WorldWideScience

Sample records for thermal structure design

  1. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  2. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  3. Design methods for structures under thermal ratchet

    International Nuclear Information System (INIS)

    Branca, T.R.; McLean, J.L.

    1975-01-01

    Previous work on the thermal ratchet analysis of a simple pipe is extended to the case of an intersection of a pipe with a spherical shell. The chosen nozzle configuration is subjected to an internal pressure which remains constant, and a cyclic thermal transient which is representative of the type of transient that might be expected for components of a LMFBR. A number of cross-sections through the nozzle were examined, each yielding a different combination of elastic primary and secondary stress. These stresses, together with their associated cyclic strain growth, as determined from an elastic-plastic-creep analysis of the nozzle, were then plotted on a Miller or Bree-type diagram. Thus, a number of points, one for each cross-section considered, were available for comparison with the data obtained from the ratchet analysis of simple pipe sections. Both the elastic and inelastic analyses on the nozzle were performed using the finite element method of structural analysis of the ANSYS computer code. The pipe ratchetting cases were computed using the Oak Ridge National Laboratory PLACRE code. For a simple pipe ratchet case, a brief comparison is given between the version of ANSYS used in this study, the ANSYS version used in previous work and PLACRE code. The three programs did not yield identical results. Further study is needed to resolve the discrepancies that were observed. The results of the comparison between the nozzle ratchet and pipe ratchet solutions indicate that reasonable predictions can be made for the nozzle ratchet strains based on elastic parameters and design curves developed from pipe ratchetting solutions. (author)

  4. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  5. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  6. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  7. Design of reinforced concrete containment structures for thermal gradients effects

    International Nuclear Information System (INIS)

    Bhat, P.D.; Vecchio, F.

    1983-01-01

    The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)

  8. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  9. Thermal modeling and design of the anisogrid morphing structure for a modular optical telescope concept

    Science.gov (United States)

    Phoenix, Austin A.

    2017-10-01

    To meet the requirements for the next generation of optical space telescopes, a paradigm shift is required from current structures that are static, heavy, and stiff toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A morphing or adaptive structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The adaptive anisogrid structure is actuated through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables mission architectures. This effort expands on the author's previous work by incorporating the impact of thermal coupling and demonstrating an updated architecture. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure to enable control of the thermal losses between active members. To evaluate the isolation design, the stiffness and thermal conductivity of these isolating interfaces is addressed. This paper determines that the applied morphing error remains below 5% across all stiffnesses if the joint thermal conductivity is below 0.2 W/(mK). This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties and determines the linear operational regime.

  10. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Pan, Heng; Liu, X.K.; Wang, Li; Wu, Hong; Chen, A.B.; Guo, X.L.

    2009-01-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  11. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an

  12. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    Science.gov (United States)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  13. Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design

    International Nuclear Information System (INIS)

    Boudjemai, A.; Mankour, A.; Salem, H.; Amri, R.; Hocine, R.; Chouchaoui, B.

    2014-01-01

    Mechanical joints and fasteners are essential elements in joining structural components in mechanical systems. The thermal coupling effect between the adjacent inserts depends to a great extent on the thermal properties of the inserts and the clearance. In this paper the Finite-Element Method (FEM) has been employed to study the insert thermal coupling behaviour of the hexagonal honeycomb panel. Fully coupled thermal analysis was conducted in order to predict thermal coupling phenomena caused by the adjacent inserts under extreme thermal loading conditions. Detailed finite elements models for a honeycomb panel are developed in this study including the insert joints. New approach of the adhesive joint is modelled. Thermal simulations showed that the adjacent inserts cause thermal interference and the adjacent inserts are highly sensitive to the effect of high temperatures. The clearance and thermal interference between the adjacent inserts have an important influence on the satellite equipments (such as the electronics box), which can cause the satellite equipments failures. The results of the model presented in this analysis are significant in the preliminary satellites structural dimensioning which present an effective approach of development by reducing the cost and the time of analysis. - Highlights: •In this work we perform thermal analysis of honeycomb plates using finite element method. •Detailed finite elements models for honeycomb panel are developed in this study including the insert joints. •New approach of the adhesive joint is modelled. •The adjacent inserts cause the thermal interference. •We conclude that this work will help in the analysis and the design of complex satellite structures

  14. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  15. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  16. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai; Tsuchiya, Youichi; Ishikawa, Yuma; Zhong, Cheng; Adachi, Chihaya; Bredas, Jean-Luc

    2017-01-01

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually

  17. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  18. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  19. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  20. Concurrent design of composite materials and structures considering thermal conductivity constraints

    Science.gov (United States)

    Jia, J.; Cheng, W.; Long, K.

    2017-08-01

    This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.

  1. Calorimetric Studies and Structural Aspects of Ionic Liquids in Designing Sorption Materials for Thermal Energy Storage.

    Science.gov (United States)

    Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf

    2016-11-02

    The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The working out of a design rule in case of structures submitted to thermal striping

    International Nuclear Information System (INIS)

    Lejeail, Y.

    1994-01-01

    Thermal striping is a complex phenomenon involving incomplete mixing of hot and cold jets of fluid near a component surface, thus submitted to random fast temperature fluctuations. Because of his nature, the zones where thermal striping can occur in a fast breeder reactor are well known; these areas can suffer fatigue damage. It has been studied by several authors and some thermomechanical design rules against this fatigue damage have been proposed. In the french point of view, the problem is the determination of the margin between the mean and the design strain controlled fatigue curves, giving the allowable maximum temperature range that a component can sustain during his life without crack initiation. The purpose of this paper is the presentation of literature results (particularly on uniaxial smooth specimens) concerning the effects of different factors such as surface finish, environment, weldments, ageing, scatter of fatigue results, prior high strain cycling...on the high temperature fatigue life, which are of first importance for the determination of design factors in case of thermal striping. The remaining question is the combination of these factors. For the analysis of thermal striping test results, it is of great interest and importance to compare the crack initiation cycles and to use a coherent strain for uniaxial and equibiaxial fatigue results, as we show in the interpretation of FAENA and SPLASH tests (performed respectively by Y. Bergamaschi and B. Marini). An analysis based on elastic calculations as proposed in the RCCMR design code gives a good correlation, despite the ambiguous choice of some coefficients in best fit analysis. This problem disappears entirely in case of high cycles/low temperature variations. Then we present a strategy for the accomplishment of simplified thermal striping tests on the FAENA sodium loop in view of acquiring a better design factor knowledge. With this experimental program, we intend to study the interaction of

  3. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  4. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort.

    Science.gov (United States)

    Sun, Chao; Au, Joe Sau-chuen; Fan, Jintu; Zheng, Rong

    2015-05-01

    This paper reports on novel ventilation design in sports T-shirt, which combines spacer and mesh structure, and experimental evidence on the advantages of design in improving thermal comfort. Evaporative resistance (Re) and thermal insulation (Rc) of T-shirts were measured using a sweating thermal manikin under three different air velocities. Moisture permeability index (i(m)) was calculated to compare the different designed T-shirts. The T-shirts of new and conventional designs were also compared by wearer trials, which were comprised of 30 min treadmill running followed by 10 min rest. Skin temperature, skin relative humidity, heart rate, oxygen inhalation and energy expenditure were monitored, and subjective sensations were asked. Results demonstrated that novel T-shirt has 11.1% significant lower im than control sample under windy condition. The novel T-shirt contributes to reduce the variation of skin temperature and relative humidity up to 37% and 32%, as well as decrease 3.3% energy consumption during exercise. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Thermal history and polymer electrolyte structure: implications for solid-state battery design

    Energy Technology Data Exchange (ETDEWEB)

    Neat, R.; Glasse, M.; Linford, R.

    1986-01-01

    Studies on PEO/LiCF/sub 3/SO/sub 3/ polymeric electrolytes using polarising microscopy, SEM/EDX, DSC and complex plane analysis show that thin electrolyte films prepared by slow evaporation from CH/sub 3/CN solution are spherulitic in nature. More than one type of spherulite is present across the composition range and each spherulite type contains both amorphous and crystalline regions. The structural behaviour on heating and cooling is discussed with particular reference to electrolyte films of overall composition PEO/sub 20/:LiCF/sub 3/SO/sub 3/. For these high ratio triflate films, in contrast to similar PEO/LiClO/sub 4/ films, high melting salt-rich regions are unexpectedly present in conjunction with low melting, low salt spherulites. No evidence is found for the presence of pure PEO spherulites, but the low melting spherulites may have a crystalline skeleton of pure PEO. Evidence is presented for the dependence of conductivity on thermal history.

  6. Design of a thermal waist-pad

    Science.gov (United States)

    Kursun Bahadir, S.; Sahin, U. K.; Acikgoz Tufan, H.

    2017-10-01

    The objective of the current study is designing a thermal waist-pad for people who have backaches with a sandwich-like multi-layered structure. Two model is developed; one is three-layered and second is five-layered with waterproof woven outer layer fabric, Thermolite® knitted fabric (for five-layered structures), wool knitted, polyester nonwoven fabric, polypropylene nonwoven fabric and viscose nonwoven fabric for mid-layer. 10 different structures are designed and produced. All samples are tested for thermal comfort properties of waist-pad. Multi-layer structures were tested, and according to their thermal performance and thermal comfort criteria, all results are evaluated for identifying the best product. These three factors are examined by analysis of thermal conductivity, thermal resistance, thermal absorptivity, relative water vapour/air permeability, water absorption. Highest thermal resistance test result, 150,42 mK/Wm2, is achieved in five-layered sandwich structure with waterproof fabric, Thermolite® fabric, wool based knitted fabric, Thermolite® fabric and waterproof fabric, respectively. Thermal conductivity result of this structure is 46,2 mW/mK, which is one of the lowest results among the alternative structures. Structures with Thermolite® fabric show higher thermal comfort when compared to others.

  7. A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures

    KAUST Repository

    Chen, Xiankai

    2017-10-17

    In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually translates into a small fluorescence oscillator strength, which can significantly decrease the emission quantum yield and limit efficiency in organic light-emitting diode devices. Here, based on the results of quantum-chemical calculations on TADF emitters composed of carbazole donor and 2,4,6-triphenyl-1,3,5-triazine acceptor moieties, a new strategy is proposed for the molecular design of efficient TADF emitters that combine a small ΔEST with a large fluorescence oscillator strength. Since this strategy goes beyond the traditional framework of structurally twisted, charge-transfer type emitters, importantly, it opens the way for coplanar molecules to be efficient TADF emitters. Here, a new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions. The synthesis of this hexamethylazatriangulene-triazine (HMAT-TRZ) emitter and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.

  8. Lessons Learned from Ares I Upper Stage Structures and Thermal Design

    Science.gov (United States)

    Ahmed, Rafiq

    2012-01-01

    The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.

  9. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    Science.gov (United States)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  10. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    Science.gov (United States)

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  11. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    Science.gov (United States)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  12. High thermal load structure

    International Nuclear Information System (INIS)

    Tsujimura, Seiichi; Toyota, Masahiko.

    1995-01-01

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.)

  13. High thermal load structure

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiichi; Toyota, Masahiko

    1995-06-16

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.).

  14. Reliable core thermal design

    International Nuclear Information System (INIS)

    Amendola, A.

    1974-01-01

    The hot spot analysis is no longer limited to the calculation of a simple safety factor against overtemperature, but is now integrated in the overall design philosophy. This paper describes the development of a probabilistic method of analysis and compares it with other advanced calculation methods. Feedbacks from the analysis act: - on the nominal temperature distribution in order to satisfy the maximum temperature limit and in the same time to optimize the coolant temperature for maximum plant efficiency, and - on the specifications of manufacturing tolerances and experimental investigations in order to identify and to reduce the most important design uncertainties. Moreover the computer codes SHOSPA and THEDRA are briefly discussed. Both codes deliver the zero hot spot probability as a function of the geometrical size assumed for a ''spot''. THEDRA delivers also the expected hot spot distribution. By means of THEDRA it is possible to evaluate the pins failure expectation if the distribution of pin failures versus operating temperature is known. (author)

  15. Cost reducing factors in effective pipeline piling structure design and construction in Alberta's thermal SAGD gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzad, M.A. [IMV Projects, Calgary, AB (Canada)

    2008-10-15

    Oil sands steam assisted gravity drainage (SAGD) gathering pipeline systems are typically arranged so that above-ground steam pipeline and production pipelines lay next to each other on the same steel structure. Longitudinal and lateral loads build up in the pipeline supports, and the loads are consistently changing until pipeline temperatures reach a steady state condition. SAGD pipelines are required to have enough flexibility to absorb thermal expansion or contraction movements. However, most pipeline engineers only consider upper and lower temperature limits in the design of steel structures and pilings. This paper examined the effect of considering both the thermal gradient and time factor in designing supports for pipelines. The study examined how the factors impacted on standard load calculations and pile sizings. Sixteen stress analysis models for steam and production lines were prepared and designated thermal gradients were introduced to each model. Longitudinal and lateral loads caused by thermal gradient movements were calculated for all supports. The models were analyzed and absolute values for longitudinal and lateral loads were recorded. Results of the study showed that engineers do not necessarily need to rely on maximum temperatures as the condition that results in maximum longitudinal and lateral loads on supports. It was concluded that costs related to pipeline construction can be significantly reduced by considering the effects of thermal gradients in stress analyses and load calculations. 5 refs., 14 figs.

  16. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  17. Thermal design of top shield

    International Nuclear Information System (INIS)

    Raghupathy, S.; Velusamy, K.; Parthasarathy, U.; Ghosh, D.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2005-01-01

    Full text of publication follows: Prototype Fast Breeder Reactor (PFBR) is a 500 MWe, sodium cooled, pool type fast reactor. The top shield forms the top cover for the main vessel (MV) and includes roof slab (RS), large rotatable plug (LRP), small rotatable plug (SRP) and control Plug (CP). RS, LRP and SRP are box type structures consisting of top and bottom plates stiffened by radial stiffeners and vertical penetration shells. TS is exposed to argon cover gas provided above sodium pool on the bottom side and reactor containment building air at the top. Heat transfer takes place through the argon cover gas to the bottom plate of TS. Annular gaps are formed between the components supported on TS and the component penetrations through which cellular convection takes place. A single thermal shield provided below TS reduces the heat flux to the bottom plate to 1.15 kW/m 2 . The MV (SS 316 LN) is welded to RS (carbon steel A48 P2) through a dissimilar metal weld. A step in RS and an anti convection barrier (ACB) outside RS are provided to limit the temperature at the MV-RS junction. The MV is surrounded by safety vessel (SV) and reactor vault made of concrete. Thermal insulation is provided outside SV to limit the heat transfer to the reactor vault. The design requirements of TS are to maintain the operating temperature at 383-393 K, limit the temperature difference (ΔT) across the height of TS to 20 / 100 K under normal operation/loss of cooling, provide minimum annular gap size at the component penetrations, provide a nearly linear temperature gradient in the CP portion within the height of TS, maintain the temperature of top plate of CP > 383 K, limit the ΔT across the top plate of CP to 2 K, limit the temperature near the inflatable / backup seal to 393 K, limit the temperature at the MV-RS junction and the heat flux to the reactor vault. The total heat transferred to TS is estimated to be 210 kW. A dedicated closed loop cooling system with a total flow rate of 10

  18. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  19. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  20. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  1. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  2. SPECTROSCOPIC, STRUCTURAL, THERMAL AND ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    and characterize the complexes of Mn(II), Fe(III), Co(II) and Ni(II) with L in order to ... Studies on 4,6-bis (4-chlorophenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile ..... Mass spectra of (A) L, (B) [Mn(L)2(H2O)2]SO4,(C) [Fe(L)2(H2O)2](NO3)3, (D) .... S.A. Sadeek et al. Bull. Chem. Soc. Ethiop. 2015, 29(1). 86. Thermal analysis.

  3. Development and utilization of irradiational capsule - Mechanical and thermal performance analysis and development of design program on the cylindrical structures with multi-holes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Shin; Choi, M. H.; Shin, D. S. [Chungnam National University, Taejon (Korea)

    2000-04-01

    Irradiation tests in the research reactor are used with the specially designed capsules for irradiation test and loop. Accordingly, suitable instrumented capsule for HANARO must be designed and manufactured. To satisfy the requirements of users and to conduct irradiation test effectively, the accurate informations on the thermal and mechanical characteristics of capsule should be understood. The structural analysis results show that stress characteristics of the cylinder with multi-holes is not significantly effected by the sizes of specimen hole, numbers of specimen and eccentric characteristics. The thermal and structural analysis of the capsule with multi-holes under thermal loading shows that the peak temperature in the circular cylinder is occurred in the specimens inserted in the center or specimen holes and is significantly effected by gap size between the holder and the external tube. In this study, CAPSYS program is developed by interfacing finite element analysis program, ANSYS with graphic user interface program, VISUAL C++. This program will be useful on the design and safety analysis of the capsule for material irradiation test. 20 refs., 37 figs., 9 tabs. (Author)

  4. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  5. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  6. Structural design by CAD system

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Shim, Jae Ku; Kim, Sun Hoon; Kim, Dae Hong; Lee, Kyung Jin; Choi, Kyu Sup; Choi, In Kil; Lee, Dong Yong

    1988-12-01

    CAD systems are now widely used for the design of many engineering problems involving static, dynamic and thermal stress analyses of structures. In order to apply CAD systems to the structural analysis and design, the function of hardwares and softwares necessary for the CAD systems must be understood. The purpose of this study is to introduce the basic elements that are indispensible in the application of CAD systems to the analysis and design of structures and to give a thorough understanding of CAD systems to design engineers, so as to participate in the further technological developments of CAD systems. Due to the complexity and variety of the shape and size of the nowa-days structures, the need of new design technologies is growing for more efficient, accurate and economical design of structures. The application of CAD systems to structural engineering fields enables to improve structural engineering analysis and design technologies and also to obtain the standardization of the design process. An active introduction of rapidly developing CAD technologies will contribute to analyzing and designing structures more efficiently and reliably. Based on this report of the current status of the application of CAD systems to the structural analysis and design, the next goal is to develop the expert system which enables to perform the design of structures by CAD systems from the preliminary conceptual design to the final detail drawings automatically. (Author)

  7. Test design requirements: Thermal conductivity probe testing

    International Nuclear Information System (INIS)

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  8. Micro thermal energy harvester design optimization

    International Nuclear Information System (INIS)

    Trioux, E; Basrour, S; Monfray, S

    2017-01-01

    This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack. (paper)

  9. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  10. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities

    Science.gov (United States)

    Le Touz, Nicolas; Dumoulin, Jean

    2015-04-01

    Facing the heavy organisational, financial and environmental constraints imposed by usual winter maintenance salting operations, pavement engineers have been led to look for alternative solutions to avoid ice or snow deposit at pavements surface. Among the solutions, one is self-de-icing heating pavements, for which two technologies have been developed so far: one is based on embedded coils circulating a heated calorific fluid under the pavement surface; the other one relies on the use of embedded resistant electric wires. The use and operation of such systems in the world is still limited and was only confined to small road stretches or specific applications, such as bridges which are particularly sensitive to frost. One of the most significant "coil technology" example in Europe is the SERSO-System (Solar Energy recovery from road surfaces) built in 1994, on a Switzerland bridge. Many of these experiences are referenced in the technical literature, which provides state-of-the art papers (see for instance Eugster) and useful detailed information dealing with the construction and operational management of such installation. The present study is taking part of the Forever Open Road Concept addressed by the R5G: 5th Generation Road [1], one of the major project supported by IFSTTAR. It considers a different design of self-de-icing road that simplify its mode of construction and maintenance, compared to the two technologies mentioned above. It should also be noted that similar to pavements instrumented with coils, such structure could be used in the reversible way to capture the solar energy at the pavement surface during sunny days and store it, to either warm the pavement at a later stage or for exogenous needs (e.g. contribution to domestic hot water). To complete our study we also considered the use of semi-transparent pavement course wearing in place of the traditional opaque one. In the present study, a 2D model was developed using FEM approach. It combines 2

  11. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  12. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  13. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  14. A design rule about thermal ratcheting

    International Nuclear Information System (INIS)

    Clement, G.; Lebey, J.; Roche, R.L.

