometric parameters are in accordance with the X-ray result of the structure. The experimental vibrational spectrum was compared with the calculated spectrum. Besides, molecular electrostatic potential (MEP) of G2(ZTO) was computed with the same method in gas phase, theoretically. The thermal properties of this compound were investigated by DSC, TG/DTG and micro-DSC methods. The results manifest that its thermal behavior can be divided into two main decomposition stages, the first intense decomposition peak temperature is 248.11 °C at the heating rate of 10 °C·min-1, which is higher than that of RDX (219 °C) but slightly lower than that of G(ZTO)·H2O (252.08 °C). The constant-volume combustion heat (ΔcU) of G2(ZTO), G(ZTO)·H2O and ZTO were determined and then the enthalpy of formation were calculated. The results show that G2(ZTO) possesses the highest standard molar enthalpy of formation, which may be explained by the fact that G2(ZTO) contains no water and possesses the highest nitrogen content in all guanidine salts. Moreover, the apparent activation energy (E), thermal stability and safety

  10. Hypervelocity Wind Tunnel No. 9 Mach 7 Thermal Structural Facility Verification and Calibration

    National Research Council Canada - National Science Library

    Lafferty, John

    1996-01-01

    This report summarizes the verification and calibration of the new Mach 7 Thermal Structural Facility located at the White Oak, Maryland, site of the Dahlgren Division, Naval Surface Warfare Center...

  11. A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups

    Directory of Open Access Journals (Sweden)

    Yudi Kuang

    2015-01-01

    Full Text Available Paper cups are ubiquitous in daily life for serving water, soup, coffee, tea, and milk due to their convenience, biodegradability, recyclability, and sustainability. The thermal insulation performance of paper cups is of significance because they are used to supply hot food or drinks. Using an effective thermal conductivity to accurately evaluate the thermal insulation performance of paper cups is complex due to the inclusion of complicated components and a multilayer structure. Moreover, an effective thermal conductivity is unsuitable for evaluating thermal insulation performance of paper cups in the case of fluctuating temperature. In this work, we propose a facile approach to precisely analyze the thermal insulation performance of paper cups in a particular range of temperature by using an evaluation model based on the MISO (Multiple-Input Single-Output technical theory, which includes a characterization parameter (temperature factor and a measurement apparatus. A series of experiments was conducted according to this evaluation model, and the results show that this evaluation model enables accurate characterization of the thermal insulation performance of paper cups and provides an efficient theoretical basis for selecting paper materials for paper cups.

  12. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  13. Teoretski pogled na razvojne strukture slovenskega podeželja = Theoretical view on the development structures of Slovenian rural space

    Directory of Open Access Journals (Sweden)

    Marijan M. Klemenčič

    2006-01-01

    Full Text Available Theoretical concepts and research problems of contemporary rural space are presented in the first part of the article, following with the attempt of defining the crucial factors of development and basic structures of Slovenian rural space after the 2nd World War as a starting-point for defining theoretically more advanced concepts in Slovenian geography.

  14. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  15. Theoretical study on flow-induced vibration of a cylindrical weir due to fluid discharge

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Ito, Tomohiro; Hirota, Kazuo; Kodama, Tetsuhiko

    1994-01-01

    In a FBR, the inside of the reactor vessel is cooled by liquid sodium. Liquid sodium is supplied to the upper plenum from its bottom and discharges over the top of the cylindrical weir down to the lower plenum. The weir is so thin in order to decrease the thermal stress on it that the fluid--structure interaction becomes predominant. A fluidelastic vibration of the weir due to fluid discharge was discovered in a French FBR. In this study, a theoretical model was developed on the ''fluid--elastic mode'' instability of a cylindrical weir due to fluid discharge from the upper plenum to the lower plenum. In the analysis, the fluctuation of both the discharge flow rate over a weir due to the vibration of the cylindrical shell and the pressure in the lower plenum due to fluid discharge were formulated. Instability criteria was derived from the added damping ratio due to fluid discharge using modal analysis. The natural modes and modal mass of the weir were obtained by the analysis using the FEM code taking the fluid - structure interaction into consideration. The theoretical instability range in terms of the fall height and the flow rate is compared with the experimental results. The theoretical values showed a good agreement with the experimental ones

  16. Kinetic thermal structure in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Chen, Jun; Yin, Ze-Xia; She, Zhen-Su; Bao, Yun

    2017-11-01

    Plumes are believed to be the most important heat carrier in turbulent Rayleigh-Bénard convection (RBC). However, a physically sound and clear definition of plume is still absent. We report here the investigation of a definition of plume called kinetic thermal structure (KTS), based on the analysis of vertical velocity gradient (Λ = ∂w / ∂z), using direct numerical simulation (DNS) data of the three-dimensional RBC in a rectangular cell for Pr = 0.7 and Ra = 1 ×108 5 ×109 . It is shown that the conditional average of temperature on Λ exhibits such a behavior that when Λ is larger than a threshold, the volume carries a constant temperature of fluid, hence defines an unambiguous thermal structure, KTS. The DNS show that the KTS behaves in a sheet-like shape near the conducting plate, and becomes slender and smaller with increasing Ra . The heat flux carried by KTS displays a scaling law, with an exponent larger than the global- Nu - Ra scaling, indicating stronger heat transport than the turbulent background. An advantage of the KTS is its connection to the balance equation allowing, for the first time, a prediction of the Ra -dependence of its vertical velocity and the characteristic Λ threshold, validated by DNS. Supported by NSFC (11172006, 11221062, 11452002), and by MOST (China) 973 project (2009CB724100).

