WorldWideScience

Sample records for thermal stress behavior

  1. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  2. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  3. Thermal Stress Limit Rafting Migration of Seahorses: Prediction Based on Physiological and Behavioral Responses to Thermal Stress

    Science.gov (United States)

    Qin, G.; Li, C.; Lin, Q.

    2017-12-01

    Marine fish species escape from harmful environment by migration. Seahorses, with upright posture and low mobility, could migrate from unfavorable environment by rafting with their prehensile tail. The present study was designed to examine the tolerance of lined seahorse Hippocampus erectus to thermal stress and evaluate the effects of temperature on seahorse migration. The results figured that seahorses' tolerance to thermal stress was time dependent. Acute thermal stress (30°C) increased breathing rate and HSP genes expression significantly, but didn't affect seahorse feeding behavior. Chronic thermal treatment lead to persistent high expression of HSP genes, higher breathing rate, and decreasing feeding, and final higher mortality, suggesting that seahorse cannot adapt to thermal stress by acclimation. No significant negative effects were found in seahorse reproduction in response to chronic thermal stress. Given that seahorses make much slower migration by rafting on sea surface compared to other fishes, we suggest that thermal stress might limit seahorse migration range. and the influence might be magnified by global warming in future.

  4. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  5. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  6. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  7. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  8. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation.

    Science.gov (United States)

    Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang

    2018-05-15

    Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.

  9. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  10. Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury.

    Science.gov (United States)

    Nyland, Jennifer E; McLean, Samuel A; Averitt, Dayna L

    2015-12-01

    Thermal burns among individuals working in highly stressful environments, such as firefighters and military Service Members, are common. Evidence suggests that pre-injury stress may exaggerate pain following thermal injury; however current animal models of burn have not evaluated the potential influence of pre-burn stress. This sham-controlled study evaluated the influence of prior stress exposure on post-burn thermal and mechanical sensitivity in male Sprague-Dawley rats. Rats were exposed to 20 min of inescapable swim stress or sham stress once per day for three days. Exposure to inescapable swim stress (1) increased the intensity and duration of thermal hyperalgesia after subsequent burn and (2) accelerated the onset of thermal hyperalgesia and mechanical allodynia after subsequent burn. This stress-induced exacerbation of pain sensitivity was reversed by pretreatment and concurrent treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. These data suggest a better understanding of mechanisms by which prior stress augments pain after thermal burn may lead to improved pain treatments for burn survivors. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Taeho; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2016-01-01

    Highlights: • Effects of long-term thermal aging on the nickel-based Alloy 600 were investigated. • Heat treatments simulating thermal aging were conducted by considering Cr diffusion. • Nano-indentation test results show hardening of thermally aged materials. • Thermally aged materials are more susceptible to stress corrosion cracking. • The property changes are attributed to the formation and evolution of precipitates. - Abstract: To understand the effect of long-term thermal aging in power plant systems, representative thick-walled Alloy 600 was prepared and thermally aged at 400 °C to fabricate samples with thermal aging effects similar to service operating conditions. Changes of microstructures, mechanical properties, and stress corrosion cracking susceptibility were investigated mainly through electron backscatter diffraction, nanoindentation, and high-temperature slow strain rate test. The formation of abundant semi-continuous precipitates with chromium depletion at grain boundaries was observed after thermally aged for 10 equivalent years. Also, alloys thermally aged for 10 equivalent years of thermal aging exhibited the highest susceptibility to stress corrosion cracking.

  12. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  13. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  14. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  15. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  16. Thermal properties of graphene under tensile stress

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-05-01

    Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature, the specific heat changes as cp˜T for stress-free graphene, and evolves to a dependence cp˜T2 as the tensile stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene are discussed, along with their associated properties. These differences show up clearly in the corresponding compressibility and thermal expansion coefficient.

  17. Thermal stress and seismogenesis

    International Nuclear Information System (INIS)

    Zhou Huilan; Wei Dongping

    1989-05-01

    In this paper, the Fourier stress method was applied to deal with the problem of plane thermal stress, and a computing formula was given. As an example, we set up a variate temperature field to describe the uplifted upper mantle in Bozhong area of China, and the computing results shows that the maximum value of thermal plane shear stress is up to nearly 7x10 7 P α in two regions of this area. Since the Bohai earthquake (18 July, 1969, M s = 7.4) occurred at the edge of one of them and Tangshan earthquake (28 July, 1976, M s = 7.8) within another, their occurrences can be related reasonably to the thermal stress. (author). 15 refs, 7 figs

  18. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  19. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  20. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  1. Transient thermal stresses and stress intensity factors induced by thermal stratification in feedwater lines

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Pardo, E.

    1985-01-01

    General analytical solutions for the thermal stresses and circumferential crack propagation in piping branches of nuclear power plants, that connect two circuits of the same fluid at different temperatures, are presented in this paper. Under certain conditions, two regions of the fluid possessing both temperatures with a separating layer of small thickness are formed ('flow stratification'). Dimensionless analytical expressions for the steady state temperature distribution in the pipe wall and the corresponding thermal stress are here derived, in terms of the basic geometrical and physical parameters. The position and thickness of the separating layer are considered as data of the model. Stress intensity ranges at any point of the tube wall are then determined. Finally, thermally induced stress intensity factors are calculated for hipothetically inside surface cracks. (orig.)

  2. Residual stress of particulate polymer composites with reduced thermal expansion

    International Nuclear Information System (INIS)

    Nishino, T; Kotera, M; Sugiura, Y

    2009-01-01

    Thermal expansion behavior was investigated for tangusten zirconium phosphate (Zr 2 (WO 4 )(PO 4 ) 2 (ZWP)) particulate filled poly(ether ether ketone) (PEEK) composite. ZWP is known as ceramic filler with a negative thermal expansion. By incorporating ZWP with 40 volume %, the linear thermal expansion coefficient of the PEEK composite was reduced to almost same value (2.53 X 10 -5 K -1 ) with that of aluminum. This decrease was found to be quite effective for the decrease of the residual stress at the interface between aluminum plate and the composite.

  3. Thermal Stress Awareness, Self-Study #18649

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-15

    Thermal stresses can expose individuals to a variety of health hazards at work, home, and play. Every year thermal stresses cause severe injuries and death to a large range of people, from elderly people in cities during summer heat waves to young people engaged in winter mountaineering. Awareness is the key to preventing the health hazards associated with thermal stresses. This course is designed for personnel at Los Alamos National Laboratory (LANL). It addresses both heat and cold stresses and discusses their factors, signs and symptoms, treatments, and controls.

  4. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  5. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  6. Dispersal, behavioral responses and thermal adaptation in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    were obtained with flies held for several generations in a laboratory common garden setting, therefore we suggest that exposure to and avoidance of high temperatures under natural conditions has been an important selective agent causing the suggested adaptive differentiation between the populations.......Behavioral traits can have great impact on an organism’s ability to cope with or avoidance of thermal stress, and are therefore of evolutionary importance for thermal adaptation. We compared the morphology, heat resistance, locomotor (walking and flying) activity and flight performance of three...

  7. Estimation of inelastic behavior for a tapered nozzle in vessel due to thermal transient load using stress redistribution locus method

    International Nuclear Information System (INIS)

    Kobayashi, Ken-ichi; Yamada, Jun-ichi

    2010-01-01

    Simplified inelastic design procedures for elevated temperature components have been required to reduce simulation cost and to shorten a period of time for developing new projects. Stress redistribution locus (SRL) method has been proposed to provide a reasonable estimate employing both the elastic FEM analysis and a unique hyperbolic curve: ε tilde={1/σ tilde + (κ - 1)σ tilde}/κ, where ε tilde and σ tilde show dimensionless strain and stress normalized by corresponding elastic ones, respectively. This method is based on a fact that stress distribution in well deformed or high temperature components would change with deformation or time, and that the relation between the dimensionless stress and strain traces a kind of the elastic follow-up locus in spite of the constitutive equation of material and loading modes. In this paper, FEM analyses incorporating plasticity and creep in were performed for a tapered nozzle in reactor vessel under some thermal transient loads through the nozzle thickness. The normalized stress and strain was compared with the proposed SRL curve. Calculation results revealed that a critical point in the tapered nozzle due to the thermal transient load depended on a descending rate of temperature from the higher temperature in the operation cycle. Since the inelastic behavior in the nozzle resulted in a restricted area, the relationship between the normalized stress and strain was depicted inside the proposed SRL curve: Coefficient κ of the SRL in analyses is greater than the proposed one, and the present criterion guarantees robust structures for complicated components involving inelastic deformation. (author)

  8. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  9. Simulation and test of the thermal behavior of pressure switch

    Science.gov (United States)

    Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting

    2018-04-01

    Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.

  10. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  11. Verification of thermal-irradiation stress analytical code VIENUS of graphite block

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Shiozawa, Shusaku; Shirai, Hiroshi; Minato, Kazuo.

    1992-02-01

    The core graphite components of the High Temperature Engineering Test Reactor (HTTR) show both the dimensional change (irradiation shrinkage) and creep behavior due to fast neutron irradiation under the temperature and the fast neutron irradiation conditions of the HTTR. Therefore, thermal/irradiation stress analytical code, VIENUS, which treats these graphite irradiation behavior, is to be employed in order to design the core components such as fuel block etc. of the HTTR. The VIENUS is a two dimensional finite element viscoelastic stress analytical code to take account of changes in mechanical properties, thermal strain, irradiation-induced dimensional change and creep in the fast neutron irradiation environment. Verification analyses were carried out in order to prove the validity of this code based on the irradiation tests of the 8th OGL-1 fuel assembly and the fuel element of the Peach Bottom reactor. This report describes the outline of the VIENUS code and its verification analyses. (author)

  12. Three dimensional, thermal stress analysis of a welded plate

    International Nuclear Information System (INIS)

    Koening, H.A.; Lai, C.K.-F.; Morral, J.E.

    1985-01-01

    A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)

  13. Effect of Thermal Environment on the Mechanical Behaviors of Building Marble

    Directory of Open Access Journals (Sweden)

    Haijian Su

    2018-01-01

    Full Text Available High temperature and thermal environment can influence the mechanical properties of building materials worked in the civil engineering, for example, concrete, building rock, and steel. This paper examines standard cylindrical building marble specimens (Φ50 × 100 mm that were treated with high temperatures in two different thermal environments: vacuum (VE and airiness (AE. Uniaxial compression tests were also carried out on those specimens after heat treatment to study the effect that the thermal environment has on mechanical behaviors. With an increase in temperature, the mechanical behavior of marble in this study indicates a critical temperature of 600°C. Both the peak stress and elasticity modulus were larger for the VE than they were for the AE. The thermal environment has an obvious influence on the mechanical properties, especially at temperatures of 450∼750°C. The failure mode of marble specimens under uniaxial compression is mainly affected by the thermal environment at 600°C.

  14. Mechanical behavior of multipass welded joint during stress relief annealing

    International Nuclear Information System (INIS)

    Ueda, Yukio; Fukuda, Keiji; Nakacho, Keiji; Takahashi, Eiji; Sakamoto, Koichi.

    1978-01-01

    An investigation into mechanical behavior of a multipass welded joint of a pressure vessel during stress relief annealing was conducted. The study was performed theoretically and experimentally on idealized research models. In the theoretical analysis, the thermal elastic-plastic creep theory developed by the authors was applied. The behavior of multipass welded joints during the entire thermal cycle, from welding to stress relief annealing, was consistently analyzed by this theory. The results of the analysis show a good, fundamentally coincidence with the experimental findings. The outline of the results and conclusions is as follows. (1) In the case of the material (2 1/4Cr-1Mo steel) furnished in this study, the creep strain rate during stress relief annealing below 575 0 C obeys the strain-hardening creep law using the transient creep and the one above 575 0 C obeys the power creep law using the stational creep. (2) In the transverse residual stress (σsub(x)) distribution after annealing, the location of the largest tensile stress on the top surface is about 15 mm away from the toe of weld, and the largest at the cross section is just below the finishing bead. These features are similar to those of welding residual stresses. But the stress distribution after annealing is smoother than one from welding. (3) The effectiveness of stress relief annealing depends greatly on the annealing temperature. For example, most of residual stresses are relieved at the heating stage with a heating rate of 30 0 C/hr. to 100 0 C/hr. if the annealing temperature is 650 0 C, but if the annealing temperature is 550 0 C, the annealing is not effective even with a longer holding time. (4) In the case of multipass welding residual stresses studied in this paper, the behaviors of high stresses during annealing are approximated by ones during anisothermal relaxation. (auth.)

  15. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform ... models to evaluate temperatures according to the frictional heat generation, ... of these thermal effects include thermal stress, strain and deformation.

  16. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10...

  17. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  18. Thermal stresses in long prisms by relaxation methods

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1959-07-01

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  19. Thermal stresses in long prisms by relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1959-07-15

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  20. Rooting and early growth of red mangrove seedlings from thermally stressed trees

    International Nuclear Information System (INIS)

    Banus, M.D.; Kolehmainen, S.E.

    At Guayanilla on the south coast of Puerto Rico a fossil fueled electric generating station of 1100 MW(e) discharges its cooling water into a nearly enclosed lagoon of about 25 hectares area. The plume and lagoon typically have water temperatures 10 0 C and 8 0 C above ambient so that the winter and summer lagoon temperatures are 34 and 39 0 C, respectively. The north, east, and south shores of this lagoon have extensive stands of red and black mangrove trees which are visibly stressed by the elevated temperatures. Ripe red mangrove seedlings from the bearing trees are significantly smaller than those from trees in Guayanilla Bay not thermally stressed and in unpolluted bays from western Puerto Rico. Seedlings from thermally stressed trees developed negative buoyancy and initial roots faster but first pair of leaves slower than seedlings from control areas. This behavior will be discussed in relation to the propagation of seedlings from non-stressed areas. (U.S.)

  1. Thermal behavior of the duct applied functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Sun; Yoon, Dong Young; Im, Jong Bin [Hankuk Aviation Univ., Goyang (Korea, Republic of)

    2004-07-01

    In Unmanned Aerial Vehicles (UAV), the high temperature results from friction among the air, combustion of fuel in engine and combustion gas of a nozzle. The high temperature may cause serious damages in UAV structure. The Functionally Graded Material(FGM) is chosen as a material of the engine duct structure. Thermal stress analysis of FGM is performed in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high temperature. Therefore, hoop stress, axial stress and shear stress of duct with 2 layers, 4 layers and 8 layers FGM are compared and analyzed respectively. In addition, the creep behavior of FGM used in duct structure of an engine is analyzed for better understanding of FGM characteristics.

  2. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  3. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  4. Thermal stress-dependent dilation of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.

    1984-01-01

    Recent studies in nuclear fast reactor safety consider the possibility of concrete containment being subjected to extremely severe environmental conditions. Certain safety scenarios subject the concrete to very high temperatures hence raising the concern of containment integrity. Some of the main detrimental effects of high temperature on concrete are: reduction of strength, redistribution of moisture and etc. Consequently, analytical prediction of concrete response under the high temperature conditions becomes very complex. A rather simple but important experiment of concrete at high temperatures was conducted by Anderberg and Thelandersson. The test samples were small so that moisture was free to evaporate with no appreciable gradient as the temperature increased. Their results revealed that good correlation with analysis could be obtained if thermal expansion was made a function of both temperature and stress. The method of relating the thermal strain to temperature and stress has been integrated into the TEMP-STRESS code. Thus, high temperature concrete computational capability is now available for thermal-stress calculations

  5. Theory of thermal stresses

    CERN Document Server

    Boley, Bruno A

    1997-01-01

    Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.

  6. Thermal residual stresses in amorphous thermoplastic polymers

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys® environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  7. Adaptive Responses to Thermal Stress in Mammals

    OpenAIRE

    Yasser Lenis Sanin; Angélica María Zuluaga Cabrera; Ariel Marcel Tarazona Morales

    2015-01-01

    The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated...

  8. Thermally developing forced convection and the corresponding thermal stresses in a porous plate channel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; LIU Xuemei

    2007-01-01

    Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.

  9. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  10. Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Puigh, R.J.; Lovell, A.J.; Garner, F.A.

    1984-01-01

    Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)

  11. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  12. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  13. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  14. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2008-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigenfunction series and the simple approximate one by the temperature profile method. Furthermore, thermal stress shell solutions were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay coefficient. The thermal stress shell solutions are described by two parameters. One is the ratio between the temperature decay coefficient and the load decay coefficient. Another is the nondimensional width of stratification. These solutions are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  15. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2007-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigen-function series and the simple approximate one by the temperature profile method. Furthermore, shell solutions of thermal stress were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay factor. The shell solutions of thermal stress are described by two parameters. One is the ratio between the temperature decay factor and the local decay factor. Another is the non-dimensional width of stratification. These solution are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  16. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  17. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b) Evaluation...

  18. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  19. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  20. Calculation of the thermal stress and thermal resistance of anisotropic materials. II

    Energy Technology Data Exchange (ETDEWEB)

    Krivko, A I; Epishin, A I; Svetlov, I L; Samoilov, A I; Sukhanov, N N

    1989-04-01

    The stressed state in a wedge and in a family of plates cut from single-crystal ingots of 40 axial orientations is analyzed. It is shown that, in contrast to the case of the wedge, the value of the thermal stress tensor components in the plates depends substantially not only on the axial crystallographic orientation but also on the azimuthal orientation. Requirements on the crystallographic orientation of simple single-crystal parts of plate or wedge type are formulated with the aim of decreasing the detrimental effects of thermal stresses. The correctness of the calculations is confirmed by results of thermal fatigue tests of hollow prismatic specimens, i.e., blade simulators with 001, 011, and 111 axial orientations.

  1. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  2. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  3. Average thermal stress in the Al+SiC composite due to its manufacturing process

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Boari, Zoroastro M.

    2013-01-01

    The numerical analyses framework to obtain the average thermal stress in the Al+SiC Composite due to its manufacturing process is presented along with the obtained results. The mixing of Aluminum and SiC powders is done at elevated temperature and the usage is at room temperature. A thermal stress state arises in the composite due to the different thermal expansion coefficients of the materials. Due to the particles size and randomness in the SiC distribution, some sets of models were analyzed and a statistical procedure used to evaluate the average stress state in the composite. In each model the particles position, form and size are randomly generated considering a volumetric ratio (VR) between 20% and 25%, close to an actual composite. The obtained stress field is represented by a certain number of iso stress curves, each one weighted by the area it represents. Systematically it was investigated the influence of: (a) the material behavior: linear x non-linear; (b) the carbide particles form: circular x quadrilateral; (c) the number of iso stress curves considered in each analysis; and (e) the model size (the number of particles). Each of above analyzed condition produced conclusions to guide the next step. Considering a confidence level of 95%, the average thermal stress value in the studied composite (20% ≤ VR ≤ 25%) is 175 MPa with a standard deviation of 10 MPa. Depending on its usage, this value should be taken into account when evaluating the material strength. (author)

  4. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  5. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  6. Finite element simulation of stress evolution in thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, P.

    2007-07-01

    Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that

  7. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  8. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  9. SLAC divertor channel entrance thermal stress analysis

    International Nuclear Information System (INIS)

    Johnson, G.L.; Stein, W.; Lu, S.C.; Riddle, R.A.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) impinge on the entrance to tangential divertor channels causing highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. These parts are cooled with water flowing axially over them at 30 0 C. The current design and operating conditions should result in the entrance to the new divertor channel operating at a peak temperature of 123 0 C with a peak thermal stress at 91% of yield. Any micro-cracks that form due to thermally-induced stresses should not propagate to the coolant wall nor form a path for the coolant to leak into the storage ring vacuum. 34 figs., 4 tabs

  10. An analytical study on the thermal stress of mass concrete

    International Nuclear Information System (INIS)

    Yoshida, H.; Sawada, T.; Yamazaki, M.; Miyashita, T.; Morikawa, H.; Hayami, Y.; Shibata, K.

    1983-01-01

    The thermal stress in mass concrete occurs as a result of the effect associated with the heat of hydration of the cement. Sometimes, the excessive stresses cause the cracking or other tensile failure in concrete. Therefore it is becoming necessary in the design and construction of mass concrete to predict the thermal stress. The thermal stress analysis of mass concrete requires to take account of the dependence of the elastic modulus on the age of concrete as well as the stress relaxation by creep effect. The studies of those phenomena and the analytical methods have been reported so far. The paper presents the analytical method and discusses its reliability through the application of the method to the actual structure, measuring the temperatures and the thermal stresses. The method is the time dependent thermal stress analysis based on the finite element method, which takes account of creep effect, the aging of concrete and the effect of temperature variation in time. (orig./HP)

  11. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  12. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  13. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  14. Temperature and Thermal Stress Analysis of Refractory Products

    Directory of Open Access Journals (Sweden)

    Shaoyang Shi

    2013-05-01

    Full Text Available Firstly current status of temperature and thermal stress research of refractory product at home and aboard are analyzed. Finite element model of two classical refractory products is building by using APDL language. Distribution law of temperature and thermal stress of two typical refractory products-ladles and tundish are analyzed and their structures are optimized. Stress of optimal structure is dropped obviously, and operation life is increased effectively.

  15. An anisotropic thermal-stress model for through-silicon via

    Science.gov (United States)

    Liu, Song; Shan, Guangbao

    2018-02-01

    A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect. Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).

  16. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  17. Study of the behavior of thermal shield support system for the French CPO series plants

    International Nuclear Information System (INIS)

    Bellet, S.; Roux, P.; Bhandari, D.R.; Schwirian, R.E.; Yu, C.; Matarazzo, J.C.; Singleton, N.R.