    1984-01-01

    The purpose of this paper is to present an analysis of thermal ratcheting, and to give a practical design rule aimed at avoiding its detrimental effects. A practical method will thus be available to designers for dealing with one of the adverse effects of computed thermal stresses

  15. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  16. Parametric study for design of thermal sleeves

    International Nuclear Information System (INIS)

    Mukherjee, A.B.; Mehra, V.K.

    1985-01-01

    Thermal sleeves are used inside nozzle in many reactor components. Basic aim in design of thermal sleeve is to arrive at a set of dimensions for gap and annulus length, which will give rise to minimum thermal gradient in the base metal of the associated nozzle. Study includes the minimisation of the thermal gradient in the crotch zone by suitable choice of gap and annulus length. Three different geometries of nozzle radii 50.00 mm., 100 mm. and 200.0 mm. are studied for single and two concentric thermal sleeves model. The paper also presents effect of parameters like velocity of flow, temperature of fluid, materials etc. on the design of thermal sleeves. (orig.)

  17. THERMAL: A routine designed to calculate neutron thermal scattering

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy

  18. On the design of thermally loaded fiber optics feedthroughs

    Directory of Open Access Journals (Sweden)

    Marinković Dragan Z.

    2016-01-01

    Full Text Available Thermo-mechanical design aspects of various structures exposed to cyclic thermal loading have a crucial impact on their lifetime. This is particularly valid for fiber optics feedthroughs that involve several materials with significantly different thermal expansion ratios. Thermal loading in such structures may give rise to non-trivial thermally induced deformations and therewith stresses, which can be adequately predicted and assessed only by a detailed 3-D numerical simulation. This paper considers a couple of design solutions of fiber optics feedthroughs, which have exhibited certain weaknesses in their application. Numerical simulation by means of the finite element method has been conducted to reveal the weak points of the design.

  19. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  20. Structural elements design manual

    CERN Document Server

    Draycott, Trevor

    2012-01-01

    Gives clear explanations of the logical design sequence for structural elements. The Structural Engineer says: `The book explains, in simple terms, and with many examples, Code of Practice methods for sizing structural sections in timber, concrete,masonry and steel. It is the combination into one book of section sizing methods in each of these materials that makes this text so useful....Students will find this an essential support text to the Codes of Practice in their study of element sizing'.

  1. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  2. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  3. System design description PFP thermal stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1998-01-01

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides

  4. Design bases - Concrete structures

    International Nuclear Information System (INIS)

    Diaz-Llanos Ros, M.

    1993-01-01

    The most suitable title for Section 2 is 'Design Bases', which covers not only calculation but also the following areas: - Structural design concepts. - Project criteria. - Material specifications. These concepts are developed in more detail in the following sections. The numbering in this document is neither complete nor hierarchical since, for easier cross referencing, it corresponds to the paragraphs of Eurocode 2 Part 1 (hereinafter 'EUR-2') which are commented on. (author)

  5. Guidelines for CubeSat's Thermal Design

    Science.gov (United States)

    Rodriguez-Ruiz, Juan; Patel, Deepak

    2015-01-01

    Thermal and Fluids Analysis Workshop 2015, Silver Spring, MD. NCTS 19104-15. What does it take to thermally designlow cost, low mass cubesats? What are the differences in the approach when you compare with large scale missions?What additional risk is acceptable? What is the approach to hardware? How is the testing campaign run? These aresome of the questions that will be addressed in this course, which is designed to equip the attendees to support thedevelopment of cubesats at their organization.

  6. Bridgescaping - Contextual Structural Design

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    Large-scale infrastructural projects such as bridges used to be the monopoly of engineers. They were designed as – often very beautiful – expressions of how forces work in a structure, guided by the nature of materials and a rational construction process. However, in recent decades politicians an...

  7. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  8. CRBR reactor structures design. BRC meeting presentation

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    Some of the more important developments in LMFBR structures design technology are described and the application of the technology to design of the CRBR reactor components is illustrated. The LMFBR is both a high-temperature and a high-ΔT machine. High-temperature operation (up to 1100 0 F) requires that the designer consider the effects of thermal creep as a deformation mechanism and stress rupture as a failure mode. The large ΔT across the core coupled with a low core thermal inertia and the high conductivity of the sodium coolant combine to produce severe temperature gradients during a reactor scram. Structures designed to operate in this environment must be both light and stiff to minimize transient thermal stresses and prevent unacceptable flow-induced vibrations. Thermal shields may be required to protect the load-bearing structure. At CRBR core-component goal fluence levels, the predicted magnitude of core-component dimensional changes due to irradiation swelling and creep is very large compared with the more familiar dimensional changes associated with thermal expansion and thermal creep. The design of the core components, and in particular the core restraint system, is dominated by the need to accommodate the effects of irradiation swelling, creep and du []tility loss considerations. (auth)

  9. Transient thermal analysis of Vega launcher structures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, F. [University of Rome ' Tor Vergata' , Rome (Italy); De Stefanis, M. [Thales Alenia Space Italia, Rome (Italy); Worek, W.M. [University of Illinois at Chicago, Chicago (United States)], E-mail: wworek@uic.edu; Minkowycz, W.J. [University of Illinois at Chicago, Chicago (United States)

    2008-12-15

    A transient thermal analysis is carried out to verify the base cover thermal protection system of Vega 2nd stage Solid Rocket Motor (SRM) and the flange coupling of the inter-stage 2/3. The analysis is performed with a finite element code. The work has developed suitable numerical Fortran subroutines to assign radiation and convection boundary conditions. The thermal behaviour of the structures is presented.

  10. Comparative performance study of smart structure for thermal microactuators

    Science.gov (United States)

    Yahya, Zulkarnain; Johar, Muhammad Akmal

    2017-04-01

    Thermal microactuator is one of earliest types of microactuators. Typical thermal actuators are in the form of Bimorph and Chevron structures. A bimorph thermal actuator has a complex movement direction, in arc motion and thus it is not feasible in the most MEMS designs. While Chevron actuator has a tendency to produce an off-plane movement which lead to low precision in lateral movement. A new thermal actuator design in the form of serpentine structures shows promising feature to have better performances in terms of more predictive lateral movement with smaller off-plane displacement. In MEMS chip design, areas play a critical role as it will impact with the cost of the final product. In this study, four different structures of thermal actuator were simulated using ANSYS v15. Three different set of area sizes which are 240 µm x 1000 µm, 240 µm x 1500 µm and 240 µm x 2000 µm have been analyzed. All four structures were named as Serpentine01, Serpentine02, Bimorph and Chevron. The data with regards to temperature produced by the structure and z-axis directional deformation were collected and analyzed. This paper reported the investigation result of comparison between these three types of thermal actuator structures design with a given area. From all of the result obtained, it is shown that the area 240 µm x 1500 µm showed a well balance performance in term of huge deformations and low power consumption. The Serpentine01 structure produced 16.7 µm deformation at 4mA of current. The results shows the potential of Serpentine01 structure as a new candidate for thermal microactuator for MEMS applications.

  11. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  12. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  13. Design of Thermal Systems Using Topology Optimization

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas

    printeddry-cooled power plant condensers using a simpliffed thermouid topology optimizationmodel is presented in another study. A benchmarking of the optimized geometriesagainst a conventional heat exchanger design is conducted and the topologyoptimized designs show a superior performance. A thermouid......The goalof this thesis is to apply topology optimization to the design of differentthermal systems such as heat sinks and heat exchangers in order to improve thethermal performance of these systems compared to conventional designs. Thedesign of thermal systems is a complex task that has...... of optimized designs are presentedwithin this thesis.  The maincontribution of the thesis is the development of several numerical optimizationmodels that are applied to different design challenges within thermalengineering.  Topology optimization isapplied in an industrial project to design the heat rejection...

  14. Thermal and Mechanical Design Aspects of the LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  15. Thermal battery automated assembly station conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D

    1988-08-01

    Thermal battery assembly involves many operations which are labor- intense. In August 1986, a project team was formed at GE Neutron Devices to investigate and evaluate more efficient and productive battery assembly techniques through the use of automation. The result of this study was the acceptance of a plan to automate the piece part pellet fabrication and battery stacking operations by using computerized pellet presses and robots which would be integrated by a main computer. This report details the conceptual design and development plan to be followed in the fabrication, development, and implementation of a thermal battery automated assembly station. 4 figs., 8 tabs.

  16. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  17. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  18. Survey of evaluation methods for thermal striping in FBR structures

    International Nuclear Information System (INIS)

    Miura, Naoki; Nitta, Akito; Take, Kohji

    1988-01-01

    In the upper core structures or the sodium mixing tee of Fast Breeder Reactors, sodium mixing streams which are at different temperatures produce rapid temperature fluctuations, namely 'thermal striping', upon component surfaces, and it is apprehended that the high-cycle thermal fatigue causes the crack initiation and propagation. The thermal striping is one of the factors which is considered in FBR component design, however, the standard evaluation method has not built up yet because of the intricacy of that mechanism, the difficulty of an actual proof, the lack of data, and so on. In this report, it is intended to survey of the datails and the present situation of the evaluation method of crack initiation and propagation due to thermal striping, and study the appropriate method which will be made use of the rationalization of design. So it is ascertained that the method which use a quantitative prediction of crack propagation is optimum to evaluate the thermal striping phenomenon. (author)

  19. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  20. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  1. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  2. Thermal probe design for Europa sample acquisition

    Science.gov (United States)

    Horne, Mera F.

    2018-01-01

    The planned lander missions to the surface of Europa will access samples from the subsurface of the ice in a search for signs of life. A small thermal drill (probe) is proposed to meet the sample requirement of the Science Definition Team's (SDT) report for the Europa mission. The probe is 2 cm in diameter and 16 cm in length and is designed to access the subsurface to 10 cm deep and to collect five ice samples of 7 cm3 each, approximately. The energy required to penetrate the top 10 cm of ice in a vacuum is 26 Wh, approximately, and to melt 7 cm3 of ice is 1.2 Wh, approximately. The requirement stated in the SDT report of collecting samples from five different sites can be accommodated with repeated use of the same thermal drill. For smaller sample sizes, a smaller probe of 1.0 cm in diameter with the same length of 16 cm could be utilized that would require approximately 6.4 Wh to penetrate the top 10 cm of ice, and 0.02 Wh to collect 0.1 g of sample. The thermal drill has the advantage of simplicity of design and operations and the ability to penetrate ice over a range of densities and hardness while maintaining sample integrity.

  3. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  4. Computational thermal analysis of cylindrical fin design parameters and a new methodology for defining fin structure in LED automobile headlamp cooling applications

    International Nuclear Information System (INIS)

    Sökmen, Kemal Furkan; Yürüklü, Emrah; Yamankaradeniz, Nurettin

    2016-01-01

    Highlights: • In the study, cooling of LED headlamps in automotive is investigated. • The study is based on free convection cooling of LED module. • Besides free convection, Monte Carlo model is used as radiation model as well. • A new algorithm is presented for designing optimum fin structure. • Suggested algorithm for optimum design is verified by various simulations. - Abstract: In this study, the effects of fin design, fin material, and free and forced convection on junction temperature in automotive headlamp cooling applications of LED lights are researched by using ANSYS CFX 14 software. Furthermore a new methodology is presented for defining the optimum cylindrical fin structure within the given limits. For measuring the performance of methodology, analyses are carried out for various ambient temperatures (25 °C, 50 °C and 80 °C) and different LED power dissipations (0.5 W, 0.75 W, 1 W and 1.25 W). Then, analyses are repeated at different heat transfer coefficients and different fin materials in order to calculate LED junction temperature in order to see if the fin structure proposed by the methodology is appropriate for staying below the given safety temperature limit. As a result, the suggested method has always proposed proper fin structures with optimum characteristics for given LED designs. As another result, for safe junction temperature ranges, it is seen that for all LED power dissipations, adding aluminum or copper plate behind the printed circuit board at low ambient temperatures is sufficient. Also, as the ambient temperature increases, especially in high powered LED lights, addition of aluminum is not sufficient and fin usage becomes essential. High heat transfer coefficient and using copper fin affect the junction temperature positively.

  5. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  6. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  7. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  8. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  9. Thermal hydraulic design of PFBR core

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  10. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  11. Design and development of a linear thermal actuator

    Science.gov (United States)

    Bush, G.; Osborne, D.

    1985-01-01

    The design and development of a linear thermal actuator (LTA) for space applications is described. The actuator is driven by thermal energy and utilizes the property of thermal expansion to do work. Equations to predict performance are developed and used to optimize the design of the development model LTA. Design details and test results are presented and discussed.

  12. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  13. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  14. ACCESS: Thermal Mechanical Design, Performance, and Status

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, are now rivaling and exceeding the statistical errors associated with these measurements. ACCESS: Absolute Color Calibration Experiment for Standard Stars is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 - 1.7μm bandpass. Achieving this level of accuracy requires characterization and stability of the instrument and detector including a thermal background that contributes less than 1% to the flux per resolution element in the NIR. We will present the instrument and calibration status with a focus on the thermal mechanical design and associated performance data. The detector control and performance will be presented in a companion poster (Morris, et al). NASA APRA sounding rocket grant NNX08AI65G supports this work.

  15. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  16. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  17. Thermal design trades for SAFIR architecture concepts

    Science.gov (United States)

    Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles

    2004-01-01

    SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.

  18. The thermal structure of Titan's atmosphere

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1989-01-01

    The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.

  19. Lunar mission design using nuclear thermal rockets

    International Nuclear Information System (INIS)

    Stancati, M.L.; Collins, J.T.; Borowski, S.K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits

  20. Thermal Design of Power Electronic Circuits

    CERN Document Server

    Künzi, R.

    2015-06-15

    The heart of every switched mode converter consists of several switching semiconductor elements. Due to their non-ideal behaviour there are ON state and switching losses heating up the silicon chip. That heat must effectively be transferred to the environment in order to prevent overheating or even destruction of the element. For a cost-effective design, the semiconductors should be operated close to their thermal limits. Unfortunately the chip temperature cannot be measured directly. Therefore a detailed understanding of how losses arise, including their quantitative estimation, is required. Furthermore, the heat paths to the environment must be understood in detail. This paper describes the main issues of loss generation and its transfer to the environment and how it can be estimated by the help of datasheets and/or experiments.

  1. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  2. Thermally Conductive Structural 2D Composite Materials

    Science.gov (United States)

    2012-08-14

    Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and

  3. Orbital maneuvering vehicle thermal design and analysis techniques

    Science.gov (United States)

    Chapter, J.

    1986-01-01

    This paper describes the OMV thermal design that is required to maintain components within temperature limits for all mission phases. A key element in the OMV thermal design is the application of a motorized thermal shade assembly that is a replacement for the more conventional variable conductance heat pipes or louvers. The thermal shade assembly covers equipment module radiator areas, and based upon the radiator temperature input to onboard computer, opens and closes the shade, varying the effective radiator area. Thermal design verification thermal analyses results are presented. Selected thermal analyses methods, including several unique subroutines, are discussed. A representation of enclosure Script F equations, in matrix form, is also included. Personal computer application to the development of the OMV thermal design is summarized.

  4. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  5. Thermal-hydraulic design of the 200 MW NHR

    International Nuclear Information System (INIS)

    Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao

    1997-01-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs

  6. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.

  7. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  8. Hybrid Tower, Designing Soft Structures

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders

    2015-01-01

    and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....

  9. Thermal structure and geodynamics of subduction zones

    Science.gov (United States)

    Wada, Ikuko

    The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid

  10. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  11. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    International Nuclear Information System (INIS)

    Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R

    2016-01-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)

  12. Novel thermal management structures and their applications in new hybrid technologies and feed-through structures

    International Nuclear Information System (INIS)

    Carter, A.A.; Oliveira, R. de; Gandi, A.

    1999-01-01

    Novel techniques are described for fabricating a new thermal management structure (TMS), in the form of rigid low-mass structures with extremely high in-plane thermal conductivity. The core materials can be forms of thermally anisotropically conducting pyrolytic graphite that are directly encapsulated in a new thin-layering process. The structures can be used in a large variety of applications, including: (a) Efficient interfacing with ceramic materials and metals to provide new thermal management technologies. (b) Providing the source for a new hybrid technology where low-mass custom-designed multilayer thin-film circuits can be directly processed onto such structures. Alternatively, having been prefabricated on an independent substrate, hybrids can be efficiently interfaced to such thermal management structures. (c) Providing electrical connectivity between both sides of a TMS board through a new feedthrough technology that allows the fabrication of both single-sided and double-sided hybrids. These thermal management techniques and their applications are the subject of an international patent application number PCT/GB99/02180, filed in the names of the European Organization for Nuclear Research and Queen Mary and Westfield College, London. (orig.)

  13. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  14. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  15. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  16. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  17. Some trends in aircraft design: Structures

    Science.gov (United States)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  18. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures

    CERN Document Server

    Greve, Albert

    2010-01-01

    Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the t...

  19. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  20. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  1. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  2. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  3. An Innovative High Thermal Conductivity Fuel Design

    International Nuclear Information System (INIS)

    Khan, Jamil A.

    2009-01-01

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% TD). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  4. An Innovative High Thermal Conductivity Fuel Design

    Energy Technology Data Exchange (ETDEWEB)

    Jamil A. Khan

    2009-11-21

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  5. Design, implementation, and extension of thermal invisibility cloaks

    Science.gov (United States)

    Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2015-05-01

    A thermal invisibility cloak, as inspired by optical invisibility cloaks, is a device which can steer the conductive heat flux around an isolated object without changing the ambient temperature distribution so that the object can be "invisible" to external thermal environment. While designs of thermal invisibility cloaks inherit previous theories from optical cloaks, the uniqueness of heat diffusion leads to more achievable implementations. Thermal invisibility cloaks, as well as the variations including thermal concentrator, rotator, and illusion devices, have potentials to be applied in thermal management, sensing and imaging applications. Here, we review the current knowledge of thermal invisibility cloaks in terms of their design and implementation in cloaking studies, and their extension as other functional devices.

  6. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  7. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  8. Designing of Metallic Photonic Structures and Applications

    International Nuclear Information System (INIS)

    Yong-Sung Kim

    2006-01-01

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result

  9. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  10. Thermal linear expansion coefficient of structural graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    1995-01-01

    The data now available on radiation induced changes of linear thermal expansion coefficients (CTE) for native structural carbon materials (SCM) irradiated with high fluences are summarized. For different types of native and foreign SCM dose dependences of CTE changes in the temperature range of 300...1600 K and at fluences up to (2...3)x10 22 n/cm 2 (E>0.18 meV) are compared. On the base of this comparison factors defined the CTE changes under neutron irradiation are revealed and the explanation of observed phenomena is offered. Large number of the factors revealed does not allowed to calculate CTE radiation induced changes. 39 refs.; 16 figs.; 5 tabs

  11. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  12. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  13. Thermal and structural analysis of the TPX divertor

    International Nuclear Information System (INIS)

    Reis, E.E.; Baxi, C.B.; Chin, E.; Redler, K.M.