  17. Sibutramine characterization and solubility, a theoretical study

    Science.gov (United States)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  18. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    International Nuclear Information System (INIS)

    Cesari, F.; Battistella, P.; Quaranta, S.; Arduino, M.

    1993-01-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point

  19. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Cesari, F; Battistella, P [Nuclear Engineering Laboratory ' Montecuccolino' , University of Bologna (Italy); Quaranta, S; Arduino, M [IVECO Engineering, Torino (Italy)

    1993-07-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point.

  20. Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method

    International Nuclear Information System (INIS)

    Kharazmi, Alireza; Saion, Elias; Faraji, Nastaran; Hussin, Roslina Mat; Yunus, W. Mahmood Mat

    2014-01-01

    Monodispersed spherical CdS nanoparticles stabilized in PVA solution were synthesized by the gamma radiolytic method and found the average particle size increased from 12 to 13 nm with the increment of dose from 10 to 40 kGy. The XRD results show that it has crystalline planes of cubic structure with crystal lattice parameter of 5.832 Å. The optical reflectance revealed a band-edge of CdS nanoparticles at about 475 nm and the reflectance wavelength red shifted with increasing dose due to increasing particle size. The thermal conductivity of CdS/PVA nanocomposites measured by the transient hot wire method that revealed a decrement of the thermal conductivity with an increase of dose caused by effect of radiation on crystallinity of the polymer structure. - Highlights: • CdS/PVA nanocomposite was synthesized by radiolytic method from 10 to 40 kGy doses. • The structure of nanocomposite and the effect of dose on structure were investigated by X-ray powder diffraction. • The morphology of nanoparticles and the effect of dose on nanoparticles were observed by transmission electron microscope. • The optical properties of nanocomposite and the effect of radiation were studied by UV–visible spectroscopy and fluorescence spectroscopy. • The thermal properties of nanocomposite and the effect of dose were investigated by the transient hot wire method

  1. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  2. Automatic defects recognition in composite aerospace structures from experimental and theoretical analysis as part of an intelligent infrared thermographic inspection system

    Science.gov (United States)

    David, Denis G. F.; Marin, J. Y.; Tretout, Herve R.

    An original concept for IR thermography nondestructive testing is validated. The principles of image and data processing investigated and developed as well as the utilization of AI should be transposable to other nondestructive techniques such as ultrasounds and X-rays. It is shown that modeling can be used in different ways to play a great part in the detection, the interpretation, and the sizing of the defects. The original concept lies in the comparison of experimental data with theoretical ones in order to identify regions of abnormal behavior related to defects. A Laplace transforms analytical method is successfully implemented in the case of composite materials such as graphite epoxy to identify a set of thermal parameters which contributes to the expertise. This approach is extended to a more complicated composite material such as Kevlar, which presents semitransparent characteristics. This modeling technique, which expresses experimental data in terms of thermal parameters, makes it possible to increase SNR and reduce the number of thermal images to be processed.

  3. Evaluation of the thermal and structural performance of straw bale construction

    Science.gov (United States)

    Beaudry, Kyle R.

    This thesis is primarily divided into two distinct experimental programs evaluating: 1) the thermal performance and, 2) the structural performance of straw bale construction. The thermal performance chapter describes hot-box testing (based on ASTM C1363-11) of seven straw bale wall panels to obtain their apparent thermal conductivity values. All panels were constructed with stacked bales and cement-lime plaster skins on each side of the bales. Four panels were made with traditional, 2-string field bales of densities ranging from 89.5 kg/m3 - 131 kg/m3 and with the bales on-edge (fibres perpendicular to the heat flow). Three panels were made with manufactured high-density bales (291 kg/m3 - 372 kg/m3). The fibres of the manufactured bales were randomly oriented. The key conclusion of this work is that within the experimental error, there is no difference in the apparent thermal conductivity value for panels using normal density bales and manufactured high-density bales up to a density of 333 kg/m3. The structural performance chapter describes gravity and transverse load testing (based on ASTM E72-15) of non-plastered modular straw bale wall (DBW) panels to evaluate their strength capacity and failure modes. The out-of-plane flexural (OPF) tests exhibited a mean ultimate bending moment of 49.7 kNm. The axial compression (AC) tests exhibited a mean ultimate line load of 161.0 kN/m. The local flexural header beam (HP) tests exhibited an ultimate line load of 31.6 kN/m. The OPF and AC capacities of the DBW exceeded the capacities exhibited by a conventional 38 mm x 140 mm stud wall. However, the DBW's header beam strength and stiffness was inferior to conventional stud wall.

  4. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  5. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  6. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  7. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  8. Dynamic thermal reaction analysis of wall structures in various cooling operation conditions

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi

    2015-01-01

    Highlights: • Four different envelop structures are separately built in the same test building. • Cooling temperature and operation time were chosen as perturbations. • State Space Method is used to analyze the influence of wall sequence order. • The numerical models are validated by the comparisons of theory and test results. • The contrast of temperature change of different envelop structures was stark. - Abstract: This paper proposes a methodology of performance assessing of envelops under different cooling operation conditions, by focusing on indoor temperature change and dynamic thermal behavior performance of walls. To obtain a general relationship between the thermal environment change and the reaction of envelop, variously insulated walls made with the same insulation material are separately built in the same wall of a testing building with the four different structures, namely self-heat insulation (full insulation material), exterior insulation, internal insulation and intermediate insulation. The advantage of this setting is that the test targets are exposed to the same environmental variables, and the tests results are thus comparable. The target responses to two types of perturbations, cooling temperature and operation time were chosen as the important variations in the tests. Parameters of cooling set temperature of 22 °C and 18 °C, operation and restoring time 10 min and 15 min are set in the test models, and discussed with simulation results respectively. The results reveal that the exterior insulation and internal insulation are more sensitive to thermal environment change than self-heat insulation and intermediate insulation.