    1996-01-01

    Degradation/failure of thermal shield support system in PWRs has been observed in the US as well as in foreign plants. In almost all the cases, remedial actions were put in place at very high economic costs to the utilities only after the failures had occurred. This paper presents the results of a comprehensive study to predict the long term behavior of a thermal shield support system due to flow-induced vibratory loads and thermal transients. Excellent agreement from the system finite model between the measured plant test data on the barrel/thermal shield beam and shell mode frequencies and the flexure strains confirms the basic structural behavior and physics of the flow induced vibrations. Loads and stresses on the support bolts and the flexures were determined to predict the fatigue life of the components

  18. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  19. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  20. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  1. Calculation of thermal stresses in graphite fuel blocks

    International Nuclear Information System (INIS)

    Lejeail, Y.; Cabrillat, M.T.

    2005-01-01

    This paper presents a parametric study of temperature and thermal stress calculations inside a HTGR core graphite block, taking into account the effect of fluence on the thermal and mechanical properties, up to 4. 10 21 n/cm 2 . The Finite Element model, realized with Cast3M CEA code, includes the effects of irradiation creep, which tends to produce secondary stress relaxation. Then, the Weibull weakest link theory is recalled, evaluating the possible effects of volume, stress field distribution (loading factor), and multiaxiality for graphite-type materials, and giving the methodology to compare the stress to rupture for the structure to the one obtained from characterization, in the general case. The maximum of the Weibull stress in Finite Element calculations is compared to the value for tensile specimens. It is found that the maximum of the stress corresponds to the end of the irradiation cycle, after reactor shutdown, since both thermal conductivity and Young's modulus increase with time. However, this behaviour is partly counterbalanced by the increase of material strength with irradiation. (authors)

  2. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces

    Science.gov (United States)

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power ( R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  3. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  4. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  5. Modelling of thermal stress in vapor generator supports

    International Nuclear Information System (INIS)

    Halpert, S.; Vazquez, L.

    1997-01-01

    To assure safety and availability of a nuclear power plant components or equipment stress analysis are done. When thermal loads are involved it's necessary to know the temperature field of the component or equipment. This paper describes the structural analysis of a steam generator lug with thermal load including the model used for computer simulation and presents the evolution of the temperature profile, the stress intensity and principal stress during start up and shut down of a nuclear power reactor. Temperature field obtained from code calculation show good agreement with the experimental data while stress analysis results are in agreement with a preview estimation. (author) [es

  6. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  7. In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Renault, P.O., E-mail: Pierre.olivier.renault@univ-poitiers.fr [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Krauss, C.; Le Bourhis, E.; Geandier, G. [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Benedetto, A. [Saint-Gobain Recherche (SGR), 93303 Aubervilliers (France); Grachev, S.Y.; Barthel, E. [Lab. Surface du Verre et Interfaces (SVI), UMR-CNRS 125, 93303 Aubervilliers (France)

    2011-12-30

    Residual-stress evolution in sputtered encapsulated ZnO/Ag/ZnO stack has been studied in-situ by synchrotron x-ray diffraction when heat treated. The ZnO/Ag/ZnO stack encapsulated into Si{sub 3}N{sub 4} layers and deposited on (001) Si substrates was thermally heated from 25 Degree-Sign C to 600 Degree-Sign C and cooled down to 25 Degree-Sign C. X-ray diffraction 2D patterns captured continuously during the heat treatment allowed monitoring the diffraction peak shifts of both Ag (15 nm thick) and ZnO (10 nm and 50 nm thick) sublayers. Due to the mismatch between the coefficients of thermal expansion, the silicon substrate induced compressive thermal stresses in the films during heating. We first observed a linear increase of the compressive stress state in both Ag and ZnO films and then a more complex elastic-stress evolution starts to operate from about 100 Degree-Sign C for Ag and about 250 Degree-Sign C for ZnO. Thermal contraction upon cooling seems to dominate so that the initial compressive film stresses relax by about 300 and 700 MPa after thermal treatment for ZnO and Ag, respectively. The overall behavior is discussed in terms of structural changes induced by the heat treatment.

  8. Thermal mechanical stress modeling of GCtM seals

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  9. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  10. A numerical analysis method on thermal and shrinkage stress of concrete

    International Nuclear Information System (INIS)

    Takiguchi, Katsuki; Hotta, Hisato

    1991-01-01

    Thermal stress often causes cracks in large scale concrete such as that for dam construction. The drying shrinkage of concrete causes cracks in concrete structures. These thermal stress and drying shrinkage stress may be the main reasons cracks occur in concrete, however there is few research which dealt with both stresses together. The problems on the thermal stress and the drying shrinkage are not independent, and should be dealt with together, because both temperature and water content of concrete affect hydration reaction, and the degree of hydration determines all the characteristics of concrete at early age. In this study, the degree of hydration is formulated experimentally, and a numerical stress analysis method taking the hydration reaction in consideration is presented. The formulation of the rate of hydration reaction, the method of analyzing thermal and drying shrinkage stresses, the analytical results for a concrete column and the influence that continuous load exerted to the tensile strength of concrete are reported. The relatively high stress nearly equal to the tensile strength of concrete arises near the surface. (K.I.)

  11. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  12. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  13. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  14. Mastication as a Stress-Coping Behavior.

    Science.gov (United States)

    Kubo, Kin-ya; Iinuma, Mitsuo; Chen, Huayue

    2015-01-01

    Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing) is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans.

  15. Thermal stresses in composite tubes using complementary virtual work

    Science.gov (United States)

    Hyer, M. W.; Cooper, D. E.

    1988-01-01

    This paper addresses the computation of thermally induced stresses in layered, fiber-reinforced composite tubes subjected to a circumferential gradient. The paper focuses on using the principle of complementary virtual work, in conjunction with a Ritz approximation to the stress field, to study the influence on the predicted stresses of including temperature-dependent material properties. Results indicate that the computed values of stress are sensitive to the temperature dependence of the matrix-direction compliance and matrix-direction thermal expansion in the plane of the lamina. There is less sensitivity to the temperature dependence of the other material properties.

  16. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    KAUST Repository

    Kneeland, J.

    2013-08-30

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    Science.gov (United States)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  18. Oxidation and thermal behavior of Jatropha curcas biodiesel ...

    African Journals Online (AJOL)

    The thermal and oxidation behavior is also affected adversely by the container metal. The present paper is dealing with the study of oxidation and thermal behavior of JCB with respect to different metal contents. It was found that influence of metal was detrimental to thermal and oxidation stability. Even small concentrations ...

  19. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir

    2016-01-01

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  20. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  1. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  2. Thermal Stress Analysis of Medium-Voltage Converters for Smart Transformers

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; De Carne, Giovanni

    2017-01-01

    . To address this concern, this work conducts thermal stress analysis for a modular multilevel converter (MMC), which is a promising solution for the medium voltage stage of the ST. The focus is put on the mission profiles of the transformer and the impact on the thermal stress of power semiconductor devices......A smart transformer (ST) can take over an important managing role in the future electrical distribution grid system and can provide many advanced grid services compared to the traditional transformer. However, the risk is that the advanced functionality is balanced out by a lower reliability....... Normal operation at different power levels and medium voltage grid faults in a feeder fed by a traditional transformer are considered as well as the electrical and the thermal stress of the disconnection and the reconnection procedures. For the validation, the thermal stress of one MMC cell is reproduced...

  3. Thermal stresses in hexagonal materials - heat treatment influence on their mechanical behaviour

    International Nuclear Information System (INIS)

    Gloaguen, D.; Freour, S.; Guillen, R.; Royer, J.; Francois, M.

    2004-01-01

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled zirconium and titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. The study of the elastoplastic response during uniaxial loading was performed along the rolling and the transverse direction of the sheet, considering the influence of the texture and the thermal stresses on the mechanical behaviour. An approach in order to determine the thermal behaviour of phases embedded in two-phase materials is also presented. For zirconium, the residual stresses due to thermal anisotropy are rather important (equivalent to 35% of the yield stress) and consequently they play an important role on the elastoplastic transition contrary to titanium. The study of two-phase material shows the influence and the interaction of the second phase on the thermal behaviour in the studied phase

  4. Mastication as a Stress-Coping Behavior

    Directory of Open Access Journals (Sweden)

    Kin-ya Kubo

    2015-01-01

    Full Text Available Exposure to chronic stress induces various physical and mental effects that may ultimately lead to disease. Stress-related disease has become a global health problem. Mastication (chewing is an effective behavior for coping with stress, likely due to the alterations chewing causes in the activity of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Mastication under stressful conditions attenuates stress-induced increases in plasma corticosterone and catecholamines, as well as the expression of stress-related substances, such as neurotrophic factors and nitric oxide. Further, chewing reduces stress-induced changes in central nervous system morphology, especially in the hippocampus and hypothalamus. In rodents, chewing or biting on wooden sticks during exposure to various stressors reduces stress-induced gastric ulcer formation and attenuates spatial cognitive dysfunction, anxiety-like behavior, and bone loss. In humans, some studies demonstrate that chewing gum during exposure to stress decreases plasma and salivary cortisol levels and reduces mental stress, although other studies report no such effect. Here, we discuss the neuronal mechanisms that underline the interactions between masticatory function and stress-coping behaviors in animals and humans.

  5. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  6. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  7. Thermal stresses investigation of a gas turbine blade

    Science.gov (United States)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  8. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  9. Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge

    International Nuclear Information System (INIS)

    Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian

    2008-01-01

    A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior

  10. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  11. Thermal hydraulic behavior of sub-assembly local blockage in China experiment fast reactor

    International Nuclear Information System (INIS)

    Yang Zhimin

    2000-01-01

    The geometrical parameter ratio of pitch to diameter of China Experiment Fast Reactor (CEFR) subassembly is 1,167. To address the thermal hydraulic behavior of subassembly local blockage which may be caused by deformation of cladding due to severe swelling and thermal stresses and by space swirl loosening etc., the porous numerical model and SIMPLE-P code used to solve Navier-Stokes and energy equations in porous medium was developed, and the bundle experiment with 19 pins with 24 subchannels blocked in the sodium coolant was carried on in China Institute of Atomic Energy (CIAE). The comparison of code predictions against experiments (including non-blockage and ten blockage conditions) seems well. The thermal hydraulic behavior of fuel subassembly with 61 fuel pins blockage of CEFR is calculated with SIMPLE-P code. The results indicate that the maximum temperature is 815 deg. C when the blockage area is about 37% (54 central subchannels are blocked). In this case the cladding won't be damaged and no sodium coolant boiling takes place. (author)

  12. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  13. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  14. Predicted thermal and stress environments in the vicinity of repository openings

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Lin, M.

    1991-01-01

    An understanding of the thermal and stress environment in the vicinity of repository openings is important for preclosure performance considerations and worker health and safety considerations for the proposed high-level radioactive waste repository at Yucca Mountain. This paper presents the results of two and three dimensional numerical analyses which have determined the thermal and stress environments for typical repository openings. In general, it is predicted that openings close to heat sources attain high temperatures and experience a significant stress increase. Openings away from heat sources experience more uniform temperature changes and experience a stress change which results in part from a far-field thermal loading

  15. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  16. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  17. Thermal and stress analyses with ANSYS program

    International Nuclear Information System (INIS)

    Kanoo, Iwao; Kawaguchi, Osamu; Asakura, Junichi.

    1975-03-01

    Some analyses of the heat conduction and elastic/inelastic stresses, carried out in Power Reactor and Nuclear Fuel Development Corporation (PNC) in fiscal 1973 using ANSYS (Engineering Analysis System) program, are summarized. In chapter I, the present state of structural analysis programs available for a FBR (fast breeder reactor) in PNC is explained. Chapter II is a brief description of the ANSYS current status. In chapter III are presented 8 examples of the steady-state and transient thermal analyses for fast-reactor plant components, and in chapter IV 5 examples of the inelastic structural analysis. With the advance in the field of finite element method, its applications in design study should extend progressively in the future. The present report, it is hoped, will contribute as references in similar analyses and at the same time help to understand the deformation and strain behaviors of structures. (Mori, K.)

  18. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  19. Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading

    Directory of Open Access Journals (Sweden)

    Kambiz Raoufi

    2011-01-01

    Full Text Available A finite element model is used to examine how the properties of cementitious mortar are related to the stress development in the dual ring test. The results of this investigation are used to explain the thermal cracking behavior of mixtures containing prewetted lightweight aggregates (LWA by quantifying the contribution of several material properties individually. In addition to the beneficial effects of using the LWA as an internal curing agent to reduce the autogenous shrinkage of concrete, the LWA also helps to reduce the potential for thermal cracking due to a lower elastic modulus and increased stress relaxation. The rate of stress development, age of cracking, and magnitude of the temperature drop necessary to induce cracking in a dual ring specimen are dependent on a variety of factors, including the coefficient of thermal expansion of both the cementitious mortar and the restraining rings, elastic modulus of the mortar, creep effect of the mortar, and rate of thermal loading. Depending on the rate of cooling, cracking may or may not occur. The slowest rate of cooling (2.5∘C/h minimizes the effects of creep while cooling rates faster than 8∘C/h can produce a thermal gradient through the mortar cross-section that needs to be considered.

  20. Effect of Thermal Stresses on the Failure Criteria of Fiber Composites

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Sankar, Bhavani V.

    2010-01-01

    , the latter, called micro-thermal stresses, has not been given much attention. In this paper the Direct Micromechanics Method is used to investigate the effects of micro-thermal stresses on the failure envelope of composites. Using FEA the unit-cell of the composite is analyzed. Assuming the failure criteria...... for the fiber and matrix are known, the exact failure envelope is developed. Using the micromechanics results, the Tsai-Wu failure envelope is modified to account for the micro-thermal stresses. The approach is demonstrated using two example structures at cryogenic temperature....

  1. Mechanical behavior of mullite green disks prepared by thermal consolidation with different starches

    International Nuclear Information System (INIS)

    Talou, M.H.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Mechanical behavior of porous green disks obtained by thermal consolidation of mullite suspensions with cassava and potato starches was studied by diametral compression testing. Disks (thickness/diameter ≤ 0.25) were prepared by thermal treatment (70-80 °C, 2h) of mullite (75 vol%)/starch (25 vol%) of suspensions (40 vol%) pre-gelled at 55-60 °C, and dried (40 °C, 24 h). Samples were characterized by porosity measurements (50-55%) and microstructural analysis (SEM). Several mechanical parameters were determined: mechanical strength, Young's modulus, strain to fracture and yield stress. Typical crack patterns were analyzed and the fractographic analysis was performed by SEM. Mechanical results were related to the developed microstructures, the behavior of the starches in aqueous suspension, and the properties of the formed gels. For comparative purposes, mullite green disks obtained by burning out the starch (650 °C, 2h) were also mechanically evaluated. (author)

  2. Thermal Super-Pixels for Bimodal Stress Recognition

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Dhall, Abhinav

    2016-01-01

    to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1, 2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress......Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor...

  3. Concrete creep and thermal stresses:new creep models and their effects on stress development

    OpenAIRE

    Westman, Gustaf

    1999-01-01

    This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...

  4. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  5. Laser cutting of triangular geometry into 2024 aluminum alloy: Influence of triangle size on thermal stress field

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, Bekir Sami; Akhtar, Syed Sohail [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Keles, Omer; Boran, Kurtulus [Gazi University, Ankara (Turkmenistan)

    2015-08-15

    Laser cutting of a triangular geometry into aluminum 2024 alloy is carried out. Thermal stress field in the cutting section is predicted using the finite element code ABAQUS. Surface temperature predictions are validated through the thermocouple data. Morphological changes in the cut section are examined incorporating optical and electron scanning microscopes. The effects of the size of the triangular geometry on thermal stress field are also examined. It is found that surface temperature predictions agree well with thermocouple data. von Mises stress remains high in the region close to the corners of the triangular geometry, which is more pronounced for the small size triangle. This behavior is associated with the occurrence of the high cooling rates in this region. Laser cut edges are free from large scale sideways burning and large size burr attachments. However, some locally scattered dross attachments are observed at the kerf exit.

  6. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Science.gov (United States)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  7. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Directory of Open Access Journals (Sweden)

    Schwarzova Ivana

    2016-12-01

    Full Text Available The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution and physically (by ultrasonic procedure treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  8. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  9. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  10. Thermal behavior in the transition region between nucleate and film boiling

    International Nuclear Information System (INIS)

    Adiutori, E.F.

    1991-01-01

    The prediction of post Critical Heat Flux (CHF) behavior is complicated by the highly nonlinear thermal behavior of boiling interfaces--ie by the nonlinear nature of the boiling curve. Nonlinearity in the boiling curve can and does cause thermal instability, resulting in temperature discontinuities. Thus the prediction of post CHF behavior requires the analysis of thermal stability. This in turn requires an accurate description of thermal behavior in transition boiling. This paper determines thermal behavior in transition boiling by analysis of literature data. It also describes design features which improve post CHF performance and are reported in the literature

  11. Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading

    Science.gov (United States)

    2017-09-07

    ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and Displacement Analysis of Microreactors during Thermal and Vacuum...is no longer needed. Do not return it to the originator. ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and...TITLE AND SUBTITLE Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  12. Tribological and wear behavior of yttria stabilized zirconia thermal barrier coatings on mild steel

    International Nuclear Information System (INIS)

    Farooq, M.; Pervez, A.

    2012-01-01

    The perfection of the temperature confrontation of the engine essentials can be obtained by claim of a single ceramic thermal barrier coating (TBC) or several composite layers. Engine elements protected by TBC can work safely in elevated temperature range above 1000 degree C. Continuous endeavor to increase thermal resistance of engine the elements requires, apart from laboratory investigations, also numerical study of the different engine parts. The high temperatures and stress concentrations can act as the local sources of damage initiation and defects propagation in the form of cracks. The current study focuses the development of Yttria stabilized zirconia thermal barrier coating by Thermal spray technique. Mild steel was used as a substrate and the coating was then characterized for tribological analysis followed by the optical analysis of wear tracks and found the TBC behavior more promising then steel. (author)

  13. Thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion

    International Nuclear Information System (INIS)

    Sumi, N.

    1981-01-01

    On the basis of the complex variable method for determining the stationary two-dimensional thermal stresses, the thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion under a steady state temperature field is considered. The solution is found by the analytic continuation argument and the modified mapping-collocation technique. Numerical results indicate a dependence of the orthotropic stress intensity factors on the thermal, elastic and geometrical constants over a certain parameter range. (orig.)

  14. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  15. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  16. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  17. Thermal stress analysis of gravity support system for ITER based on ANSYS

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Huang Yufeng; Wang Xianzhou; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2009-01-01

    A method for building the finite element model of the gravity support system for International Thermonuclear Experimental Reactor (ITER) was proposed according to the characteristics of the gravity support system with the cyclic symmetry. A mesh dividing method, which has high precision and an acceptable calculating scale, was used, and a three dimensional finite element model for the toroidal 20 degree sector of the gravity support system was built by using ANSYS. Meantime, the steady-state thermal analysis and thermal-structural coupling analysis of the gravity support system were performed. The thermal stress distributions and the maximal thermal stress values of all parts of the gravity support system were obtained, and the stress intensity of parts of the gravity support system was analyzed. The results of thermal stress analysis lay the solid foundation for design and improvement for gravity supports system for ITER. (authors)

  18. Development of thermal stress screening method. Application of green function method

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Shibamoto, Hiroshi; Kasahara, Naoto

    2004-01-01

    This work was achieved for the development of the screening method of thermal transient stresses in FBR components. We proposed an approximation method for evaluations of thermal stress under variable heat transfer coefficients (non-linear problems) using the Green functions of thermal stresses with constant heat transfer coefficients (linear problems). Detailed thermal stress analyses provided Green functions for a skirt structure and a tube-sheet of Intermediate Heat Exchanger. The upper bound Green functions were obtained by the analyses using those upper bound heat transfer coefficients. The medium and the lower bound Green functions were got by the analyses of those under medium and the lower bound heat transfer coefficients. Conventional evaluations utilized the upper bound Green functions. On the other hand, we proposed a new evaluation method by using the upper bound, medium and the lower bound Green functions. The comparison of above results gave the results as follows. The conventional evaluations were conservative and appropriate for the cases under one fluid thermal transient structure such as the skirt. The conventional evaluations were generally conservative for the complicated structures under two or more fluids thermal transients such as the tube-sheet. But the danger locations could exists for the complicated structures under two or more fluids transients, namely the conventional evaluations were non-conservative. The proposed evaluations gave good estimations for these complicated structures. Though above results, we have made the basic documents of the screening method of thermal transient stresses using the conventional method and the new method. (author)

  19. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  20. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  1. Simplified calculation of thermal stresses - on the reduction of effort in the stress analysis of reactor components

    International Nuclear Information System (INIS)

    Karow, K.

    1984-01-01

    The fatigue behaviour of reactor components is predominantly determined from the in-service thermal stresses. The calculation of such stresses for a number of temperature transients in the adjacent fluid may be expensive, particularly with complicated structures. Under certain conditions this expense can be reduced considerably with the aid of a rule, which permits interpolation of thermal stresses from known reference values instead of calculation. This paper presents the derivation and method of application of this interpolation rule. The derivation procedure is based on well-known proportionalities between thermal stress range Δsigma in the structure and temperature change ΔT and rate of change T of the fluid in the extreme cases of an ideal thermal shock and quasi-steady-state conditions, respectively. For the real transients in between the relationship Δsigma proportional (ΔT)sup(x) Tsup(1-x)αsup(y) is proposed, where x is the shock-degree and lies between 0 and 1, and, additionally, y designates the influence of the heat transfer coefficient α. This formula yields the interpolation rule. The rule permits interpolation of stress ranges for additional thermal transients from at least 3 reference stresses via x and y. The procedure is applicable to any metallic structure, reduces fatigue analysis effort considerably and yields excellent results. The paper is split up into 2 parts. In the following the derivation of the rule is presented. The second part describes its application and will be published shortly. (orig.)

  2. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  3. Heat transfer and thermal stress analysis in fluid-structure coupled field

    International Nuclear Information System (INIS)

    Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei

    2015-01-01

    In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out

  4. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device

    Science.gov (United States)

    Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia

    2018-06-01

    The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.