    1995-01-01

    The high heat flux on the surfaces of the TPX divertor will require a design in which a carbon-carbon (C-C) tile material is brazed to water cooled copper tubes. Thermal and structural analyses were performed to assist in the design selection of a divertor tile concept and C-C material. The relevancy of finite element analysis (FEA) for evaluating tile design was examined by conducting a literature survey to compare FEA stress results to subsequent brazing and thermal test results. The thermal responses for five tile concepts and four C-C materials were analyzed for a steady-state heat flux of 7.5 MW/m 2 . Elastic-plastic stress analyses were performed to calculate the residual stresses due to brazing C-C tiles to soft copper heat sinks for the various tile designs. Monoblock and archblock divertor tile concepts were analyzed for residual stresses in which elevated temperature creep effects were included with the elastic-plastic behavior of the copper heat sink for an assumed braze cooldown cycle. As a result of these 2D studies, the archblock concept with a 3D fine weave C-C was initially found to be a preferred design for the divertor. A 3D elastic-plastic analysis for brazing of the arch block tile was performed to investigate the singularity effects at the C-C to copper interface in the direction of the tube axis. This analysis showed that the large residual stresses at the tube and tile edge intersection would produce cracks in the C-C and possible delamination along the braze interface. These results, coupled with the difficulties experienced in brazing archblocks for the Tore Supra Limiter, required that other tile designs be considered

  14. Study of elevated temperature design standard against thermal loads

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Asayama, Tai; Morishita, Masaki

    2001-01-01

    Elevated temperature components must be designed against both pressure and thermal loads. In the case of sodium circuits of fast breeder reactors, a restriction from the pressure load becomes small because of the high boiling point of sodium. Design approaches for thermal loads (displacement-controlled) are compared with those against pressure loads (load-controlled). Considering differences between those two approaches, a concept of the elevated temperature design standard that takes the nature of thermal loads fully into account is proposed. This concept is a basis of load evaluation techniques and an inelastic analysis guide, that are being developed. Finally, problems and plans to realize the above concept are discussed. (author)

  15. Structural relaxation and thermal conductivity coefficient of liquids

    International Nuclear Information System (INIS)

    Abdurasulov, A.

    1992-01-01

    Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.

  16. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  17. Structuring Principles for the Designer

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    1998-01-01

    This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...

  18. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  19. Thermal analysis of reservoir structure versus capillary pumped loop

    International Nuclear Information System (INIS)

    Lin Hungwen; Lin Weikeng

    2009-01-01

    Capillary pumped loop (CPL) was already used in man-made satellites and space aircrafts with proven heat control technology. However, small-sized CPL had not yet made a breakthrough application in electronic components owing to poor heat-absorption capacity of evaporator structure. Hence, a small-scale CPL was designed for server in this research. The evaporator was designed with a circular groove and embedded with a high density polyethylene (HDPE) as a capillary structure to absorb working fluid. The influence of reservoir upon thermal resistance was also analyzed. The experimental results showed that, under a filling level of 72%, CPL with optimized design could remove 110 W energy while maintaining its temperature at 80 deg. C. Comparison of CPL with/without reservoir, the loop thermal resistance R th,loop was reduced by 0.14 deg. C/W and was able to increase the stability of CPL, too, the results confirmed that reservoir could enhance CPL performance and this technology will probably find application in electronics cooling for electronic devices

  20. Design of outdoor urban spaces for thermal comfort

    Science.gov (United States)

    Harriet J. Plumley

    1977-01-01

    Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...

  1. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  2. Simple models of the thermal structure of the Venusian ionosphere

    International Nuclear Information System (INIS)

    Whitten, R.C.; Knudsen, W.C.

    1980-01-01

    Analytical and numerical models of plasma temperatures in the Venusian ionosphere are proposed. The magnitudes of plasma thermal parameters are calculated using thermal-structure data obtained by the Pioneer Venus Orbiter. The simple models are found to be in good agreement with the more detailed models of thermal balance. Daytime and nighttime temperature data along with corresponding temperature profiles are provided

  3. Verification of the thermal design of electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hienonen, R.; Karjalainen, M.; Lankinen, R. [VTT Automation, Espoo (Finland). ProTechno

    1997-12-31

    The project `Verification of the thermal design of electronic equipment` studied the methodology to be followed in the verification of thermal design of electronic equipment. This project forms part of the `Cool Electronics` research programme funded by TEKES, the Finnish Technology Development Centre. This project was carried out jointly by VTT Automation, Lappeenranta University of Technology, Nokia Research Center and ABB Industry Oy VSD-Technology. The thermal design of electronic equipment has a significant impact on the cost, reliability, tolerance to different environments, selection of components and materials, and ergonomics of the product. This report describes the method for verification of thermal design. It assesses the goals set for thermal design, environmental requirements, technical implementation of the design, thermal simulation and modelling, and design qualification testing and the measurements needed. The verification method covers all packaging levels of electronic equipment from the system level to the electronic component level. The method described in this report can be used as part of the quality system of a corporation. The report includes information about the measurement and test methods needed in the verification process. Some measurement methods for the temperature, flow and pressure of air are described. (orig.) Published in Finnish VTT Julkaisuja 824. 22 refs.

  4. Design of a Thermal Precipitator for the Characterization of Smoke Particles from Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit Elisabeth

    2015-01-01

    A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.

  5. Thermal design and test verification of GALAXY evolution explorer (GALEX)

    Science.gov (United States)

    Wu, P. S.; Lee, S. -C.

    2002-01-01

    This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.

  6. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  7. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  8. Decomposability and convex structure of thermal processes

    Science.gov (United States)

    Mazurek, Paweł; Horodecki, Michał

    2018-05-01

    We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

  9. Designs for thermal harvesting with nonlinear coordinate transformation

    Science.gov (United States)

    Ji, Qingxiang; Fang, Guodong; Liang, Jun

    2018-04-01

    In this paper a thermal concentrating design method was proposed based on the concept of generating function without knowing the needed coordinate transformation beforehand. The thermal harvesting performance was quantitatively characterized by heat concentrating efficiency and external temperature perturbation. Nonlinear transformations of different forms were employed to design high order thermal concentrators, and corresponding harvesting performances were investigated by numerical simulations. The numerical results shows that the form of coordinate transformation directly influences the distributions of heat flows inside the concentrator, consequently, influences the thermal harvesting behaviors significantly. The concentrating performance can be actively controlled and optimized by changing the form of coordinate transformations. The analysis in this paper offers a beneficial method to flexibly tune the harvesting performance of the thermal concentrator according to the requirements of practical applications.

  10. Thermally induced structural changes in Nomex fibres

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thermally aged Nomex fibres manifest several residual effects viz. reduction in X-ray crystallinity, weight loss and deterioration in tensile characteristics. Surface damages in the form of longi- tudinal openings, holes, material deposits etc have also been observed. Based on the data from thermally exposed fibres ...

  11. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  12. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  13. Design of Multistable Origami Structures

    Science.gov (United States)

    Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip

    Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.

  14. Optimization methods in structural design

    CERN Document Server

    Rothwell, Alan

    2017-01-01

    This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...

  15. The ITER thermal shields for the magnet system: Design evolution and analysis

    International Nuclear Information System (INIS)

    Bykov, V.; Krasikov, Yu.; Grigoriev, S.; Komarov, V.; Krylov, V.; Labusov, A.; Pyrjaev, V.; Chiocchio, S.; Smirnov, V.; Sorin, V.; Tanchuk, V.

    2005-01-01

    The thermal shield (TS) system provides the required reduction of thermal loads to the cold structures operating at 4.5 K. This paper presents the rationale for the TS design evolution, details of the recent modifications that affect the TS cooling panels, the central TS ports and support system, interface labyrinths and TS structural joints. The modern results of thermal-hydraulic, thermal, seismic, static and dynamic structural analyses, that involve sub-modeling and sub-structuring finite element analysis techniques, are also reported. The modifications result in considerable reduction of TS mass, surface area and heat loads to/from the TS, simplification of TS assembly procedure and in-cryostat maintenance

  16. Thermally adapted design strategy of colonial houses in Surabaya

    Science.gov (United States)

    Antaryama, I. G. N.; Ekasiwi, S. N. N.; Mappajaya, A.; Ulum, M. S.

    2018-03-01

    Colonial buildings, including houses, have been considered as a representation of climate-responsive architecture. The design was thought to be a hybrid model of Dutch and tropical architecture. It was created by way of reinventing tropical and Dutch architecture design principles, and expressed in a new form, i.e. neither resembling Dutch nor tropical building. Aside from this new image, colonial house does show good climatic responses. Previous researches on colonial house generally focus on qualitative assessment of climate performance of the building. Yet this kind of study tends to concentrate on building elements, e.g. wall, window, etc. The present study is designed to give more complete picture of architecture design strategy of the house by exploring and analysing thermal performance of colonial buildings and their related architecture design strategies. Field measurements are conducted during the dry season in several colonial building in Surabaya. Air temperature and humidity are both taken, representing internal and external thermal conditions of the building. These data are then evaluated to determine thermal performance of the house. Finally, various design strategies are examined in order to reveal their significant contributions to its thermal performance. Results of the study in Surabaya confirm findings of the previous researches that are conducted in other locations, which stated that thermal performance of the house is generally good. Passive design strategies such as mass effect and ventilation play an important role in determining performance of the building.

  17. Design of thermal protection system for 8 foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  18. Urban legends of thermal moderator design

    International Nuclear Information System (INIS)

    Muhrer, G.

    2012-01-01

    Neutron scattering has been an important tool for many areas of science for more than 50 years. Even though the theory of neutron scattering was developed in large part in the 1950s and 1960s, it is still to this day a challenge to design neutron sources. This is largely due to the fact that in order to achieve the necessary fluxes, it is necessary to construct either a fission reactor or a spallation source. These facilities are so complex that designers frequently rely on the experiences gained from previously designed facilities. Over the years these rules were often passed on more in form of an art than as science. The goal of this paper is to re-evaluate these rules and to establish if they are still valid today or if they have become urban legends.

  19. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  20. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  1. SusDesign - An approach for a sustainable process system design and its application to a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abul Hossain, K; Khan, F; Hawboldt, K [Mem University of Newfoundland, St John, NF (Canada). Faculty of Engineering & Applied Science

    2010-10-15

    This paper presents a structured process design approach, SusDesign, for the sustainable development of process systems. At each level of process design, design alternatives are generated using a number of thermodynamic tools and applying pollution prevention strategies followed by analysis, evaluation and screening processes for the selection of potential design options. The evaluation and optimization are carried out based on an integrated environmental and cost potential (IECP) index, which has been estimated with the IECP tool. The present paper also describes a flowsheet optimization technique developed using different thermodynamic tools such as exergy/energy analysis, heat and mass integration, and cogeneration/trigeneration in a systematic manner. The proposed SusDesign approach has been successfully implemented in designing a 30 MW thermal power plant. In the case study, the IECP tool has been set up in Aspen HYSYS process simulator to carry out the analysis, evaluation and screening of design alternatives. The application of this approach has developed an efficient, cost effective and environmentally friendly thermal system design with an overall thermal efficiency of 70% and CO{sub 2} and NO emissions of 0.28 kg/kW h and 0.2 g/kW h respectively. The cost of power generation is estimated as 4 cents kWh. These achievements are significant compared to the conventional thermal power plant, which demonstrates the potential of the SusDesign approach for the sustainable development of process systems.

  2. SusDesign - An approach for a sustainable process system design and its application to a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Khandoker Abul [Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John' s, NL, A1B 3X5 (Canada); Khan, Faisal [Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John' s, NL, A1B 3X5 (Canada); Hawboldt, Kelly [Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John' s, NL, A1B 3X5 (Canada)

    2010-10-15

    This paper presents a structured process design approach, SusDesign, for the sustainable development of process systems. At each level of process design, design alternatives are generated using a number of thermodynamic tools and applying pollution prevention strategies followed by analysis, evaluation and screening processes for the selection of potential design options. The evaluation and optimization are carried out based on an integrated environmental and cost potential (IECP) index, which has been estimated with the IECP tool. The present paper also describes a flowsheet optimization technique developed using different thermodynamic tools such as exergy/energy analysis, heat and mass integration, and cogeneration/trigeneration in a systematic manner. The proposed SusDesign approach has been successfully implemented in designing a 30 MW thermal power plant. In the case study, the IECP tool has been set up in Aspen HYSYS process simulator to carry out the analysis, evaluation and screening of design alternatives. The application of this approach has developed an efficient, cost effective and environmentally friendly thermal system design with an overall thermal efficiency of 70% and CO{sub 2} and NO emissions of 0.28 kg/kW h and 0.2 g/kW h respectively. The cost of power generation is estimated as 4 cents /kW h. These achievements are significant compared to the conventional thermal power plant, which demonstrates the potential of the SusDesign approach for the sustainable development of process systems.

  3. SusDesign - An approach for a sustainable process system design and its application to a thermal power plant

    International Nuclear Information System (INIS)

    Hossain, Khandoker Abul; Khan, Faisal; Hawboldt, Kelly

    2010-01-01

    This paper presents a structured process design approach, SusDesign, for the sustainable development of process systems. At each level of process design, design alternatives are generated using a number of thermodynamic tools and applying pollution prevention strategies followed by analysis, evaluation and screening processes for the selection of potential design options. The evaluation and optimization are carried out based on an integrated environmental and cost potential (IECP) index, which has been estimated with the IECP tool. The present paper also describes a flowsheet optimization technique developed using different thermodynamic tools such as exergy/energy analysis, heat and mass integration, and cogeneration/trigeneration in a systematic manner. The proposed SusDesign approach has been successfully implemented in designing a 30 MW thermal power plant. In the case study, the IECP tool has been set up in Aspen HYSYS process simulator to carry out the analysis, evaluation and screening of design alternatives. The application of this approach has developed an efficient, cost effective and environmentally friendly thermal system design with an overall thermal efficiency of 70% and CO 2 and NO emissions of 0.28 kg/kW h and 0.2 g/kW h respectively. The cost of power generation is estimated as 4 cents /kW h. These achievements are significant compared to the conventional thermal power plant, which demonstrates the potential of the SusDesign approach for the sustainable development of process systems.

  4. SIRTF thermal design modifications to increase lifetime

    Science.gov (United States)

    Petrick, S. W.

    1993-01-01

    An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.

  5. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  6. The integrity of cracked structures under thermal loading

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    Previous work by Dowling and Townley on the load-carrying capacity of a cracked structure is extended so that quantitative predictions can be made about failure under thermal loading. Residual stresses can be dealt with in the same way as thermal stresses. It is shown that the tolerance of the structure to thermal stress can be quantified in terms of a parameter which defines the state of the structure. This state parameter can be deduced from the calculated performance of the structure when subjected to an external load. (author)

  7. Constructive and thermal design of a core fast discharge

    International Nuclear Information System (INIS)

    Schroer, H.

    1979-08-01

    The present study is concerned with the development and thermal design of a fast discharge system for balls for the PR 3000 MWsub(th) process heat reactor. The term 'fast discharge system for balls' denotes a very short-time discharge procedure of the entire core contents, i.e. the flowing out of the fuel elements due to gravity into a receiver tank underneath the prestressed-concrete vessel. From a safety-engineering point of view, the fast discharge system for balls constitutes an additional possibility of active decay heat removal, besides the multiply redundant and diversitary reactor protection system, serving to further reduce the remaining residual risk. A fast discharge system for balls, however, is to be used only in the event of all the other possibilities of active decay heat removal having failed and when the maximum permissible temperatures for particularly exposed primary circuit components have been reached. However, the application range of such a system is restricted exclusively to high-temperature reactors with spherical fuel elements; the procedure cannot be applied to other reactor systems because of the rigidly fixed position of the fuel elements inside the core and for reasons of fuel element geometry. Besides the purpose of application, the influence of in-core temperature development on the possible actuation of the fast discharge system is being described in particular detail. This is followed by a description of the structural and thermal design of three specific major components, i.e. the piping system, shut-off devices and fuel element receiver tank, which will have to be installed additionally for the implementation of a fast discharge system for balls as compared to previous plant concepts. (orig.) [de

  8. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  9. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  10. Design Considerations of a Solid State Thermal Energy Storage

    Science.gov (United States)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).

  11. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  12. PGSFR Core Thermal Design Procedure to Evaluate the Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Kim, Sang-Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Korea Atomic Energy Research Institute (KAERI) has performed a SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal design is to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damage in SFR subassemblies arises from a creep induced failure. The creep limit is evaluated based on the maximum cladding temperature, power, neutron flux, and uncertainties in the design parameters, as shown in Fig. 1. In this work, the core thermal design procedures are compared to verify the present PGSFR methodology based on the nuclear plant design criteria/guidelines and previous SFR thermal design methods. The PGSFR core thermal design procedure is verified based on the nuclear plant design criteria/guidelines and previous methods in LWRs and SFRs. The present method aims to directly evaluate the fuel cladding failure and to assure more safety margin. The 2 uncertainty is similar to 95% one-side tolerance limit of 1.96 in LWRs. The HCFs, ITDP, and MCM reveal similar uncertainty propagation for cladding midwall temperature for typical SFR conditions. The present HCFs are mainly employed from the CRBR except the fuel-related uncertainty such as an incorrect fuel distribution. Preliminary PGSFR specific HCFs will be developed by the end of 2015.

  13. Thermal hydraulic aspects of the SBWR design

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Alamgir, Md.; Andersen, J.G.M.

    1992-01-01

    The Simplified Boiling Water Reactor (SBWR) is being developed by GE Nuclear Energy in cooperation with a number of international associates. The design philosophy stresses simplification of the system by relying to a large extent on passive features. The natural circulation system eliminates the need for external recirculation pumps and loops. Emergency core cooling is accomplished by a Gravity Driven Cooling System (GDCS). Passive energy removal from the containment is by condensers with natural circulation. The principles underlying these features are not novel, and have been proof tested in previous designs. However, their application in the SBWR results in significant differences in operational characteristics from other plants. In this paper, the phenomena that are important for the SBWR are identified, the qualification plan is discussed and sample qualification results are shown for TRACG, the GE version of TRAC-BWR. (author)

  14. Thermal hydraulic aspects of the SBWR design

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Alamgir, M.; Andersen, J.G.M.

    1993-01-01

    The Simplified Boiling Water Reactor (SBWR) is being developed by GE Nuclear Energy in cooperation with a number of international associates. The design philosophy stresses simplification of the system by relying to a large extent on passive features. The natural circulation driven core flow eliminates the need for external recirculation pumps and loops. Emergency core cooling is accomplished by a Gravity Driven Cooling System (GDCS). Passive energy removal from the containment is by condensers with natural circulation. The principles underlying these features are not novel, and have been proof tested in previous designs. However, their application in the SBWR results in significant differences in operational characteristics from other plants. In this paper, the phenomena that are important for the SBWR are identified, the qualification plan is discussed and sample qualification results are shown for TRACG, the GE version of TRAC-BWR. (orig.)