  9. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  10. Review of prediction for thermal contact resistance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.

  11. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  12. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  13. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  14. Structural and thermal behaviour of carious and sound powders of human tooth enamel and dentine

    International Nuclear Information System (INIS)

    Tiznado-Orozco, Gaby E; Garcia-Garcia, R; Reyes-Gasga, J

    2009-01-01

    Powder from carious human tooth enamel and dentine were structurally, chemically and thermally analysed and compared against those from sound (healthy) teeth. Structural and chemical analyses were performed using x-ray diffraction, energy-dispersive x-ray spectroscopy and transmission electron microscopy. Thermal analysis was carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy and x-ray diffraction. Results demonstrate partially dissolved crystals of hydroxyapatite (HAP) with substitutions of Na, Mg, Cl and C, and a greater weight loss in carious dentine as compared with carious enamel. A greater amount of thermal decomposition is observed in carious dentine as compared with sound dentine, with major variations in the a-axis of the HAP unit cell than in the c-axis. Variations in shape and intensity of the OH - , CO 3 2- and PO 4 3- FTIR bands were also found.

  15. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    Science.gov (United States)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  16. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  17. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  18. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    International Nuclear Information System (INIS)

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-01-01

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state 27 Al nuclear magnetic resonance ( 27 Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m 2 /g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina

  19. Calculating lattice thermal conductivity: a synopsis

    Science.gov (United States)

    Fugallo, Giorgia; Colombo, Luciano

    2018-04-01

    We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.

  20. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    Science.gov (United States)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  1. Analysis of Structural Units and Their Influence on Thermal Degradation of Alkali Lignins

    Directory of Open Access Journals (Sweden)

    Wen Hua

    2016-01-01

    Full Text Available The chemical structures of four alkali lignins isolated from poplar, fir, straw, and bagasse were investigated. To explore the relationship between the structural units and the thermal decomposition behavior, the system was tested by elemental analysis, Fourier transform infrared spectrometry, thermogravimetric analysis (TGA, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS. The results indicated that the carbon content of poplar lignin (PL was higher than that of others. Fir lignin (FL exhibited the highest guaiacol units, while the other three lignins were abundant in syringol units. The thermal decomposition characteristics and pyrolysis products of the four lignins were influenced by the material structural and composition. The DTG curves showed that the initial temperatures and major degradation temperatures of woody lignins(FL and PL) with complex inherent structures were shifted to the high temperature zoom compared with that of non-woody (BL and SL)lignins. Py-GC/MS analysis showed that guaiacol-type phenolic compounds were predominant pyrolysis products derived from the four lignins. The yield of guaiacol-type phenols could reach 82.87%. Moreover, the BL had selectively on phenol-type compounds with yield of 27.89%.

  2. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Science.gov (United States)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  3. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  4. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  5. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  6. Mechanical, Thermal and Acoustic Properties of Open-pore Phenolic Multi-structured Cryogel

    Science.gov (United States)

    Yao, Rui; Yao, Zhengjun; Zhou, Jintang; Liu, Peijiang; Lei, Yiming

    2017-09-01

    Open-pore phenolic cryogel acoustic multi-structured plates (OCMPs) were prepared via modified sol gel polymerization and freeze-dried methods. The pore morphology, mechanical, thermal and acoustic properties of the cryogels were investigated. From the experimental results, the cryogels exhibited a porous sandwich microstructure: A nano-micron double-pore structure was observed in the core layer of the plates, and nanosized pores were observed in the inner part of the micron pores. In addtion, compared with cryogel plates with uniform-pore (OCPs), the OCMPs had lower thermal conductivities. What’s more, the compressive and tensile strength of the OCMPs were much higher than those of OCPs. Finally, the OCMPs exhibited superior acoustic performances (20% solid content OCMPs performed the best) as compared with those of OCPs. Moreover, the sound insulation value and sound absorption bandwidth of OCMPs exhibited an improvement of approximately 3 and 2 times as compared with those of OCPs, respectively.

  7. Theoretical studies of the electronic structure of the ions KCs+ and RbCs+

    International Nuclear Information System (INIS)

    Abdul Al, Saleh Nabhan

    2000-01-01

    Author.the theoretical investigation of the electronic structure of the molecular ions KCs + and RbCs + , by using ab initio calculation, is being considered. Some of the approximation methods may form a theoretical model; with which many physical properties of molecular systems can be explored by once a mathematical procedure has been implanted through a computer program. This theoretical structure is referred to as ab initio electronic structure. The Hamiltonian for a multi-electron system cannot be separated into one-electron parts without making the independent electron approximation. The one-electron molecular wave function is referred to as molecular orbital (MO). The MOs may be expressed as linear combinations of atomic orbitals. Making the Born-Oppenheimer approximation, we seek to solve for the electronic eigenfunctions and eigenvalues with the nuclei fixed at various separation distances. A rigorous variational calculation on a system involves the following steps: write down the Hamiltonian operator for the system; Select some mathematical functional form ψ as the trial wave function. This form should have variable parameters (we take ψto be made up of Slater determinants containing molecular-spin orbitals); Minimize the average value of the energy (E) with respect to variations in the parameters. We describe an approach in the ab initio calculations, called the self-consistent field (SCF) method. The Hartree-Fock equation is obtained by requiring E to be stationary with respect to variations in ψ. The best MOs are eigenfunctions of the Fock operator. The instantaneous part of the interaction that SCF neglects is referred to as electron correlation. One general technique, for including the effects of correlation, is called configuration interaction (CI). Moeller-Plesset perturbation theory is an alternative approach to the correlation problem. The calculation has been performed for the two molecular ions, through the CI PSI (Configuration Interaction

  8. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    Science.gov (United States)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  9. A theoretical analysis of local thermal equilibrium in fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Mingwei

    2015-01-01

    Full Text Available The internal heat exchange between each phase and the Local Thermal Equilibrium (LTE scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the LTE condition, using derived characteristic parameters. Furthermore, the LTE situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their LTE status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on LTE of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity and pore hydraulic radius are investigated, illustrated and discussed in our study.