  5. Stress, social behavior, and resilience: Insights from rodents

    Science.gov (United States)

    Beery, Annaliese K.; Kaufer, Daniela

    2014-01-01

    The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates. PMID:25562050

  6. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    International Nuclear Information System (INIS)

    Zhang, Bo; Li, Yueming; Lu, Wei Zhen

    2016-01-01

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape

  7. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Li, Yueming [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace, Xi' an Jiaotong UniversityXi' an (China); Lu, Wei Zhen [Dept. of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong (China)

    2016-09-15

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape.

  8. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    ANSYS (1997) computer code has been used to analyse the thermal ... The numerical method is used succesfully to solve the governing equations ... thermal stress is an important criterion for consideration in the design of new compact heat.

  9. Prognostics Approach for Power MOSFET Under Thermal-Stress

    Science.gov (United States)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  10. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  11. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  12. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  13. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  14. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    Science.gov (United States)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  15. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  16. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1981-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt % niobium, uranium - 2.0 wt % molybdenum, and uranium - 0.75 wt % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed

  17. Thermal stress evaluation of the Viking RTG heat shield

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-03-01

    Thermal stress analyses of the Viking RTG heat shield are presented. The primary purpose of the analyses was to determine the effects of the end cap and the finite length of the heat shield on the peak tensile stress in the barrel wall. The SAAS III computer code was used to calculate the thermal stresses; axisymmetric and plane section analyses were performed for a variety of temperature distributions. The study consisted of three parts. In the first phase, the influence of the end cap on the barrel wall stresses was examined by parametrically varying the modulus of elasticity of the contact zone between the end cap and the barrel. The second phase was concerned with stresses occurring as a result of an orbital decay reentry trajectory, and the effects of the magnitude and shape of the axial temperature gradient. The final part of the study was concerned with the circumferentially nonuniform temperature distribution which develops during a side-on stable reentry. The last part includes a comparison of stresses generated for a hexagonal cross section with those generated for a circular cross section

  18. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  19. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: Yiren_Chen@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Alexandreanu, B.; Chen, W.-Y.; Natesan, K. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Li, Z.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Rao, A.S. [US Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2015-11-15

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  20. Effect of thermal stress on the performance of HgCdTe/Si diodes and FPAs

    International Nuclear Information System (INIS)

    Zhang, Shan; Hu, Xiao-Ning

    2012-01-01

    As a typical hetero-epitaxial material, the HgCdTe film which directly grows on the Si substrate possesses great residual stress for the large lattice and thermal expansion mismatch. Thermal stress caused by the thermal expansion mismatch dominates the stress mechanism after growth and seriously affects the device performance. In this paper, the performance of the HgCdTe/Si material, diodes and focal plane arrays under different thermal stress condition was studied. The experimental results indicate that the performance regularly changes with the thermal stress and all the results can be duplicated and recoverable. By analyzing the changes of the energy band under different stress conditions, it was found that the stress in the HgCdTe film impacts the film's characteristics. The HgCdTe film with tensile stress exhibits higher electron mobility, while with the compressive stress, the film exhibits higher hole mobility than that of the bulk HgCdTe crystal. Finally, the theoretical analysis can explain the experimental results well. (paper)

  1. Work stress and health risk behavior.

    Science.gov (United States)

    Siegrist, Johannes; Rödel, Andreas

    2006-12-01

    This contribution discusses current knowledge of associations between psychosocial stress at work and health risk behavior, in particular cigarette smoking, alcohol consumption and overweight, by reviewing findings from major studies in the field published between 1989 and 2006. Psychosocial stress at work is measured by the demand-control model and the effort-reward imbalance model. Health risk behavior was analyzed in the broader context of a health-related Western lifestyle with socially and economically patterned practices of consumption. Overall, the review, based on 46 studies, only modestly supports the hypothesis of a consistent association between work stress and health risk behavior. The relatively strongest relationships have been found with regard to heavy alcohol consumption among men, overweight, and the co-manifestation of several risks. Suggestions for further research are given, and the need to reduce stressful experience in the framework of worksite health promotion programs is emphasized.

  2. Thermal stress measurement in continuous welded rails using the hole-drilling method

    Science.gov (United States)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2016-04-01

    The absence of expansion joints in Continuous Welded Rail (CWR) has created the need for the railroad industry to determine the in-situ level of thermal stresses so as to prevent train accidents caused by rail buckling in hot weather and by rail breakage in cold weather. The development of non-destructive or semi-destructive methods for determining the level of thermal stresses in rails is today a high research priority. This study explores the known hole-drilling method as a possible solution to this problem. A new set of calibration coefficients to compute the relieved stress field with the finer hole depth increments was determined by a 3D Finite Element Analysis that modeled the entire hole geometry, including the mechanics of the hole bottom and walls. To compensate the residual stress components, a linear relationship was experimentally established between the longitudinal and the vertical residual stresses of two common sizes of rails, the 136RE and the 141RE, with statistical significance. This result was then utilized to isolate the longitudinal thermal stress component in hole-drilling tests conducted on the 136RE and 141RE thermally-loaded rails at the Large-scale CWR Test-bed of UCSD's Powell Research Laboratories. The results from the Test-bed showed that the hole-drilling procedure, with the appropriate residual stress compensation, can indeed estimate the in-situ thermal stresses to achieve a +/-5°F accuracy of Neutral Temperature determination with a 90% statistical confidence, which is the desired industry gold standard.

  3. Numerical Study of Thermal Stresses for the Semiconductor CdZnTe in Vertical Bridgman

    OpenAIRE

    Jamai , Hanen; El Ganaoui , M.; Sammouda , Habib; Pateyron , Bernard

    2015-01-01

    International audience; The aim of this work is to present a numerical simulation of thermal stress in directional solidification of CdZnTe in vertical Bridgman apparatus. Especial attention will be attributed to show the importance of cooling temperature and time's growth affecting the thermal stress. Furthermore, we will focus on investigating the thermal stress' components and their distribution in crystal, which gives a detailed about the stress distribution and consequently on the distri...

  4. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  5. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  6. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    Science.gov (United States)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  7. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  8. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  9. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    Science.gov (United States)

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  10. Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine

    Institute of Scientific and Technical Information of China (English)

    Ali; Akbar; Partoaa; Morteza; Abdolzadeh; Masoud; Rezaeizadeh

    2017-01-01

    The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.

  11. Effect of moving distance of temperature distribution on thermal ratchetting behavior of a FBR reactor vessel

    International Nuclear Information System (INIS)

    Ueta, Masahiro; Douzaki, Kouji; Takahashi, Yukio; Ooka, Yuji; Osaki, Toshio; Take, Kouji.

    1992-01-01

    It should be considered in a FBR reactor vessel design that thermal ratchetting might be caused by moving axial thermal gradient, in other words, moving sodium level. The behavior and the mechanism of ratchetting have almost become clear by studies for the past several years. A simplified evaluation method for ratchetting behavior has been proposed. However, the evaluation method has been shown to be excessively conservative by testing results. In this paper, the effect of moving distance of axial temperature distributions, which is one of main factors to be considered in precise estimation of ratchetting behavior, is studied by inelastic analyses. Based on the study, it is proposed to introduce a strain reducing factor taking account of residual stresses in the region of moving axial temperature distribution to the original evaluation method. The new method has been validated by comparing the prediction with results of both testing and the original method. (author)

  12. Investigation of effective factors of transient thermal stress of the MONJU-System components

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masaaki; Hirayama, Hiroshi; Kimura, Kimitaka; Jinbo, M. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-03-01

    Transient thermal stress of each system Component in the fast breeder reactor is an uncertain factor on it's structural design. The temperature distribution in a system component changes over a wide range in time and in space. An unified evaluation technique of thermal, hydraulic, and structural analysis, in which includes thermal striping, temperature stratification, transient thermal stress and the integrity of the system components, is required for the optimum design of tho fast reactor plant. Thermal boundary conditions should be set up by both the transient thermal stress analysis and the structural integrity evaluation of each system component. The reasonable thermal boundary conditions for the design of the MONJU and a demonstration fast reactor, are investigated. The temperature distribution analysis models and the thermal boundary conditions on the Y-piece structural parts of each system component, such as reactor vessel, intermediate heat exchanger, primary main circulation pump, steam generator, superheater and upper structure of reactor core, are illustrated in the report. (M. Suetake)

  13. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  14. Coupled transient thermo-fluid/thermal-stress analysis approach in a VTBM setting

    International Nuclear Information System (INIS)

    Ying, A.; Narula, M.; Zhang, H.; Abdou, M.

    2008-01-01

    A virtual test blanket module (VTBM) has been envisioned as a utility to aid in streamlining and optimizing the US ITER TBM design effort by providing an integrated multi-code, multi-physics modeling environment. Within this effort, an integrated simulation approach is being developed for TBM design calculations and performance evaluation. Particularly, integrated thermo-fluid/thermal-stress analysis is important for enabling TBM design and performance calculations. In this paper, procedures involved in transient coupled thermo-fluid/thermal-stress analysis are investigated. The established procedure is applied to study the impact of pulsed operational phenomenon on the thermal-stress response of the TBM first wall. A two-way coupling between the thermal strain and temperature field is also studied, in the context of a change in thermal conductivity of the beryllium pebble bed in a solid breeder blanket TBM due to thermal strain. The temperature field determines the thermal strain in beryllium, which in turn changes the temperature field. Iterative thermo-fluid/thermal strain calculations have been applied to both steady-state and pulsed operation conditions. All calculations have been carried out in three dimensions with representative MCAD models, including all the TBM components in their entirety

  15. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  16. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volz, Heather Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallegos, Jennifer Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it is determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.

  17. Thermal stress analysis and operational characteristics of a bellows-seal globe valve

    International Nuclear Information System (INIS)

    Kim, Kwang Su; Kim, Youn Jae

    2005-01-01

    Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics with 0.1 m (4 inch) bellows-seal globe valve for high temperature (max. 600 .deg. C) and for high pressure (max. 104 kgf/cm 2 , 10.2 MPa) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are calculated and the results are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we get the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values

  18. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  19. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  20. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  1. Thermal stress analysis and the effect of temperature dependence of material properties on Doublet III limiter design

    International Nuclear Information System (INIS)

    McKelvey, T.E.; Koniges, A.E.; Marcus, F.; Sabado, M.; Smith, R.

    1979-10-01

    Temperature and thermal stress parametric design curves are presented for two materials selected for Doublet III primary limiter applications. INC X-750 is a candidate for the medium Z limiter design and ATJ graphite for the low Z design. The dependence of significant material properties on temperature is shown and the impact of this behavior on the decision to actively or passively cool the limiter is discussed

  2. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  3. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  4. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt. % niobium, uranium - 2.0 wt. % molybdenum, and uranium - 0.75 wt. % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed. It is shown that the residual stress relief which accompanies age hardening of uranium - 0.75% titanium more than compensates for the reduction in K/sub ISCC/ caused by aging. As a result, age hardening actually decreases the susceptibility of this alloy to residual stress induced stress corrosion cracking

  5. Pipe cracking due to thermal stresses produced by valve opening

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1982-01-01

    The thermal stresses produced in a tube whose internal surface is abrupt cooled during a valve opening so that the water volume increases linearly with time are studied. A general solution for these stresses and its stress intensity factors in terms of non-dimensional parameters is presented. (E.G.) [pt

  6. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 20. Thermo-mechanical stress analysis and development of thermal loading guidelines

    International Nuclear Information System (INIS)

    1978-04-01

    This volume is one of a 23-volume series which supplements a Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel, and uranium-only recycling. The thermo-mechanical analysis of proposed preconceptual repositories in granite, shale and basalt have been undertaken. The analysis, was conducted on three different levels of scale (i) Very Near Field (canister scale), (ii) Near Field (excavation scale) and (iii) Far Field (regional scale) studies. Three numerical methods were used to undertake the thermo-mechanical calculations; namely, the finite element method for thermal stress analysis, the boundary element method for thermal and thermal stress analysis and the semi-analytical method also for thermal and thermal stresses analysis. From the thermo-mechanical studies with simplifying assumptions on rock mass behavior where applicable, recommendations for areal thermal loadings to assure retrievability of the canisters and long term safety of the repository are given

  7. Stress prompts habit behavior in humans.

    Science.gov (United States)

    Schwabe, Lars; Wolf, Oliver T

    2009-06-03

    Instrumental behavior can be controlled by goal-directed action-outcome and habitual stimulus-response processes that are supported by anatomically distinct brain systems. Based on previous findings showing that stress modulates the interaction of "cognitive" and "habit" memory systems, we asked in the presented study whether stress may coordinate goal-directed and habit processes in instrumental learning. For this purpose, participants were exposed to stress (socially evaluated cold pressor test) or a control condition before they were trained to perform two instrumental actions that were associated with two distinct food outcomes. After training, one of these food outcomes was selectively devalued as subjects were saturated with that food. Next, subjects were presented the two instrumental actions in extinction. Stress before training in the instrumental task rendered participants' behavior insensitive to the change in the value of the food outcomes, that is stress led to habit performance. Moreover, stress reduced subjects' explicit knowledge of the action-outcome contingencies. These results demonstrate for the first time that stress promotes habits at the expense of goal-directed performance in humans.

  8. Temperature and thermal stress analysis of a switching tube anode

    International Nuclear Information System (INIS)

    Sutton, S.B.

    1979-01-01

    In the design of high power density switching tubes which are subjected to cyclic thermal loads, the temperature induced stresses must be minimized in order to maximize the life expectancy of the tube. Following are details of an analysis performed for the Magnetic Fusion Program at the Lawrence Livermore Laboratory on a proposed tube. The tube configuration is given. The problem was simplified to one-dimensional approximations for both the thermal and stress analyses. The underlying assumptions and their implications are discussed

  9. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  10. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  11. Thermal stress estimation in relation to spalling of HSC restrained with steel rings at high temperatures

    Directory of Open Access Journals (Sweden)

    Tanibe T.

    2013-09-01

    Full Text Available This paper reports on an experimental study regarding the behavior of steel ring-restrained concrete in response to fire exposure. The study was conducted to enable estimation of thermal stress based on steel ring strain in such concrete under the conditions of a RABT 30 heating curve. The specimens used were made from high-strength concrete (Fc: 80 MPa restrained using steel rings with thicknesses of 0.5, 8 and 18 mm.

  12. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. First wall thermal stress analysis for suddenly applied heat fluxes

    International Nuclear Information System (INIS)

    Dalessandro, J.A.

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably

  14. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  15. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  16. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  17. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  18. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  19. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Tae Ho; Kim, Ji Hyun [Dept. of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    In present study, effects of thermal aging and triaxial stress were investigated in terms of primary water stress corrosion cracking susceptibility. The thermal aging was applied via heat treatment at 400°C and triaxial stress was applied via notched tensile test specimen. The crack initiation time of each specimen were then measured by direct current potential drop method during slow strain rate test at primary water environment. Alloys with 10 years thermal aging exhibited the highest susceptibility to stress corrosion cracking and asreceived specimen shows lowest susceptibility. The trend was different with triaxial stress applied; 20 years thermal aging specimen shows highest susceptibility and as-received specimen shows lowest. It would be owing to change of precipitate morphology during thermal aging and different activated slip system in triaxial stress state.

  20. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  1. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  2. Time-dependent analytical thermal model to investigate thermally induced stresses in quasi-CW-pumped laser rods

    CSIR Research Space (South Africa)

    Bernhardi, EH

    2008-01-01

    Full Text Available that determines the temperature and the thermally induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown that it can also be used to accurately estimate the thermal effects in anisotropic rods...

  3. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  4. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  5. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  6. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  7. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium from Corals.

    Directory of Open Access Journals (Sweden)

    Lisa Fujise

    Full Text Available The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium. Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae in aquaria under non-thermal stress (27°C and moderate thermal stress conditions (30°C, and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  8. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.

    Science.gov (United States)

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  9. Characteristics of stress-coping behaviors in patients with bipolar disorders.

    Science.gov (United States)

    Moon, Eunsoo; Chang, Jae Seung; Choi, Sungwon; Ha, Tae Hyon; Cha, Boseok; Cho, Hyun Sang; Park, Je Min; Lee, Byung Dae; Lee, Young Min; Choi, Yoonmi; Ha, Kyooseob

    2014-08-15

    Appropriate stress-coping strategies are needed to improve the outcome in the treatment of bipolar disorders, as stressful life events may aggravate the course of the illness. The aim of this study was to compare stress-coping behaviors between bipolar patients and healthy controls. A total of 206 participants comprising 103 bipolar patients fulfilling the Diagnostic and Statistical Manual for Axis I disorder fourth edition (DSM-IV) diagnostic criteria for bipolar I and II disorders and controls matched by age and sex were included in this study. Stress-coping behaviors were assessed using a 53-item survey on a newly-designed behavioral checklist. The characteristics of stress-coping behaviors between the two groups were compared by using t-test and factor analysis. Social stress-coping behaviors such as 'journey', 'socializing with friends', and 'talking something over' were significantly less frequent in bipolar patients than controls. On the other hand, pleasurable-seeking behaviors such as 'smoking', 'masturbation', and 'stealing' were significantly more frequent in bipolar patients than controls. These results suggest that bipolar patients may have more maladaptive stress-coping strategies than normal controls. It is recommended to develop and apply psychosocial programs to reduce maladaptive stress-coping behaviors of bipolar patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    Science.gov (United States)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  11. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  12. Thermal and mechanical behavior of APWR-claddings under critical heat flux conditions

    International Nuclear Information System (INIS)

    Diegele, E.; Rust, K.

    1986-10-01

    Helical grid spacers, such as three or six helical fins as integral part of the claddings, are regarded as a more convenient design for the very tight lattice of an advanced pressurized water reactor (APWR) than grid spacers usually used. Furthermore, it is expected that this spacer design allows an increased safety margin against the critical heat flux (CHF), the knowledge of which is important for design, licensing, and operation of water cooled reactors. To address the distribution of the heat flux density at the outer circumference of the cladding geometry under investigation, the temperature fields in claddings without as well with fins were calculated taking into consideration nuclear and electrically heated rods. Besides the thermal behavior of the claddings, the magnitude and distribution of thermal stresses were determined additionally. A locally increased surface heat flux up to about 40 percent was calculated for the fin bases of nuclear as well as indirect electrically heated claddings with six such helical fins. For all investigated cases, the VON MISES stresses are clearly lower than 200 MPa, implying that no plastic deformations are to be expected. The aim of this theoretical analysis is to allow a qualitative assessment of the finned tube conception and to support experimental investigations concerning the critical heat flux. (orig.) [de

  13. Tasco®, a Product of Ascophyllum nodosum, Imparts Thermal Stress Tolerance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Franklin Evans

    2011-11-01

    Full Text Available Tasco®, a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco® water extract (TWE at 300 µg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C treated with 300 µg/mL and 600 µg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco® imparted thermal stress

  14. Survival of juvenile fishes receiving thermal and mechanical stresses in a simulated power plant condenser

    International Nuclear Information System (INIS)

    Kedl, R.J.; Coutant, C.C.

    Experiments were conducted in a water-recirculating loop to determine the effects of fluid-induced stresses (e.g., turbulence, pressure, and vacuum) on six species of larval fish and one species each of frog tadpoles and zooplankton. These stresses simulate the insults developed in the condenser portion, but not including the pump, of a steam power plant. Some experiments were conducted with thermal stresses superimposed on fluid-induced stresses. Fluid-induced stresses of the magnitude developed in these experiments were generally not fatal to the larval fish within the precision of the experiments, although some sublethal effects were noted. When thermal stress was superimposed on the fluid-induced stresses, the mortalities were equivalent to those resulting from thermal stress alone. Fluid-induced stresses of low magnitude were not fatal to Daphnia magna, but fluid-induced stresses of higher magnitude were responsible for significant mortalities. (U.S.)

  15. Transient thermal stresses in composite hollow circular cylinder due to partial heat generation

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1979-01-01

    Clad materials are adopted for the machines and structures used in contact with high temperature, corrosive atmosphere in view of their strength and economy. Large thermal stress sometimes arises in clad cylinders due to uneaven temperature field and the difference in linear thermal expansion. Vessels are often heated uneavenly, and shearing stress occurs, which is not observed in uniform heating. In this study, infinitely long, concentric cylinders of two layers were analyzed, when the internal heat changing in stepped state is generated in cylindrical form. The unsteady thermal stress occurred was determined, using thermo-elastic potential and stress functions, and assuming the thermal properties and elastic modulus of materials as constant regardless of the temperature. Laplace transformation was used, and the basic equations for thermo-elastic displacement were employed as the basis of calculation. The analysis of the temperature distribution and stress is explained. Numerical calculation was carried out on the example of an internal cylinder of SUS 304 stainless steel and an external cylinder of mild steel. The maximum shearing stress occurred in the direction of 40 deg from the heat source, and was affected largely by the position of heat generation. The effect became remarkable as time elapsed. (Kako, I.)

  16. Effect of thermal stresses on the mechanism of tooth pain.

    Science.gov (United States)

    Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid

    2014-11-01

    Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  18. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  19. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  20. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  1. Thermoregulation and temperature relations of alligators and other large ectotherms inhabiting thermally stressed habitats. Annual progress report, 1 July 1976--30 September 1977

    International Nuclear Information System (INIS)

    Spotila, J.R.