  15. Thermal changes of the environment and their influence on reinforced concrete structures

    Science.gov (United States)

    Fojtik, R.; Cajka, R.

    2018-04-01

    The thermal expansion of concrete elements concerns both monolithic and prefabricated structures. Inappropriate design of dilation segments may cause minor but even larger failures. Critical environment factors are temperature-changing operations, such as unheated underground garages, where temperature fluctuations may occur depending on the exterior conditions. This paper numerically and experimentally analyses the thermal deformation of selected girders in the underground garages and the consequent structure failures, their causes, possible prevention and appropriate remediation.

  16. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  17. Digital computer structure and design

    CERN Document Server

    Townsend, R

    2014-01-01

    Digital Computer Structure and Design, Second Edition discusses switching theory, counters, sequential circuits, number representation, and arithmetic functions The book also describes computer memories, the processor, data flow system of the processor, the processor control system, and the input-output system. Switching theory, which is purely a mathematical concept, centers on the properties of interconnected networks of ""gates."" The theory deals with binary functions of 1 and 0 which can change instantaneously from one to the other without intermediate values. The binary number system is

  18. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  19. Design of the accelerating structures for FMIT

    International Nuclear Information System (INIS)

    Liska, D.; Schamaun, R.; Potter, C.; Fuller, C.; Clark, D.; Greenwood, D.; Frank, J.

    1979-01-01

    Design considerations and concepts are presented for the accelerating structures for the Fusion Materials Irradiation Test (FMIT) Facility. These structures consist of three major units: 0.1- to 2-MeV radio-frequency quadrupole based on the Russian concept, a 2- to 35-MeV drift-tube linac made up of two separate tanks designed to generate either 20- or 35-MeV beams, and an energy dispersion cavity capable of spreading the energy of the beam slightly to ease thermal loading in the target. Because of probable beam activation, the drift-tube linac is designed so that alignment and maintenance do not require manned entry into the tanks. This conservatism also led to the choice of a conventional vacuum system and has influenced the choice of many of the rf interface components. The high-powered FMIT machine is very heavily beam loaded and delivers a 100-mA continuous duty deuteron beam to a flowing liquid lithium target. The power on target is 3.5 MW deposited in a 1 x 3 cm spot. Because of the critical importance of the low energy section of this accelerator on beam spill in the machine, a 5-MeV prototype will be constructed and tested at the Los Alamos Scientific Laboratory

  20. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  1. Designing solar thermal experiments based on simulation

    International Nuclear Information System (INIS)

    Huleihil, Mahmoud; Mazor, Gedalya

    2013-01-01

    In this study three different models to describe the temperature distribution inside a cylindrical solid body subjected to high solar irradiation were examined, beginning with the simpler approach, which is the single dimension lump system (time), progressing through the two-dimensional distributed system approach (time and vertical direction), and ending with the three-dimensional distributed system approach with azimuthally symmetry (time, vertical direction, and radial direction). The three models were introduced and solved analytically and numerically. The importance of the models and their solution was addressed. The simulations based on them might be considered as a powerful tool in designing experiments, as they make it possible to estimate the different effects of the parameters involved in these models

  2. Design and thermal/hydraulic characteristics of the ITER-FEAT vacuum vessel

    International Nuclear Information System (INIS)

    Onozuka, M.; Ioki, K.; Sannazzaro, G.; Utin, Y.; Yoshimura, H.

    2001-01-01

    Recent progress in structural design and thermal and hydraulic assessment of the vacuum vessel (VV) for ITER-FEAT is presented. Because of the direct attachment of the blanket modules to the VV, the module support structures are recessed into the double-wall VV, partially replacing the stiffening ribs between the VV shells to simplify the VV structure. Structural integrity of the VV is provided by the ribs and the module support structures with local reinforcement ribs. The detailed structural design of the VV taking account of the fabricability and code/standard acceptance is presented. Cost reduction of the VV fabrication using casting or forging is proposed. A high heat removal capability is required for the VV cooling to keep the thermal stress below the allowable. It is expected that natural thermo-gravitational convection due to the heat flux from the vessel wall to the water will enhance heat transfer characteristics even in the low flow velocity region

  3. Design and thermal/hydraulic characteristics of the ITER-FEAT vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Ioki, K.; Sannazzaro, G.; Utin, Y.; Yoshimura, H

    2001-11-01

    Recent progress in structural design and thermal and hydraulic assessment of the vacuum vessel (VV) for ITER-FEAT is presented. Because of the direct attachment of the blanket modules to the VV, the module support structures are recessed into the double-wall VV, partially replacing the stiffening ribs between the VV shells to simplify the VV structure. Structural integrity of the VV is provided by the ribs and the module support structures with local reinforcement ribs. The detailed structural design of the VV taking account of the fabricability and code/standard acceptance is presented. Cost reduction of the VV fabrication using casting or forging is proposed. A high heat removal capability is required for the VV cooling to keep the thermal stress below the allowable. It is expected that natural thermo-gravitational convection due to the heat flux from the vessel wall to the water will enhance heat transfer characteristics even in the low flow velocity region.

  4. Thermal analysis of NNWSI conceptual waste package designs

    International Nuclear Information System (INIS)

    Stein, W.; Hockman, J.N.; O'Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references

  5. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  6. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  7. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  8. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  9. Fabrication, structural and optical characterizations of thermally ...

    African Journals Online (AJOL)

    The bi-layer of metallic Cu-Sn precursors was thermally evaporated sequentially on microscopic glass substrates at the controlled thickness of 100nm, 500nm and 1000nm and at different substrate temperatures of 270C, 1000C and 2000C. The bi-layer was subsequently sulphurized in a custom-built reactor for 1hour at ...

  10. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  11. 46 CFR 116.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Structural design. 116.300 Section 116.300 Shipping... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below for the hull material of...

  12. 46 CFR 177.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Structural design. 177.300 Section 177.300 Shipping...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below...

  13. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  14. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  15. Thermal Comfort-CFD maps for Architectural Interior Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Lee, Daniel Sang-Hoon; Fabbri, Kristian

    2017-01-01

    opportunities of movable interior partitions (operated by the users) could be estimated, providing a new layer of information to the designer. The applicability of the thermal maps within an architectural design process is discussed adopting standard energy simulation comfort outputs as a reference......Within the context of nearly Zero-Energy Buildings, it is debated that the energy-centred notion of design, proposed by regulatory frames, needs to be combined with a further focus toward users’ comfort and delight. Accordingly, the underlying theory of the research is that designers should take...... responsibility for understanding the heat flows through the building parts and its spaces. A design, which is sensible to the micro-thermal conditions coexisting in a space, allows the inhabitants to control the building to their needs and desires: for instance, maximising the benefits of heat gain from the sun...

  16. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  17. Structural design considerations for micromachined solid-oxide fuel cells

    Science.gov (United States)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  18. Practices in adequate structural design

    Science.gov (United States)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  19. Thermal design of AOTV heatshields for a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    Results are presented from an on-going study of the thermal performance of thermal protection systems for a conical drag brake type AOTV. Three types of heatshield are considered: rigid ceramic insulation, flexible ceramic blankets, and ceramic cloths. The results for the rigid insulation apply to other types of AOTV as well. Charts are presented in parametric form so that they may be applied to a variety of missions and vehicle configurations. The parameters considered include: braking maneuver heat flux and total heat load, heatshield material and thickness, heatshield thermal mass and conductivity, absorptivity and emissivity of surfaces, thermal mass of support structure, and radiation transmission through thin heatshields. Results of temperature calculations presented show trends with and sensitivities to these parameters. The emphasis is on providing information that will be useful in estimating the minimum required mass of these heatshield materials.

  20. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  1. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...

  2. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  3. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  4. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  5. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  6. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibil...

  7. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  8. Design and thermal-hydraulic calculation for EAST PFCs' baking

    International Nuclear Information System (INIS)

    Wan Xiaogang; Yao Damao

    2006-01-01

    According to the vacuum requirements for fusion in a tokamak device, the authors adopted a kind of gas flow baking technique in EAST. This paper presented the sketch design for EAST PFCs' baking, selected the specifications for the working gas. Calculated the hydraulic and thermal conditions in PFCs under baking, and simulated the results. (authors)

  9. Design tool for the thermal energy potential of asphalt pavements

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Oversloot, H.P.; Bondt, A. de; Jansen, R.; Rij, H. van

    2003-01-01

    This paper describes the development of a design tool for the calculation of the thermal energy potential of a so-called asphalt collector. Two types of numerical models have been developed and validated against experimental results from a full-scale test-site. The validation showed to be a tedious

  10. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  11. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  12. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  13. Design and development of a very high resolution thermal imager

    Science.gov (United States)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  14. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    Yang Yahui; Brandner, Juergen J; Morini, Gian Luca

    2012-01-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  15. Design and thermal performances of a scalable linear Fresnel reflector solar system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2017-01-01

    Highlights: • A scalable linear Fresnel reflector which can supply different temperatures is proposed. • Inclination design of the mechanical structure is used to reduce the end losses. • The maximum thermal efficiency of 64% is achieved in Guangzhou. - Abstract: This paper proposes a scalable linear Fresnel reflector (SLFR) solar system. The optical mirror field which contains an array of linear plat mirrors closed to each other is designed to eliminate the inter-low shading and blocking. Scalable mechanical mirror support which can place different number of mirrors is designed to supply different temperatures. The mechanical structure can be inclined to reduce the end losses. Finally, the thermal efficiency of the SLFR with two stage mirrors is tested. After adjustment, the maximum thermal efficiency of 64% is obtained and the mean thermal efficiency is higher than that before adjustment. The results indicate that the end losses have been reduced effectively by the inclination design and excellent thermal performance can be obtained by the SLFR after adjustment.

  16. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

    Science.gov (United States)

    Wang, Jingtao; Zhang, Jin; Chen, Zhiyou

    2012-06-01

    A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC's performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

  17. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  18. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  19. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    OpenAIRE

    Li, Dong-Xu; Liu, Wang; Hao, Dong

    2017-01-01

    Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections b...

  20. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  1. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  2. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  3. Nuclear Thermal Rocket Design Using LEU Tungsten Fuel

    International Nuclear Information System (INIS)

    Venneri, Paolo; Kim, Yonghee; Husemeyer, Peter and others

    2013-01-01

    This would then open the possibility for the commercial development and implementation of an NTR. The result was a design for a 114.66 kN thrust rocket engine, with an optimized specific impulse of 801 second, and a thrust-to-weight ratio 5.08. The development and analysis of the reactor was done using an integrated neutronics and thermal hydraulics code that combines MCNP5 using ENDF-B/VI cross sections with a purpose-built thermal hydraulics code. A proof of concept has been proposed for W LEU-NTR design. The current design is built upon traditional NTR design work and implements many of the proven design characteristics and materials from previous designs. Despite the current reactor design being preliminary, it already shows promise in being able to have similar, if not better performance characteristics than current and previous NTR designs. Future work will involve the flattening of radial power profile, optimization of the axial power profile, researching methods to address the full water immersion accident scenario, and further studies regarding the breeding potential in the reactor

  4. Nuclear Thermal Rocket Design Using LEU Tungsten Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee; Husemeyer, Peter and others

    2013-10-15

    This would then open the possibility for the commercial development and implementation of an NTR. The result was a design for a 114.66 kN thrust rocket engine, with an optimized specific impulse of 801 second, and a thrust-to-weight ratio 5.08. The development and analysis of the reactor was done using an integrated neutronics and thermal hydraulics code that combines MCNP5 using ENDF-B/VI cross sections with a purpose-built thermal hydraulics code. A proof of concept has been proposed for W LEU-NTR design. The current design is built upon traditional NTR design work and implements many of the proven design characteristics and materials from previous designs. Despite the current reactor design being preliminary, it already shows promise in being able to have similar, if not better performance characteristics than current and previous NTR designs. Future work will involve the flattening of radial power profile, optimization of the axial power profile, researching methods to address the full water immersion accident scenario, and further studies regarding the breeding potential in the reactor.

  5. Thermally assisted deformation of structural superplastics and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    constant.) (xii) It has been suggested that the self and the solute diffusivities are enhanced and the .... In this paper, only a summary of the important experimental results that a viable theory of structural ..... Experimental verification. Mater. Sci.

  6. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    OpenAIRE

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota; Rode, Carsten

    2017-01-01

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heat...

  7. THERMAL: A routine designed to calculate neutron thermal scattering. Revision 1

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the relative system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy, e.g., the keV energy range. The THERMAL method is simple, clean, easy to understand, and most important very efficient; on a SUN SPARC-10 workstation, at low energies with thermal scattering it can do almost 6 million scatters a minute and at high energy over 13 million. Warning: This version of THERMAL completely supersedes the original version described in the same report number, dated February 24, 1995. The method used in the original code is incorrect, as explained in this report

  8. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  9. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  10. Problems of structural mechanics in nuclear design

    International Nuclear Information System (INIS)

    Patwardhan, V.M.; Kakodkar, Anil

    1975-01-01

    A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)

  11. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  12. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  13. SAGE III on ISS Lessons Learned on Thermal Interface Design

    Science.gov (United States)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  14. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  15. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  16. Thermal design of a Mars oxygen production plant

    Science.gov (United States)

    Sridhar, K. R.; Iyer, Venkatesh A.

    1991-01-01

    The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.

  17. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  18. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  19. Thermal induced structural transformation of bimetallic AuPd nanoparticles

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2014-01-01

    High Angle Annular Dark Field Scanning Transmission Electron Microscope (HAADF-STEM) has been employed for the study of thermal effects of structural transformation of AuPd nanoparticles produced by physical vapour deposition. Depending on the duration of annealing at a temperature of 500 K, atomic resolved imaging analysis reveals the formation of various structure morphologies from the ordered L1 2 superlattice to the core-shell structure. The effects of Pd-oxides are also discussed

  20. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  1. Study on advanced structural design for commercialized fast breeder reactors

    International Nuclear Information System (INIS)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to structures

  2. Study on advanced structural design for commercialized fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Sagayama, Yutaka; Dozaki, Koji; Tanaka, Yoshihiko [Japan Atomic Power Co., Research and Development Department, Tokyo (Japan)

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to

  3. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  4. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  5. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  6. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  7. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  8. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  9. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  10. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  11. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  12. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  13. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  14. Comparative design of structures concepts and methodologies

    CERN Document Server

    Lin, Shaopei

    2016-01-01

    This book presents comparative design as an approach to the conceptual design of structures. Primarily focusing on reasonable structural performance, sustainable development and architectural aesthetics, it features detailed studies of structural performance through the composition and de-composition of these elements for a variety of structures, such as high-rise buildings, long-span crossings and spatial structures. The latter part of the book addresses the theoretical basis and practical implementation of knowledge engineering in structural design, and a case-based fuzzy reasoning method is introduced to illustrate the concept and method of intelligent design. The book is intended for civil engineers, structural designers and architects, as well as senior undergraduate and graduate students in civil engineering and architecture. Shaopei Lin and Zhen Huang are both Professors at the Department of Civil Engineering, Shanghai Jiao Tong University, China.

  15. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  16. Thermal properties of composite materials with a complex fractal structure

    International Nuclear Information System (INIS)

    Cervantes-Álvarez, F; Reyes-Salgado, J J; Dossetti, V; Carrillo, J L

    2014-01-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell–Garnett effective media approximation for composite materials. (paper)

  17. Aerospace structural design process improvement using systematic evolutionary structural modeling

    Science.gov (United States)

    Taylor, Robert Michael

    2000-10-01

    A multidisciplinary team tasked with an aircraft design problem must understand the problem requirements and metrics to produce a successful design. This understanding entails not only knowledge of what these requirements and metrics are, but also how they interact, which are most important (to the customer as well as to aircraft performance), and who in the organization can provide pertinent knowledge for each. In recent years, product development researchers and organizations have developed and successfully applied a variety of tools such as Quality Function Deployment (QFD) to coordinate multidisciplinary team members. The effectiveness of these methods, however, depends on the quality and fidelity of the information that team members can input. In conceptual aircraft design, structural information is of lower quality compared to aerodynamics or performance because it is based on experience rather than theory. This dissertation shows how advanced structural design tools can be used in a multidisciplinary team setting to improve structural information generation and communication through a systematic evolution of structural detail. When applied to conceptual design, finite element-based structural design tools elevate structural information to the same level as other computationally supported disciplines. This improved ability to generate and communicate structural information enables a design team to better identify and meet structural design requirements, consider producibility issues earlier, and evaluate structural concepts. A design process experiment of a wing structural layout in collaboration with an industrial partner illustrates and validates the approach.

  18. A modelling approach to designing microstructures in thermal barrier coatings

    International Nuclear Information System (INIS)

    Gupta, M.; Nylen, P.; Wigren, J.

    2013-01-01

    Thermomechanical properties of Thermal Barrier Coatings (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young's modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected parameters for spraying Yttria-Stabilised Zirconia (YSZ) topcoat. The microstructure was assessed with SEM, and image analysis was used to characterize the porosity content. The relationships between microstructural features and properties predicted by modelling are discussed. The microstructural features having the most beneficial effect on properties were sprayed with a different spray gun so as to verify the results obtained from modelling. Characterisation of the coatings included microstructure evaluation, thermal conductivity and lifetime measurements. The modelling approach in combination with experiments undertaken in this study was shown to be an effective way to achieve coatings with optimised thermo-mechanical properties.

  19. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  20. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  1. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances.......We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design...

  2. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  3. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  4. Design and fabrication of a MEMS chevron-type thermal actuator

    Energy Technology Data Exchange (ETDEWEB)

    Baracu, Angela, E-mail: angela.baracu@imt.ro [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania and University Politehnica of Bucharest (Romania); Voicu, Rodica; Müller, Raluca; Avram, Andrei [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest (Romania); Pustan, Marius, E-mail: marius.pustan@omt.utcluj.ro; Chiorean, Radu, E-mail: marius.pustan@omt.utcluj.ro; Birleanu, Corina, E-mail: marius.pustan@omt.utcluj.ro; Dudescu, Cristian, E-mail: marius.pustan@omt.utcluj.ro [Laboratory of Micro and Nano Systems, Technical University of Cluj-Napoca, Bd. Muncii, no. 103-105, 400641 Cluj-Napoca (Romania)

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  5. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  6. Final design of thermal diagnostic system in SPIDER ion source

    International Nuclear Information System (INIS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-01-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H"− production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  7. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  8. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  9. Local thermal energy as a structural indicator in glasses

    Science.gov (United States)

    Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran

    2017-07-01

    Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal ω4ω4 density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field—a “softness field”—is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

  10. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  11. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Administrator

    2013-07-28

    Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.

  12. Climate Chamber Experiment-Based Thermal Analysis and Design Improvement of Traditional Huizhou Masonry Walls

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Supported by thousands of years of history, traditional Huizhou buildings have played a vital role, both functionally and culturally, as residential buildings in China. Masonry walls are one of the key building components of a Huizhou building; however, the traditional Huizhou masonry wall structure, predominantly a hollow brick structure, cannot meet the local building energy code requirements, and thus needs to be improved. Within this context, the present research measures the actual thermal performance of traditional Huizhou masonry walls for historical buildings and new-built buildings, which results in mean thermal transmittances of 1.892 W/m2·K and 2.821 W/m2·K, respectively, while the local building energy code requires a minimum thermal transmittance of 1.500 W/m2·K. In order to improve the thermal performance of traditional Huizhou masonry walls, four design scenarios for wall insulation are proposed and tested in a climate chamber: (1 hollow brick wall with inorganic interior insulation mortar, (2 solid brick wall with inorganic interior insulation mortar, (3 hollow brick wall with foamed concrete, and (4 hollow brick wall with foamed concrete plus inorganic interior insulation mortar. The experiment results indicate that, among the four proposed design scenarios, only scenario 4 can significantly improve the thermal performance of Huizhou masonry walls and meet the building energy code requirements, with a mean thermal transmittance of 1.175 W/m2·K. This research lays the foundation for improving the thermal performance of Huizhou masonry walls with new insulation and construction technology, thereby helping to improve the quality of life of Huizhou residents while respecting the cultural significance of the traditional Huizhou building.