  10. Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures

    Science.gov (United States)

    Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.

    2012-04-01

    We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.

  11. Thermal transport in layered structure of YBa2Cu3O7-δ superconductors

    Science.gov (United States)

    Sharma, Rakhi; Indu, B. D.

    2017-12-01

    The heat transfer study in YBa2Cu3O7-δ superconductors structures is focused on the influence of the effect of scattering events in cross-plane and in-plane references. Understanding the mechanism of controlling the thermal conductivity of layered superconductors is an area of interest for nano microelectronics and thermo-electronic technological applications. The model of the thermal conduction, and phonon transport perpendicular and parallel to the layers of YBa2Cu3O7-δ are developed. It has been justified via numerical estimation and found substantial diminution in thermal conductivities in both in-plane and cross-plane directions of layered cuprate superconductors.

  12. First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5

    Science.gov (United States)

    Wang, Cong; Wang, Haifeng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian

    2018-05-01

    Recently, the layered transition-metal pentatellurides ZrTe5 and HfTe5 have attracted increasing attention because of their interesting topological electronic properties. Nevertheless, some of their other good physical properties seem to be ignored now. Actually, both ZrTe5 and HfTe5 have high electric conductivities (>105 Ω-1 m-1) and Seebeck coefficients (> 100 μV/K) at room temperature, thus making them promising thermoelectric materials. However, the disadvantage is that the thermal conductivities of the two materials are relatively high according to the few available experiments; meanwhile, the detailed mechanism of the intrinsic thermal conductivity has not been studied yet. Based on the density functional theory and the Boltzmann transport theory, we present here the theoretical study of the intrinsic lattice thermal conductivities of ZrTe5 and HfTe5, which are found to be in the range of 5-8 W/mṡK at room temperature and well consistent with the experimental results. We also find that the thermal conductivities of the two materials are anisotropic, which are mainly caused by their anisotropic crystal structures. Based on the detailed analysis, we proposed that the thermal conductivities of the two materials could possibly be reduced by different kinds of structural engineering at the atomic and mesoscopic scales, such as alloying, doping, nano-structuring, and polycrystalline structuring, which could make ZrTe5 and HfTe5 good thermoelectric materials for room temperature thermoelectric applications.

  13. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  14. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  15. A general centroid determination methodology, with application to multilayer dielectric structures and thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Miller, S.L.; Fleetwood, D.M.; McWhorter, P.J.; Reber, R.A. Jr.; Murray, J.R.

    1993-01-01

    A general methodology is developed to experimentally characterize the spatial distribution of occupied traps in dielectric films on a semiconductor. The effects of parasitics such as leakage, charge transport through more than one interface, and interface trap charge are quantitatively addressed. Charge transport with contributions from multiple charge species is rigorously treated. The methodology is independent of the charge transport mechanism(s), and is directly applicable to multilayer dielectric structures. The centroid capacitance, rather than the centroid itself, is introduced as the fundamental quantity that permits the generic analysis of multilayer structures. In particular, the form of many equations describing stacked dielectric structures becomes independent of the number of layers comprising the stack if they are expressed in terms of the centroid capacitance and/or the flatband voltage. The experimental methodology is illustrated with an application using thermally stimulated current (TSC) measurements. The centroid of changes (via thermal emission) in the amount of trapped charge was determined for two different samples of a triple-layer dielectric structure. A direct consequence of the TSC analyses is the rigorous proof that changes in interface trap charge can contribute, though typically not significantly, to thermally stimulated current

  16. Computational insight on the structural, mechanical and thermal properties of Cu2CdSnSe4 and Cu2HgSnSe4 adamantine materials

    Directory of Open Access Journals (Sweden)

    S. Bensalem

    2016-12-01

    Full Text Available Through first-principles calculation based on the density functional theory (DFT within the pseudo potential-plane wave (PP-PW approach, we studied the structural, mechanical and thermal properties of Cu2CdSnSe4 and Cu2HgSnSe4 adamantine materials. The calculated lattice parameters are in good agreement with experimental and theoretical reported data. The elastic constants are calculated for both compounds using the static finite strain scheme. The hydrostatic pressure action on the elastic constants predicts that both materials are mechanically stable up to 10 GPa. The polycrystalline mechanical parameters, i.e., the anisotropy factor (A, bulk modulus (B, shear modulus (G, Young's modulus (E, Lame's coefficient (λ and Poisson's ratio (ν have been estimated from the calculated single crystal elastic constants. The analysis of B/G ratio shows that the two studied compounds behave as ductile. Based on the calculated mechanical parameters, the Debye temperature and the thermal conductivity have been probed. In the framework of the quasi-harmonic approximation, the temperature dependence of the lattice heat capacity of both crystals has been investigated.

  17. Thermal modeling and analysis of thin-walled structures in micro milling

    Science.gov (United States)

    Zhang, J. F.; Ma, Y. H.; Feng, C.; Tang, W.; Wang, S.