    1977-06-01

    Progress is reported on studies of the biophysical and thermal relationships between large ectotherms and their aquatic environment. Data are reported from laboratory and field studies on alligators, turtles, and fish. Mathematical models of the effect of body size and physical characteristics on temperature regulation of ectotherms and of thermal stress in aquatic organisms were developed. Results are included of field studies on the physiological and behavioral adjustments of turtles in response to changes in water temperature produced by thermal effluents in PAR Pond at the Savannah River Ecology Laboratory

  2. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  3. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam

    International Nuclear Information System (INIS)

    Yan Jie; Liu Meng; Lin Jufang; An Li; Long Xinggui

    2013-01-01

    Background: Target temperature has an important effect on the target life for the sealed neutron generator without cooling system. Purpose: To carry out the thermal-mechanical coupling analysis of the film-substrate target bombarded by the pulsed ion beam. Methods: The indirect coupling Finite Element Method (FEM) with a 2-dimensional time-space Gaussian axisymmetric power density as heat source was used to simulate the target temperature and thermal stress fields. Results: The effects of the target temperature and thermal stress fields under difference pulse widths and beam sizes were analyzed in terms of the FEM results. Conclusions: Combining with the temperature requirement and the thermal stress inducing film thermal mechanical destruction effect of the sealed neutron generator film-substrate targets, an optimized pulsed ion beam work status was proposed. (authors)

  4. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  5. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  6. Predicting behavior during interracial interactions: a stress and coping approach.

    Science.gov (United States)

    Trawalter, Sophie; Richeson, Jennifer A; Shelton, J Nicole

    2009-11-01

    The social psychological literature maintains unequivocally that interracial contact is stressful. Yet research and theory have rarely considered how stress may shape behavior during interracial interactions. To address this empirical and theoretical gap, the authors propose a framework for understanding and predicting behavior during interracial interactions rooted in the stress and coping literature. Specifically, they propose that individuals often appraise interracial interactions as a threat, experience stress, and therefore cope-they antagonize, avoid, freeze, or engage. In other words, the behavioral dynamics of interracial interactions can be understood as initial stress reactions and subsequent coping responses. After articulating the framework and its predictions for behavior during interracial interactions, the authors examine its ability to organize the extant literature on behavioral dynamics during interracial compared with same-race contact. They conclude with a discussion of the implications of the stress and coping framework for improving research and fostering more positive interracial contact.

  7. Stress among Graduate Students in Relation to Health Behaviors

    Science.gov (United States)

    van Berkel, Kelly; Reeves, Brenda

    2017-01-01

    Problem: While stress is universal for graduate students, the difference in terms of stress symptoms and the effects on health behavior is how students cope. While numerous research studies have linked stress and negative health behaviors, few studies have objectively assessed these variables. Purpose: Utilize current health and fitness technology…

  8. Transient thermal stresses in a transversely isotropic finite hollow circular cylinder due to arbitrary surface heat generations

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori.

    1980-01-01

    The materials macroscopically regarded as anisotropic materials such as fiber-reinforced composite materials have become to be used for the structural elements at elevated temperature, and the studies on the problem of thermal stress in anisotropic bodies are carried out actively. The unsteady thermal stress in anisotropic finite circular cylinders has not been analyzed so far. In this study, the problem of unsteady thermal stress in an anisotropic finite circular cylinder having arbitrary surface heat generation in axial direction on the internal and external surfaces, and emitting heat from both ends and the internal and external surfaces, was analyzed. For the analysis of temperature distribution, generalized finite Fourier transformation and finite Hankel transformation were used, and thermal stress and thermal displacement were analyzed by the use of the stress function of Singh. By adopting the function used for the transformation nucleus in generalized finite Fourier transformation as the stress function, the analysis was made without separating symmetric and opposite symmetric problems. Numerical calculation was carried out on the basis of the analytical results, and the effects of the anisotropy in thermal conductivity, Young's modulus and linear expansion on unsteady temperature distribution, thermal stress and thermal displacement were quantitatively examined. (Kako, I.)

  9. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Prosocial Behavior Mitigates the Negative Effects of Stress in Everyday Life.

    Science.gov (United States)

    Raposa, Elizabeth B; Laws, Holly B; Ansell, Emily B

    2016-07-01

    Recent theories of stress reactivity posit that, when stressed, individuals tend to seek out opportunities to affiliate with and nurture others in order to prevent or mitigate the negative effects of stress. However, few studies have tested empirically the role of prosocial behavior in reducing negative emotional responses to stress. The current analyses used daily diary data to investigate whether engaging in prosocial behavior buffered the negative effects of naturally-occurring stressors on emotional well-being. Results showed that on a given day, prosocial behavior moderated the effects of stress on positive affect, negative affect, and overall mental health. Findings suggest that affiliative behavior may be an important component of coping with stress, and indicate that engaging in prosocial behavior might be an effective strategy for reducing the impact of stress on emotional functioning.

  11. Behaviorally Challenging Students and Teacher Stress

    NARCIS (Netherlands)

    H.A. Everaert; J.C. van der Wolf

    2005-01-01

    The present study focuses on the level of stress a teacher perceives when dealing with the most behaviorally challenging student in his or her classroom. To measure stress in Dutch elementary classrooms, a sample was drawn of 582 teachers. Two questions concerning this relation between student and

  12. Study of ATES thermal behavior using a steady flow model

    Science.gov (United States)

    Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.

    1981-01-01

    The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.

  13. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  14. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    Science.gov (United States)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  15. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  16. Experiments and analysis of thermal stresses around the nozzle of the reactor vessel

    International Nuclear Information System (INIS)

    Song, D.H.; Oh, J.H.; Song, H.K.; Park, D.S.; Shon, K.H.

    1981-01-01

    This report describes the results of analysis and experiments on the thermal stress around the reactor vessel nozzle performed to establish a capability of thermal stress analysis of pressure vessel subjected to thermal loadings. Firstly, heat conduction analysis during reactor design transients and analysis on the experimental model were performed using computer code FETEM-1 for the purpose of verification of FETEM-1 which was developed in 1979 and will be used to obtain the temperature distribution in a solid body under the steady-state and the transient conditions. The results of the analysis was compared to the results in the Stress Report of Kori-1 reactor vessel and those from experiments on the model, respectively

  17. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    The temperature field, heat transfer rate and thermal stresses were investigated with numerical simulation models using FORTRAN FE (finite element) software. ...... specific heats, International Communications in Heat and Mass Transfer, Vol.

  18. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. Thermally activated behavior of the effective stress intensity at threshold

    International Nuclear Information System (INIS)

    Yu, W.; Esaklul, K.; Gerberich, W.W.

    1984-01-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity correlate to the thermal component of the flow stress. A fractographic study of the fatigue surface was performed. Water vapor in room air promotes the formation of oxide and intergranular crack growth. At lower temperatures, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks found on all three modes of fatigue crack growth suggest that fatigue crack growth controlled by the subcell structure near threshold. The effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity)

  19. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  20. Stress influences environmental donation behavior in men.

    Science.gov (United States)

    Sollberger, Silja; Bernauer, Thomas; Ehlert, Ulrike

    2016-01-01

    Stress has been found to have both positive and negative effects on prosocial behavior, suggesting the involvement of moderating factors such as context and underlying motives. In the present study, we investigated the conditions under which acute stress leads to an increase vs. decrease in environmental donation behavior as an indicator of prosocial behavior. In particular, we examined whether the effects of stress depended on preexisting pro-environmental orientation and stage of the donation decision (whether or not to donate vs. the amount to be donated). Male participants with either high (N=40) or low (N=39) pro-environmental orientation were randomly assigned to a social stress test or a control condition. Salivary cortisol was assessed repeatedly before and after stress induction. At the end of the experiment, all subjects were presented with an opportunity to donate a portion of their monetary compensation to a climate protection foundation. We found that stress significantly increased donation frequency, but only in subjects with low pro-environmental orientation. Congruously, their decision to donate was positively associated with cortisol response to the stress test and the emotion regulation strategy mood repair, as well as accompanied by an increase in subjective calmness. In contrast, among the participants who decided to donate, stress significantly reduced the donated amount of money, regardless of pro-environmental orientation. In conclusion, our findings suggest that acute stress might generally activate more self-serving motivations, such as making oneself feel better and securing one's own material interests. Importantly, however, a strong pro-environmental orientation partially prevented these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna.

    Science.gov (United States)

    Cuenca Cambronero, Maria; Zeis, Bettina; Orsini, Luisa

    2018-01-01

    Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.

  2. Thermal-stress analysis and testing of DIII-D armor tiles

    International Nuclear Information System (INIS)

    Baxi, C.B.; Anderson, P.M.; Reis, E.E.; Smith, J.P.; Smith, P.D.; Croesmann, C.; Watkins, J.; Whitley, J.

    1987-10-01

    It is planned to install about 1500 new armor tiles in the DIII-D tokamak. The armor tiles currently installed in DIII-D are made by brazing Poco AXF-5Q graphite onto Inconel X-750 stock. A small percentage of these have failed by breakage of graphite. These failures were believed to be related to significant residual stress remaining in graphite after brazing. Hence, an effort was undertaken to improve the design with all-graphite tiles. Three criteria must be satisfied by the armor tiles and the hardware used to attach the tiles to the vessel walls: tiles should not structurally fail, peak tile temperature must be less than 2500 K, and peak vessel stresses must be below acceptable levels. A number of alternate design concepts were first analyzed with the two-dimensional finite element codes TOPAZ2D and NIKE2D. Promising designs were optimized for best parameters such as thicknesses, etc. The two best designs were further analyzed for thermal stresses with the three-dimensional codes P/THERMAL and P/STRESS. Prototype tiles of a number of materials were fabricated by GA and tested at the Plasma Materials Test Facility of the Sandia National Laboratory at Albuquerque. The tests simulated the heat flux and cooling conditions in DIII-D. This paper describes the 2-D and 3-D thermal stress analyses, the test results and logic which led to the selected design of the DIII-D armor tiles. 5 refs., 7 figs., 3 tabs

  3. Behavior and ultimate strength of an inner concrete structure of a nuclear reactor building subjected to thermal and seismic loads

    International Nuclear Information System (INIS)

    Omatsuzawa, K.; Suzuki, Y.; Sato, M.; Takeda, T.; Yamaguchi, T.; Yoshioka, K.; Nakayama, T.; Furuya, N.; Kawaguchi, T.; Koike, K.; Naganuma, K.

    1987-01-01

    Heating tests and heating-plus-seismic-loading tests at high temperature (T max = 175 0 C) were conducted using various concrete structural members such as beams, cylindrical walls, H-section walls, and 1/10-scale models of the inner concrete (I/C) structure in a fast breeder reactor (FBR) building. Concrete subjected to high temperature exceeding 100 0 C has a tendency to have lower Young's modulus and to shrink. As these material constants are temperature-dependent, the thermal stress occurring within the concrete structure is smaller than the values usually obtained by normal crack analysis methods. Although thermal stresses and cracks exert marked influences on the behaviors of the structures during the earlier stages of loading, they hardly affect the ultimate bending and shear strengths. Specifically, as a result of I/C model tests, it was made clear that the ultimate strength of the structure is considerably greater than the design loads under combined thermal and seismic loading conditions. (orig./HP)

  4. Photothermoelastic investigation of transient thermal stresses in circular plates with a hole heated by fluid

    International Nuclear Information System (INIS)

    Tsuji, Masatoshi; Tsujimura, Soichi; Oda, Masanobu.

    1980-01-01

    In this study, the practical use of the method of measuring the unsteady thermal stress in a body subjected to the thermal load due to fluid by photoelastic method and the improvement of accuracy were attempted. The internal wall of a hollow disk was heated with high temperature fluid, and the external wall was cooled with low temperature fluid or thermally insulated. The photoelastic experiment on this hollow disk was carried out in a vacuum tank to given axisymmetric temperature distribution and to prevent heat dissipation due to the convection from both surfaces of the disk, and the temperature distribution and thermal stress were measured. The experimental values were compared with the theoretical values, and the accuracy of the experimental method and measurement was examined. Moreover, the disk with an eccentric hole was tested by the same method, and the effects of the eccentricity and hole diameter on the maximum thermal stress were examined. The experimental apparatus and method, and the experimental results are described. By this method, the condition of thermal loading with fluid was almost attained, and the experimental values of unsteady thermal stress were in good agreement with the theoretical values. (Kako, I.)

  5. Impacts of autistic behaviors, emotional and behavioral problems on parenting stress in caregivers of children with autism.

    Science.gov (United States)

    Huang, Chien-Yu; Yen, Hsui-Chen; Tseng, Mei-Hui; Tung, Li-Chen; Chen, Ying-Dar; Chen, Kuan-Lin

    2014-06-01

    This study examined the effects of autistic behaviors and individual emotional and behavioral problems on parenting stress in caregivers of children with autism. Caregivers were interviewed with the Childhood Autism Rating Scale and completed the Strength and Difficulties Questionnaire and the Parenting Stress Index Short Form. Results revealed that caregivers of children with mild/moderate autistic behavior problems perceived lower parenting stress than did those of children with no or severe problems. In addition, prosocial behaviors and conduct problems respectively predicted stress in the parent-child relationship and child-related stress. The findings can provide guidance in evaluations and interventions with a focus on mitigating parenting stress in caregivers of children with autism.

  6. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  7. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  8. Thermal stresses in rectangular plates: variational and finite element solutions

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.

    1978-01-01

    This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)

  9. FEMAXI-III: a computer code for the analysis of thermal and mechanical behavior of fuel rods

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Ichikawa, Michio; Iwano, Yoshihiko; Ito, Kenichi; Saito, Hiroaki; Kashima, Koichi; Kinoshita, Motoyasu; Okubo, Tadatsune.

    1985-12-01

    FEMAXI-III is a computer code to predict the thermal and mechanical behavior of a light water fuel rod during its irradiation life. It can analyze the integral behavior of a whole fuel rod throughout its life, as well as the localized behavior of a small part of fuel rod. The localized mechanical behavior such as the cladding ridge deformation is analyzed by the two-dimensional axisymmetric finite element method. FEMAXI-III calculates, in particular, the temperature distribution, the radial deformation, the fission gas release, and the inner gas pressure as a function of irradiation time and axial position, and the stresses and strains in the fuel and cladding at a small part of fuel rod as a function of irradiation time. For this purpose, Elasto-plasticity, creep, thermal expansion, fuel cracking and crack healing, relocation, densification, swelling, hot pressing, heat generation distribution, fission gas release, and fuel-cladding mechanical interaction are modelled and their interconnected effects are considered in the code. Efforts have been made to improve the accuracy and stability of finite element solution and to minimize the computer memory and running time. This report describes the outline of the code and the basic models involved, and also includes the application of the code and its input manual. (author)

  10. Study of the influence of mechanical - thermal treatments on the creep behavior of a niobium stainless steel

    International Nuclear Information System (INIS)

    Rossi, J.L.; Ferreira, P.I.

    1986-01-01

    The influence of microstructural parameters controlled by mechanical-thermal treatment |1| on the creep behavior of DIN-Werkstoff-Nr. 1.4981 stainless steel (material candidate for use as cladding of fast breeder reactor (fuel elements), is studied. The effects of the solution treatment, predeformation, predeformation puls aging and cycles of predeformation-ageing on the creep results obtained at 990 K, for apllied stresses in the range 70 MPc - 310 MPa, are discussed. (Author) [pt

  11. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  12. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior.

    Science.gov (United States)

    Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.

  13. Thermal behavior of natural zeolites

    International Nuclear Information System (INIS)

    Bish, D.L.

    1993-01-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H 2 0 upon heating, but recent data show that distinct ''types'' of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H 2 0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating

  14. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  15. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  16. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  17. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  18. Thermal stress analysis of the SLAC moveable mask. Addendum 2

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) can impinge on the walls of tangential divertor channels. A moveable mask made of 6061-T6 aluminum is installed in the channel to limit wall heating. The mask is cooled with water flowing axially at 30 0 C. Beam strikes on the mask cause highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. The current design and operating conditions should result in the entrance to the moveable mask operating at a peak temperature of 88 0 C with a peak thermal stress at 19% of the yield of 6061-T6 aluminum

  19. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  20. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae to survive thermal stress and bleaching.

    Directory of Open Access Journals (Sweden)

    Hagit Kvitt

    Full Text Available Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like cloned in this study. In corals exposed to thermal stress (32 or 34°C, caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  1. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  2. Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics

    International Nuclear Information System (INIS)

    Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.

    2005-01-01

    Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress

  3. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  4. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  5. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress

    Science.gov (United States)

    Srikanth, Krishnamoorthy; Lee, Eunjin; Kwan, Anam; Lim, Youngjo; Lee, Junyep; Jang, Gulwon; Chung, Hoyoung

    2017-11-01

    RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal's response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.

  6. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    Science.gov (United States)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  7. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  8. Domains of Chronic Stress and Suicidal Behaviors among Inpatient Adolescents

    Science.gov (United States)

    Pettit, Jeremy W.; Green, Kelly L.; Grover, Kelly E.; Schatte, Dawnelle J.; Morgan, Sharon T.

    2011-01-01

    Little is known about the role of chronic stress in youth suicidal behaviors. This study examined the relations between specific domains of chronic stress and suicidal behaviors among 131 inpatient youth (M age = 15.02 years) who completed measures of stress, suicidal ideation, suicide attempt, and suicide intent. After controlling for…

  9. Stochastic thermal stress analysis of clad cylindrical fuel elements

    International Nuclear Information System (INIS)

    Barrett, P.R.

    1975-01-01

    After a review of deterministic elastic thermal stress analysis by means of the displacement method for a cylindrical system in which the temperature distribution is not only radially variable but azimuthally and axially variable also, a method is shown for the determination of the statistical moments of the stress components when (a) the outer boundary of the cladding is a stochastic quantity, and (b) the uncertainties in the elastic and thermal constants of the materials and in the magnitude of the heat generation term are taken into account. A typical model is proposed for describing the statistics of the outer radius of the cladding which is a stochastic variable owing to uncertainties produced by the extrusion process. The theory is illustrated by means of a simple example by examining a meaningful reliability index and the relative importance of each of the uncertainties. (Auth.)

  10. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  11. Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite

    International Nuclear Information System (INIS)

    Wang Lidong; Xue Zongwei; Qiao Yingjie; Fei, W.D.

    2012-01-01

    Highlights: ► The thermal expansion behaviors of Cu matrix were studied by in situ XRD. ► The expansion of Cu{1 1 1} plane is linear, that of Cu{2 0 0} is nonlinear. ► The anisotropic thermal expansion of Cu is related to the twinning of Cu matrix. ► The twinning of Cu matrix makes the CTE of the composite increasing. - Abstract: A β-eucryptite/copper composite was fabricated by spark plasma sintering process. The thermal expansion behaviors of Cu matrix of the composite were studied by in situ X-ray diffraction during heating process. The results show that Cu matrix exhibits anisotropic thermal expansion behaviors for different crystallographic directions, the expansion of Cu{1 1 1} plane is linear in the temperature range from 20 °C to 300 °C and the expansion of Cu{2 0 0} is nonlinear with a inflection at about 180 °C. The microstructures of Cu matrix before and after thermal expansion testing were investigated using transmission electronic microscope. The anisotropic thermal expansion behavior is related to the deformation twinning formed in the matrix during heating process. At the same time, the deformation twinning of Cu matrix makes the average coefficient of thermal expansion of the composite increase.

  12. Social memory, social stress, and economic behaviors

    OpenAIRE

    Taiki Takahashi

    2005-01-01

    Social memory plays a pivotal role in social behaviors, from mating behaviors to cooperative behaviors based on reciprocal altruism. More specifically, social/person recognition memory is supposed, by behavioral-economic and game-theoretic analysis, to be required for tit- for-tat like cooperative behaviors to evolve under the N-person iterated prisoner fs dilemma game condition. Meanwhile, humans are known to show a social stress response during face-to-face social interactions, which might ...

  13. Influence of overelastic loading on the stress intensity factor under thermal fatigue conditions

    International Nuclear Information System (INIS)

    Stamm, H.; Munz, D.

    1983-10-01

    Thermal shock loading often creates high thermal stresses which may exceed yield strength of the material in a surface layer. In this report the application of the linear elastic ΔK-concept in the case of cyclic thermal loading within the shakedown region is discussed. To this K-factors for an edge crack in a linear elastic - perfectly plastic plate are calculated using the weight function method and are compared with results obtained with the Finite Element Method. It is shown, that rearrangement stresses during plastic flow in the first cycle must be taken into account developing conservative approximation procedures. (orig.) [de

  14. College Student Stress: A Predictor of Eating Disorder Precursor Behaviors

    Science.gov (United States)

    Shelton, Virginia L.; Valkyrie, Karena T.

    2010-01-01

    Eating disorders are compulsive behaviors that can consume a person's life to the point of becoming life threatening. Previous research found stress associated with eating disorders. College can be a stressful time. If stress predicted precursor behaviors to eating disorders, then counselors would have a better chance to help students sooner. This…

  15. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  16. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  17. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  18. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  19. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  20. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  1. Thermal Stress Analyses for a Multislug Beam NLC Positron Target(LCC-0090)

    International Nuclear Information System (INIS)

    Stein, W.