  13. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  14. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  15. Design optimization applied in structural dynamics

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T

    2007-01-01

    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process

  16. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  17. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  18. Optimal design of lossy bandgap structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2004-01-01

    The method of topology optimization is used to design structures for wave propagation with one lossy material component. Optimized designs for scalar elastic waves are presented for mininimum wave transmission as well as for maximum wave energy dissipation. The structures that are obtained...... are of the 1D or 2D bandgap type depending on the objective and the material parameters....

  19. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  20. Thermal Condensate Structure and Cosmological Energy Density of the Universe

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.

  1. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  2. Thermal simulations of the new design for the BELLE silicon vertex detector

    International Nuclear Information System (INIS)

    Dragic, J.

    2000-01-01

    Full text: The experienced imperfections of the BELLE silicon vertex detector, SVD1 motioned the design of a new detector, SVD2, which targets on improving the main weaknesses encountered in the old design. In this report we focus on tile thermal aspects of the SVD2 ladder, whereby sufficient cooling of the detector is necessary in order to minimise the detector leakage currents. It is estimated that reducing the temperature of the silicon detector from 25 deg C to 15 deg C would result in a 50% reduction in leak current. Further, cooling the detector would help minimize mechanical stresses from the thermal cycling. Our task is to ensure that the heat generated by the readout chips is conducted down the SVD hybrid unit effectively, such that the chip and the hybrid temperature does not overbear the SVD silicon sensor temperature. We considered the performance of two materials to act as a heat spreading plate which is glued between the two hybrids in order to improve the heat conductivity of the hybrid unit, namely Copper and Thermal Pyrolytic Graphite (TPG). The effects of other ladder components were also considered in order to enhance the cooling of the silicon detectors. Finite element analysis with ANSYS software was used to simulate the thermal conditions of the SVD2 hybrid unit, in accordance with the baseline design for the mechanical structure of the ladder. It was found that Cu was a preferred material as it achieved equivalent silicon sensor cooling (3.6 deg C above cooling point), while its mechanical properties rendered it a lot more practical. Suppressing, the thermal path via a rib support block, by increasing its thermal resistivity, as well as increasing thermal conductivity of the ribs in the hybrid region, were deemed essential in the effective cooling of the silicon sensors

  3. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  4. Design and fabrication of topologically optimized structures;

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  5. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  6. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C

    2001-09-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper.

  7. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.

    2001-01-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper

  8. Design, fabrication and testing of a thermal diode

    Science.gov (United States)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  9. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    Science.gov (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  10. Recent developments for fast reactor structural design standard (FDS)

    International Nuclear Information System (INIS)

    Kasahara, N.; Nakamuria, K.; Morishita, M.; Shibamoto, H.; Nagashima, H.; Inoue, K.

    2005-01-01

    For realization of reliable and economical fast reactor (FR) plants, Japan Nuclear Cycle Development Institute(JNC) and Japan Atomic Power Company(JAPC) are cooperating on 'Feasibility Study on Commercialized FR Cycle Systems'. To certify the design concepts through evaluation of their structural integrity, the research and development of 'Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)' is recognized as an essential theme. FDS focuses on particular failure modes of FRs such as ratchet deformation and creep fatigue damages due to cyclic thermal loads. To evaluate these modes, three main developments are in progress. One is 'Refinement of Failure Criteria' for particular modes of FRs. Next is development of 'Guidelines for Inelastic Design Analysis' in order to predict elastic plastic and creep behaviors. Furthermore, efforts are being made toward preparing 'Guidelines for Thermal Load Modeling' for FR component design where thermal loads are dominant. These studies were performed under the sponsorship of the Ministry of Economy, Trade and Industry of Japanese government. (authors)

  11. Design of SSC collider structures

    International Nuclear Information System (INIS)

    Monsees, J.E.

    1994-01-01

    The authors would like to set the record straight. To date, underground construction contracts on the SSC main ring have been bid at a savings of $77 million dollars or 33 percent below the baseline cost estimate. The SSC is the largest single underground project ever built anywhere in the world. When completed it will have approximately 70 miles of tunnels, 60 shafts, two huge underground experiment halls -- each the size of a football stadium -- and numerous other structures, each of which would be considered a major facility on any other project

  12. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  13. Thermal design of spacecraft solar arrays using a polyimide foam

    International Nuclear Information System (INIS)

    Bianco, N; Iasiello, M; Naso, V

    2015-01-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics ® . Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared. (paper)

  14. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  15. Ambient Temperature Based Thermal Aware Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Saini, Rishita; Bansal, Neha; Bansal, Meenakshi

    2015-01-01

    Thermal aware design is currently gaining importance in VLSI research domain. In this work, we are going to design thermal aware energy efficient ROM on Virtex-5 FPGA. Ambient Temperature, airflow, and heat sink profile play a significant role in thermal aware hardware design life cycle. Ambient...

  16. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  17. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cihan, Ebru [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Özoğul, Alper [Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey); Baykara, Mehmet Z., E-mail: mehmet.baykara@bilkent.edu.tr [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey)

    2015-11-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  18. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  19. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  20. ASTROS: A multidisciplinary automated structural design tool

    Science.gov (United States)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  1. Thermal Performance of Precast Concrete Sandwich Panel (PCSP) Design for Sustainable Built Environment

    Science.gov (United States)

    Ern, Peniel Ang Soon; Ling, Lim Mei; Kasim, Narimah; Hamid, Zuhairi Abd; Masrom, Md Asrul Nasid Bin

    2017-10-01

    Malaysia’s awareness of performance criteria in construction industry towards a sustainable built environment with the use of precast concrete sandwich panel (PCSP) system is applied in the building’s wall to study the structural behaviour. However, very limited studies are conducted on the thermal insulation of exterior and interior panels in PCSP design. In hot countries such as Malaysia, proper designs of panel are important to obtain better thermal insulation for building. This study is based on thermal performance of precast concrete sandwich panel design for sustainable built environment in Malaysia. In this research, three full specimens, which are control specimen (C), foamed concrete (FC) panels and concrete panels with added palm oil fuel ash (FC+ POFA), where FC and FC+POFA sandwiched with gypsum board (G) were produced to investigate their thermal performance. Temperature difference of exterior and interior surface of specimen was used as indicators of thermal-insulating performance of PCSP design. Heat transfer test by halogen lamp was carried out on three specimens where the exterior surface of specimens was exposed to the halogen lamp. The temperature reading of exterior and interior surface for three specimens were recorded with the help of thermocouple. Other factors also studied the workability, compressive strength and axial compressive strength of the specimens. This study has shown that FC + POFA specimen has the strength nearer to normal specimen (C + FC specimen). Meanwhile, the heat transfer results show that the FC+POFA has better thermal insulation performance compared to C and FC specimens with the highest temperature difference, 3.4°C compared to other specimens. The results from this research are useful to be implemented in construction due to its benefits such as reduction of energy consumption in air-conditioning, reduction of construction periods and eco-friendly materials.

  2. Structural elements design manual working with Eurocodes

    CERN Document Server

    Draycott, Trevor

    2009-01-01

    Structural Elements Design Manual: Working With Eurocodes is the structural engineers 'companion volume' to the four Eurocodes on the structural use of timber, concrete, masonry and steelwork. For the student at higher technician or first degree level it provides a single source of information on the behaviour and practical design of the main elements of the building structure. With plenty of worked examples and diagrams, it is a useful textbook not only for students of structural and civil engineering, but also for those on courses in related subjects such as

  3. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  4. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  5. Urban Climate Design: Improving thermal comfort in Dutch neighbourhoods

    Directory of Open Access Journals (Sweden)

    Laura Kleerekoper

    2017-11-01

    Full Text Available This thesis presents research into the possibilities for climate adaptation in Dutch urban areas. We want to know how cities can best prepare for extreme rainfall, droughts, and heat waves in future climates. These events are likely to become more frequent and more extreme. The focus is on heat resistance as this has been a neglected concept in Dutch urban planning. The aim of this study is to extend our knowledge of the effects of climate-adaptation measures and to stimulate the implementation of such measures in the design of public space. Anticipating on the effects of climate change, the research was guided by the question: Which urban design principles can be applied in specific Dutch neighbourhoods to respond to the effects of climate change, especially in terms of outdoor thermal comfort and water management? The three stages of the project are:  • A literature review of existing knowledge on climate adaptation and knowledge gaps • Research into the specific field of urban climatology • Applied research on the broader field of urban planning The urban climate and adaptation measures In the evaluation of measures for climate robust urban areas it is important to gauge the extent of the effects of such measures. These effects are generally expressed in terms of air temperature. However, the comparison of results of measures from various studies is not a simple matter: there are significant differences in spatial, climatological and methodological variations adopted in these studies. Bringing results together from very specific studies may give an impression of the potential of certain measures. For example, most studies support the idea that greening has the highest effect on thermal comfort as it provides both shade and active cooling due to ‘evapotranspiration’1. Nevertheless, vegetation can also retain heat, as we can feel after sundown. Other measures that were investigated for their effects are water, urban morphology

  6. Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket

    International Nuclear Information System (INIS)

    Chao, J.; Mikic, B.; Todreas, N.

    1978-12-01

    A methodology for the design of lithium cooled blankets is developed. The thermal-hydraulics, neutronics and interactions between them are extensively investigated. In thermal hydraulics, two models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters. The methodology can be used to identify the limiting constraints for a particular design. A complete neutronic scheme is set up for the calculations of the volumetric heating rate as a function of the distance from the first wall, the breeding ratio as a function of the amount of structural material in the blanket, and the radiation damage in terms of atom displacements and gas production rate. Different values of the volume percent of Type-316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material which satisfies various thermal-hydraulic requirements. The role that the radiation damage plays in the overall design methodology is described. The product of the first wall lifetime and neutron loading is limited by the radiation damage which degrades the mechanical properties of the material

  7. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    Science.gov (United States)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  8. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    Science.gov (United States)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  9. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  10. A study on the advanced statistical core thermal design methodology

    International Nuclear Information System (INIS)

    Lee, Seung Hyuk

    1992-02-01

    A statistical core thermal design methodology for generating the limit DNBR and the nominal DNBR is proposed and used in assessing the best-estimate thermal margin in a reactor core. Firstly, the Latin Hypercube Sampling Method instead of the conventional Experimental Design Technique is utilized as an input sampling method for a regression analysis to evaluate its sampling efficiency. Secondly and as a main topic, the Modified Latin Hypercube Sampling and the Hypothesis Test Statistics method is proposed as a substitute for the current statistical core thermal design method. This new methodology adopts 'a Modified Latin Hypercube Sampling Method' which uses the mean values of each interval of input variables instead of random values to avoid the extreme cases that arise in the tail areas of some parameters. Next, the independence between the input variables is verified through 'Correlation Coefficient Test' for statistical treatment of their uncertainties. And the distribution type of DNBR response is determined though 'Goodness of Fit Test'. Finally, the limit DNBR with one-sided 95% probability and 95% confidence level, DNBR 95/95 ' is estimated. The advantage of this methodology over the conventional statistical method using Response Surface and Monte Carlo simulation technique lies in its simplicity of the analysis procedure, while maintaining the same level of confidence in the limit DNBR result. This methodology is applied to the two cases of DNBR margin calculation. The first case is the application to the determination of the limit DNBR where the DNBR margin is determined by the difference between the nominal DNBR and the limit DNBR. The second case is the application to the determination of the nominal DNBR where the DNBR margin is determined by the difference between the lower limit value of the nominal DNBR and the CHF correlation limit being used. From this study, it is deduced that the proposed methodology gives a good agreement in the DNBR results

  11. RF linac designs with beams in thermal equilibrium

    International Nuclear Information System (INIS)

    Reiser, M.; Brown, N.

    1996-01-01

    Beams in conventional radio-frequency linear accelerators (rf linacs) usually have a transverse temperature which is much larger than the longitudinal temperature. With high currents, space charge forces couple the transverse and longitudinal particle motions, driving the beam toward thermal equilibrium, which leads to emittance growth and halo formation. A design strategy is proposed in which the beam has equal transverse and longitudinal temperatures through the entire linac, avoiding these undesirable effects. For such equipartitioned linac beams, simple analytical relationships can be derived for the bunch size, tune depression, and other parameters as a function of beam intensity, emittance, and external focusing. These relations were used to develop three conceptual designs for a 938 MeV, 100 mA proton linac with different tune depressions, which are presented in this paper. copyright 1996 American Institute of Physics

  12. Structural optimization via a design space hierarchy

    Science.gov (United States)

    Vanderplaats, G. N.

    1976-01-01

    Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.

  13. Thermal design of horizontal tube boilers: numerical and experimental investigation

    International Nuclear Information System (INIS)

    Roser, Robert

    1999-01-01

    This work concerns the thermal design of kettle re-boilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modelization of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author) [fr

  14. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  15. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  16. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  17. Thermal Structure and Mantle Dynamics of Rocky Exoplanets

    Science.gov (United States)

    Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.

    2011-12-01

    The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across

  18. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  19. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  20. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  1. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    1998-2002. The Guidelines comprise engineering aspects related to morphological impact and structure stability, biological aspects related to ecological impact, and socio-economical aspects related to the implementation of LCS-schemes. The guidelines are limited to submerged and regularly overtopped......The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP...

  2. R and D on thermal hydraulics of core and core-bottom structure

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hino, Ryutaro; Kunitomi, Kazuhiko; Takase, Kazuyuki; Ioka, Ikuo; Maruyama, So

    2004-01-01

    Thermal hydraulic tests on the core and core-bottom structure of the high-temperature engineering test reactor (HTTR) were carried out with the helium engineering demonstration loop (HENDEL) under simulated reactor operating conditions. The HENDEL was composed of helium gas circulation loops, mother sections (M 1 and M 2 ) and adaptor section (A), and two test sections, i.e. the fuel stack test section (T 1 ) and in-core structure test section (T 2 ). In the T 1 test section simulating a fuel stack of the core, thermal and hydraulic performances of helium gas flowing through a fuel block were investigated for thermal design of the HTTR core. In the T 2 test section simulating the core-bottom structure, demonstration tests were performed to verify the structural integrity of graphite and metal components, seal performance against helium gas leakage among the graphite permanent blocks and thermal mixing performance of helium gas. The above test results in the T 1 and T 2 test sections were applied to the detailed design and licensing works of the HTTR and the HENDEL-loop was dismantled in 1999

  3. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  4. Reduction of thermal conductivity in phononic nanomesh structures.

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  5. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    Science.gov (United States)

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  6. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  7. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  8. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  9. Radiators in hydronic heating installations structure, selection and thermal characteristics

    CERN Document Server

    Muniak, Damian Piotr

    2017-01-01

    This book addresses key design and computational issues related to radiators in hydronic heating installations. A historical outline is included to highlight the evolution of radiators and heating technologies. Further, the book includes a chapter on thermal comfort, which is the decisive factor in selecting the ideal heating system and radiator type. The majority of the book is devoted to an extensive discussion of the types and kinds of radiators currently in use, and to identifying the reasons for the remarkable diversity of design solutions. The differences between the solutions are also addressed, both in terms of the effects of operation and of the thermal comfort that needs to be ensured. The book then compares the advantages and disadvantages of each solution, as well as its potential applications. A detailed discussion, supported by an extensive theoretical and mathematical analysis, is presented of the computational relations that are used in selecting the radiator type. The dynamics of radiator hea...

  10. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lee

    Full Text Available Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K generated a melting temperature increase of 15.7°C. Thus, this study

  11. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  12. Thermal fluid-structure interaction - a few scaling considerations

    International Nuclear Information System (INIS)

    Dimitrov, B.; Schwan, H.

    1984-01-01

    Scaling laws for modeling of nuclear reactor systems primarily consider relations between thermalhydraulic parameters in the control volumes for the model and the prototype. Usually the influence of structural heat is neglected. This report describes, how scaling criteria are improved by parameters concerning structural heat, because during thermal transients there is a strong coupling between the thermalhydraulic system and the surrounding structures. Volumetric scaling laws are applied to a straight pipe of the primary loop of a pressurized water reactor (PWR). For the prototype pipe data of a KWU standard PWR with four loops are chosen. Theoretical studies and RELAP 5/MOD 1 calculations regarding the influence of structural heat on thermalhydraulic response of the fluid are performed. Recommendations are given for minimization of distortions due to influence of structural heat between model and prototype. (orig.) [de

  13. Statistics of turbulent structures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej

    2005-01-01

    Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  14. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  15. Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  16. Design Tools and Workflows for Braided Structures

    DEFF Research Database (Denmark)

    Vestartas, Petras; Heinrich, Mary Katherine; Zwierzycki, Mateusz

    2017-01-01

    and merits of our method, demonstrated though four example design and analysis workflows. The workflows frame specific aspects of enquiry for the ongoing research project flora robotica. These include modelling target geometries, automatically producing instructions for fabrication, conducting structural...

  17. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  18. The effects of local blowing perturbations on thermal turbulent structures

    Science.gov (United States)

    Liu, Can; Araya, Guillermo; Leonardi, Stefano; Castillo, Luciano

    2013-11-01

    Blowing is an active flow control technique with several industrial applications, particularly in film cooling of turbine blades. In the past, the effects of localized blowing have been mostly analyzed on the velocity field and its influence of the flow parameters and turbulence structures (Krogstad and Kourakine, 2000). However, little literature can be found on the effects of blowing on the coherent thermal structures. In the present study, an incompressible turbulent channel flow with given steady blowing at the wall is simulated via DNS by means of five spanwise holes. The Reynolds number based on the friction velocity and half channel height is approximately Re = 394 and the molecular Prandtl number is Pr = 0.71. Temperature is considered a passive scalar with isothermal conditions at the wall. Different blowing amplitudes and perturbing angles (with respect to the streamwise direction) are applied to find out their effects on the turbulent thermal structures by means of a two-point correlation analysis. In addition, local reduction and increase of drag are connected to vorticity. The corresponding influence of perturbing amplitudes and angles on the energy budget of thermal fluctuations and turbulent Prandtl numbers are also shown and discussed.

  19. Study on advanced structural design for commercialized fast breeder reactors

    International Nuclear Information System (INIS)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai

    2003-05-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) FDS (FBR Design Standard), (2) Standardization of new material, and (3) System Based Code for Integrity, and the results of this year's studies are summarized as follows. (1) FDS (FBR Design Standard). R and D policy of Phase II study considering to the newest needs demanded for structural design were clarified, and R and D items were settled concretely. As for failure criteria, preliminary ratcheting-fatigue tests were conducted with rational methods, and Negligible Creep curves that settle creep designing region rationally were expanded their applying condition. R and D policy and items of guideline for inelastic analysis were clarified, and analyzing methodologies were studied. Summering up exemplification of thermal load prediction methodologies were progressed. To predict thermal striping loads, advanced frequency response function of thermal stress, and fatigue evaluation methodology were studied. (2) Standardization of new material. As for candidate 12-chromium stainless steel (added tungsten, non-added tungsten), that is expected to improve strength of components of commercialized FR, short and medium-term material tests, and creep-fatigue tests at small strain range were conducted. As for above candidate steel, TIG (Tungsten Inert Gas) welding method was recommended. Requirements to standardize new materials and index to select new materials were studied

  20. An Investigation On Air and Thermal Transmission Through Knitted Fabric Structures Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Ghosh Anindya

    2017-06-01

    Full Text Available Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.