    2017-11-01

    The numerical analytical model has been developed to predict the thermal effect with respect to thin walled structures by micro-milling. In order to investigate the temperature distribution around micro-edge of cutter, it is necessary to considering the friction power, the shearing power, the shear area between the tool micro-edge and materials. Due to the micro-cutting area is more difficult to be measured accurately, the minimum chip thickness as one of critical factors is also introduced. Finite element-based simulation was employed by the Advantedge, which was determined from the machining of Ti-6Al-4V over a range of the uncut chip thicknesses. Results from the proposed model have been successfully accounted for the effects of thermal softening for material.

  18. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  19. Effect of mechanical activation on structure and thermal decomposition of aluminum sulfate

    International Nuclear Information System (INIS)

    Ghasri-Khouzani, M.; Meratian, M.; Panjepour, M.

    2009-01-01

    The thermal decompositions of both non-activated and mechanically activated aluminum sulfates were studied by thermogravimetry (TG). The structural disorder, the specific surface area (SSA) and the morphology of mechanically activated aluminum sulfates were analyzed by X-ray diffraction (XRD), laser particle-size analyzer, and scanning electron microscopy (SEM), respectively. Thermal analyses results indicated that the initial temperature of thermal decomposition (T i ) in TG curves for mechanically activated aluminum sulfates decreased gradually with increasing the milling time. It was also found that the SSA of mechanically activated aluminum sulfates remained almost constant after a certain milling time, and lattice strains (ε) rose but the crystallite sizes (D) decreased with increasing the milling time. These results showed that the decrease of T i in TG curves of mechanically activated aluminum sulfates was mainly caused by the increase of lattice distortions and decrease of the crystallite sizes with increasing the milling time

  20. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    International Nuclear Information System (INIS)

    Juárez-de la Rosa, B.A.; May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S.; Yañez-Limón, J.M.; Alvarado-Gil, J.J.

    2015-01-01

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups

  1. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  2. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  3. Thermal remote sensing approach combined with field spectroscopy for detecting underground structures intended for defence and security purposes in Cyprus

    Science.gov (United States)

    Melillos, George; Themistocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2018-04-01

    The purpose of this paper is to present the results obtained from unmanned aerial vehicle (UAV) using multispectral with thermal imaging sensors and field spectroscopy campaigns for detecting underground structures. Airborne thermal prospecting is based on the principle that there is a fundamental difference between the thermal characteristics of underground structures and the environment in which they are structure. This study aims to combine the flexibility and low cost of using an airborne drone with the accuracy of the registration of a thermal digital camera. This combination allows the use of thermal prospection for underground structures detection at low altitude with high-resolution information. In addition vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and Simple Ratio (SR), were utilized for the development of a vegetation index-based procedure aiming at the detection of underground military structures by using existing vegetation indices or other in-band algorithms. The measurements were taken at the following test areas such as: (a) vegetation area covered with the vegetation (barley), in the presence of an underground military structure (b) vegetation area covered with the vegetation (barley), in the absence of an underground military structure. It is important to highlight that this research is undertaken at the ERATOSTHENES Research Centre which received funding to be transformed to an EXcellence Research Centre for Earth SurveiLlance and Space-Based MonItoring Of the EnviRonment (Excelsior) from the HORIZON 2020 Widespread-04-2017: Teaming Phase 1(Grant agreement no: 763643).

  4. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.

    Science.gov (United States)

    Cody, D; Naydenova, I

    2017-12-01

    The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.

  5. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.; Wehbe, Nimer; Hussain, Muhammad Mustafa

    2015-01-01

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn

  6. RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity

    International Nuclear Information System (INIS)

    Virostek, S.; Li, D.

    2005-01-01

    A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is currently being fabricated for the MICE (international Muon Ionization Cooling Experiment) and MUCOOL experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will also be presented

  7. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  8. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  9. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  10. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  11. Design of a thermal waist-pad

    Science.gov (United States)

    Kursun Bahadir, S.; Sahin, U. K.; Acikgoz Tufan, H.

    2017-10-01

    The objective of the current study is designing a thermal waist-pad for people who have backaches with a sandwich-like multi-layered structure. Two model is developed; one is three-layered and second is five-layered with waterproof woven outer layer fabric, Thermolite® knitted fabric (for five-layered structures), wool knitted, polyester nonwoven fabric, polypropylene nonwoven fabric and viscose nonwoven fabric for mid-layer. 10 different structures are designed and produced. All samples are tested for thermal comfort properties of waist-pad. Multi-layer structures were tested, and according to their thermal performance and thermal comfort criteria, all results are evaluated for identifying the best product. These three factors are examined by analysis of thermal conductivity, thermal resistance, thermal absorptivity, relative water vapour/air permeability, water absorption. Highest thermal resistance test result, 150,42 mK/Wm2, is achieved in five-layered sandwich structure with waterproof fabric, Thermolite® fabric, wool based knitted fabric, Thermolite® fabric and waterproof fabric, respectively. Thermal conductivity result of this structure is 46,2 mW/mK, which is one of the lowest results among the alternative structures. Structures with Thermolite® fabric show higher thermal comfort when compared to others.