    2003-01-01

    The power deposition of an incident multislug electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into two parts, with each part impinging on a 4 radiation lengths thick target. Two targets are required to avoid excessive thermal stresses in the targets. Each of the two beam parts is assumed broken up into four slugs, each two microseconds apart. Energy deposition from each slug occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 1.6 mm and results in a maximum temperature jump of 438 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 78 ksi (5.3 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  2. Temperature field and thermal stress analysis of the HT-7U vacuum vessel

    International Nuclear Information System (INIS)

    Song Yuntao; Yao Damao; Wu Songtao; Weng Peide

    2000-01-01

    The HT-7U vacuum vessel is an all-metal-welded double-wall interconnected with toroidal and poloidal stiffening ribs. The channels formed between the ribs and walls are filled with boride water as a nuclear shielding. On the vessel surface facing the plasma are installed cable-based Ohmic heaters. Prior to plasma operation the vessel is to be baked out and discharge cleaned at about 250 degree C. During baking out the non-uniformity of temperature distribution on the vacuum vessel will bring about serious thermal stress that can damage the vessel. In order to determine and optimize the design of the HT-7U vacuum vessel, a three-dimensional finite element model was performed to analyse its temperature field and thermal stress. the maximal thermal stress appeared on the round of lower vertical port and maximal deformation located just on the region between the upper vertical port and the horizontal port. The results show that the reinforced structure has a good capability of withstanding the thermal loads

  3. Perceived Thermal Discomfort and Stress Behaviours Affecting Students’ Learning in Lecture Theatres in the Humid Tropics

    Directory of Open Access Journals (Sweden)

    Tamaraukuro Tammy Amasuomo

    2016-04-01

    Full Text Available The study investigated the relationship between students’ perceived thermal discomfort and stress behaviours affecting their learning in lecture theatres in the humid tropics. Two lecture theatres, LTH-2 and 3, at the Niger Delta University, Nigeria, were used for the study. Two groups of students from the Faculties of Agriculture and Engineering and the Department of Technology Education constituted the population. The sample size selected through random sampling for Groups A and B was 210 and 370 students, respectively. Objective and self-report instruments were used for data collection. The objective instrument involved physical measurement of the two lecture theatres and of the indoor temperature, relative humidity and air movement. The self-report instrument was a questionnaire that asked for the students perceived indoor thermal discomfort levels and the effect of indoor thermal comfort level on perceived stress behaviours affecting their learning. The objective indoor environmental data indicated thermal discomfort with an average temperature of 29–32 °C and relative humidity of 78% exceeding the ASHARE [1] and Olgyay [2].The students’ experienced a considerable level of thermal discomfort and also perceived that stress behaviours due to thermal discomfort affected their learning. Further, there were no significant differences in the perceived thermal discomfort levels of the two groups of students in LTH-2 and 3. Furthermore, stress behaviours affecting learning as perceived by the two groups of students did not differ significantly. In addition, no correlation existed between the perceived indoor thermal discomfort levels and stress behaviour levels affecting learning for students in LTH-2, because the arousal level of the students in the thermal environment was likely higher than the arousal level for optimal performance [3,4]. However, a correlation existed in the case of students in LTH-3, which was expected because it only

  4. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  5. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  7. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    International Nuclear Information System (INIS)

    Aragon-Lezama, J.A.; Garcia-Borquez, A.; Torres-Villaseñor, G.

    2015-01-01

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm 3 were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10 −3 s −1 strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ max ) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ p ): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ max , LYP, and σ p )

  8. Parent-child relationships in Type 1 diabetes: associations among child behavior, parenting behavior, and pediatric parenting stress.

    Science.gov (United States)

    Sweenie, Rachel; Mackey, Eleanor R; Streisand, Randi

    2014-03-01

    Interactions between parents and children can influence behavioral and emotional functioning related to Type 1 diabetes (T1D), yet have been relatively unexplored during preadolescence. The present study examined associations among child problem behaviors, critical parenting behaviors, and pediatric parenting stress in a sample of preadolescent youth with T1D. Data are available from 86 preadolescent-parent dyads who participated in the initial baseline assessment of a randomized controlled trial designed to assess the efficacy of an adherence promotion program. Measures included the Eyberg Child Behavior Inventory, the Diabetes Family Behavior Checklist, and the Pediatric Inventory for Parents. After controlling for significant demographic and medical characteristics, parents who reported their child's behavior as more problematic reported more difficulty with pediatric parenting stress, which was also associated with more child-reported critical parenting behaviors. Child problem behaviors and critical parenting behaviors were associated with one another, partially via their association with increased pediatric parenting stress. Potential clinical applications include interventions geared toward helping parents manage difficult child behaviors as well as cope with pediatric parenting stress, with the ultimate goal of improving the parent-child relationship and management of T1D.

  9. Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties

    International Nuclear Information System (INIS)

    Tanigawa, Y.; Ootao, Y.

    1987-01-01

    If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)

  10. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  11. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  12. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata

    Directory of Open Access Journals (Sweden)

    Sonny T.M. Lee

    2016-03-01

    Full Text Available It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont.

  13. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  14. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  15. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Science.gov (United States)

    Zhai, Wenbo; Zhang, Jingwen; Chen, Xudong; Bu, Renan; Wang, Hongxing; Hou, Xun

    2017-09-01

    A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  16. Finite element formulation for thermal stress analysis of thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.

    1978-01-01

    This paper describes the formulation of a finite-element procedure for the thermal stress analysis of thin wall reactor components. A general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature-dependent yield surface. This form of constitutive relationship is applicable to problems of small strain. A similar form of a hypoelastic-plastic type is also developed for large strains. The variation of the yield surface with temperature is based upon a temperature-dependent, work-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal unaxial stress-strain data. The above constitutive relationships are incorporated into two computer codes and a previously developed numerical algorithm is used with minor modifications. A set of problems is presented validating the thermal analysis capability of the computer codes to a variety of problem types. (Auth.)

  17. Stress recovery and cyclic behaviour of an Fe-Mn-Si shape memory alloy after multiple thermal activation

    Science.gov (United States)

    Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.

    2018-02-01

    The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.

  18. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    Science.gov (United States)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  19. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  20. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    Science.gov (United States)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  1. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated

  2. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress

    Directory of Open Access Journals (Sweden)

    Sarah J Spencer

    2013-06-01

    Full Text Available Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA axis, the endocrine arm of the body’s response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and / or stressful events during critical windows of early development can alter glucocorticoid (GC regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.

  3. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  4. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  5. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    OpenAIRE

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behav...

  6. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  7. Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires.

    Science.gov (United States)

    Das, Suvankar; Moitra, Amitava; Bhattacharya, Mishreyee; Dutta, Amlan

    2015-01-01

    The present study employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young's modulus and the linear coefficient of thermal expansion through separate simulations. These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability.

  8. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    The equivalent solid plate method, in conjunction with two-dimensional plane stress and plane strain analyses, was used in assessing the thermal stress behavior of HTGR fuel and control rod fuel blocks. For the control rod fuel blocks, particular attention was given to ascertaining the effects of the reserve shutdown hole and the control rod channel holes. The assumed safety factor of 2 on the failure criteria was considered adequate to account for neglecting the axial temperature gradient in the plane analyses of the ends of the blocks. The analyses indicated that the maximum calculated tensile stress values were smaller than the criteria values except for the plane strain analysis of the control rod fuel block end surfaces and the axisymmetric analysis of the fuel block as a circular cylinder. However, most of the maximum calculated strain values were greater than the criteria values

  9. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  10. Study on application of green's function method in thermal stress rapid calculation

    International Nuclear Information System (INIS)

    Zhang Guihe; Duan Yuangang; Xu Xiao; Chen Rong

    2013-01-01

    This paper presents a quick and accuracy thermal stress calculation method, the Green's Function Method, which is a combination of finite element method and numerical algorithm method. Thermal stress calculation of Safe Injection Nozzle of Reactor Coolant Line of PWR plant is performed with Green's function method for heatup and cooldown thermal transients as a demonstration example, and the result is compared with finite element method to verify the rationality and accuracy of this method. The advantage and disadvantage of the Green's function method and the finite element method are also compared. (authors)

  11. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Refuge behaviour from outdoor thermal environmental stress and seasonal differences of thermal sense in tropical urban climate

    Science.gov (United States)

    Kurazumi, Y.; Ishii, J.; Fukagawa, K.; Kondo, E.; Aruninta, A.

    2017-12-01

    Thermal sensation affects body temperature regulation. As a starting point for behavioral body temperature regulation taken to improve from a poor thermal environment to a more pleasant environment, thermal sense of thermal environment stimulus is important. The poupose of this sutudy is to use the outdoor thermal environment evaluation index ETFe to quantify effects on thermal sensations of the human body of a tropical region climate with small annual temperature differences, and to examine seasonal differences in thermal sensation. It was found temperature preferences were lower in the winter season than in the dry season, and that a tolerance for higher temperatures in the dry season than in the winter season. It was found effects of seasonal differences of the thermal environment appear in quantitative changes in thermal sensations. It was found that effects of seasonal differences of the thermal environment do not greatly affect quantitative changes in thermal comfort.

  13. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  14. Parenting style, parenting stress, and children's health-related behaviors.

    Science.gov (United States)

    Park, Hyunjeong; Walton-Moss, Benita

    2012-07-01

    Parental guidance is critical to the development of children's health-related behaviors. The purpose of this study was to look at the relationship between parenting factors, including parenting style and parenting stress, and children's health-related behaviors. In this descriptive, correlational study, 284 parents of preschool children were interviewed using the Child Rearing Questionnaire and the Korean Parenting Stress Index-Short Form. Parent distress, authoritative and permissive parenting styles, family income, and mother's education were significantly associated with children's health-related behaviors. These findings suggest that higher levels of warmth, characteristics of both parenting styles, may be a critical factor in the development of health-related behaviors.

  15. Adolescent antisocial behavior explained by combining stress-related parameters

    NARCIS (Netherlands)

    Platje, Evelien; Jansen, Lucres M. C.; Vermeiren, Robert R. J. M.; Doreleijers, Theo A. H.; van Lier, Pol A. C.; Koot, Hans M.; Meeus, W.H.J.; Branje, Suzan J. T.; Popma, Arne

    Many stress-related parameters have been associated with antisocial behavior, including low cortisol awakening responses (CAR), as well as low cortisol and alpha-amylase reactivity to stress. These parameters reflect different, yet interrelated components of the stress system, yet it remains to be

  16. A protocol for analysing thermal stress in insects using infrared thermography.

    Science.gov (United States)

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  18. Physiological stress and refuge behavior by African elephants.

    Directory of Open Access Journals (Sweden)

    David S Jachowski

    Full Text Available Physiological stress responses allow individuals to adapt to changes in their status or surroundings, but chronic exposure to stressors could have detrimental effects. Increased stress hormone secretion leads to short-term escape behavior; however, no studies have assessed the potential of longer-term escape behavior, when individuals are in a chronic physiological state. Such refuge behavior is likely to take two forms, where an individual or population restricts its space use patterns spatially (spatial refuge hypothesis, or alters its use of space temporally (temporal refuge hypothesis. We tested the spatial and temporal refuge hypotheses by comparing space use patterns among three African elephant populations maintaining different fecal glucocorticoid metabolite (FGM concentrations. In support of the spatial refuge hypothesis, the elephant population that maintained elevated FGM concentrations (iSimangaliso used 20% less of its reserve than did an elephant population with lower FGM concentrations (Pilanesberg in a reserve of similar size, and 43% less than elephants in the smaller Phinda reserve. We found mixed support for the temporal refuge hypothesis; home range sizes in the iSimangaliso population did not differ by day compared to nighttime, but elephants used areas within their home ranges differently between day and night. Elephants in all three reserves generally selected forest and woodland habitats over grasslands, but elephants in iSimangaliso selected exotic forest plantations over native habitat types. Our findings suggest that chronic stress is associated with restricted space use and altered habitat preferences that resemble a facultative refuge behavioral response. Elephants can maintain elevated FGM levels for ≥ 6 years following translocation, during which they exhibit refuge behavior that is likely a result of human disturbance and habitat conditions. Wildlife managers planning to translocate animals, or to initiate other

  19. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  20. Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic

    Science.gov (United States)

    Bourke, Chase H.; Neigh, Gretchen N.

    2011-01-01

    Evidence suggests that women are more susceptible to stress-related disorders than men. Animal studies demonstrate a similar female sensitivity to stress and have been used to examine the underlying neurobiology of sex-specific effects of stress. Although our understanding of the sex-specific effects of chronic adolescent stress has grown in recent years, few studies have reported the effects of adolescent stress on depressive-like behavior. The purpose of this study was to determine if a chronic mixed modality stressor (consisting of isolation, restraint, and social defeat) during adolescence (PND37-49) resulted in differential and sustained changes in depressive-like behavior in male and female Wistar rats. Female rats exposed to chronic adolescent stress displayed decreased sucrose consumption, hyperactivity in the elevated plus maze, decreased activity in the forced swim test, and a blunted corticosterone response to an acute forced swim stress compared to controls during both adolescence (PND48-57) and adulthood (PND96-104). Male rats exposed to chronic adolescent stress did not manifest significant behavioral changes at either the end of adolescence or in adulthood. These data support the proposition that adolescence may be a stress sensitive period for females and exposure to stress during adolescence results in behavioral effects that persist in females. Studies investigating the sex-specific effects of chronic adolescent stress may lead to a better understanding of the sexually dimorphic incidence of depressive and anxiety disorders in humans and ultimately improve prevention and treatment strategies. PMID:21466807

  1. Investigations on thermal properties, stress and deformation of Al/SiC metal matrix composite based on finite element method

    Directory of Open Access Journals (Sweden)

    K. A. Ramesh Kumar

    2014-09-01

    Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.

  2. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  3. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    Energy Technology Data Exchange (ETDEWEB)

    Aragon-Lezama, J.A., E-mail: alja@correo.azc.uam.mx [Departamento de Materiales, Universidad Autónoma Metropolitana-A, Avenida San Pablo 180, Colonia Reynosa Tamaulipas, 02200 México, D.F., México (Mexico); Garcia-Borquez, A., E-mail: a.garciaborquez@yahoo.com.mx [Ciencia de Materiales, ESFM – Instituto Politécnico Nacional, Edif. 9, Unid. Prof. A. Lopez Mateos, Colonia Lindavista, 07738 México, D.F., México (Mexico); Torres-Villaseñor, G., E-mail: gtorres@unam.mx [Departamento de Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo., P 70-360, México, D.F., México (Mexico)

    2015-06-25

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm{sup 3} were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10{sup −3} s{sup −1} strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ{sub max}) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ{sub p}): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ{sub max}, LYP, and σ{sub p})

  4. Stress and eating behaviors in children and adolescents: Systematic review and meta-analysis.

    Science.gov (United States)

    Hill, Deborah C; Moss, Rachael H; Sykes-Muskett, Bianca; Conner, Mark; O'Connor, Daryl B

    2018-04-01

    It is well established that stress is linked to changes in eating behaviors. Research using adult populations has shown that stress is associated with both increases and decreases in the amount and type of food consumed. However, due to a lack of research reviews, the relationship between stress and eating behaviors in children is unclear. This systematic research review and meta-analysis aimed to identify whether stress is associated with healthy and unhealthy eating behaviors in children aged 8-18 years. Studies were included in the review if they measured stress and included a measure of food consumption. All unique studies retrieved (N = 28,070) were assessed for their eligibility at title, abstract and full text levels. A total of 13 studies were included in the final review and data were analysed using Comprehensive Meta-Analysis. Using random-effects modelling, overall stress was not associated with a change in overall eating behaviors. However, additional analyses indicated stress was associated with unhealthy eating behaviors in both younger (Hedge's g = 0.283, p stress was not associated with healthy eating behaviors in younger children (Hedge's g = 0.093, p = 0.156), but was negatively associated with healthy eating behaviors in older children (Hedge's g = -0.384, p stress on unhealthy eating may begin as early as 8 or 9 years old. Future research ought to investigate further the role of psychological, behavioral and endocrine factors in the development of stress-related eating in children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  6. Parenting Stress, Parental Reactions, and Externalizing Behavior From Ages 4 to 10.

    Science.gov (United States)

    Mackler, Jennifer S; Kelleher, Rachael T; Shanahan, Lilly; Calkins, Susan D; Keane, Susan P; O'Brien, Marion

    2015-04-01

    The association between parenting stress and child externalizing behavior, and the mediating role of parenting, has yielded inconsistent findings; however, the literature has typically been cross-sectional and unidirectional. In the current study the authors examined the longitudinal transactions among parenting stress, perceived negative parental reactions, and child externalizing at 4, 5, 7, and 10 years old. Models examining parent effects (parenting stress to child behavior), child effects (externalizing to parental reactions and stress), indirect effects of parental reactions, and the transactional associations among all variables, were compared. The transactional model best fit the data, and longitudinal reciprocal effects emerged between parenting stress and externalizing behavior. The mediating role of parental reactions was not supported; however, indirect effects suggest that parenting stress both is affected by and affects parent and child behavior. The complex associations among parent and child variables indicate the importance of interventions to improve the parent-child relationship and reducing parenting stress.

  7. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  8. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  9. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Directory of Open Access Journals (Sweden)

    Wenbo Zhai

    2017-09-01

    Full Text Available A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  10. Size-effect on stress behavior of the AlN/TiN film

    International Nuclear Information System (INIS)

    Chen, D.; Wang, Y.M.; Ma, X.L.

    2009-01-01

    The stress behavior of AlN/TiN superlattice film has been studied by means of a crystal-chemical atomic dynamics simulation based on first-principles calculations. The size-effects on stress behavior are demonstrated and discussed in detail. Stress behavior depends not only on AlN thickness but also on structural relaxation and strain distribution in the film. When the AlN thickness exceeds a critical one, the superlattice film is metastable. Stress behavior can be traced to the AlN/TiN interface structure and its variation with strain relaxation, which may reflect the main strain characteristics caused by AlN structural transformation in this film.

  11. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  12. Prediction of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2016-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  13. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    Science.gov (United States)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  14. Thermal stress prediction in mirror and multilayer coatings.

    Science.gov (United States)

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  15. A method of solution of the elastic-plastic thermal stress problem

    International Nuclear Information System (INIS)

    Rafalski, P.

    1975-01-01

    The purpose of the work is an improvement of the numerical technique for calculating the thermal stress distribution in an elastic-plastic structural element. The work consists of two parts. In the first a new method of solution of the thermal stress problem for the elastic-plastic body is presented. In the second a particular numerical technique, based on the above method, for calculating the stress and strain fields is proposed. A new mathematical approach consists in treating the stress and strain fields as mathematical objects defined in the space-time domain. The methods commonly applied use the stress and strain fields defined in the space domain and establish the relations between them at a given instant t. They reduce the problem to the system of ordinary differential equations with respect to time, which are usually solved with a step-by-step technique. The new method reduces the problem to the system of nonlinear algebraic equations. In the work the Hilbert space of admissible tensor fields is constructed. This space is the orthogonal sum of two subspaces: of statically admissible and kinematically admissible fields. Two alternative orthogonality conditions, which correspond to the equilibrium and compatibility equations with the appropriate boundary conditions, are derived. The results of the work are to be used for construction of the computer program for calculation the stress and strain fields in the elastic-plastic body with a prescribed temperature field in the interior and appropriate displacement and force conditions on the boundary

  16. The microstructure, mechanical stress, texture, and electromigration behavior of Al-Pd alloys

    Science.gov (United States)

    Rodbell, K. P.; Knorr, D. B.; Mis, J. D.

    1993-06-01

    As the minimum feature size of interconnect lines decreases below 0.5 urn, the need to control the line microstructure becomes increasingly important. The alloy content, deposition process, fabrication method, and thermal history all determine the microstructure of an interconnect, which, in turn, affects its performance and reliability. The motivation for this work was to characterize the microstructure of various sputtered Al-Pd alloys (Al-0.3wt.%Pd, Al-2Cu-0.3Pd, and Al-0.3Nb-0.3Pd) vs sputtered Al-Cu control samples (Al-0.5Cu and Al-2Cu) and to assess the role of grain size, mechanical stress, and crystallographic texture on the electromigration behavior of submicrometer wide lines. The grain size, mechanical stress, and texture of blanket films were measured as a function of annealing. The as-deposited film stress was tensile and followed a similar stress history on heating for all of the films; on cooling, however, significant differences were observed between the Al-Pd and Al-Cu films in the shape of their stress-temperature-curves. A strong (111) crystallographic texture was typically found for Al-Cu films deposited on SiO2. A stronger (111) texture resulted when Al-Cu was deposited on 25 nm titanium. Al-0.3Pd films, however, exhibited either a weak (111) or (220) texture when deposited on SiO2, which reverted to a strong (111) texture when deposited on 25 nm titanium. The electromigration lifetimes of passivated, ≈0.7 μm wide lines at 250°C and 2.5 × 106 A/cm2 for both single and multi-level samples (separated with W studs) are reported. The electromigration behavior of Al-0.3Pd was found to be less dependent on film microstructure than on the annealing atmosphere used, i.e. forming gas (90% N2-10%H2) annealed Al-0.3Pd films were superior to all of the alloys investigated, while annealing in only N2 resulted in poor lifetimes.

  17. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1980-01-01

    The disposal of heat emitting radioactive waste into hard rock should result in temperature rises and thermal gradients over distances of several hundred metres for several centuries. The consequent constrained thermal expansion of the rock would induce stresses which have important implications for possible water-borne leakage of radionuclides and for depository design. These problems are assessed by considering a simplified mathematical model for which analytic solutions to the temperature and stress fields are derived. (author)

  18. Thermal stress microfracturing of crystalline and sedimentary rock. Final report, September 16, 1987--September 15, 1991

    International Nuclear Information System (INIS)

    Wang, H.

    1995-08-01

    Slow uniform heating of crustal rocks is both a pervasive geologic process and an anticipated by-product of radioactive waste disposal. Such heating generates microcracks which alter the strength, elastic moduli, and transport properties of the rock. The research program was to understand mechanisms of thermal cracking in rocks. It included development of a theoretical understanding of cracking due to thermal stresses, laboratory work to characterize crack strain in rocks thermally stressed under different conditions (including natural thermal histories), microscopic work to count and catalog crack occurrences, and geologic application to determine paleostress history of granites from the midcontinent

  19. The effect of stress and personality on dangerous driving behavior among Chinese drivers.

    Science.gov (United States)

    Ge, Yan; Qu, Weina; Jiang, Caihong; Du, Feng; Sun, Xianghong; Zhang, Kan

    2014-12-01

    The relationship between stress and road safety has been studied for many years, but the effect of global stress and its joint effect with personality on driving behavior have received little attention in previous studies. This study aimed to elucidate the impact of global stress and various personality traits on driving behavior. 242 drivers completed the Perceived Stress Scale-10 (PSS-10), the Dula Dangerous Driving Index (DDDI), and several personality trait scales related to anger, sensation seeking, and altruism. The results showed that perceived stress and sensation seeking were significantly correlated with the four subcategories of dangerous driving behavior, namely, negative cognitive/emotional driving (NCED), aggressive driving (AD), risky driving (RD), and drunk driving (DD). Moreover, anger was positively correlated with negative cognitive/emotional driving, aggressive driving, and risky driving, and altruism was negatively correlated with aggressive driving and drunk driving. Hierarchical multiple regressions were applied to analyze the mediating effect of personality traits, and the results showed that anger mediated the relationship between stress and dangerous driving behavior and that this mediating role was especially strong for negative cognitive/emotional driving and aggressive driving. Collectively, the results showed that stress is an important factor that can affect people's driving behavior but that personality traits mediate the effect of stress on driving behavior. The findings from this study regarding the relationship among stress, anger, and dangerous driving behavior could be applied in the development of intervention programs for stress and anger management in order to improve drivers' ability to manage emotional thoughts and adjust their behavior on the road. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.