  1. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  2. Development of structure design program for venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng

    2012-01-01

    A structure design program was developed for Venturi scrubber working at the self-priming mode. This program proposed a complete logic for thermal parameters calculation and structure design of the throat. A revised calculation for resistance relationship was carried out based on experimental study. The relative error between revised results and experimental values is within 8.6%. (authors)

  3. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  4. Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System

    Science.gov (United States)

    Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  5. Mechanical and thermal design of the Cascade reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1983-01-01

    We present an improved Cascade fusion reaction chamber that is optimized with respect to chamber radius, wall thickness, and pebble blanket outlet temperature. We show results of a parameter study where we varied chamber radius from 3 to 6 m, wall thickness from 15 to 80 mm, and blanket outlet temperature from 900 to 1400 K. Based on these studies, we achieved an optimized chamber with 50% the volume of the original design and 60% of its blanket. Chamber radius is only 4.4 m and its half length is only 5.9 m, decreased from the original 5-m radius and 8-m half-length. In our optimization method, we calculate both thermal and mechanical stresses resulting from x-ray, fusion-pellet-debris, and neutron-generated momentum, pressure from ablated material, centrifugal action, vacuum inside the chamber, and gravity. We add the mechanical stresses to thermal stresses and keep the total less than the yield stress. Further, we require that fluctuations in these stresses be less than that which would produce creep-fatigue failure within the chamber 30-year lifetime

  6. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  7. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  8. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  9. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  10. Thermal design of an irradiation device with cobalt

    International Nuclear Information System (INIS)

    Parkansky, David; Halpert, Silvia G.; Vazquez, Luis A.

    1999-01-01

    The thermal behavior of a device to transport 60 Co rods has been calculated. The device has been designed to be also used to radio sterilize medical supplies and hospital wastes. The calculations show that, in normal conditions, the maximum temperature of the external surface of the device is 55 C and that of the shielding lead is 110 C. In fire conditions, without taking into account the radiation of heath to or from the combustion gases, the lead does not reach the melting point. If the gases are taken into account, only 6.3 % of the lead is melted down. The transport-irradiation device complies with the IAEA recommendations on the safe transport of radioactive material

  11. Design considerations for Mars transfer vehicles using nuclear thermal propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The design of a Mars Transfer Vehicle (MTV) utilizing nuclear propulsion will require that careful consideration be given to the nuclear radiation environment in which it will operate. The extremely high neutron and gamma fluxes characteristic of nuclear thermal propulsion systems will cause significant heating of the fluid systems in close proximity to the reactor, especially in the lower propellant tanks. Crew radiation doses are also a concern particularly late in a mission when there is less shielding from the propellant tanks. In this study, various vehicle configuration and shielding strategies were examined and the resulting time dependent radiation fields evaluated. A common cluster of three particle bed reactor (PBR) engines were used in all configurations examined. In general, it appears that long, relatively narrow vehicles perform the best from a radiation standpoint, however, good shield optimization will be critical in maintaining a low radiation environment while minimizing the shield weight penalty.

  12. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  13. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M [eds.

    1979-02-01

    The purpose for this manual is to provide information on the design and installation of thermal energy storage in solar heating systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating system, and stand-alone domestic hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  14. Design and assembly technology for the thermal insulation of the W7-X cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Risse, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Nagel, M.; Pietsch, M.; Braatz, A. [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Binni, A. [MAN Diesel and Turbo SE, Dpt. OSA, Werftstrasse 17, D-94469 Deggendorf (Germany); Posselt, H. [Linde AG Engineering Div., Dr.-Carl-von-Linde-Strasse 6-14, D-82049 Hoellriegelskreuth (Germany)

    2011-10-15

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m{sup 2}. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  15. Design and assembly technology for the thermal insulation of the W7-X cryostat

    International Nuclear Information System (INIS)

    Risse, K.; Nagel, M.; Pietsch, M.; Braatz, A.; Binni, A.; Posselt, H.

    2011-01-01

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m 2 . Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  16. Structure and low temperature thermal relaxation of amorphized germanium

    International Nuclear Information System (INIS)

    Glover, C.J.; Ridgway, M.C.; Byrne, A.P.; Clerc, C.; Hansen, J.L.; Larsen, A.N.

    1999-01-01

    The structure of implantation-induced damage in amorphized Ge has been investigated using high resolution extended x-ray absorption fine structure spectroscopy (EXAFS). EXAFS data analysis was performed with the Cumulant Method, allowing a full reconstruction of the interatomic distance distribution (RDF). For the case of MeV implantation at -196 deg C, for an ion-dose range extending two orders of magnitude beyond that required for amorphization, a dose-dependent asymmetric RDF was determined for the amorphous phase including an increase in bond-length as a function of ion dose. Low-temperature thermal annealing resulted in structural relaxation of the amorphous phase as evidenced by a reduction in the centroid, asymmetry and width of the RDF. Such an effect was attributed to the formation (and subsequent annihilation) of three- and five-fold Co-ordinated atoms, comparing favourably to theoretical simulations of the structure of a-Ge

  17. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  18. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    Science.gov (United States)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  19. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1988-01-01

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  20. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  1. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  2. Structural design of Kaohsiung Stadium, Taiwan

    Science.gov (United States)

    Watanabe, Hideyuki; Tanno, Yoshiro; Nakai, Masayoshi; Ohshima, Takashi; Suguichi, Akihiro; Lee, William H.; Wang, Jensen

    2013-01-01

    This paper presents an outline description of the structural design of the main stadium for the World Games held in Kaohsiung City, Taiwan, in 2009. Three new design concepts, unseen in previous stadiums, were proposed and realized: “an open stadium”, “an urban park”, and “a spiral continuous form”. Based on the open stadium concept, simple cantilever trusses in the roof structure were arranged in a delicate rhythm, and a so-called oscillating hoop of steel tubes was wound around the top and bottom surfaces of a group of cantilever trusses to form a continuous spiral form. Also, at the same time by clearly grouping the structural elements of the roof structure, the dramatic effect of the urban park was highlighted by unifying the landscape and the spectator seating area to form the stadium facade. This paper specifically reports on the overview of the building, concepts of structural design, structural analysis of the roof, roof design, foundation design, and an outline of the construction.

  3. Thermal and structural limitations for impurity-control components in FED/INTOR

    International Nuclear Information System (INIS)

    Majumdar, S.; Cha, Y.; Mattas, R.; Abdou, M.; Cramer, B.; Haines, J.

    1983-02-01

    The successful operation of the impurity-control system of the FED/INTOR will depend to a large extent on the ability of its various components to withstand the imposed thermal and mechanical loads. The present paper explores the thermal and stress analyses aspects of the limiter and divertor operation of the FED/INTOR in its reference configuration. Three basic limitations governing the design of the limiter and the divertor are the maximum allowable metal temperature, the maximum allowable stress intensity and the allowable fatigue life of the structural material. Other important design limitations stemming from sputtering, evaporation, melting during disruptions, etc. are not considered in the present paper. The materials considered in the present analysis are a copper and a vanadium alloy for the structural material and graphite, beryllium, beryllium oxide, tungsten and silicon carbide for the coating or tile material

  4. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1994-01-01

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits

  5. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  6. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  7. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  8. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  9. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  10. Preparation, structure and thermal stability of Cu/LDPE nanocomposites

    International Nuclear Information System (INIS)

    Xia Xianping; Cai Shuizhou; Xie Changsheng

    2006-01-01

    Copper/low-density-polyethylene (Cu/LDPE) nanocomposites have been prepared using a melt-blending technique in a single-screw extruder. Their structure and thermal characteristics are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and SEM-EDS Cu-mapping show that the nanocomposites are a hybrid of the polymer and the copper nanoparticles, and the copper nanoparticles aggregates were distributed uniformly in general. The results also show that the nanocomposites and the base resin, the pure LDPE, have a different crystalline structure and the same oriented characteristics owing to the presence of copper nanoparticles and the same cooling condition. The results of DSC show that the incorporation of copper nanoparticles can decrease the melting temperatures but increase the crystallization temperatures, and can lower the crystallinity degree of the matrix of the composites. The results of TGA show that the presence of copper nanoparticles can improve the thermal stability of the nanocomposites, a maximum increment of 18 deg. C is obtained comparing with the pure LDPE in this experiment. The results of TGA also show that the influence of the incorporation of the copper nanoparticles on the thermal stability of the Cu/LDPE nanocomposites is different from that of the non-metal nanoparticles on the polymer/non-metal nanocomposites and the copper microparticles on the Cu/LDPE microcomposites. The increase of the thermal stability of the Cu/LDPE nanocomposites will decrease when the content of the copper nanoparticles is more than 2 wt.%. The difference might be caused by the fact that the activity of the metal nanoparticles is much more higher than that of the non-metal nanoparticles, and the different size effect the different copper particles has

  11. Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager

    International Nuclear Information System (INIS)

    Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

    1999-01-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: ''End-to-end modeling and analysis (EEM).'' We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term ''end-to-end modeling and analysis.'' We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable

  12. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design.

    Science.gov (United States)

    2011-12-01

    With the development of the Mechanistic Empirical Pavement Design Guide (MEPDG) as a new pavement design tool, the : coefficient of thermal expansion (CTE) is now considered a more important design parameter in estimating pavement : performance inclu...

  13. Generic repository design concepts and thermal analysis (FY11)

    International Nuclear Information System (INIS)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-01-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R and D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of

  14. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  15. Entropy Generation in Thermal Radiative Loading of Structures with Distinct Heaters

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-09-01

    Full Text Available Thermal loading by radiant heaters is used in building heating and hot structure design applications. In this research, characteristics of the thermal radiative heating of an enclosure by a distinct heater are investigated from the second law of thermodynamics point of view. The governing equations of conservation of mass, momentum, and energy (fluid and solid are solved by the finite volume method and the semi-implicit method for pressure linked equations (SIMPLE algorithm. Radiant heaters are modeled by constant heat flux elements, and the lower wall is held at a constant temperature while the other boundaries are adiabatic. The thermal conductivity and viscosity of the fluid are temperature-dependent, which leads to complex partial differential equations with nonlinear coefficients. The parameter study is done based on the amount of thermal load (presented by heating number as well as geometrical configuration parameters, such as the aspect ratio of the enclosure and the radiant heater number. The results present the effect of thermal and geometrical parameters on entropy generation and the distribution field. Furthermore, the effect of thermal radiative heating on both of the components of entropy generation (viscous dissipation and heat dissipation is investigated.

  16. Thermal characterization of tubular SiC/SiC composite structures for nuclear applications

    International Nuclear Information System (INIS)

    Duquesne, Loys

    2015-01-01

    Researches on the development on SiCf/SiC refractory composites for generation IV nuclear fuel cladding led the CEA to focus on the thermal behavior of these materials. In particular, knowledge of the thermal properties is essential for designing the components. Regarding the development of the 'sandwich' cladding concept, for which the complexity and the geometry differ from the conventionally used flat tubes, usual measurement methods are unsuitable. This study reports on the characterization and modeling of the thermal behavior of these structures. The first part deals with the identification of the global thermal parameters for the different layers of a 'sandwich' cladding. For this purpose, a flash method is used and an experimental device suitable for tubular geometries was developed. A new estimation method based on the combination of both collected signals in front and rear faces allows the identification of the thermal diffusivity of tubular composites using infrared thermography. The second part focuses on a virtual material approach, established to describe the thermal behavior of a 'sandwich' cladding, starting from the measured properties of the elementary components (fibers and matrix). They are then used as input data for the heat transfer modeling. Confrontations between experimental measurements and numerical results finally allow us to understand the importance of the various key parameters governing the heat transfer. (author) [fr

  17. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  18. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  19. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  20. Synthesis and characterization of JBW structure and its thermal transformation

    International Nuclear Information System (INIS)

    Hegazy, Eman Z.; Kosa, Samia A.; Abd El Maksod, Islam Hamdy

    2012-01-01

    In this paper, JBW zeolite prepared from Egyptian kaolin was investigated by means of XRD, IR, SEM, EDX and ion exchange of some heavy metals. Adsorption isotherms were used to investigate the structure and properties of the prepared zeolite. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. SEM images showed that the JBW crystallised in a cylindrical shape. However, spherical agglomerates were observed at lower magnifications. The ion exchange isotherms with Cu 2+ , Ni 2+ and Co 2+ were found to follow a Freundlich isotherm. In addition, it shows higher affinity towards Cu 2+ than other ions. - Graphical abstract: JBW zeolite structure was prepared from Egyptian kaolin and characterised. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. Highlights: ► Egyptian kaolin was successfully used to prepare pure phase of JBW Structure. ► JBW is stable till 2+ , Ni 2+ , and Co 2+ followed up Freundlich isotherm. ► Selectivity towards Cu 2+ is much higher than Co 2+ or Ni 2+ .

  1. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  2. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  3. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  4. Turbomachinery Design Quality Checks to Avoid Friction Induced Structural Failure

    Science.gov (United States)

    Moore, Jerry H.

    1999-01-01

    A unique configuration of the P&W SSME Alternate Fuel Turbopump turbine disk/blade assembly, combined with a severe thermal environment, resulted in several structural anomalies that were driven by frictional contact forces. Understanding the mechanics of these problems provides new quality checks for future turbo machinery designs. During development testing in 1997 of the SSME alternate fuel turbopump at Stennis Space Center, several potentially serious problems surfaced with the turbine disk/blade assembly that had not been experienced in extensive earlier testing. Changes to the operational thermal environment were noted based on analytical prediction of modifications that affected performance and on stationary thermal measurements adjacent to the rotor assembly. A detailed structural investigation was required to reveal the mechanism of distress induced by the change. The turbine disk experienced cracking in several locations due to increased thermal gradient induced stress during start and shutdown transients. This was easily predictable using standard analysis procedures and expected once the thermal environment was characterized. What was not expected was the curling of a piston ring used for blade axial retention in the disk, indentation of the axial face of the blade attachment by a spacer separating the first and second stage blades, and most significantly, galling and cracking of the blade root attachment that could have resulted in blade release. Past experience, in gas turbine environments, set a precedent of never relying on friction for help and to evaluate it only in specific instances where it was obvious that it would degrade capability. In each of the three cases above, friction proved to be a determining factor that pushed the components into an unsatisfactory mode of operation. The higher than expected temperatures and rapid thermal transients combined with friction to move beyond past experience. The turbine disk/blade assembly configuration

  5. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  6. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  7. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  8. Concurrent semantics for structured design methods

    OpenAIRE

    Nixon, Patrick

    1996-01-01

    Also in Jelly, I., Gordon, I., & Groll, P. Software Engineering for Parallel and Distributed Systems. London: Chapman Hall. Design methods can be ambiguous due to di#11;erent interpretations of symbols or concepts. This paper presents a formal semantics for the Ward/Mellor Structured Analysis Method for Real Time systems. These semantics ensures that an unambiguous meaning can be attributed to a particular design. Speci#12;cally, it ensures that concurrent and real-time propert...

  9. Lifetime prediction of structures submitted to thermal fatigue loadings

    International Nuclear Information System (INIS)

    Amiable, S.

    2006-01-01

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  10. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  11. Preliminary fluid channel design and thermal-hydraulic analysis of glow discharge cleaning permanent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.

  12. Advanced welding for closed structure. Pt. 3 The thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Sacripanti, A.; Bonanno, G.; Paoloni, M.; Sagratella, G. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Arborino, A.; Varesi, R.; Antonucci, A. [DUNE, (Italy)

    1999-07-01

    This report describes the activities developed for the European Contract BRITE AWCS III to study the use of thermal sensing techniques to obtain an accurate detection of the internal reinforcement of the closed steel structures employed in the shipbuilding industry. After a description of the methods, normally developed in Russia, about the techniques and problems, for the thermal testing of materials in the conventional approach, a new thermal detector was utilized, a new bolometric thermo camera is introduced with a special software for the on line image analysis, there are also shown the experimental tests and results. The obtained conclusion shows that the thermal non destructive testing techniques with the new detector should be useful to assemble a complete sensing system with one ultrasonic head. [Italian] Questo rapporto descrive le attivita' sperimentali sviluppate nell'ambito del contratto europeo BRITE AWCS III, in cui si sono utilizzate tecniche termiche per ottenere un preciso rilevamento dei rinforzi interni di strutture metalliche chiuse utilizzate nell'industria delle costruzioni navali. Dopo la descrizione dei metodi sviluppati essenzialmente in Russia, circa le tecniche e i problemi riguardanti il testing termico dei materiali, e' stato introdotto un approccio innovativo basato su un nuovo sensore: una termocamera bolometrica connessa con un software dedicato per l'analisi online del setto; vengono inoltre mostrati i risultati sperimentali ottenuti. Le conclusioni ottenute mostrano che nel nuovo approccio, il testing termico non distruttivo dovrebbe essere utile per assemblare un sistema sensoriale completo che utilizzi anche un sensore di tipo ultrasonico.

  13. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  14. An Evaluation Report on the High Temperature Design of the KALIMER-600 Reactor Structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Lee, Jae Han

    2007-03-15

    This report is on the validity evaluation of high temperature structural design for the reactor structures and piping of the pool-type Liquid Metal Reactor, KALIMER-600 subjected to the high temperature thermal load condition. The structural concept of the Upper Internal Structure located above the core is analyzed and the adequate UIS conceptual design for KALIMER-600 is proposed. Also, the high temperature structural integrity of the thermal liner which is to protect the UIS bottom plate from the high frequency thermal fatigue damage was evaluated by the thermal stripping analysis. The high temperature structural design of the reactor internal structure by considering the reactor startup-shutdown cycle was carried out and the structural integrity of it for a normal operating condition as well as the transient condition of the primary pump trip accident was confirmed. Additionally the structure design of the reactor internal structural was changed to prevent the non-uniform deformation of the primary pump which is induced by the thermal expansion difference between the reactor head and the baffle plate. The arrangement of the IHTS piping system which is a part of the reactor system is carried out and the structural integrity and the accumulated deformation by considering the reactor startup-shutdown cycle of a normal operating condition were evaluated. The structural integrity and the accumulated deformation of the PDRC hot leg piping by considering the PDRC operating condition were evaluated. The validity of KALIMER-600 high temperature structural design is confirmed through this study, and it is clearly found that the methodology research to evaluate the structural integrity considering the reactor life time of 60 years ensured is necessary.