  12. Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials

    International Nuclear Information System (INIS)

    Wang, Haixia; Shi, Haifeng; Qi, Miao; Zhang, Lingjian; Zhang, Xingxiang; Qi, Lu

    2013-01-01

    Graphical abstract: SMA-g-CnOH comb-like PCMs exhibit the better thermal stability against 1-alcohols due to the protection of SMA backbones, and the degradation temperature is dependent on the side-chain length, where at 5 wt% weight loss T d increased from 193 to 257 °C with n changing from 14 to 26. SMA-g-CnOH PCMs can be widely used under 300 °C for preparation of energy-saving products and materials. - Highlights: • The length of alkyl side-chains determines the thermal energy storage ability. • SMA backbone restricts the crystallization of alkyl side groups. • SMA-g-CnOH PCMs have the better thermal stability against 1-alcohols. - Abstract: A series of comb-like copolymeric phase change materials (SMA-g-CnOH) composed of poly(styrene-co-maleic anhydride) (SMA) and 1-alcohols CnOH with n = 14, 16, 18 or 26, respectively, was synthesized through grafting reaction. The structure and thermal properties of SMA-g-CnOH were investigated by 1 H nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The DSC analysis indicates that SMA-g-CnOH exhibit good structure stability with phase change enthalpies changing from 37.9 to 110.7 J g −1 . The results showed that the low thermal efficiency of SMA-g-CnOH was ascribed to the small CH 2 segments of side chains participating in the assembled structure of side-chain crystallites. Their advantageous structural stability and thermal performance of SMA-g-CnOH were favorable for phase change materials in the thermal energy storage systems. Additionally, the influence of side-chain length on thermal properties of SMA-g-CnOH also was discussed in detail in combination with the published results

  13. First principles electronic and thermal properties of some AlRE intermetallics

    Science.gov (United States)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  14. First principles electronic and thermal properties of some AlRE intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vipul [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India)], E-mail: vips73@yahoo.com; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India); Rajagopalan, M. [Department of Physics, Anna University, Chennai-600 025 (India)

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B{sub 2}-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  15. First principles electronic and thermal properties of some AlRE intermetallics

    International Nuclear Information System (INIS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-01-01

    A study on structural and electronic properties of non-magnetic cubic B 2 -type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics

  16. Structural stiffness and Coulomb damping in compliant foil journal bearings: Theoretical considerations

    Science.gov (United States)

    Ku, C.-P. Roger; Heshmat, Hooshang

    1994-07-01

    Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.

  17. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  18. Advanced welding for closed structure. Pt. 3 The thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Sacripanti, A.; Bonanno, G.; Paoloni, M.; Sagratella, G. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Arborino, A.; Varesi, R.; Antonucci, A. [DUNE, (Italy)

    1999-07-01

    This report describes the activities developed for the European Contract BRITE AWCS III to study the use of thermal sensing techniques to obtain an accurate detection of the internal reinforcement of the closed steel structures employed in the shipbuilding industry. After a description of the methods, normally developed in Russia, about the techniques and problems, for the thermal testing of materials in the conventional approach, a new thermal detector was utilized, a new bolometric thermo camera is introduced with a special software for the on line image analysis, there are also shown the experimental tests and results. The obtained conclusion shows that the thermal non destructive testing techniques with the new detector should be useful to assemble a complete sensing system with one ultrasonic head. [Italian] Questo rapporto descrive le attivita' sperimentali sviluppate nell'ambito del contratto europeo BRITE AWCS III, in cui si sono utilizzate tecniche termiche per ottenere un preciso rilevamento dei rinforzi interni di strutture metalliche chiuse utilizzate nell'industria delle costruzioni navali. Dopo la descrizione dei metodi sviluppati essenzialmente in Russia, circa le tecniche e i problemi riguardanti il testing termico dei materiali, e' stato introdotto un approccio innovativo basato su un nuovo sensore: una termocamera bolometrica connessa con un software dedicato per l'analisi online del setto; vengono inoltre mostrati i risultati sperimentali ottenuti. Le conclusioni ottenute mostrano che nel nuovo approccio, il testing termico non distruttivo dovrebbe essere utile per assemblare un sistema sensoriale completo che utilizzi anche un sensore di tipo ultrasonico.

  19. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  20. Evaluation of electrical, structural, thermal and optical properties of Co_3O_4 semiconductor

    International Nuclear Information System (INIS)

    Dias, Jeferson A.; Maestrelli, Sylma C.; Morelli, Marcio R.

    2016-01-01

    Among the new semiconductors, the tricobalt tetraoxide is a material of increasing interest; nevertheless, there is a limited number of studies about its properties. Thus, this work has investigated the structural, thermal, optical and electronic properties of Co_3O_4 and its correlation with structure and microstructure. For that, the commercial material was characterized by X-ray diffraction, thermal analysis, diffuse reflectance, FTIR and impedance spectroscopy. The results have shown that the assessed Co_3O_4 has non-stoichiometric spinel structure, presenting a band gap energy capable to completely absorb the visible spectra (1.75 eV). Furthermore, it can be visualized in infrared spectra the bands related to Co-O bonds. The activation energy of electric conduction was 0.35 eV related to the hopping mechanism. Therefore, the results confirm the potentiality of use of Co_3O_4 in optoelectronic devices due to its promising properties for technological utilization. (author)

  1. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation

    DEFF Research Database (Denmark)

    Asadi, Amin; Asadi, Meisam; Rezaniakolaei, Alireza

    2018-01-01

    efficiency of the nanofluid has been evaluated based on different figures of merit. It is revealed that using this nanofluid instead of the base fluid can be beneficial in all the studied solid concentrations and temperatures for both the internal laminar and turbulent flow regimes except the solid...... concentrations of 1 and 1.5% in internal turbulent flow regimes. The effect of adding nanoparticles on pumping power and convective heat transfer coefficient has also been theoretically investigated.......The main objective of the present study is to assess the heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid over different temperatures (25–50 °C) and solid concentrations (0.125%–1.5%). To this end, first of all, the stability of the nano-oil has been studied through the Zeta...