  1. The stress and stress intensity factors computation by BEM and FEM combination for nozzle junction under pressure and thermal loads

    International Nuclear Information System (INIS)

    Du, Q.; Cen, Z.; Zhu, H.

    1989-01-01

    This paper reports linear elastic fracture analysis based upon the stress intensity factor evaluation successfully applied to safety assessments of cracked structures. The nozzle junction are usually subjected to high pressure and thermal loads simultaneously. In validity of linear elastic fracture analysis, K can be decomposed into K P (caused by mechanic loads) and K τ (caused by thermal loads). Under thermal transient loading, explicit analysis (say by the FEM or BEM) of K tracing an entire history respectively for a range of crack depth may be much more time consuming. The techniques of weight function provide efficient means for transforming the problem into the stress computation of the uncracked structure and generation of influence function (for the given structure and size of crack). In this paper, a combination of BE-FEM has been used for the analysis of the cracked nozzle structure by techniques of weight function. The influence functions are obtained by coupled BE-FEM and the uncracked structure stress are computed by finite element methods

  2. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  3. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  4. Gender Perceptions of Challenging Student Behavior and Teacher Stress

    OpenAIRE

    Everaert, H.A.; Wolf, van der, J.C.

    2006-01-01

    The present study focuses on the level of stress male and female teachers perceive when dealing with the most behaviorally challenging student in his or her classroom. To measure stress in Dutch elementary classrooms, a sample was drawn of 582 teachers. First, they rated the most challenging student in their classroom on six different behavioral components: Against the grain, Full of activity/Easily distractible, Needs a lot of attention/Week student, Easily upset, Failuresyndrome/Excessively...

  5. Stress, Behavior, and Children and Youth Who Are Deafblind

    Science.gov (United States)

    Nelson, Catherine; Greenfield, Robin G.; Hyte, Holly A.; Shaffer, Jason P.

    2013-01-01

    Children and youth who are deafblind with multiple disabilities have several identified risk factors for experiencing toxic levels of stress, and such stress is known to impair physical, mental, and emotional health. This single-case multiple baseline study examined the frequency and duration of behaviors thought to indicate stress, the duration…

  6. CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Cheng, X.; Yang, Y.H.

    2008-01-01

    Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential

  7. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  8. Nursing students' perceived stress and coping behaviors in clinical training in Saudi Arabia.

    Science.gov (United States)

    Hamaideh, Shaher H; Al-Omari, Hasan; Al-Modallal, Hanan

    2017-06-01

    Clinical training has been recognized as a stressful experience for nursing students. The aims of this study were to identify levels and types of stressors among nursing students during their clinical training and their coping behaviors. Data were collected using a purposive sampling method from 100 nursing students using a self-reported questionnaire composed of Perceived Stress Scale and Coping Behavior Inventory. Results showed that "assignments and workload" as well as "teachers and nursing staff" were the highest sources of stress in clinical training. The most common coping behaviors used were "problem-solving" and "staying optimistic". There was a significant difference in perceived stress among students in regard to the way of choosing nursing. There were significant differences in coping behaviors in regard to the presence of relatives in nursing, living status and mothers' educational level. The predictors of perceived stress were self-choosing for nursing and the presence of relatives in nursing, while the predictors for coping behaviors were stress from peers and daily life as well as mothers' educational level. Nursing teachers and staff are encouraged to develop strategies that decrease level of stress and promote adaptive coping behaviors among nursing students during their clinical training.

  9. Transient thermal stresses in a circular cylinder with constrained ends

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1986-01-01

    This paker deals with the transient thermal stresses in a finite circular cylinder constrained at both end surfaces and subjected to axisymmetric temperature distribution on the lateral surface. The thermoelastic problem is formulated in terms of a thermoelastic displacement potential and three harmonic stress functions. Numerical calculations are carried out for the case of the uniform temperature distribution on the lateral surface. The stress distributions on the constrained end and the free suface are shown graphically, and the singularity in stresses appearing at the circumferencial edge is considered. Moreover, the approximate solution based upon the plane strain theory is introduced in order to compare the rigorous one, and it is considered how the length of the cylinder and the time proceeds affect on the accuracy of the approximation. (author)

  10. Thermal and stress analysis of a fuel rod research project 277

    International Nuclear Information System (INIS)

    1975-04-01

    The purpose of this investigation was to perform an analytical evaluation of a postulated loss of coolant incident in a large pressurized water reactor. A coupled thermal and stress finite element analysis of a fuel rod subjected to a hypothetical blow-down transient was carried out. The effect of two gap conditions and two initial stress states on the response of the fuel rod was studied. Both one-dimensional and three-dimensional models were investigated. To study the heat transfer in the gap region one assumes a conductive mode of heat transfer in the gap characterized by an equivalent thermal conductivity, which is dependent on the current gap width. Accordingly, coupled analysis procedure and computational scheme were established. A mesh generation computer program was developed for the three-dimensional model

  11. Design of an RF window for L-band CW klystron based on thermal-stress analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Seiya; Sato, Isamu; Konashi, Kenji; Ohshika, Junji.

    1993-01-01

    Design of klystron RF window has been performed based on a thermal-stress analysis for L-band CW electron linac for nuclear wastes transmutation. It was shown that the hoop stress for a modified disk is 46% of that of normal disk. Thermal load test has been done which indicated that the modified disk is proof against power twice as much as that for the normal disk. (author)

  12. Stress, Health Risk Behaviors, and Weight Status Among Community College Students.

    Science.gov (United States)

    Pelletier, Jennifer E; Lytle, Leslie A; Laska, Melissa N

    2016-04-01

    The objective of this study was to describe the relationship between stress, weight-related health risk behaviors (e.g., eating behaviors, physical activity, sedentary behavior, sleep, cigarette smoking, and binge drinking), and weight status using cross-sectional data on 2-year community college students enrolled in a randomized controlled weight gain prevention trial. Modified Poisson regression and linear regression were used to examine crude and adjusted cross-sectional associations. Higher stress was associated with higher prevalence of overweight/obesity (crude prevalence ratio [PR] = 1.05; 95% confidence interval [CI: 1.01, 1.09]), though the relationship was no longer statistically significant after controlling for a wide range of weight-related health risk behaviors (adjusted PR = 1.04; 95% CI [1.00, 1.08]). Stress levels were significantly associated with meal skipping and being a current smoker. Future research should investigate the mechanisms through which stress is related to obesity risk and examine the causes of stress among this understudied population to inform the design of appropriate interventions. © 2015 Society for Public Health Education.

  13. Bandgap tuning with thermal residual stresses induced in a quantum dot.

    Science.gov (United States)

    Kong, Eui-Hyun; Joo, Soo-Hyun; Park, Hyun-Jin; Song, Seungwoo; Chang, Yong-June; Kim, Hyoung Seop; Jang, Hyun Myung

    2014-09-24

    Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4-nm-sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD-sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  15. Perturbation of baseline thermal stress in the Mound 9516 Shipping Package primary containment vessel

    International Nuclear Information System (INIS)

    Sansalone, K.H.F.

    1995-01-01

    Full-capacity loading of heat sources into the Mound 9516 Shipping Package primary containment vessel (PCV) results in temperature gradients which are symmetric, due to the axisymmetry of the package design. Concern over the change in thermal gradients (and therefore, stress) in the PCV due to sub-capacity loading led to the analytical examination of this phenomenon. The PCVs are cylindrical in shape and are loaded into the package such that they and all containment components are concentrically arranged along a common longitudinal axis. If the design full-capacity loading of the PCVs in this package assumes the axisymmetric (or more precisely, cyclicly symmetric) arrangement of its heat-producing contents, then sub-capacity loading implies that in many cases, the load arrangement could be asymmetric with respect to the longitudinal axis. It is then feasible that the departure from heat load axisymmetry could perturb the nominal thermal gradients so that thermally-induced stress within the PCV might increase to levels deemed unacceptable. This study applies Finite Element analysis (FEA) to the problem and demonstrates that no such unacceptable thermal stress increase occurs in the PCV material due to the asymmetric arrangement of contents. copyright 1995 American Institute of Physics

  16. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  17. A correct enthalpy relationship as thermal comfort index for livestock.

    Science.gov (United States)

    Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares

    2011-05-01

    Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

  18. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  19. Transgenerational Social Stress, Immune Factors, Hormones, and Social Behavior

    Directory of Open Access Journals (Sweden)

    Christopher Anthony Murgatroyd

    2016-01-01

    Full Text Available A social signal transduction theory of depression has been proposed that states that exposure to social adversity alters the immune response and these changes mediate symptoms of depression such as anhedonia and impairments in social behavior. The exposure of maternal rats to the chronic social stress (CSS of a male intruder depresses maternal care and impairs social behavior in the F1 and F2 offspring of these dams. The objective of the present study was to characterize basal peripheral levels of several immune factors and related hormone levels in the adult F2 offspring of CSS exposed dams and assess whether changes in these factors are associated with previously reported deficits in allogrooming behavior. CSS decreased acid glycoprotein (α1AGP and intercellular adhesion molecule-1 (ICAM-1 in F2 females, and increased granulocyte macrophage-colony stimulating factor (GM-CSF in F2 males. There were also sex dependent changes in IL-18, tissue inhibitors of metalloproteinases 1 (TIMP-1, and vascular endothelial growth factor (VEGF. Progesterone was decreased and alpha melanocyte stimulating hormone (α-MSH was increased in F2 males, and brain-derived neurotrophic factor (BDNF was decreased in F2 females. Changes in α1AGP, GM-CSF, progesterone and α-MSH were correlated with decreased allogrooming in the F2 offspring of stressed dams. These results support the hypothesis that transgenerational social stress affects both the immune system and social behavior, and also support previous studies on the adverse effects of early life stress on immune functioning and stress associated immunological disorders, including the increasing prevalence of asthma. The immune system may represent an important transgenerational etiological factor in disorders which involve social and/or early life stress associated changes in social behavior, such as depression, anxiety, and autism, as well as comorbid immune disorders. Future studies involving immune and

  20. New animal model of emotional stress: Behavioral, neuroendocrine and immunological consequences

    Institute of Scientific and Technical Information of China (English)

    LIN Wenjuan; WANG Weiwen; SHAO Feng

    2003-01-01

    This report describes a new model of emotional stress, which was induced by randomly giving an empty water bottle to rats during watering periods per day for 14 consecutive days. The behavioral, endocrinological and immunological consequences were investigated. The data showed that the emotional stress activated both the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the increased blood levels of corticosterone and catecholamine. It also elicited attacking and exploring behavior, suppressed the immune function of the rats, including leukocyte counts, weight of the spleen, and the level of specific anti-ovalbumin IgG antibody production. Presenting no water and no empty bottle to rats only evoked the exploring behavior, increased the corticosterone level and decreased the leukocyte counts. These findings demonstrate a role of psychological factors on behavioral, endocrinological and immunological functioning. The animal model described in the present study may serve as an analogue mimicking emotional stress experienced in humans (e.g. anger and/or anxiety), and may be useful for further studying the complex relationships among emotional stress, behavior, and immune function.

  1. Cemented carbide cutting tool: Laser processing and thermal stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Arif, A.F.M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey); Ahsan, M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)

    2007-04-15

    Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO{sub 2} laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.

  2. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  3. An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.; Lee, J. O.

    2013-01-01

    Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  4. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  5. Effect of the Modification of the Start-Up Sequence on the Thermal Stresses for a Microgas Turbine

    Directory of Open Access Journals (Sweden)

    Oscar Tenango-Pirin

    2016-01-01

    Full Text Available Microgas turbines (MGT are an alternative for small-scale energy production; however, their small size becomes a drawback since it enhances the heat transfer among their components. Moreover, heat transfer drives to temperature gradients which become higher during transient cycles like start-up. The influence of different start-up curves on temperature and thermal stresses of a microgas turbine was investigated. Stationary and rotational blades of the turbine were numerically simulated using CFD and FEM commercial codes. Conjugated heat transfer cases were solved for obtaining heat transfer from fluid toward the blades. Changes of temperature gradients within the blades during the start-ups were calculated under transient state with boundary conditions according to each curve to assess accurate thermal stresses calculations. Results showed that the modification of the start-up curves had an impact on the thermal stresses levels and on the time when highest stresses appeared on each component. Furthermore, zones highly stressed were located near the constraints of blades where thermal strains are restricted. It was also found that the curve that had a warming period at the beginning of the start-up allowed reducing the peaks of stresses making it more feasible and safer for the turbine start-up operation.

  6. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  7. Impacts of Autistic Behaviors, Emotional and Behavioral Problems on Parenting Stress in Caregivers of Children with Autism

    Science.gov (United States)

    Huang, Chien-Yu; Yen, Hsui-Chen; Tseng, Mei-Hui; Tung, Li-Chen; Chen, Ying-Dar; Chen, Kuan-Lin

    2014-01-01

    This study examined the effects of autistic behaviors and individual emotional and behavioral problems on parenting stress in caregivers of children with autism. Caregivers were interviewed with the Childhood Autism Rating Scale and completed the Strength and Difficulties Questionnaire and the Parenting Stress Index Short Form. Results revealed…

  8. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  9. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  10. The relationship between adolescents' academic stress, impulsivity, anxiety, and skin picking behavior.

    Science.gov (United States)

    Yeo, Sun Kyung; Lee, Woo Kyeong

    2017-08-01

    Skin picking behavior involves an individual picking or biting their skin repeatedly. Although this behavior commonly occurs at a young age, little research has addressed its harmful effects among the Korean population. Therefore, we examined the characteristics of South Korean adolescents who reported skin picking behavior. South Korean students aged 12-16 years participated (N=410, females=52.2%). They completed questionnaires that addressed skin picking behavior, academic stress, impulsivity, and anxiety. The survey was conducted in Seoul and Gyeonggi-do from February-March 2016. Among participants, 66.8% reported that they had picked their skin and 15.4% did so currently. Skin picking was positively correlated with academic stress, impulsivity, and anxiety. Students who picked their skin more often displayed more anxiety, academic stress, and impulsivity. Future studies should address skin picking adolescents' characteristics, especially regarding anxiety and academic stress. Educational programs should be implemented to help adolescents decrease their anxiety and academic stress and prevent the worsening of skin picking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Estimation of apparent kinetic parameters of polymer pyrolysis with complex thermal degradation behavior

    International Nuclear Information System (INIS)

    Srimachai, Taranee; Anantawaraskul, Siripon

    2010-01-01

    Full text: Thermal degradation behavior during polymer pyrolysis can typically be described using three apparent kinetic parameters (i.e., pre-exponential factor, activation energy, and reaction order). Several efficient techniques have been developed to estimate these apparent kinetic parameters for simple thermal degradation behavior (i.e., single apparent pyrolysis reaction). Unfortunately, these techniques cannot be directly extended to the case of polymer pyrolysis with complex thermal degradation behavior (i.e., multiple concurrent reactions forming single or multiple DTG peaks). In this work, we proposed a deconvolution method to determine the number of apparent reactions and estimate three apparent kinetic parameters and contribution of each reaction for polymer pyrolysis with complex thermal degradation behavior. The proposed technique was validated with the model and experimental pyrolysis data of several polymer blends with known compositions. The results showed that (1) the number of reaction and (2) three apparent kinetic parameters and contribution of each reaction can be estimated reasonably. The simulated DTG curves with estimated parameters also agree well with experimental DTG curves. (author)

  12. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method.

    Science.gov (United States)

    Çelik Köycü, Berrak; İmirzalıoğlu, Pervin

    2017-07-01

    Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.

  13. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    International Nuclear Information System (INIS)

    Hall, M.M. Jr.

    1993-01-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates

  14. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  15. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  16. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  17. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis

    International Nuclear Information System (INIS)

    Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Graphical abstract: - Highlights: • Co-pyrolysis of biomass together with the plastic wastes in thermogravimetric analyzer. • Investigations into thermal and kinetic behaviors at high temperature regions. • Determination of the kinetic parameters. - Abstract: In this study, co-pyrolysis characteristics and kinetics of biomass-plastic blends were investigated. Cotton stalk, hazelnut shell, sunflower residue, and arid land plant Euphorbia rigida, were blended in definite ratio (1:1, w/w) with polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Experiments were conducted with a heating rate of 10 °C min −1 from room temperature to 800 °C in the presence of N 2 atmosphere with a flow rate of 100 cm 3 min −1 . After thermal decomposition in TGA, a kinetic analysis was performed to fit thermogravimetric data and a detailed discussion of co-pyrolysis mechanism was achieved. Experimental results demonstrated that the structural differences between biomass and plastics directly affect their thermal decomposition behaviors. Biomass pyrolysis generally based on three main steps while plastic material’s pyrolysis mechanism resulted in two steps for PET and three steps for PVC. Also, the required activation energies needed to achieve the thermal degradation for plastic were found higher than the biomass materials. In addition, it can be concluded that the evaluation of plastic materials together with biomass created significant changes not only for the thermal behaviors but also for the kinetic behaviors

  18. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil

    International Nuclear Information System (INIS)

    Freitas, M.L.F.; Chisté, R.C.; Polachini, T.C.; Sardella, L.A.C.Z.; Aranha, C.P.M.; Ribeiro, A.P.B.; Nicoletti, V.R.

    2017-01-01

    This work reports a complete characterization of buriti oil. Physicochemical properties were determined according to AOCS methodologies and thermophysical properties were measured using a controlled stress rheometer and a digital electronic density meter. β-carotene and tocopherol contents were obtained using HPLC systems. Fatty acids and acylglycerol classes were determined using GC and HPSEC systems, respectively, while triacylglycerol composition was estimated using the software PrOleos. Thermal behavior (crystallization and melting) was analyzed using a DSC. The results attested high levels of total carotenoids with β-carotene as the major one; total tocopherols contained α- and β-tocopherols which accounted for 91% of the total; and monounsaturated fatty acids were mainly represented by oleic acid. The results showed close agreement between density and viscosity of buriti and olive oils. The crystallization and melting peaks occurred at -43.06 °C and -2.73 °C, respectively. These properties enable Buriti oil to be recommended as an excellent alternative for enriching foods with bioactive compounds. [es

  19. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L. oil

    Directory of Open Access Journals (Sweden)

    M. L.F. Freitas

    2018-01-01

    Full Text Available This work reports a complete characterization of buriti oil. Physicochemical properties were determined according to AOCS methodologies and thermophysical properties were measured using a controlled stress rheometer and a digital electronic density meter. β-carotene and tocopherol contents were obtained using HPLC systems. Fatty acids and acylglycerol classes were determined using GC and HPSEC systems, respectively, while triacylglycerol composition was estimated using the software PrOleos. Thermal behavior (crystallization and melting was analyzed using a DSC. The results attested high levels of total carotenoids with β-carotene as the major one; total tocopherols contained α- and β-tocopherols which accounted for 91% of the total; and monounsaturated fatty acids were mainly represented by oleic acid. The results showed close agreement between density and viscosity of buriti and olive oils. The crystallization and melting peaks occurred at -43.06 °C and -2.73 °C, respectively. These properties enable Buriti oil to be recommended as an excellent alternative for enriching foods with bioactive compounds.

  20. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  1. Eating behavior and stress: a pathway to obesity

    OpenAIRE

    Sominsky, Luba; Spencer, Sarah J.

    2014-01-01

    Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors so the stressful event can be dealt with. In the hou...

  2. Child Behavior Problems, Teacher Executive Functions, and Teacher Stress in Head Start Classrooms.

    Science.gov (United States)

    Friedman-Krauss, Allison H; Raver, C Cybele; Neuspiel, Juliana M; Kinsel, John

    2014-01-01

    The current article explores the relationship between teachers' perceptions of child behavior problems and preschool teacher job stress, as well as the possibility that teachers' executive functions moderate this relationship. Data came from 69 preschool teachers in 31 early childhood classrooms in 4 Head Start centers and were collected using Web-based surveys and Web-based direct assessment tasks. Multilevel models revealed that higher levels of teachers' perceptions of child behavior problems were associated with higher levels of teacher job stress and that higher teacher executive function skills were related to lower job stress. However, findings did not yield evidence for teacher executive functions as a statistical moderator. Many early childhood teachers do not receive sufficient training for handling children's challenging behaviors. Child behavior problems increase a teacher's workload and consequently may contribute to feelings of stress. However, teachers' executive function abilities may enable them to use effective, cognitive-based behavior management and instructional strategies during interactions with students, which may reduce stress. Providing teachers with training on managing challenging behaviors and enhancing executive functions may reduce their stress and facilitate their use of effective classroom practices, which is important for children's school readiness skills and teachers' health.

  3. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  4. Behavioral and emotional profile and parental stress in preschool children with autism spectrum disorder.