  15. Optimizing the design of nanostructures for improved thermal conduction within confined spaces

    Directory of Open Access Journals (Sweden)

    Fan Jintu

    2011-01-01

    Full Text Available Abstract Maintaining constant temperature is of particular importance to the normal operation of electronic devices. Aiming at the question, this paper proposes an optimum design of nanostructures made of high thermal conductive nanomaterials to provide outstanding heat dissipation from the confined interior (possibly nanosized to the micro-spaces of electronic devices. The design incorporates a carbon nanocone for conducting heat from the interior to the exterior of a miniature electronic device, with the optimum diameter, D 0, of the nanocone satisfying the relationship: D0 2 (x ∝ x 1/2 where x is the position along the length direction of the carbon nanocone. Branched structure made of single-walled carbon nanotubes (CNTs are shown to be particularly suitable for the purpose. It was found that the total thermal resistance of a branched structure reaches a minimum when the diameter ratio, β* satisfies the relationship: β* = γ -0.25b N -1/k* , where γ is ratio of length, b = 0.3 to approximately 0.4 on the single-walled CNTs, b = 0.6 to approximately 0.8 on the multiwalled CNTs, k* = 2 and N is the bifurcation number (N = 2, 3, 4 .... The findings of this research provide a blueprint in designing miniaturized electronic devices with outstanding heat dissipation. PACS numbers: 44.10.+i, 44.05.+e, 66.70.-f, 61.48.De

  16. Thermal considerations for overpack designs in drum packages

    International Nuclear Information System (INIS)

    Hensel, S.; Gromada, R.J.

    1997-01-01

    The design of the overpacks in drum packages, both in terms of thickness and materials of construction, greatly impact the ability of the package to accommodate heat source contents. The optimum overpack thermal protection needed is that which results in the lowest containment vessel temperature during both Hypothetical Accident Conditions (HAC) and Normal Conditions of Transport (NCT). For heat source packages, the use of very good or high efficiency insulating materials such as fiberboard and polyurethane results in high containment vessel temperatures during both NCT and HAC. Using a more modest or low efficiency insulating material would reduce the NCT and HAC material such as oak (low efficiency) would maintain a containment vessel with a content of 100 watts at a fraction of the temperature reported for very good or high efficiency insulating materials. Four inches of oak can prevent the containment vessel from exceeding 500 degrees F during both NCT and HAC with 100 watts of contents, whereas using a high efficiency material the vessel would exceed 1000 degrees F. 8 figs., 1 tab

  17. Shallow Crustal Thermal Structures of Central Taiwan Foothills Region

    Directory of Open Access Journals (Sweden)

    Shao-Kai Wu

    2013-01-01

    Full Text Available Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.

  18. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    Science.gov (United States)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  19. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  20. Benchmark study of some thermal and structural computer codes for nuclear shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Kanae, Yoshioki; Shimada, Hirohisa; Shimoda, Atsumu; Halliquist, J.O.

    1984-01-01

    There are many computer codes which could be applied to the design and analysis of nuclear material shipping casks. One of problems which the designer of shipping cask faces is the decision regarding the choice of the computer codes to be used. For this situation, the thermal and structural benchmark tests for nuclear shipping casks are carried out to clarify adequacy of the calculation results. The calculation results are compared with the experimental ones. This report describes the results and discussion of the benchmark test. (author)

  1. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  2. Kinetic thermal structure in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Chen, Jun; Yin, Ze-Xia; She, Zhen-Su; Bao, Yun

    2017-11-01

    Plumes are believed to be the most important heat carrier in turbulent Rayleigh-Bénard convection (RBC). However, a physically sound and clear definition of plume is still absent. We report here the investigation of a definition of plume called kinetic thermal structure (KTS), based on the analysis of vertical velocity gradient (Λ = ∂w / ∂z), using direct numerical simulation (DNS) data of the three-dimensional RBC in a rectangular cell for Pr = 0.7 and Ra = 1 ×108 5 ×109 . It is shown that the conditional average of temperature on Λ exhibits such a behavior that when Λ is larger than a threshold, the volume carries a constant temperature of fluid, hence defines an unambiguous thermal structure, KTS. The DNS show that the KTS behaves in a sheet-like shape near the conducting plate, and becomes slender and smaller with increasing Ra . The heat flux carried by KTS displays a scaling law, with an exponent larger than the global- Nu - Ra scaling, indicating stronger heat transport than the turbulent background. An advantage of the KTS is its connection to the balance equation allowing, for the first time, a prediction of the Ra -dependence of its vertical velocity and the characteristic Λ threshold, validated by DNS. Supported by NSFC (11172006, 11221062, 11452002), and by MOST (China) 973 project (2009CB724100).

  3. Strategies for Optimal Design of Structural Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  4. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stre...... loads are appended....

  5. Optimization of thermochromic VO2-based structures with tunable thermal emissivity

    International Nuclear Information System (INIS)

    Li Voti, R.; Larciprete, M.C.; Leahu, G.L.; Bertolotti, M.; Sibilia, C.

    2013-01-01

    In this paper we design and simulate VO 2 /metal multilayers to obtain a large tunability of the thermal emissivity of IR filters in the typical MWIR window of many infrared cameras. The multilayer structure is optimized to realise a low-emissivity filter at high temperatures useful for military purposes. The values of tunability found for VO 2 /metal multilayers are larger than the value for a single thick layer of VO 2 . Innovative SiO 2 /VO 2 synthetic opals are also investigated to enhance the optical tunability by combining the properties of a 3D periodic structure and the specific optical properties of vanadium dioxide.

  6. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  7. Structural design of the DIII-D radiative divertor

    International Nuclear Information System (INIS)

    Reis, E.E.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Hollerbach, M.A.; Laughon, G.J.; Sevier, D.L.

    1996-10-01

    The divertor of the DIII-D tokamak is being modified to operate as a slot type, dissipative divertor. This modification, called the Radiative Divertor Program (RDP) is being carried out in two phases. The design and analysis is complete and hardware is being fabricated for the first phase. This first phase consists of an upper divertor baffle and cryopump to provide some density control for high triangularity, single or double null discharges. Installation of the first phase is scheduled to start in October, 1996. The second phase provides pumping at all four divertor strike points of double null high triangularity discharges and baffling of the neutral particles from transport back to the core plasma. Studies of the effects of varying the slot length and width of the divertor can be easily accomplished with the design of RDP hardware. Static and dynamic analyses of the baffle structures, new cryopumps, and feedlines were performed during the preliminary and final design phases. Disruption loads and differential thermal displacements must be accommodated in the design of these components. With the full RDP hardware installed, the plasma current in DIII-D will be a maximum of 3.0 MA. Plasma disruptions induce toroidal currents in the cryopump, producing complex dynamic loads. Simultaneously, the vacuum vessel vibrations impose a sinusoidal base excitation to the supports for the cryopump. Static and dynamic analyses of the cryopump demonstrate that the stresses due to disruption and thermal loadings satisfy the stress and deflection criteria

  8. Planning, developing, and fielding of thermal/structural interactions in situ tests for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.

    1986-01-01

    Large-scale, well-instrumented underground tests to determine in situ thermal/structural response of bedded salt are being constructed in the WIPP facility in southeastern New Mexico. These tests are an essential component of a broad research and development program to resolve thermal/structural issues, to validate long-term prediction methods, and to develop a design basis for a future repository. They are the result of an extensive planning and evaluation procedure to determine the appropriate test configuration. All details of the tests, including background, decisions, design, site operations, and testing organization are explained. These procedures may be useful in developing other in situ tests

  9. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  10. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner (ER) is one piece of the process equipment for the Integral Fast Reactor (IFR) program. The ER's principal function is to perform the pyrochemical and electrochemical refining of spent and experimental fuel elements. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  11. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner is one piece of the process equipment for the Integral Fast Reactor (IFR) program. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  12. Improving SFR Economics through Innovations from Thermal Design and Analysis Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Vincent Mousseau; Per F. Peterson

    2008-06-01

    Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements for large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, a multiple reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and reduce safety related overnight and operation costs, and modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three of these areas and their potential beneficial impacts on SFR economics.

  13. Thermal hydraulic and power cycle analysis of liquid lithium blanket designs

    International Nuclear Information System (INIS)

    Misra, B.; Stevens, H.C.; Maroni, V.A.

    1977-01-01

    Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys

  14. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  15. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  16. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  17. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  18. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated

  19. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  20. Mathematical Modeling of the Thermal State of the Spatial Layered Rod Structures

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2016-01-01

    Full Text Available The paper considers the features of finite element technology to determine the temperature state of layered rod structures with complex spatial design. The area of research, on the one hand, is defined by the fact that the rod structures (frames are so-called “skeletal framework” of aviation, machinery, shipbuilding products and structures for industrial construction and an issue of implementation of most research and industrial projects, strongly promising from the practical point of view, depends largely on the level of reliability, bearing capacity, and general performance of its “skeletal framework”. On the other hand, the laminates have a wide range and unique combination of valuable properties such as high strength, corrosion resistance, electrical conductivity, thermal conductivity, heat resistance, abrasion resistance and many others. The use of layered metal compositions allows to increase the reliability and durability of a large range of parts and equipment and to reduce significantly the consumption of high-alloyed steels and nonferrous metals. A temperature field is one of the main factors to determine the expected performance of multilayer rod structures, operation conditions of which imply intensive thermal loading.The paper shows how within a single finite element model that approximates the spatial design of steel structures consisting of multilayer curvilinear rods, at the stage of discretization in space to take into account the thermo-physical properties of all materials, forming layer of each timber. Using the technique described in the paper has been created a complex of application programs that allows us to solve a wide class of scientific and applied problems, and explore the impact of various structural, technological and operational factors on the temperature state of multilayer rod structures. The paper presents research results of the multilayer rod design. It shows that the high conductivity layer available

  1. A structural keystone for drug design

    Directory of Open Access Journals (Sweden)

    Rother Kristian

    2006-06-01

    Full Text Available 3D-structures of proteins and potential ligands are the cornerstones of rational drug design. The first brick to build upon is selecting a protein target and finding out whether biologically active compounds are known. Both tasks require more information than the structures themselves provide. For this purpose we have built a web resource bridging protein and ligand databases. It consists of three parts: i A data warehouse on annotation of protein structures that integrates many well-known databases such as Swiss-Prot, SCOP, ENZYME and others. ii A conformational library of structures of approved drugs. iii A conformational library of ligands from the PDB, linking the realms of proteins and small molecules.

  2. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  3. Design of a bolted flange subjected to severe nuclear system thermal transients - A case study

    International Nuclear Information System (INIS)

    Palmer, W.J.; Tomawski, R.J.; Ezekoye, L.I.; Lacey, M.L.

    1986-01-01

    Flange design standards recognize that flanged joints may develop leakage should they be exposed to severe thermal gradients and recommend that such operating conditions be avoided. In nuclear power plants, severe thermal transients may be encountered in many plant and system operating and test conditions. In such applications, conformance with standard design practice may not ensure a leak-tight joint. This paper describes the proper consideration of thermal effects on flanged joints and how that can lead to the development of a successful leak-tight design. Similar procedures may be applied generally to evaluate and upgrade flanged joints in thermal shock applications

  4. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  5. Development of Fluid and I and C Systems Design Technology for LMR - Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hueong Yeon and others

    2005-03-01

    The key research items during the fiscal years of Phase 3 of the mechanical design technology development for liquid metal reactor are described. The objective of this project is to develop the design technology for the mechanical system of 600MWe, pool type liquid metal reactor with sodium coolant, and the structural integrity evaluation technology for mechanical system of the reactor system, structures and equipments. In the design technology development for mechanical structures, the reactor internal structures, reactor head and piping system, reactor containment structures have been studied, and new structural concepts compatible with the new reactor have been proposed. The thermal protection devices of reactor vessel and the refueling system have been conceptually established and the feasibility study for 3-D seismic isolation of reactor building was performed. The structural damage detection technology for reactor internal structures has been studied and its application has been confirmed. In the structural integrity evaluation technology development, the sensitivities of material constants for inelastic analysis codes have been studied and the applicabilities of the developed codes are enhanced. The high temperature creep-fatigue structural behavior test has been conducted so that high temperature structural damage test and evaluation technology were ensured at first in domestic. The high temperature seismic buckling analysis method to evaluate the buckling of thin reactor shell structure under the transient thermal load was established. In addition, the core seismic response analysis code reflected the fluid effect of core was developed and its accuracy was confirmed with a scale-down model test

  6. Thermal strain measurement of EAST W/Cu divertor structure using electric resistance strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingli [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Wang, Jichao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Wei, Ran; Sun, Zhaoxuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Li, Qiang; Xie, Chunyi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Chen, Hong-En; Wang, Kaiqiang; Wu, Lei; Chen, Zhenmao [State Key Lab for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2016-12-15

    Highlights: • To understand the service behavior of W/Cu divertor, an electrical resistance strain gauge system had been introduced in a thermal strain measurement experiment. • The measurement system successfully finished the experiment and obtained valued thermal strain data. • Two thermomechanical analyses had also been carried out and compared with the measurement results. • Experiment results corresponded well to simulations and threw a light upon the failure of W/Cu divertor in the previous baking tests. - Abstract: W/Cu divertor has complex structure and faces extreme work environment in EAST Tokamak device. To measure its thermal strain shall be a valued way to understand its service behavior and then optimize its design and manufacturing process. This work presents a preliminary study on measuring thermal strain of EAST W/Cu divertor structure using electric resistance strain gauges. Eight gauges had been used in the experiment and the heating temperature had been set to 230 °C with respect to the work temperature. To realize the measuring experiment, an appropriate fixing method of gauges in divertor narrow spaces had been taken and tested, which could not only withstand high temperature but also had no damage to the divertor sample. The measurement results were that three gauges showed positive strain while other three showed negative strain after having been compensated, which corresponded to tensile stress and compressed stress respectively. Two thermomechanical simulations had also been carried out and used for comparing with the experiment.

  7. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

    2012-09-15

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design

  8. AHTR Mechanical, Structural, And Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Bradley, Eric Craig [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Zaharia, Nathaniel M [ORNL

    2012-10-01

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic

  9. Design, fabrication and thermal characterization of a magnetocaloric microcooler

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ghirlanda, S.; Adams, C.; Bethala, B.; Sambandam, S.N.; Bhansali, S. [BioMEMS and Microsystems Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL 33620, (United States)

    2006-12-11

    Magnetocaloric cooling is an alternative, high-efficiency cooling technology. In this paper, we present the design and fabrication of a micromachined magnetocaloric cooler and demonstrate its ability to work in a small magnetic field (<1.2 T) with a cooling test. The cooler was built by fabricating Si microfluidic channels, and it was integrated with a Gd{sub 5}(Si{sub 2}Ge{sub 2}) magnetocaloric refrigeration element. The magnetic properties of the Gd{sub 5}(Si{sub 2}Ge{sub 2}) material were characterized to calculate the magnetic entropy change at different ambient temperatures. Three different methods to integrate the channel layer and the magnetocaloric element were evaluated to test sealing and cooling performance. The cooling tests were performed by providing a magnetic field using an electromagnet. A test jig was constructed between the poles of an electromagnet to maintain a steady temperature during the test. Cooling tests were performed on the magnetocaloric element at ambient temperatures ranging from 258 to 280 K using a magnetic field of 1.2 T. Experimental results showed a maximum temperature change of 7 K on the magnetocaloric element alone at an ambient temperature of 258 K. Cooling tests of the fully integrated coolers were also performed. A solution of anti-freeze fluid (propylene glycol) and water was used as the coolant. The temperature of the working fluid decreased by 4.6 and 9 K for the glass and Si intermediate layers, respectively, confirming that the thermal conductivity of the materials is also an important factor in cooler performance. (Author)

  10. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  11. Key issues in the thermal design of spaceborne cryogenic infrared instruments

    Science.gov (United States)

    Schember, Helene R.; Rapp, Donald

    1992-12-01

    Thermal design and analysis play an integral role in the development of spaceborne cryogenic infrared (IR) instruments. From conceptual sketches to final testing, both direct and derived thermal requirements place significant constraints on the instrument design. Although in practice these thermal requirements are interdependent, the sources of most thermal constraints may be grouped into six distinct categories. These are: (1) Detector temperatures, (2) Optics temperatures, (3) Pointing or alignment stability, (4) Mission lifetime, (5) Orbit, and (6) Test and Integration. In this paper, we discuss these six sources of thermal requirements with particular regard to development of instrument packages for low background infrared astronomical observatories. In the end, the thermal performance of these instruments must meet a set of thermal requirements. The development of these requirements is typically an ongoing and interactive process, however, and the thermal design must maintain flexibility and robustness throughout the process. The thermal (or cryogenic) engineer must understand the constraints imposed by the science requirements, the specific hardware, the observing environment, the mission design, and the testing program. By balancing these often competing factors, the system-oriented thermal engineer can work together with the experiment team to produce an effective overall design of the instrument.

  12. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  13. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kennedy, W L; Sagalovsky, L [Argonne National Lab., IL (United States)

    1992-11-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs.

  14. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed

  15. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs

  16. Structural and microstructural design in brittle materials

    International Nuclear Information System (INIS)

    Evans, A.G.

    1979-12-01

    Structural design with brittle materials requires that the stress level in the component correspond to a material survival probability that exceeds the minimum survival probability permitted in that application. This can be achieved by developing failure models that fully account for the probability of fracture from defects within the material (including considerations of fracture statistics, fracture mechanics and stress analysis) coupled with non-destructive techniques that determine the size of the large extreme of critical defects. Approaches for obtaining the requisite information are described. The results provide implications for the microstructural design of failure resistant brittle materials by reducing the size of deleterious defects and enhancing the fracture toughness

  17. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  18. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  19. Spanish generation market: structure, design and results

    International Nuclear Information System (INIS)

    Agosti, L.; Padilla, A. J.; Requejo, A.

    2007-01-01

    This paper provides an overview of the structure, design and outcome of the Spanish generation market from 1998, when the market was liberalised, to date. More precisely, this paper reviews the history of the liberalisation process; describes the structure of the generation market and its evolution over time; analyses the existence of market power; and evaluates the outcome of the liberalisation process from the viewpoint of its impact on al locative efficiency, productive efficiency and dynamic efficiency. The paper concludes with a brief summary of recent regulatory reforms. (Author)

  20. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  1. A rational evaluation of structural design loads

    International Nuclear Information System (INIS)

    Tasaka, S.

    1993-01-01

    The reliability-based seismic design of structures is a design method ensuring that the structural seismic capacity is not less than the maximum seismic load or load effect for a prescribed value of the reliability index, wherein the design reference period, n, is used to specify the n-year maximum load. In the conventional Load and Resistance Factor Design (LRFD) method the design load is commonly determined on the basis of the n-year maximum the probability distribution of which may be given in some different ways. However, in contrast with the structural capacity the n-year maximum load usually involves much larger variabilities. The effort to decrease the variability would, hence, be effective for the purpose of avoiding nuclear power plant (NPP) structures having unnecessarily large capacities. A possible way to do this is to consider the joint probability distribution of the n-year 1st and 2nd maxima of the seismic load derived from the formula of extreme order statistics. Since the reliability index is conventionally associated with the n-year 1st maximum, the conditional probability distribution rather than the joint one of the n-year 1st maximum given a value of the n-year 2nd one will be considered. Three conditional extreme value distributions, which correspond to the usual extreme value distributions of Types I, II and III, and their statistical moments up to the second order are presented. Within the framework of the first-order second moment method, the conditional statistical moments are utilized to calculate the reliability index as well as the design value of the seismic load. The seismic load considered herein is represented by the peak ground acceleration (PGA) in n years. The present scheme is applied to evaluate the design PGA's at II sites in Japan where samples of the annual 1st and 2nd PGA's have been obtained by using historical seismic data. In this application the following two points are of our interest: (a) Define the reliability

  2. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  3. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  4. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  5. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.