  2. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► The ecofriendly deposition of Ga-doped zinc oxide. ► Influence of Ga doping onto physicochemical properties in aqueous media. ► Electron–phonon coupling by Raman. ► Chemical bonding structure and valence band analysis by XPS. - Abstract: Ga-doped ZnO thin films are synthesized by chemical spray pyrolysis onto corning glass substrates in aqueous media. The influence of gallium doping on to the photoelectrochemical, structural, Raman, XPS, morphological, optical, electrical, photoluminescence and thermal properties have been investigated in order to achieve good quality films. X-ray diffraction study depicts the films are polycrystalline and fit well with hexagonal (wurtzite) crystal structure with strong orientations along the (0 0 2) and (1 0 1) planes. Presence of E 2 high mode in Raman spectra indicates that the gallium doping does not change the wurtzite structure. The coupling strength between electron and LO phonon has experimentally estimated. In order to understand the chemical bonding structure and electronic states of the Ga-doped ZnO thin films XPS analysis have been studied. SEM images shows the films are adherent, compact, densely packed with hexagonal flakes and spherical grains. Optical transmittance and reflectance measurements have been carried out. Room temperature PL spectra depict violet, blue and green emission in deposited films. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films.

  3. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    Science.gov (United States)

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  4. Representing general theoretical concepts in structural equation models: The role of composite variables

    Science.gov (United States)

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  5. Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method

    Science.gov (United States)

    Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei

    2018-03-01

    Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.

  6. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.; Chen, D.; Zhang, X.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong, S.Y.; Wu, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-20

    Various graphite fillers, such as graphite particles, graphite fibers, graphite flakes and porous graphite blocks, have been successfully incorporated into an Al alloy by squeeze casting in order to fabricate graphite/Al composites with enhanced thermal conductivity (TC). Microstructural characterization by X-ray diffraction and scanning electron microscopy has revealed a tightly-adhered, clean and Al{sub 4}C{sub 3}-free interface between the graphite fillers and the Al matrix in all the as-fabricated composites. Taking the microstructural features into account, we generalized the corresponding predictive models for the TCs of these composites with the effective medium approximation and the Maxwell mean-field scheme, which both show good agreement with the experimental data. The roles of geometry and topology structures of graphite fillers on the TCs of the composites were further discussed. - Highlights: • The thermal enhancement of various graphite fillers with different topology structures. • Predictive models for the thermal conductivity of different topology structures. • Oriented flakes alignment has the high potentials for thermal enhancement.

  7. Theoretical physics division

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Research activities of the theoretical physics division for 1979 are described. Short summaries are given of specific research work in the following fields: nuclear structure, nuclear reactions, intermediate energy physics, elementary particles [fr

  8. Parametric study of closed wet cooling tower thermal performance

    Science.gov (United States)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  9. Bank Portfolio Structure and Economic Absorption Theory of Economic Development: A Theoretical Proposition

    Directory of Open Access Journals (Sweden)

    Uduak B. UBOM

    2016-11-01

    Full Text Available The focus of this article was on theoretical proposition of Bank Portfolio Structure and Economic Absorption Theory of economic development. Specifically, the work sought to establish the basis of bank portfolio rigidity and to identify the causes of economic absorption problems and their implications on economic development. The theoretical and conceptual research designs were used. Existing literatures were reviewed using archival retrieval approach, library search and internet exploration. The information obtained was judgmentally, logically and qualitatively analyzed. It was discovered among others, that, bank portfolio rigidity stems from regulatory policy defects using inconsistent monetary policy tools such as high liquidity ratio and cash ratio, etc. and compelling the banks to adhere to the regulatory requirement, as well as lack of adequate and quality stock of infrastructure and technology as the basic causes of economic absorption problems. Above all, low level of economic absorption has been discovered to hinder effective contributions of banks to economic development. Following from above, it was therefore recommended that regulatory tools used by Central Banks should be aligned with the development needs of the economy and the direction of governments. The monetary policy tools such as liquidity and cash ratios should also be moderated and stabilized for stable bank portfolio performance as well as aggressive improvement in the stock and quality of infrastructure and technology within an economy. With the new theory, it is expected that policy formulations and adjustments concerning bank portfolio structure and management would be designed with adequate flexibility and focus on long term loans and investments coupled with improved stock and quality of infrastructure to enhance economic development. This theory therefore provides another frontier of research on bank portfolio structure and contributions to economic development.

  10. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3

    International Nuclear Information System (INIS)

    Dixon, Charlotte A.L.; Kavanagh, Christopher M.; Knight, Kevin S.; Kockelmann, Winfried; Morrison, Finlay D.; Lightfoot, Philip

    2015-01-01

    The thermal evolution of the crystal structure of the prototypical orthorhombic perovskite LaFeO 3 has been studied in detail by powder neutron diffraction in the temperature range 25thermal behavior to be understood. In particular, the largest-amplitude symmetry modes (viz. in-phase and out-of-phase octahedral tilts, and A-site cation displacements) are shown to display relatively ‘normal’ behavior, increasing with decreasing temperature, which contrasts with the anomalous behavior previously shown by the derivative Bi 0.5 La 0.5 FeO 3 . However, an unexpected behavior is seen in the nature of the intra-octahedral distortion, which is used to rationalize the unique occurrence of a temperature dependent crossover of the a and c unit cell metrics in this compound. - Graphical abstract: The unusual thermal evolution of lattice metrics in the perovskite LaFeO 3 is rationalized from a detailed powder neutron diffraction study. - Highlights: • Crystal structure of the perovskite LaFeO 3 studied in detail by powder neutron diffraction. • Unusual thermal evolution of lattice metrics rationalized. • Contrasting behavior to Bi-doped LaFeO 3 . • Octahedral distortion/tilt parameters explain unusual a and c lattice parameter behavior