    Science.gov (United States)

    Giovagnoli, Giulia; Postorino, Valentina; Fatta, Laura M; Sanges, Veronica; De Peppo, Lavinia; Vassena, Lia; Rose, Paola De; Vicari, Stefano; Mazzone, Luigi

    2015-01-01

    Parents of children with autism spectrum disorder (ASD) were shown to experience more stress than parents of typically developing peers, although little is known about risk factors predicting stress in this population. The aim of this study was to evaluate parental stress levels and behavioral and emotional problems in a sample of preschool children with ASD as compared to typically developing (TD) peers and to investigate the role of several factors, including the severity of autistic symptoms, adaptive skills, cognitive abilities and behavioral and emotional problems, on parental stress. Results confirmed that parents of children with ASD experience higher stress levels than parents of TD and that children with ASD show more behavioral and emotional problems than controls. Moreover, our results showed that behavioral and emotional problems are strong predictors of parental stress, while stress related to a parent-child dysfunctional relationship was associated with daily living and communication skills as well as cognitive abilities. Findings revealed different behavioral and emotional problems affecting parental stress in ASD and TD samples. No association between the severity of autism symptoms and parental stress was detected. These results suggest that dysfunctional behaviors in preschool children with ASD have a strong impact on parental stress, profoundly affecting the well-being of the entire family. Therefore, strategies aimed at the early detection and management of these behavioral and emotional problems are crucial in order to prevent parental stress and to develop the most appropriate treatment interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying

    International Nuclear Information System (INIS)

    Pina, J.; Dias, A.; Lebrun, J.L.

    2003-01-01

    Thermally sprayed coatings are formed by the deposition of molten or partially molten particles, propelled onto a substrate where they impact, spread and solidify rapidly. Residual stresses are expected within the sprayed deposit as a consequence of the release of thermal and kinetic energies. A wide range of materials and two spraying techniques are considered in this study, namely atmospheric plasma spraying (APS) and high-velocity oxygen fuel. Stresses were determined by the X-ray diffraction (XRD) method. The results were compared with those calculated by mechanical analysis of stress relief in coatings detached from the substrate. Comparison of the results for adherent and free-standing coatings shows that the residual stress state can be resolved in terms of the components suggested by models that propose two stages of stress generation: quenching stresses and secondary-cooling stresses. The in-depth distribution of residual stresses, through the coating thickness, is discussed in terms of the nature of the coating system

  6. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  7. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  8. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  9. Proposal on the mitigation methods of thermal stress near the sodium

    International Nuclear Information System (INIS)

    Ando, Masanori; Kasahara, Naoto

    2003-09-01

    A Reactor vessel of fast rector plants contains high temperature liquid sodium in its inside and its upper end is supported by a low temperature structures. Therefore, a significant temperature gradient will arise at the vessel wall near the sodium surface. For this reason, a large thermal stress will be generated around this part. To lower this stress and to protect the vessel, a number of methods have been applied the plants. Generally, these mitigation methods by protection equipments for thermal stress also have some problems such as, increase a mount of materials or to be complicate for control, hard to maintenance and so on. In this research, authors suggested another simple methods for thermal stress, and evaluated their effects using computer analysis. The results obtained in this research are as follows. Authors suggested one method, circulate high temperature gas around outside of the vessel and evaluated the effects of this method by analysis. In case of using this method, Sn (one of index values of design) value might be getting lower about 45%. Authors also suggested another method by setting up a heat transfer plate outside of the vessel and evaluated the effects of this method by analysis. Effects of this method depend on material of the plate. In case of using Carbon as material of plate, Sn value might be 27% lower and in case of using 12Cr steel as material of plate, Sn value might be 15% lower. Authors also suggested another method by changing material of the guard vessel to be the one which has good ability of heat transfer and evaluated the effects of this method by analysis. In case of changing material of guard vessel to 12Cr steel, Sn value might be lower about 12%. (author)

  10. Investigations on the effect of creep stress on the thermal properties of metallic materials

    International Nuclear Information System (INIS)

    Radtke, U.; Crostack, H.A.; Winschuh, E.

    1995-01-01

    Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [de

  11. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  12. Thermal stress during RTP processes and its possible effect on the light induced degradation in Cz-Si wafers

    Science.gov (United States)

    Kouhlane, Yacine; Bouhafs, Djoudi; Khelifati, Nabil; Guenda, Abdelkader; Demagh, Nacer-Eddine; Demagh, Assia; Pfeiffer, Pierre; Mezghiche, Salah; Hetatache, Warda; Derkaoui, Fahima; Nasraoui, Chahinez; Nwadiaru, Ogechi Vivian

    2018-04-01

    In this study, the carrier lifetime variation of p-type boron-doped Czochralski silicon (Cz-Si) wafers was investigated after a direct rapid thermal processing (RTP). Two wafers were passivated by silicon nitride (SiNx:H) layers, deposited by a PECVD system on both surfaces. Then the wafers were subjected to an RTP cycle at a peak temperature of 620 °C. The first wafer was protected (PW) from the direct radiative heating of the RTP furnace by placing the wafer between two as-cut Cz-Si shield wafers during the heat processing. The second wafer was not protected (NPW) and followed the same RTP cycle procedure. The carrier lifetime τ eff was measured using the QSSPC technique before and after illumination for 5 h duration at 0.5 suns. The immediate results of the measured lifetime (τ RTP ) after the RTP process have shown a regeneration in the lifetime of the two wafers with the PW wafer exhibiting an important enhancement in τ RTP as compared to the NPW wafer. The QSSPC measurements have indicated a good stable lifetime (τ d ) and a weak degradation effect was observed in the case of the PW wafer as compared to their initial lifetime value. Interferometry technique analyses have shown an enhancement in the surface roughness for the NPW wafer as compared to the protected one. Additionally, to improve the correlation between the RTP heat radiation stress and the carrier lifetime behavior, a simulation of the thermal stress and temperature profile using the finite element method on the wafers surface at RTP peak temperature of 620 °C was performed. The results confirm the reduction of the thermal stress with less heat losses for the PW wafer. Finally, the proposed method can lead to improving the lifetime of wafers by an RTP process at minimum energy costs.

  13. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  14. Quantifying Cyclic Thermal Stresses Due to Solar Exposure in Rock Fragments in Gale Crater, Mars

    Science.gov (United States)

    Hallet, B.; Mackenzie-Helnwein, P.; Sletten, R. S.

    2017-12-01

    Curiosity and earlier rovers on Mars have revealed in detail rocky landscapes with decaying outcrops, rubble, stone-littered regolith, and bedrock exposures that reflect the weathering processes operating on rock exposed to Mars' cold and hyperarid environment. Evidence from diverse sources points to the importance of thermal stresses driven by cyclic solar exposure in contributing to the mechanical weathering of exposed rock and generation of regolith in various settings on Earth [1,2,3], and even more so on extraterrestrial bodies where large, rapid cyclic temperature variations are frequent (e.g. Mars [4], as well as comets [5], asteroids [6] and other airless bodies [7]). To study these thermal stresses, we use a 3d finite element (FE) model constrained by ground-based surface temperature measurements from Curiosity's Environmental Monitoring Station (REMS). The numerical model couples radiation and conduction with elastic response to determine the temperature and stress fields in individual rocks on the surface of Mars based on rock size and thermo-mechanical properties. We provide specific quantitative results for boulder-size basalt rocks resting on the ground using a realistic thermal forcing that closely matches the REMS temperature observations, and related thermal inertia data. Moreover, we introduce analytical studies showing that these numerical results can readily be generalized. They are quite universal, informing us about thermal stresses due to cyclic solar exposure in general, for rock fragments of different sizes, lithologies, and fracture- thermal- and mechanical-properties. Using Earth-analogue studies to gain insight, we also consider how the shapes, fractures, and surface details of rock fragments imaged by Curiosity likely reflect the importance of rock breakdown due to thermal stresses relative to wind-driven rock erosion and other surface processes on Mars. References:[1] McFadden L et al. (2005) Geol. Soc.Am. Bull. 117(1-2): 161-173 [2

  15. Occupational Stress, Mental Health Status and Stress Management Behaviors among Secondary School Teachers in Hong Kong

    Science.gov (United States)

    Leung, Sharron S. K.; Mak, Yim Wah; Chui, Ying Yu; Chiang, Vico C. L.; Lee, Angel C. K.

    2009-01-01

    Objective: This study aimed to examine occupational stress and mental health among secondary school teachers in Hong Kong, and to identify the differences between those actively engaged in stress management behaviors and those who were not. Design: Survey design was adopted using validated instruments including Occupational Stress Inventory…

  16. Job stress and family social behavior: the moderating role of neuroticism.

    Science.gov (United States)

    Wang, Shu-wen; Repetti, Rena L; Campos, Belinda

    2011-10-01

    We investigated the role of neuroticism in the associations between job stress and working adults' social behavior during the first hour after work with their spouse and school-age children. Thirty dual-earner families were videotaped in their homes on two weekday afternoons and evenings. An observational coding system was developed to assess behavioral involvement and negative emotion expression. Participants also completed self-report measures of job stressors and trait neuroticism. There were few overall associations between job stress and social behavior during the first hour adults were at home with their spouse and school-age children. However, significant moderator effects indicated that linkages between work experiences and family behavior varied for men who reported different levels of trait neuroticism, which captures a dispositional tendency toward emotional instability. Among men who reported high neuroticism, job stress was linked to more active and more negative social behavior. Conversely, for men reporting low neuroticism, job stress was related to less talking and less negative emotion. These patterns were not found for the women in the study. The findings suggest that when work is stressful, men who are higher on neuroticism (i.e., less emotionally stable) may show a negative spillover effect, whereas men who are lower on neuroticism (i.e., more emotionally stable) may withdraw from social interactions. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  17. Qinshan phase II extension nuclear power project thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong; Ai Honglei

    2010-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor, the loadings at connections of surge line to main pipe and RCP and the displacements of surge line at supports are obtained. (authors)

  18. A prediction method of temperature distribution and thermal stress for the throttle turbine rotor and its application

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available In this paper, a prediction method of the temperature distribution for the thermal stress for the throttle-regulated steam turbine rotor is proposed. The rotor thermal stress curve can be calculated according to the preset power requirement, the operation mode and the predicted critical parameters. The results of the 660 MW throttle turbine rotor show that the operators are able to predict the operation results and to adjust the operation parameters in advance with the help of the inertial element method. Meanwhile, it can also raise the operation level, thus providing the technical guarantee for the thermal stress optimization control and the safety of the steam turbine rotor under the variable load operation.

  19. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  20. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  1. Thermal Stress Analyses for an NLC Positron Target with a 3 mm Spot Radius Beam

    International Nuclear Information System (INIS)

    Stein, W.; Sunwoo, A.; Sheppard, J. C.; Bharadwaj, V.; Schultz, D.

    2002-01-01

    The power deposition of an incident electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into three parts, with each part impinging on a 4 radiation lengths thick target. Three targets are required to avoid excessive thermal stresses in the targets. Energy deposition from each beam pulse occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 3 mm and results in a maximum temperature jump of 147 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 83 ksi (5.77 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  2. Body adiposity, behavior pattern and stress in adolescents

    Directory of Open Access Journals (Sweden)

    Mário Cesar Pires

    2002-12-01

    Full Text Available The objective of this study was to analyze the relationship between the body adiposity index (BAI, behavior pattern and stress of adolescents starting their courses at the Federal Technical School in Santa Catarina, Brazil. 170 subjects participated in the study, comprising 94 male subjects (mean age =14.9±1.0 and 76 female subjects (mean age =14.7±0.7. In addition to measuring body mass (BM and stature (ST in order to characterize the sample, adiposity index was calculated from triciptal and subscapular skinfolds and their sums. The data related to behavior patterns and stress were obtained using a Behavior Inventory and a Stress Symptom Inventory. It was observed, from analysis of the results, that BM and ST were within the percentage range of normality, according to the standard of Santo André, SP. When BAI for male and female subjects was compared, it was higher for female subjects. The sum of skinfolds for both male and female subjects was within the ideal range. BAI was also observed above the ideal level in 24.5% of the male subjects and in 44.7% of the female subjects. In relation to behavior pattern, most of the subjects (59.1% of males and 64.1% of females exhibited Type “A”. Female subjects exhibited more vulnerability to stress (55.2% when compared to male subjects (29.8%. The stress stage with the highest number of subjects was the resistance stage, with 53.9% and 29.8% for female and male subjects, respectively. The results failed to demonstrate an association between BAI and behavior pattern, between BAI and stress or between behavior pattern and stress. It can be concluded that behavior pattern and stress do not infl uence BAI in adolescents. RESUMO O objetivo deste estudo foi analisar a relação entre índice de adiposidade corporal (IAC, padrão de comportamento e estresse em adolescentes ingressantes na Escola Técnica Federal de Santa Catarina. Participaram da amostra 170 adolescentes, 94 do gênero masculino (m

  3. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  4. Parenting Stress and Child Behavior Problems: A Transactional Relationship across Time

    Science.gov (United States)

    Neece, Cameron L.; Green, Shulamite A.; Baker, Bruce L.

    2012-01-01

    Parenting stress and child behavior problems have been posited to have a transactional effect on each other across development. However, few studies have tested this model empirically. The authors investigated the relationship between parenting stress and child behavior problems from ages 3 to 9 years old among 237 children, 144 of whom were…

  5. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    Science.gov (United States)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  6. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  7. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  8. Stress in piezoelectric hollow sphere with thermal gradient

    International Nuclear Information System (INIS)

    Saadatfar, M.; Rastgoo, A.

    2008-01-01

    The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a radially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezoceramics

  9. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  10. Determination of the optimum temperature history of inlet water for minimizing thermal stresses in a pipe by the multiphysics inverse analysis

    International Nuclear Information System (INIS)

    Kubo, S; Uchida, K; Ishizaka, T; Ioka, S

    2008-01-01

    It is important to reduce the thermal stresses for managing and extending the lives of pipes in plants. In this problem, heat conduction, elastic deformation, heat transfer, liquid flow should be considered, and therefore the problem is of a multidisciplinary nature. An inverse method was proposed by the present authors for determining the optimum thermal load history which reduced transient thermal stress considering the multidisciplinary physics. But the obtained solution had a problem that the temperature increasing rate of inner surface of the pipe was discontinuous at the end time of heat up. In this study we introduce temperature history functions that ensure the continuity of the temperature increasing rate. The multidisciplinary complex problem is decomposed into a heat conduction problem, a heat transfer problem, and a thermal stress problem. An analytical solution of the temperature distribution of radial thickness and thermal hoop stress distribution is obtained. The maximum tensile and compressive hoop stresses are minimized for the case where inner surface temperature T s (t) is expressed in terms of the 4th order polynomial function of time t. Finally, from the temperature distributions, the optimum fluid temperature history is obtained for reducing the thermal stresses.

  11. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  12. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  13. Child Behavior Problems, Teacher Executive Functions, and Teacher Stress in Head Start Classrooms

    Science.gov (United States)

    Friedman-Krauss, Allison H.; Raver, C. Cybele; Neuspiel, Juliana M.; Kinsel, John

    2017-01-01

    Research Findings The current article explores the relationship between teachers’ perceptions of child behavior problems and preschool teacher job stress, as well as the possibility that teachers’ executive functions moderate this relationship. Data came from 69 preschool teachers in 31 early childhood classrooms in 4 Head Start centers and were collected using Web-based surveys and Web-based direct assessment tasks. Multilevel models revealed that higher levels of teachers’ perceptions of child behavior problems were associated with higher levels of teacher job stress and that higher teacher executive function skills were related to lower job stress. However, findings did not yield evidence for teacher executive functions as a statistical moderator. Practice or Policy Many early childhood teachers do not receive sufficient training for handling children’s challenging behaviors. Child behavior problems increase a teacher’s workload and consequently may contribute to feelings of stress. However, teachers’ executive function abilities may enable them to use effective, cognitive-based behavior management and instructional strategies during interactions with students, which may reduce stress. Providing teachers with training on managing challenging behaviors and enhancing executive functions may reduce their stress and facilitate their use of effective classroom practices, which is important for children’s school readiness skills and teachers’ health. PMID:28596698

  14. The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning.

    Science.gov (United States)

    Denmark, Ashley; Tien, David; Wong, Keith; Chung, Amanda; Cachat, Jonathan; Goodspeed, Jason; Grimes, Chelsea; Elegante, Marco; Suciu, Christopher; Elkhayat, Salem; Bartels, Brett; Jackson, Andrew; Rosenberg, Michael; Chung, Kyung Min; Badani, Hussain; Kadri, Ferdous; Roy, Sudipta; Tan, Julia; Gaikwad, Siddharth; Stewart, Adam; Zapolsky, Ivan; Gilder, Thomas; Kalueff, Allan V

    2010-04-02

    Stress induced by social defeat is a strong modifier of animal anxiety and depression-like phenotypes. Self-grooming is a common rodent behavior, and has an ordered cephalo-caudal progression from licking of the paws to head, body, genitals and tail. Acute stress is known to alter grooming activity levels and disrupt its patterning. Following 15-17 days of chronic social defeat stress, grooming behavior was analyzed in adult male C57BL/6J mice exhibiting either dominant or subordinate behavior. Our study showed that subordinate mice experience higher levels of anxiety and display disorganized patterning of their grooming behaviors, which emerges as a behavioral marker of chronic social stress. These findings indicate that chronic social stress modulates grooming behavior in mice, thus illustrating the importance of grooming phenotypes for neurobehavioral stress research. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.

    Science.gov (United States)

    Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen

    2017-11-03

    Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.

  16. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  17. Heart rate during conflicts predicts post-conflict stress-related behavior in greylag geese.

    Directory of Open Access Journals (Sweden)

    Claudia A F Wascher

    Full Text Available BACKGROUND: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids, but also in how individuals behave directly after a conflict. Certain 'stress-related behaviors' such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual's emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We recorded beat-to-beat heart rates (HR of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that 'stress-related behaviors' are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual's emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose that stress-related behaviors may play a role in communication with other group members, particularly with pair-partners.

  18. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  19. Mechanical behavior and stress effects in hard superconductors: a review

    International Nuclear Information System (INIS)

    Koch, C.C.; Easton, D.S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2 0 K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb 3 Sn and V 3 Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb 3 Sn samples. The importance of mechanical behavior to device performance is discussed

  20. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  1. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  2. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  3. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  4. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis).

    Science.gov (United States)

    Cui, Ding; Zhou, Yuan

    2015-11-18

    Stress from dominance ranks in human societies, or that of other social animals, especially nonhuman primates, can have negative influences on health. Individuals holding different social status may be burdened with various stress levels. The middle class experiences a special stress situation within the dominance hierarchy due to its position between the higher and lower classes. Behaviorally, questions about where middle-class stress comes from and how individuals adapt to middle-class stress remain poorly understood in nonhuman primates. In the present study, social interactions, including aggression, avoidance, grooming and mounting behaviors, between beta males, as well as among group members holding higher or lower social status, were analyzed in captive male-only cynomolgus monkey groups. We found that aggressive tension from the higher hierarchy members was the main origin of stress for middle-class individuals. However, behaviors such as attacking lower hierarchy members immediately after being the recipient of aggression, as well as increased avoidance, grooming and mounting toward both higher and lower hierarchy members helped alleviate middle-class stress and were particular adaptations to middle-class social status.

  5. Effect of Thermal Cycling on the Tensile Behavior of CF/AL Fiber Metal Laminates

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Noor

    2017-09-01

    Full Text Available The objective of this research work was to estimate the effect of thermal cycling on the tensile behavior of CARALL composites. Fiber metal laminates (FMLs, based on 2D woven carbon fabric and 2024-T3 Alclad aluminum alloy sheet, was manufactured by pressure molding technique followed by hand layup method. Before fabrication, aluminum sheets were anodized with phosphoric acid to produce micro porous alumina layer on surface. This micro-porous layer is beneficial to produce strong bonding between metal and fiber surfaces in FMLs. The effect of thermal cycling (-65 to +70ºC on the tensile behavior of Cf/Al based FML was studied. Tensile strength was increased after 10 thermal cycles, but it was slightly decreased to some extent after 30, and 50 thermal cycles. Tensile modulus also shown the similar behavior as that of tensile strength.

  6. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  7. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Gender Perceptions of Challenging Student Behavior and Teacher Stress

    NARCIS (Netherlands)

    H.A. Everaert; J.C. van der Wolf

    2006-01-01

    The present study focuses on the level of stress male and female teachers perceive when dealing with the most behaviorally challenging student in his or her classroom. To measure stress in Dutch elementary classrooms, a sample was drawn of 582 teachers. First, they rated the most challenging student

  9. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  10. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.

    Science.gov (United States)

    Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S

    2015-01-01

    Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.

  11. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  12. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  13. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Hofman, G.L.; Neimark, L.A.; Poeppel, R.B.

    1983-11-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release

  14. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  15. Emerging Adults' Stress and Health: The Role of Parent Behaviors and Cognitions

    Science.gov (United States)

    Donnelly, Reesa; Renk, Kimberly; McKinney, Cliff

    2013-01-01

    Although parent behaviors and cognitions are important for stress/health outcomes throughout development, little research examines whether cognitions mediate the relationship between parent behaviors and stress/health outcomes. As a result, the current study examined the reports of 160 emerging adults regarding their mothers' and fathers'…

  16. Stress, behavior, and biology: Risk factors for cardiovascular diseases in youth

    Science.gov (United States)

    Psychological stress is associated with cardiovascular disease (CVD) pathogenesis during childhood. Stress promotes atherogenic behaviors in children including snacking of energy dense foods and reduced physical activity; and it also increases adiposity. Stress-induced CV reactivity may also be athe...

  17. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  18. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  19. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis.