    Science.gov (United States)

    Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    Science.gov (United States)

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  7. Optimization of thermal design for nitrogen shield of JET cryopump

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1991-11-01

    The reference design of JET cryopump nitrogen shield consists of an outer section made of copper chevrons fastened to two cooling tubes and an inner stainless steel section and backing plate with two cooling tubes. These tubes are fed in a parallel flow arrangement. The inlet flow is divided into two parallel paths so that both tubes on either section are always at the same temperature. This arrangement was selected due to concern about conduction between warm and cold parts of the shield during cooldown transients. If the heat loads are unequal, such a parallel flow arrangement can result in flow starvation in the path with higher heat load. This will cause large temperature differences and, ultimately, structural failure. Hence, an analysis was undertaken to investigate the conduction effects in the shield for other flow arrangements. 4 refs., 8 figs

  8. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui

    2017-07-21

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  9. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui; Tang, Chengcheng; Seidel, Hans-Peter; Wonka, Peter

    2017-01-01

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  10. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The main problems regarding the AST-500 NHR thermal-hydraulics are considered. Basic thermal data of the reactor plant are given and peculiarities of coolant parameters at natural convection in the primary circuit are discussed. The in-reactor instrumentation system is briefly describes, as well as the results of natural-convective flow characteristics investigations using reactor test models. (author). 4 refs, 5 figs.

  11. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  12. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Science.gov (United States)

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  13. Validation of structural design of JHR fuel element

    International Nuclear Information System (INIS)

    Brisson, S.; Miras, G.; Le Bourdonnec, L.; Lemoine, P.; Anselmet, M.C.; Marelle, V.

    2010-01-01

    The validation of the structural design of the Jules Horowitz Reactor fuel element was made by the Finite Element Method, starting from the Computer Aided Design. The JHR fuel element is a cylindrical assembly of three sectors composed of eight rolled fuel plates. A roll-swaging process is used to join the fuel plates to three aluminium stiffeners. The hydraulic gap between each plate is 1.95 mm. The JHR fuel assembly is fastened at both ends to the upper and lower endfittings by riveting. The main stresses are essentially thermal loads, imposed on the fuel zone of the plates. These thermal loads result from the nuclear heat flux (W/cm 2 ). The mechanical loads are mainly hydraulic thrust forces. The average coolant velocity is 15 m/s. Seismic effects are also studied. The fuel assembly is entirely modelled by thin shells. The model takes into account asymmetric thermal loads which often appear in Research Reactors. The mechanics of the fuel plates vary in function of the burn up. These mechanical properties are derived from the data sets used in the MAIA code, and the validity of the structure is demonstrable at throughout the life of the fuel. Results concerning displacement are compared to functional criteria, while results concerning stress are compared to RCC-MX criteria. The results of this analysis show that the mechanical and geometrical integrity of the JHR fuel elements is respected for Operating Categories 1 and 2. This paper presents the methodology of this demonstration for the results obtained. (author)

  14. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  15. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  16. Ocean thermal energy conversion (OTEC) power system development (PSD) II. Preliminary design report. Appendix II: supporting data

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-10

    The trade studies, calculations, and reports which provide the rationale for design conclusions for the 10 MWe OTEC power system are presented in this volume. These appendices include: (1) system design and optimization model; (2) system off-design performance computer model; (3) seawater system dynamics; (4) system mechanical design studies; (5) electrical design studies; (6) structural design studies; (7) tube cleaner design report and proposed brush test program; (8) heat exchangers: mechanical design; (9) heat exchangers: thermal hydraulic computer model; (10) heat exchangers: manufacturing flow plan; (11) heat exchangers: installation and removal procedures; (12) heat exchangers: stainless steel conceptual design; (13) heat exchangers: cost studies; (14)heat exchangers: materials selection and corrosion; and (15) heat exchangers: quality assurance. (WHK)

  17. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  18. Receiver subsystem analysis report (RADL Item 4-1). The 10-MWe solar thermal central-receiver pilot plant: Solar-facilities design integration

    Science.gov (United States)

    1982-04-01

    The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.

  19. Wheel liner design for improved sound and structural performances

    Science.gov (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  20. An Electro-thermal MEMS Gripper with Large Tip Opening and Holding Force: Design and Characterization

    Directory of Open Access Journals (Sweden)

    Jay J. KHAZAAI

    2011-12-01

    Full Text Available This paper presents the design, fabrication, and characterization of a novel MEMS gripper that is driven electro-thermally by a new V-shape actuator (VSA and a set of modified Guckel U-shape actuators (mUSA. The modification of the angle between the hot and cold arms in the mUSA facilitates unidirectional in-plane displacement causing the opening of the gripper. This configuration distinguishes the MEMS gripper from others in its ability to generate larger tip displacement and greater holding force. The metallic structures allow for a low operating voltage and low overall power consumption. A tip opening of 173.4 μm has been measured at the operating voltage of 1 V with consuming power of 0.85 W. MetalMUMPs is employed to fabricate the device, in which electroplated nickel is used as the structural material.

  1. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    Science.gov (United States)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  2. A variable thickness window: Thermal and structural analyses

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.

    1994-01-01

    In this paper, the finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window to an Advanced Photon Source beamline is presented

  3. Thermal performances of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; Le Det, M.; Denis, R.

    1974-12-01

    This report describes the thermal and technological tests performed on a multilayer thermal insulation system for high temperature gas reactors. It includes the description of test facilities, global tests, interpretation of data, and technological tests. Results obtained make it possible to predetermine with a satisfactory precision thermal performances under various nominal conditions

  4. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  5. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  6. Thermal design of an electric motor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Jandaud, P-O; Harmand, S; Fakes, M

    2012-01-01

    In this paper, flow inside an electric machine called starter-alternator is studied parametrically with CFD in order to be used by a thermal lumped model coupled to an optimization algorithm using Particle Swarm Optimization (PSO). In a first case, the geometrical parameters are symmetric allowing us to model only one side of the machine. The optimized thermal results are not conclusive. In a second case, all the parameters are independent. In this case, the flow is strongly influenced by the dissymmetry. Optimization results are this time a clear improvement compared to the original machine.

  7. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  8. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Sofronia, Ancuta M.; Baies, Radu; Anghel, Elena M.; Marinescu, Cornelia A.; Tanasescu, Speranta

    2014-01-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m 2 /g by calcination. • Raman spectra indicate the presence of B-type CO 3 group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample

  9. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Sofronia, Ancuta M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Baies, Radu [National Research Institute for Electrochemistry and Condensed Matter, 300224 Timisoara (Romania); Anghel, Elena M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Marinescu, Cornelia A., E-mail: alcorina@chimfiz.icf.ro [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Tanasescu, Speranta [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania)

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m{sup 2}/g by calcination. • Raman spectra indicate the presence of B-type CO{sub 3} group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample.

  10. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  11. Heat transfer characteristics and limitations analysis of heat-pipe-cooled thermal protection structure

    International Nuclear Information System (INIS)

    Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei

    2014-01-01

    The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed

  12. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures - Design and Thermal Structural Analysis

    National Research Council Canada - National Science Library

    Ho, Sook-Ying; Kotousov, Andrei; Nguyen, Phuc; Harding, Steven; Codrington, John; Tsukamoto, Hideaki

    2007-01-01

    ...) and Sintering method showed promising results. This method is relatively undeveloped and under utilised compared to more expensive techniques such as chemical vapour deposition, physical vapour deposition, plasma spraying and powder metallurgy...

  13. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  14. Computational Tools for RF Structure Design

    CERN Document Server

    Jensen, E

    2004-01-01

    The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.

  15. Design of data structures for mergeable trees

    DEFF Research Database (Denmark)

    Georgiadis, Loukas; Tarjan, Robert Endre; Werneck, Renato Fonseca F.

    2006-01-01

    merge operation can change many arcs. In spite of this, we develop a data structure that supports merges and all other standard tree operations in O(log2 n) amortized time on an n-node forest. For the special case that occurs in the motivating application, in which arbitrary arc deletions...... are not allowed, we give a data structure with an O(log n) amortized time bound per operation, which is asymptotically optimal. The analysis of both algorithms is not straightforward and requires ideas not previously used in the study of dynamic trees. We explore the design space of algorithms for the problem......Motivated by an application in computational topology, we consider a novel variant of the problem of efficiently maintaining dynamic rooted trees. This variant allows an operation that merges two tree paths. In contrast to the standard problem, in which only one tree arc at a time changes, a single...

  16. Research and development issues for fast reactor structural design standard (FDS)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Ando, Masanori; Morishita, Masaki

    2003-01-01

    For realization of safe and economical fast reactor (FR) plants, Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) are cooperating on 'Feasibility Study on Commercialized FR Cycle Systems'. To certify the design concepts and validate their structural integrity, the research and development of 'Fast Reactor Structural Design Standard (FDS)' is recognized as an essential theme. FDS considers general characteristics of FRs and design needs for their rationalization. Three main subjects were settled in research and development issues of FDS. One is rationalization of failure criteria' taking characteristic design conditions into account. Next is development of 'a guideline on inelastic analysis for design' in order to predict elastic plastic and creep behaviours of high temperature components. Furthermore, efforts are being made toward preparing a guideline on thermal loads modeling' for FR component design where thermal loads are dominant. (author)

  17. Designing organizational structures: Key thoughts for development.

    Science.gov (United States)

    Killingsworth, Patricia; Eschenbacher, Lynn

    2018-04-01

    Current strategies and concepts to consider in developing a system-level organizational structure for the pharmacy enterprise are discussed. There are many different ways to design an organizational structure for the pharmacy enterprise within a health system. The size of the organization, the number of states in which it operates, and the geographic spread and complexity of the pharmacy business lines should be among the key considerations in determining the optimal organizational and decision-making structures for the pharmacy enterprise. The structure needs to support incorporation of the pharmacy leadership (both system-level executives and local leaders) into all strategic planning and discussions at the hospital and health-system levels so that they can directly represent the pharmacy enterprise instead of relying on others to develop strategy on their behalf. It is important that leaders of all aspects of the pharmacy enterprise report through the system's top pharmacy executive, who should be a pharmacist and have a title consistent with those of other leaders reporting at the same organizational level (e.g., chief pharmacy officer). Pharmacy leaders need to be well positioned within an organization to advocate for the pharmacy enterprise and use all resources to the best of their ability. As the scope and complexity of pharmacy services grow, it is critical to ensure that leadership of the pharmacy enterprise is unified under a single pharmacy executive team. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  18. Design of the detuned accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented

  19. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  20. Accounting for porous structure in effective thermal conductivity calculations in a pebble bed reactor

    International Nuclear Information System (INIS)

    Antwerpen, W. van; Rousseau, P.G.; Toit, C.G. du

    2009-01-01

    A proper understanding of the mechanisms of heat transfer, flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature pebble bed reactor. A thorough knowledge of the porous structure within the packed bed is important to any rigorous analysis of the transport phenomena, as all the heat and flow mechanisms are influenced by the porous structure. In this paper a new approach is proposed to simulate the effective thermal conductivity employing a combination of new and existing correlations for randomly packed beds. More attention is given to packing structure based on coordination number and contact angles, resulting in a more rigorous differentiation between the bulk and near-wall regions. The model accounts for solid conduction, gas conduction, contact area, surface roughness as well as radiation. (author)

  1. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  2. Thermal-structural analysis for ITER in-wall shielding block

    International Nuclear Information System (INIS)

    Hao Junchuan; Song Yuntao; Wu Weiyue; Du Shuangsong; Wang, X.; Ioki, K.

    2012-01-01

    Highlights: ► IWS blocks shall withstand various types of mechanical loads including EM loads, inertial loads and thermal loads. ► Due to the complicated geometry, the finite element method is the suitable tool to solve the problem. ► Contact element has been selected to simulate the friction between the different components. ► At baking phase, secondary stresses due to preloading and temperature difference predominate in the total stress. ► At plasma operation phase, secondary stresses due to preloading and thermal loads were deducted from the total stresses. - Abstract: In order to verify the design strength of the in-wall shielding (IWS) blocks of the ITER, thermal-structural analyses of one IWS block under vacuum vessel (VV) baking and plasma operation conditions have been respectively performed with finite element (FE) method. Among the complicated operation scenarios of the ITER, two critical types of combined loads required by the load specification of IWS were applied on the shielding block. The stress of the block is judged by American Society of Mechanical Engineers (ASME) criterion. Results show that the structure of this block has enough safety margin, and it also supplies detailed information of the stress distribution in concerned region under certain loads.

  3. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  4. Evaluation of hot spot factors for thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Sudo, Yukio; Murakami, Tomoyuki; Fujii, Sadao.

    1993-01-01

    High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal power and 950degC in reactor outlet coolant temperature. One of the major items in thermal and hydraulic design of the HTTR is to evaluate the maximum fuel temperature with a sufficient margin from a viewpoint of integrity of coated fuel particles. Hot spot factors are considered in the thermal and hydraulic design to evaluate the fuel temperature not only under the normal operation condition but also under any transient condition conservatively. This report summarizes the items of hot spot factors selected in the thermal and hydraulic design and their estimated values, and also presents evaluation results of the thermal and hydraulic characteristics of the HTTR briefly. (author)

  5. Structural Design Challenges in Design Certification Applications for New Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.; Braverman, J.; Wei, X.; Hofmayer, C.; Xu, J.

    2011-07-17

    The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design chal- lenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.

  6. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  7. Suppressive Shields Structural Design and Analysis Handbook

    Science.gov (United States)

    1977-11-18

    0.50 Aluminum ..... ......... ... 0.25 3.9 FIREBALL AND THERMAL ENVIRONMENT The fireball and thermal environment resulting from an acca ...289,440 lb The acceleration of the mass is given by F8 - 103,8682 a 0.05759 - 5,025,813 in/sec2 For the next step, the acceleration is assumed to be

  8. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  9. Window design : visual and thermal consequences : analysis of the thermal and daylighting performance of windows

    NARCIS (Netherlands)

    Bergem-Jansen, P.M. van; Soeleman, R.S.

    1979-01-01

    Selected results of an analysis for the thermal and lighting requirements associated with windows in utility buildings are presented. This analysis concerns the effects of r¡indow size and shape, orientation and of different ways of supplementing the daylight by artifieial light for a typical office

  10. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  11. Thermal structural analysis of SST-1 vacuum vessel and cryostat assembly using ANSYS

    International Nuclear Information System (INIS)

    Santra, Prosenjit; Bedakihale, Vijay; Ranganath, Tata

    2009-01-01

    Steady state super-conducting tokamak-1 (SST-1) is a medium sized tokamak, which has been designed to produce a 'D' shaped double null divertor plasma and operate in quasi steady state (1000 s). SST-1 vacuum system comprises of plasma chamber (vacuum vessel, interconnecting rings, baking and cooling channels), and cryostat all made of SS 304L material designed to meet ultra high vacuum requirements for plasma generation and confinement. Prior to plasma shot and operation the vessel assembly is baked to 250/150 deg. C from room temperature and discharge cleaned to remove impurities/trapped gases from wall surfaces. Due to baking the non-uniform temperature pattern on the vessel assembly coupled with atmospheric pressure loading and self-weight give rise to high thermal-structural stresses, which needs to be analyzed in detail. In addition the vessel assembly being a thin shell vessel structure needs to be checked for critical buckling load caused by atmospheric and baking thermal loads. Considering symmetry of SST-1, 1/16th of the geometry is modeled for finite element (FE) analysis using ANSYS for different loading scenarios, e.g. self-weight, pressure loading considering normal operating conditions, and off-normal loads coupled with baking of vacuum vessel from room temperature 250 deg. C to 150 deg. C, buckling and modal analysis for future dynamic analysis. The paper will discuss details about SST-1 vacuum system/cryostat, solid and FE model of SST-1, different loading scenarios, material details and the stress codes used. We will also present the thermal structural results of FE analysis using ANSYS for various load cases being investigated and our observations under different loading conditions.

  12. Thermal and mechanical design of WITAMIR-I blanket

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.N.

    1980-10-01

    The design philosophy of WITAMIR-I, a Wisconsin Tandem Mirror Reactor design study, uses the experience obtained from our previous tokamak studies and combines it with the unique features of the tandem mirror to obtain an attractive design of a TM power reactor. It is aimed at maximizing the strengths of the tandem mirror while mitigating its weaknesses. The end product should be a safe, reliable, maintainable and a relatively economic power reactor. The general description of the reactor, the plasma calculations, the magnet design, the neutronic calculations and the maintenance considerations are presented elsewhere. This paper presents the blanket design of this reactor study

  13. POMM: design of rotating mechanism and hexapod structure

    Science.gov (United States)

    Côté, Patrice; Leclerc, Mélanie; Demers, Mathieu; Bastien, Pierre; Hernandez, Olivier

    2014-08-01

    The new high precision polarimeter for the "Observatoire du Mont Mégantic" (POMM) is an instrument designed to observe exoplanets and other targets in the visible and near infrared wavebands. The requirements to achieve these observation goals are posing unusual challenges to structural and mechanical designers. In this paper, the detailed design, analysis and laboratory results of the key mechanical structure and sub-systems are presented. First, to study extremely low polarization, the birefringence effect due to stresses in the optical elements must be kept to the lowest possible values. The double-wedge Wollaston custom prism assembly that splits the incoming optical beam is made of bonded α-BBO to N-BK-7 glass lenses. Because of the large mismatch of coefficients of thermal expansion and temperatures as low as -40°C that can be encountered at Mont-Mégantic observatory, a finite element analysis (FEA) model is developed to find the best adhesive system to minimize stresses. Another critical aspect discussed in details is the implementation of the cascaded rotating elements and the twin rotating stages. Special attention is given to the drive mechanism and encoding technology. The objective was to reach high absolute positional accuracy in rotation without any mechanical backlash. As for many other instruments, mass, size and dimensional stability are important critera for the supporting structure. For a cantilevered device, such as POMM, a static hexapod is an attractive solution because of the high stiffness to weight ratio. However, the mechanical analysis revealed that the specific geometry of the dual channel optical layout also added an off-axis counterbalancing problem. To reach an X-Y displacement error on the detector smaller than 35μm for 0-45° zenith angle, further structural optimization was done using FEA. An imaging camera was placed at the detector plane during assembly to measure the actual optical beam shift under varying gravitational

  14. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  15. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-01-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report

  16. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : technical summary report.

    Science.gov (United States)

    2011-12-01

    The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...

  17. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  18. Experiments and analyses in support of the US ALMR thermal-hydraulic design

    International Nuclear Information System (INIS)

    Hunsbedt, A.

    1993-01-01

    The U.S. Advanced Liquid Metal Reactor (ALMR) which is based on the modular PRISM concept utilizes passive safety characteristics to simplify the reactor design and enhance its safety performance. The relatively small size of each reactor facilitates the use of strong negative feedback with rising temperature for inherent reactivity control and direct, natural air cooling for decay heat removal. The tall, slender reactor geometry of the ALMR enhances uniformity and stability of internal flow distribution during steady state operation and natural circulation flow during transient conditions. The flow uniformity and low operating pressure and temperature of the reactor contributes to high structural margins. A number of experiments and associated analyses have been performed to evaluate natural convection and thermal-hydraulic phenomena experienced under decay heat removal conditions. This paper summarizes these various efforts as described separately below and presents the main results. (author)

  19. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  20. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.