  11. Crystal structure and thermal expansion of a CsCe{sub 2}Cl{sub 7} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M., E-mail: mzhuravl@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Lindsey, A. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Chakoumakos, B.C. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37996 (United States); Custelcean, R. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Meilleur, F. [Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hughes, R.W.; Kriven, W.M. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Melcher, C.L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    We used single-crystal X-ray diffraction data to determine crystal structure of CsCe{sub 2}Cl{sub 7}. It crystallizes in a P112{sub 1}/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å{sup 3}. Differential scanning calorimetry measurements combined with the structural evolution of CsCe{sub 2}Cl{sub 7} via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10{sup –6}/°C) with respect to the b and c axes (27.0×10{sup –6}/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe{sub 2}Cl{sub 7} bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. - Graphical abstract: Three-dimensional quadric surface of thermal expansion coefficient of CsCe{sub 2}Cl{sub 7} at room temperature (sphere – isotropic) and near melting point (ellipsoid – anisotropic). - Highlights: • Crystal structure of CsCe{sub 2}Cl{sub 7} was solved through X-ray diffraction. • Linear coefficients of thermal expansion were determined from in-situ XRD in 25–650 °C. • Anisotropy of the a axis with respect to b and c axes (21.3 vs 27.0×10{sup –6}/°C) was found. • No solid–solid phase transitions were observed via XRD and thermal analysis.

  12. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    Science.gov (United States)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  13. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, althou...

  14. On the thermal phase structure of QCD at vanishing chemical potentials

    CERN Document Server

    Kabana, S

    2011-01-01

    The hypothesis is investigated, that the thermal structure of QCD phases at and near zero chemical potentials is determined by long range coherence, inducing the gauge boson pair condensate. The latter reflects the dynamical nature of gauge boson Bogoliubov transformations at the origin of localization of all color fields inside hadrons at low temperature in contrast to loss of such localization above a unique critical temperature.

  15. Structural and Contact Analysis of a 3-Dimensional Disc-Pad Model with and without Thermal Effects

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-12-01

    Full Text Available The motivation of this work is to identify thermal effects on the structural and contact behaviour of a disc-pad assembly using a finite element approach. The first analysis is performed on the disc-pad model without the presence of thermal properties. Structural performance of the disc-pad model such as deformation and Von Mises stress is predicted. Next, thermomechanical analysis is performed on the same disc-pad model with the inclusion of convection, adiabatic and heat flux elements. The prediction results of temperature distribution, deformation, stress and contact pressure are presented. Comparison of the structural performance between the two analyses (mechanical and thermomechanical is also made. From this study, it can assist brake engineers to choose a suitable analysis in order to critically evaluate structural and contact behaviour of the disc brake assembly.

  16. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  17. Thermal characterization of tubular SiC/SiC composite structures for nuclear applications

    International Nuclear Information System (INIS)

    Duquesne, Loys

    2015-01-01

    Researches on the development on SiCf/SiC refractory composites for generation IV nuclear fuel cladding led the CEA to focus on the thermal behavior of these materials. In particular, knowledge of the thermal properties is essential for designing the components. Regarding the development of the 'sandwich' cladding concept, for which the complexity and the geometry differ from the conventionally used flat tubes, usual measurement methods are unsuitable. This study reports on the characterization and modeling of the thermal behavior of these structures. The first part deals with the identification of the global thermal parameters for the different layers of a 'sandwich' cladding. For this purpose, a flash method is used and an experimental device suitable for tubular geometries was developed. A new estimation method based on the combination of both collected signals in front and rear faces allows the identification of the thermal diffusivity of tubular composites using infrared thermography. The second part focuses on a virtual material approach, established to describe the thermal behavior of a 'sandwich' cladding, starting from the measured properties of the elementary components (fibers and matrix). They are then used as input data for the heat transfer modeling. Confrontations between experimental measurements and numerical results finally allow us to understand the importance of the various key parameters governing the heat transfer. (author) [fr

  18. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  19. Thermal and structural analysis of the TPX divertor

    International Nuclear Information System (INIS)

    Reis, E.E.; Baxi, C.B.; Chin, E.; Redler, K.M.

    1995-01-01

    The high heat flux on the surfaces of the TPX divertor will require a design in which a carbon-carbon (C-C) tile material is brazed to water cooled copper tubes. Thermal and structural analyses were performed to assist in the design selection of a divertor tile concept and C-C material. The relevancy of finite element analysis (FEA) for evaluating tile design was examined by conducting a literature survey to compare FEA stress results to subsequent brazing and thermal test results. The thermal responses for five tile concepts and four C-C materials were analyzed for a steady-state heat flux of 7.5 MW/m 2 . Elastic-plastic stress analyses were performed to calculate the residual stresses due to brazing C-C tiles to soft copper heat sinks for the various tile designs. Monoblock and archblock divertor tile concepts were analyzed for residual stresses in which elevated temperature creep effects were included with the elastic-plastic behavior of the copper heat sink for an assumed braze cooldown cycle. As a result of these 2D studies, the archblock concept with a 3D fine weave C-C was initially found to be a preferred design for the divertor. A 3D elastic-plastic analysis for brazing of the arch block tile was performed to investigate the singularity effects at the C-C to copper interface in the direction of the tube axis. This analysis showed that the large residual stresses at the tube and tile edge intersection would produce cracks in the C-C and possible delamination along the braze interface. These results, coupled with the difficulties experienced in brazing archblocks for the Tore Supra Limiter, required that other tile designs be considered

  20. A variable thickness window: Thermal and structural analyses

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.

    1994-01-01

    In this paper, the finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window to an Advanced Photon Source beamline is presented