    Science.gov (United States)

    Mouri, Akihiro; Ukai, Mayu; Uchida, Mizuki; Hasegawa, Sho; Taniguchi, Masayuki; Ito, Takahiro; Hida, Hirotake; Yoshimi, Akira; Yamada, Kiyofumi; Kunimoto, Shohko; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-05-01

    Adverse juvenile experiences, including physical abuse, often have negative health consequences later in life. We investigated the influence of social defeat stress exposure as juveniles on neuropsychological behaviors, and the causal role of glucocorticoids in abnormal behaviors and impairment of neurogenesis in mice exposed to the stress. The juvenile (24-day-old) and adult (70-day-old) male C57BL/6J mice were exposed to social defeat stress induced by an aggressive ICR mouse. Social defeat stress exposure as juveniles, even for 1 day, induced persistent social avoidance to the unfamiliar ICR mouse in the social interaction test, but that was not observed in mice exposed to the stress as adults. Social avoidance by the stress exposure as juveniles for 10 consecutive days was observed, when the target mouse was not only unfamiliar ICR but also another C57BL/J mouse, but not an absent or an anesthetized ICR mouse. The stress exposure did not induce anxiety- and depression-like behaviors in spontaneous locomotor activity, elevated plus-maze test, marble-burying test, forced swimming test, or sucrose preference test. Serum corticosterone levels increased immediately after the stress exposure. The hippocampal neurogenesis was suppressed 1 day and 4 weeks after the stress exposure. Administration of mifepristone, a glucocorticoid receptor antagonist, prior to each stress exposure, blocked the persistent social avoidance and suppression of neurogenesis. In conclusion, social avoidance induced by social defeat stress exposure as juveniles are more persistent than that as adults. These social avoidances are associated with suppression of hippocampal neurogenesis via glucocorticoid receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Parenting Stress Related to Behavioral Problems and Disease Severity in Children with Problematic Severe Asthma.

    Science.gov (United States)

    Verkleij, Marieke; van de Griendt, Erik-Jonas; Colland, Vivian; van Loey, Nancy; Beelen, Anita; Geenen, Rinie

    2015-09-01

    Our study examined parenting stress and its association with behavioral problems and disease severity in children with problematic severe asthma. Research participants were 93 children (mean age 13.4 ± 2.7 years) and their parents (86 mothers, 59 fathers). As compared to reference groups analyzed in previous research, scores on the Parenting Stress Index in mothers and fathers of the children with problematic severe asthma were low. Higher parenting stress was associated with higher levels of internalizing and externalizing behavioral problems in children (Child Behavior Checklist). Higher parenting stress in mothers was also associated with higher airway inflammation (FeNO). Thus, although parenting stress was suggested to be low in this group, higher parenting stress, especially in the mother, is associated with more airway inflammation and greater child behavioral problems. This indicates the importance of focusing care in this group on all possible sources of problems, i.e., disease exacerbations and behavioral problems in the child as well as parenting stress.

  1. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  2. Anxiety and Social Stress Related to Adolescent Gambling Behavior and Substance Use

    Science.gov (United States)

    Ste-Marie, Chantal; Gupta, Rina; Derevensky, Jeffrey L.

    2006-01-01

    The relationship between anxiety, social stress, substance use, and gambling behavior was examined in a sample of 1,044 high school students from grades 7-11. Adolescents completed several instruments assessing their state, trait, and generalized anxiety, social stress, substance use, and gambling behavior. Results reveal that probable…

  3. Effects of prenatal stress on anxiety- and depressive-like behaviors are sex-specific in prepubertal rats.

    Science.gov (United States)

    Iturra-Mena, Ann Mary; Arriagada-Solimano, Marcia; Luttecke-Anders, Ariane; Dagnino-Subiabre, Alexies

    2018-05-17

    The fetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behavior. The aim of this study was to determine the physiological and behavioral effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 until 21, a critical period for fetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviors, and spontaneous social interaction. We also assessed maternal behaviors and two stress markers: basal vs. acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behavior, while both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation as well as anxiety- and depressive-like behaviors were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on the hypothalamus-pituitary-adrenal (HPA) axis activity and on behavior during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, as well as they were more anxious and experienced depressive-like behaviors. Our results can be useful to study the neurobiological basis of childhood depression at a pre-clinical level. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  5. Elevated temperature stress strain behavior of beryllium powder product

    International Nuclear Information System (INIS)

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-01-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s -1 to 1 s -1 . Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data

  6. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  7. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  8. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  9. Thermal behaviors of liquid La-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. W.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, L. W. [Institute of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  10. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  11. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Neimark, L.A.; Poeppel, R.B.; Hofman, G.L.

    1985-01-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release. 29 refs., 12 figs

  12. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  13. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available We have prepared a series of nano-sized aluminium nitride (nano-AlN/cycloaliphatic epoxy/trimethacrylate (TMPTMA systems and investigated their morphology, thermal conductivity, thermal stability and curing behavior. Experimental results show that the thermal conductivity of composites increases with the nano-AlN filler content, the maximum value is up to 0.47 W/(m.K. Incorporation of a small amount of the nano-AlN filler into the epoxy/TMPTMA system improves the thermal stability. For instance, the thermal degradation temperature at 5% weight loss of nano-AlN/epoxy/TMPTMA system with only 1 wt% nano-AlN was improved by ~8ºC over the neat epoxy/TMPTMA system. The effect of nano-AlN particles on the cure behavior of epoxy/TMPTMA systems was studied by dynamic differential scanning calorimetry. The results showed that the addition of silane treated nano-AlN particles does not change the curing reaction mechanism and silane treated nano-AlN particles could bring positive effect on the processing of composite since it needs shorter pre-cure time and lower pre-temperature, meanwhile the increase of glass transition temperature of the nanocomposite improves the heat resistance.

  14. Prenatal flavor exposure affects flavor recognition and stress-related behavior of piglets.

    Science.gov (United States)

    Oostindjer, Marije; Bolhuis, J Elizabeth; van den Brand, Henry; Kemp, Bas

    2009-11-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during (re)exposure to this flavor. Furthermore, we investigated whether varying stress levels, caused by different test settings, affected behavior of animals during (re)exposure. Piglets were exposed to anisic flavor through the maternal diet during late gestation and/or during lactation or never. Piglets that were prenatally exposed to the flavor through the maternal diet behaved differently compared with unexposed pigs during reexposure to the flavor in several tests, suggesting recognition of the flavor. The differences between groups were more pronounced in tests with relatively high stress levels. This suggests that stress levels, caused by the design of the test, can affect the behavior shown in the presence of the flavor. We conclude that prenatal flavor exposure affects behaviors of piglets that are indicative of recognition and that these behaviors are influenced by stress levels during (re)exposure.

  15. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  16. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  17. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  18. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi; Park, Youngjune; Petit, Camille; Park, Ah-Hyung Alissa

    2014-01-01

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  19. The design of bonded reinforcement for thermal stresses in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    This paper deals with examples of thermal loadings where instationary growth of tensile zones and redistribution of stresses by cracking are of importance. Temperatures produce, in addition to prestressing and internal pressure, the most important stresses in a prestressed concrete reactor pressure vessel. Characteristic of thermal stresses is that they are influenced to a large extent by creep of concrete and that they influence stress redistributions by temperature dependent creep data. Computations show that during the first instationary heating process of the vessel stresses are reduced by creep effects to about fifty percent of the values of the stationary elastic case at the hot face. With a following cooling, creep effects are generally much less, so this case may produce tensile stresses on the internal face of the wall which lead to cracking of the concrete. Tensile stresses first occur due to the instationary growth of the temperature field in a narrow zone near the liner. If outside this zone compressive stresses exist due to prestressing then crack spreading is limited and restraint by the parts of the wall under compression causes crack distribution even without reinforcement in this zone. Growth of cracks with the instationary spreading of tensile zones according to temperature development was calculated. These calculations take into account discrete cracks, reinforcement and different assumptions for tensile strength. Reinforcement of small diameter near the surface has the best influence on crack spacing. Calculations show that for the stationary state of cooling the forces in the reinforcement may be as low as twenty to thirty percent of the tensile force not taking into account cracking of the concrete

  20. Perceived family stress, parenting efficacy, and child externalizing behaviors in second-generation immigrant mothers.

    Science.gov (United States)

    Yaman, Ayşe; Mesman, Judi; van Ijzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2010-04-01

    Examining family stress and parenting efficacy in relation to child externalizing problems in immigrant families. In this study, we compared the levels of family stress, parenting efficacy, and toddler externalizing behaviors in Dutch (n = 175) and second-generation Turkish immigrant families (n = 175) living in the Netherlands. In addition, the influence of Turkish mothers' acculturation on toddler externalizing behaviors and its association with perceived stress and efficacy were examined. Turkish mothers reported higher levels of daily stress and marital discord than Dutch mothers, but did not differ in perceptions of parenting efficacy and children's externalizing behaviors. The associations between child and family variables were similar in the Dutch and the Turkish groups, as more family stress was related to more externalizing behaviors in toddlers. Low parenting efficacy was the most important predictor of child externalizing behaviors in both groups. Acculturation of Turkish mothers was not associated with family and child variables, and did not moderate the association between family variables and child externalizing behaviors. However, emotional connectedness to the Turkish culture was related to less daily stress and fewer marital problems. The results support the no-group differences hypothesis and also imply that cultural maintenance may be adaptive for parental well-being.

  1. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  2. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2015-07-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in cosmetic emulsions. Few studies are available in the literature covering the stability and the antioxidating property of this substance, used alone or into emulsions. Therefore, the purpose of this work was to investigate the thermal behavior and antioxidant properties of phytic acid alone and into cosmetic emulsions. The thermal behavior of this substance was evaluated by thermogravimetry (TG/derivative thermogravimetry (DTG and differential scanning calorimetry (DSC and the free-radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH. TG/DTG and DSC curves allowed evaluation of the thermal behavior of phytic acid. These results showed that the substance presented four stages of mass loss. Thermal decomposition of the material initiated at 150 °C. Thermal behavior of the cosmetic emulsions detected that the addition of phytic acid decreased the thermal stability of the system. DPPH free-radical-scavenging activity showed that phytic acid incorporated into emulsion had no antioxidant capacity compared to BHT. In summary, we concluded that the thermoanalytical techniques (TG and DSC were efficient and reliable in the characterization of phytic acid alone and incorporated into cosmetic emulsions.

  3. A neutron scattering study on the stability of trehalose mycolates under thermal stress

    International Nuclear Information System (INIS)

    Migliardo, F.; Salmeron, C.; Bayan, N.

    2013-01-01

    Highlights: ► Neutron scattering measurements have been performed on mycolate water mixtures. ► A comparison with lecithin lipid water mixtures has been carried out. ► Mycolates show a lower mobility and flexibility compared to lecithin. ► The observed peculiarities of mycolic acids could be ascribed to trehalose. ► The results could justify the high resistance to thermal stress of mycobacteria. - Abstract: The present paper is focused on the study of the dynamics of mycolic acids, which are fundamental components of the outer membrane (mycomembrane) of Mycobacterium tuberculosis. An elastic neutron scattering study of mycolic acid/H 2 O and lecithin/H 2 O mixtures as a function of temperature and exchanged wavevector Q has been carried out. This study provides an effective way for characterizing the dynamical properties, furnishing a set of parameters characterizing the different flexibility and rigidity of the investigated lipids. The behavior of the elastically scattered intensity profiles and the derived mean square displacements as a function of temperature shows a more marked temperature dependence for lecithin lipids in comparison with mycolic acids, so revealing a higher thermal stability of these latter. These findings could be useful for understanding the dynamics-function relation in the mycomembrane and then to relate it to the low permeability and high resistance of mycobacteria to many antibiotics

  4. A neutron scattering study on the stability of trehalose mycolates under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Migliardo, F., E-mail: fmigliardo@unime.it [Department of Physics, University of Messina, Viale D’Alcontres 31, 98166 Messina (Italy); Salmeron, C.; Bayan, N. [Laboratoire de Microbiologie Moléculaire et Cellulaire, IBBMC, Bat 430, Université de Paris Sud XI, 15 rue Georges Clémenceau, 91405 Orsay Cedex (France)

    2013-10-16

    Highlights: ► Neutron scattering measurements have been performed on mycolate water mixtures. ► A comparison with lecithin lipid water mixtures has been carried out. ► Mycolates show a lower mobility and flexibility compared to lecithin. ► The observed peculiarities of mycolic acids could be ascribed to trehalose. ► The results could justify the high resistance to thermal stress of mycobacteria. - Abstract: The present paper is focused on the study of the dynamics of mycolic acids, which are fundamental components of the outer membrane (mycomembrane) of Mycobacterium tuberculosis. An elastic neutron scattering study of mycolic acid/H{sub 2}O and lecithin/H{sub 2}O mixtures as a function of temperature and exchanged wavevector Q has been carried out. This study provides an effective way for characterizing the dynamical properties, furnishing a set of parameters characterizing the different flexibility and rigidity of the investigated lipids. The behavior of the elastically scattered intensity profiles and the derived mean square displacements as a function of temperature shows a more marked temperature dependence for lecithin lipids in comparison with mycolic acids, so revealing a higher thermal stability of these latter. These findings could be useful for understanding the dynamics-function relation in the mycomembrane and then to relate it to the low permeability and high resistance of mycobacteria to many antibiotics.

  5. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  6. Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner.

    Science.gov (United States)

    Grundwald, Natalia J; Brunton, Paula J

    2015-12-01

    An adverse environment in early life is often associated with dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis and higher rates of mood disorders in adulthood. In rats, exposure to social stress during pregnancy results in hyperactive HPA axis responses to stress in the adult offspring and heightened anxiety behavior in the males, but not the females. Here we tested whether, without further intervention, the effects of prenatal stress (PNS) in the first filial generation (F1) are transmitted to the F2 generation via the maternal line. F1 control and PNS female rats were mated with control males and housed under non-stress conditions throughout pregnancy. HPA axis responses to acute stress, anxiety- and depressive-like behavior were assessed in the adult F2 offspring. ACTH and corticosterone responses to an acute stressor were markedly enhanced in F2 PNS females compared with controls. This was associated with greater corticotropin releasing hormone (Crh) mRNA expression in the paraventricular nucleus and reduced hippocampal glucocorticoid (Gr) and mineralocorticoid receptor (Mr) mRNA expression. Conversely, in the F2 PNS males, HPA axis responses to acute stress were attenuated and hippocampal Gr mRNA expression was greater compared with controls. F2 PNS males exhibited heightened anxiety-like behavior (light-dark box and elevated plus maze) compared with F2 control males. Anxiety-like behavior did not differ between F2 control and PNS females during metestrus/diestrus, however at proestrus/estrus, F2 control females displayed a reduction in anxiety-like behavior, but this effect was not observed in the F2 PNS females. Heightened anxiety in the F2 PNS males was associated with greater Crh mRNA expression in the central nucleus of the amygdala compared with controls. Moreover, Crh receptor-1 (Crhr1) mRNA expression was significantly increased, whereas Crhr2 mRNA was significantly decreased in discrete regions of the amygdala in F2 PNS males compared

  7. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  8. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  9. Numerical method for analysis of temperature rises and thermal stresses around high level radioactive waste repository in granite

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1982-01-01

    The disposal of high-level radioactive waste should result in temperature rises and thermal stresses which change the hydraulic conductivity of the rock around the repository. For safety analysis on disposal of high-level radioactive waste into hard rock, it is necessary to find the temperature rises and thermal stresses distributions around the repository. In this paper, these distribution changes are analyzed by the use of the finite difference method. In advance of numerical analysis, it is required to simplify the shapes and properties of the repository and the rock. Several kinds of numerical models are prepared, and the results of this analysis are examined. And, the waste disposal methods are discussed from the stand-points of the temperature rise and thermal stress analysis. (author)

  10. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  11. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  12. Prediction of minimum UO2 particle size based on thermal stress initiated fracture model

    International Nuclear Information System (INIS)

    Corradini, M.

    1976-08-01

    An analytic study was employed to determine the minimum UO 2 particle size that could survive fragmentation induced by thermal stresses in a UO 2 -Na Fuel Coolant Interaction (FCI). A brittle fracture mechanics approach was the basis of the study whereby stress intensity factors K/sub I/ were compared to the fracture toughness K/sub IC/ to determine if the particle could fracture. Solid and liquid UO 2 droplets were considered each with two possible interface contact conditions; perfect wetting by the sodium or a finite heat transfer coefficient. The analysis indicated that particles below the range of 50 microns in radius could survive a UO 2 -Na fuel coolant interaction under the most severe temperature conditions without thermal stress fragmentation. Environmental conditions of the fuel-coolant interaction were varied to determine the effects upon K/sub I/ and possible fragmentation. The underlying assumptions of the analysis were investigated in light of the analytic results. It was concluded that the analytic study seemed to verify the experimental observations as to the range of the minimum particle size due to thermal stress fragmentation by FCI. However the method used when the results are viewed in light of the basic assumptions indicates that the analysis is crude at best, and can be viewed as only a rough order of magnitude analysis. The basic complexities in fracture mechanics make further investigation in this area interesting but not necessarily fruitful for the immediate future

  13. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    Science.gov (United States)

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (Plecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (plecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Dwivedi, Shubham; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala

    2017-01-01

    Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

  15. Baking system for ports of experimental advanced super-conducting tokamak vacuum vessel and thermal stress analysis

    International Nuclear Information System (INIS)

    Cheng Yali; Bao Liman; Song Yuntao; Yao Damao

    2006-01-01

    The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)

  16. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.

    Science.gov (United States)

    Cui, W; Wu, T; Ouyang, Q; Zhu, Y

    2017-01-01

    Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Analysis of the thermal behavior of AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Russo, Salvatore; D’Alessandro, Vincenzo; Costagliola, Maurizio; Sasso, Grazia; Rinaldi, Niccolò

    2012-01-01

    Highlights: ► The thermal behavior of advanced multifinger AlGaN/GaN HEMTs grown on SiC is analyzed. ► The study is performed through accurate FEM simulations and DC/dynamic measurements. ► The FEM analysis is supported by an in-house tool devised for a smart mesh generation. ► Illustrative technology/layout guidelines to minimize the thermal issues are provided. - Abstract: The thermal behavior of state-of-the-art multifinger AlGaN/GaN HEMTs grown on SiC is thoroughly analyzed under steady-state and dynamic conditions. Accurate 3-D FEM simulations – based on a novel in-house tool devised to automatically build the device mesh – are performed using a commercial software to explore the influence of various layout and technological solutions on the temperature field. An in-house routine is employed to determine the Foster/Cauer networks suited to describe the dynamic heat propagation through the device structure. To conclude, various experimental techniques are employed to assess the thermal resistance and to allow the monitoring of the thermal impedance versus time of the transistors under test.

  18. Facebook behaviors associated with diurnal cortisol in adolescents: Is befriending stressful?

    Science.gov (United States)

    Morin-Major, Julie Katia; Marin, Marie-France; Durand, Nadia; Wan, Nathalie; Juster, Robert-Paul; Lupien, Sonia J

    2016-01-01

    Facebook(©) is changing the way people interact and socialize. Despite great interest in psychology and sociology, little is known about Facebook behaviors in relation to physiological markers of stress. Given that the brain undergoes important development during adolescence and that glucocorticoids--a major class of stress hormones-are known to modulate its development, it is important to study psychosocial factors that may influence secretion of stress hormones during adolescence. The goal of the present study was to explore the associations between Facebook behaviors (use frequency, network size, self-presentation and peer-interaction) and basal levels of cortisol among adolescent boys and girls. Eighty-eight adolescents (41 boys, 47 girls) aged between 12 and 17 (14.5 ± 1.8) were recruited. Participants provided four cortisol samples per day for two non-consecutive weekdays. Facebook behaviors were assessed in accordance with the existing literature. Well-validated measures of perceived stress, perceived social support, self-esteem, and depressive symptoms were also included. A hierarchical regression showed that after controlling for sex, age, time of awakening, perceived stress, and perceived social support, cortisol systemic output (area under the curve with respect to ground) was positively associated with the number of Facebook friends and negatively associated with Facebook peer-interaction. No associations were found among depressive symptoms, self-esteem, and cortisol. These results provide preliminary evidence that Facebook behaviors are associated with diurnal cortisol concentrations in adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: dbrown@lanl.gov; Sisneros, T.A.; Clausen, B.; Abeln, S.; Bourke, M.A.M.; Smith, B.G.; Steinzig, M.L.; Tome, C.N.; Vogel, S.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 deg. C. The internal stresses are not significantly different from zero >575 deg. C and increase nearly linearly <525 deg. C. At room temperature, the c axis of an average grain is under {approx}200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model.

  20. Associations of maternal stress with children’s weight-related behaviors: A systematic literature review

    Science.gov (United States)

    O’Connor, Sydney G.; Maher, Jaclyn P.; Belcher, Britni R.; Leventhal, Adam M.; Margolin, Gayla; Shonkoff, Eleanor T.; Dunton, Genevieve F.

    2017-01-01

    Low adherence to guidelines for weight-related behaviors (e.g., dietary intake and physical activity) among U.S. children underscores the need to better understand how parental factors may influence children’s obesity risk. In addition to most often acting as primary caregiver to their children, women are also known to experience greater levels of stress than men. This study systematically reviewed associations between maternal stress and children’s weight-related behaviors. Our search returned 14 eligible articles, representing 25 unique associations of maternal stress with a distinct child weight-related behavior (i.e., healthy diet (n=3), unhealthy diet (n=6), physical activity (n=7), sedentary behavior (n=9)). Overall, findings for the relationship between maternal stress and children’s weight-related behaviors were mixed, with no evidence for an association with children’s healthy or unhealthy dietary intake, but fairly consistent evidence for the association of maternal stress with children’s lower physical activity and higher sedentary behavior. Recommendations for future research include prioritizing prospective designs, identifying moderators, and use of high resolution, real-time data collection techniques to elucidate potential mechanisms. PMID:28296057

  1. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    Science.gov (United States)

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (PSocially defeated rats made significantly more errors in long term memory tests (Psocially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.

  2. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Renault, P.O., E-mail: pierre.olivier.renault@univ-poitiers.f [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Le Bourhis, E.; Krauss, C.; Goudeau, P. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Barthel, E.; Grachev, S. Yu.; Sondergard, E. [Lab. Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervil